1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32
33 #define INPUT_MAX_CHAR_DEVICES 1024
34 #define INPUT_FIRST_DYNAMIC_DEV 256
35 static DEFINE_IDA(input_ida);
36
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39
40 /*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46 static DEFINE_MUTEX(input_mutex);
47
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49
50 static const unsigned int input_max_code[EV_CNT] = {
51 [EV_KEY] = KEY_MAX,
52 [EV_REL] = REL_MAX,
53 [EV_ABS] = ABS_MAX,
54 [EV_MSC] = MSC_MAX,
55 [EV_SW] = SW_MAX,
56 [EV_LED] = LED_MAX,
57 [EV_SND] = SND_MAX,
58 [EV_FF] = FF_MAX,
59 };
60
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)61 static inline int is_event_supported(unsigned int code,
62 unsigned long *bm, unsigned int max)
63 {
64 return code <= max && test_bit(code, bm);
65 }
66
input_defuzz_abs_event(int value,int old_val,int fuzz)67 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
68 {
69 if (fuzz) {
70 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
71 return old_val;
72
73 if (value > old_val - fuzz && value < old_val + fuzz)
74 return (old_val * 3 + value) / 4;
75
76 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
77 return (old_val + value) / 2;
78 }
79
80 return value;
81 }
82
input_start_autorepeat(struct input_dev * dev,int code)83 static void input_start_autorepeat(struct input_dev *dev, int code)
84 {
85 if (test_bit(EV_REP, dev->evbit) &&
86 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
87 dev->timer.function) {
88 dev->repeat_key = code;
89 mod_timer(&dev->timer,
90 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
91 }
92 }
93
input_stop_autorepeat(struct input_dev * dev)94 static void input_stop_autorepeat(struct input_dev *dev)
95 {
96 del_timer(&dev->timer);
97 }
98
99 /*
100 * Pass event first through all filters and then, if event has not been
101 * filtered out, through all open handles. This function is called with
102 * dev->event_lock held and interrupts disabled.
103 */
input_to_handler(struct input_handle * handle,struct input_value * vals,unsigned int count)104 static unsigned int input_to_handler(struct input_handle *handle,
105 struct input_value *vals, unsigned int count)
106 {
107 struct input_handler *handler = handle->handler;
108 struct input_value *end = vals;
109 struct input_value *v;
110
111 if (handler->filter) {
112 for (v = vals; v != vals + count; v++) {
113 if (handler->filter(handle, v->type, v->code, v->value))
114 continue;
115 if (end != v)
116 *end = *v;
117 end++;
118 }
119 count = end - vals;
120 }
121
122 if (!count)
123 return 0;
124
125 if (handler->events)
126 handler->events(handle, vals, count);
127 else if (handler->event)
128 for (v = vals; v != vals + count; v++)
129 handler->event(handle, v->type, v->code, v->value);
130
131 return count;
132 }
133
134 /*
135 * Pass values first through all filters and then, if event has not been
136 * filtered out, through all open handles. This function is called with
137 * dev->event_lock held and interrupts disabled.
138 */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)139 static void input_pass_values(struct input_dev *dev,
140 struct input_value *vals, unsigned int count)
141 {
142 struct input_handle *handle;
143 struct input_value *v;
144
145 if (!count)
146 return;
147
148 rcu_read_lock();
149
150 handle = rcu_dereference(dev->grab);
151 if (handle) {
152 count = input_to_handler(handle, vals, count);
153 } else {
154 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
155 if (handle->open) {
156 count = input_to_handler(handle, vals, count);
157 if (!count)
158 break;
159 }
160 }
161
162 rcu_read_unlock();
163
164 /* trigger auto repeat for key events */
165 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
166 for (v = vals; v != vals + count; v++) {
167 if (v->type == EV_KEY && v->value != 2) {
168 if (v->value)
169 input_start_autorepeat(dev, v->code);
170 else
171 input_stop_autorepeat(dev);
172 }
173 }
174 }
175 }
176
input_pass_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)177 static void input_pass_event(struct input_dev *dev,
178 unsigned int type, unsigned int code, int value)
179 {
180 struct input_value vals[] = { { type, code, value } };
181
182 input_pass_values(dev, vals, ARRAY_SIZE(vals));
183 }
184
185 /*
186 * Generate software autorepeat event. Note that we take
187 * dev->event_lock here to avoid racing with input_event
188 * which may cause keys get "stuck".
189 */
input_repeat_key(struct timer_list * t)190 static void input_repeat_key(struct timer_list *t)
191 {
192 struct input_dev *dev = from_timer(dev, t, timer);
193 unsigned long flags;
194
195 spin_lock_irqsave(&dev->event_lock, flags);
196
197 if (test_bit(dev->repeat_key, dev->key) &&
198 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
199 struct input_value vals[] = {
200 { EV_KEY, dev->repeat_key, 2 },
201 input_value_sync
202 };
203
204 input_set_timestamp(dev, ktime_get());
205 input_pass_values(dev, vals, ARRAY_SIZE(vals));
206
207 if (dev->rep[REP_PERIOD])
208 mod_timer(&dev->timer, jiffies +
209 msecs_to_jiffies(dev->rep[REP_PERIOD]));
210 }
211
212 spin_unlock_irqrestore(&dev->event_lock, flags);
213 }
214
215 #define INPUT_IGNORE_EVENT 0
216 #define INPUT_PASS_TO_HANDLERS 1
217 #define INPUT_PASS_TO_DEVICE 2
218 #define INPUT_SLOT 4
219 #define INPUT_FLUSH 8
220 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
221
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)222 static int input_handle_abs_event(struct input_dev *dev,
223 unsigned int code, int *pval)
224 {
225 struct input_mt *mt = dev->mt;
226 bool is_mt_event;
227 int *pold;
228
229 if (code == ABS_MT_SLOT) {
230 /*
231 * "Stage" the event; we'll flush it later, when we
232 * get actual touch data.
233 */
234 if (mt && *pval >= 0 && *pval < mt->num_slots)
235 mt->slot = *pval;
236
237 return INPUT_IGNORE_EVENT;
238 }
239
240 is_mt_event = input_is_mt_value(code);
241
242 if (!is_mt_event) {
243 pold = &dev->absinfo[code].value;
244 } else if (mt) {
245 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
246 } else {
247 /*
248 * Bypass filtering for multi-touch events when
249 * not employing slots.
250 */
251 pold = NULL;
252 }
253
254 if (pold) {
255 *pval = input_defuzz_abs_event(*pval, *pold,
256 dev->absinfo[code].fuzz);
257 if (*pold == *pval)
258 return INPUT_IGNORE_EVENT;
259
260 *pold = *pval;
261 }
262
263 /* Flush pending "slot" event */
264 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
265 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
266 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
267 }
268
269 return INPUT_PASS_TO_HANDLERS;
270 }
271
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)272 static int input_get_disposition(struct input_dev *dev,
273 unsigned int type, unsigned int code, int *pval)
274 {
275 int disposition = INPUT_IGNORE_EVENT;
276 int value = *pval;
277
278 switch (type) {
279
280 case EV_SYN:
281 switch (code) {
282 case SYN_CONFIG:
283 disposition = INPUT_PASS_TO_ALL;
284 break;
285
286 case SYN_REPORT:
287 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
288 break;
289 case SYN_MT_REPORT:
290 disposition = INPUT_PASS_TO_HANDLERS;
291 break;
292 }
293 break;
294
295 case EV_KEY:
296 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
297
298 /* auto-repeat bypasses state updates */
299 if (value == 2) {
300 disposition = INPUT_PASS_TO_HANDLERS;
301 break;
302 }
303
304 if (!!test_bit(code, dev->key) != !!value) {
305
306 __change_bit(code, dev->key);
307 disposition = INPUT_PASS_TO_HANDLERS;
308 }
309 }
310 break;
311
312 case EV_SW:
313 if (is_event_supported(code, dev->swbit, SW_MAX) &&
314 !!test_bit(code, dev->sw) != !!value) {
315
316 __change_bit(code, dev->sw);
317 disposition = INPUT_PASS_TO_HANDLERS;
318 }
319 break;
320
321 case EV_ABS:
322 if (is_event_supported(code, dev->absbit, ABS_MAX))
323 disposition = input_handle_abs_event(dev, code, &value);
324
325 break;
326
327 case EV_REL:
328 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
329 disposition = INPUT_PASS_TO_HANDLERS;
330
331 break;
332
333 case EV_MSC:
334 if (is_event_supported(code, dev->mscbit, MSC_MAX))
335 disposition = INPUT_PASS_TO_ALL;
336
337 break;
338
339 case EV_LED:
340 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
341 !!test_bit(code, dev->led) != !!value) {
342
343 __change_bit(code, dev->led);
344 disposition = INPUT_PASS_TO_ALL;
345 }
346 break;
347
348 case EV_SND:
349 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
350
351 if (!!test_bit(code, dev->snd) != !!value)
352 __change_bit(code, dev->snd);
353 disposition = INPUT_PASS_TO_ALL;
354 }
355 break;
356
357 case EV_REP:
358 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
359 dev->rep[code] = value;
360 disposition = INPUT_PASS_TO_ALL;
361 }
362 break;
363
364 case EV_FF:
365 if (value >= 0)
366 disposition = INPUT_PASS_TO_ALL;
367 break;
368
369 case EV_PWR:
370 disposition = INPUT_PASS_TO_ALL;
371 break;
372 }
373
374 *pval = value;
375 return disposition;
376 }
377
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)378 static void input_handle_event(struct input_dev *dev,
379 unsigned int type, unsigned int code, int value)
380 {
381 int disposition = input_get_disposition(dev, type, code, &value);
382
383 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
384 add_input_randomness(type, code, value);
385
386 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
387 dev->event(dev, type, code, value);
388
389 if (!dev->vals)
390 return;
391
392 if (disposition & INPUT_PASS_TO_HANDLERS) {
393 struct input_value *v;
394
395 if (disposition & INPUT_SLOT) {
396 v = &dev->vals[dev->num_vals++];
397 v->type = EV_ABS;
398 v->code = ABS_MT_SLOT;
399 v->value = dev->mt->slot;
400 }
401
402 v = &dev->vals[dev->num_vals++];
403 v->type = type;
404 v->code = code;
405 v->value = value;
406 }
407
408 if (disposition & INPUT_FLUSH) {
409 if (dev->num_vals >= 2)
410 input_pass_values(dev, dev->vals, dev->num_vals);
411 dev->num_vals = 0;
412 /*
413 * Reset the timestamp on flush so we won't end up
414 * with a stale one. Note we only need to reset the
415 * monolithic one as we use its presence when deciding
416 * whether to generate a synthetic timestamp.
417 */
418 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
419 } else if (dev->num_vals >= dev->max_vals - 2) {
420 dev->vals[dev->num_vals++] = input_value_sync;
421 input_pass_values(dev, dev->vals, dev->num_vals);
422 dev->num_vals = 0;
423 }
424
425 }
426
427 /**
428 * input_event() - report new input event
429 * @dev: device that generated the event
430 * @type: type of the event
431 * @code: event code
432 * @value: value of the event
433 *
434 * This function should be used by drivers implementing various input
435 * devices to report input events. See also input_inject_event().
436 *
437 * NOTE: input_event() may be safely used right after input device was
438 * allocated with input_allocate_device(), even before it is registered
439 * with input_register_device(), but the event will not reach any of the
440 * input handlers. Such early invocation of input_event() may be used
441 * to 'seed' initial state of a switch or initial position of absolute
442 * axis, etc.
443 */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)444 void input_event(struct input_dev *dev,
445 unsigned int type, unsigned int code, int value)
446 {
447 unsigned long flags;
448
449 if (is_event_supported(type, dev->evbit, EV_MAX)) {
450
451 spin_lock_irqsave(&dev->event_lock, flags);
452 input_handle_event(dev, type, code, value);
453 spin_unlock_irqrestore(&dev->event_lock, flags);
454 }
455 }
456 EXPORT_SYMBOL(input_event);
457
458 /**
459 * input_inject_event() - send input event from input handler
460 * @handle: input handle to send event through
461 * @type: type of the event
462 * @code: event code
463 * @value: value of the event
464 *
465 * Similar to input_event() but will ignore event if device is
466 * "grabbed" and handle injecting event is not the one that owns
467 * the device.
468 */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)469 void input_inject_event(struct input_handle *handle,
470 unsigned int type, unsigned int code, int value)
471 {
472 struct input_dev *dev = handle->dev;
473 struct input_handle *grab;
474 unsigned long flags;
475
476 if (is_event_supported(type, dev->evbit, EV_MAX)) {
477 spin_lock_irqsave(&dev->event_lock, flags);
478
479 rcu_read_lock();
480 grab = rcu_dereference(dev->grab);
481 if (!grab || grab == handle)
482 input_handle_event(dev, type, code, value);
483 rcu_read_unlock();
484
485 spin_unlock_irqrestore(&dev->event_lock, flags);
486 }
487 }
488 EXPORT_SYMBOL(input_inject_event);
489
490 /**
491 * input_alloc_absinfo - allocates array of input_absinfo structs
492 * @dev: the input device emitting absolute events
493 *
494 * If the absinfo struct the caller asked for is already allocated, this
495 * functions will not do anything.
496 */
input_alloc_absinfo(struct input_dev * dev)497 void input_alloc_absinfo(struct input_dev *dev)
498 {
499 if (dev->absinfo)
500 return;
501
502 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
503 if (!dev->absinfo) {
504 dev_err(dev->dev.parent ?: &dev->dev,
505 "%s: unable to allocate memory\n", __func__);
506 /*
507 * We will handle this allocation failure in
508 * input_register_device() when we refuse to register input
509 * device with ABS bits but without absinfo.
510 */
511 }
512 }
513 EXPORT_SYMBOL(input_alloc_absinfo);
514
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)515 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
516 int min, int max, int fuzz, int flat)
517 {
518 struct input_absinfo *absinfo;
519
520 input_alloc_absinfo(dev);
521 if (!dev->absinfo)
522 return;
523
524 absinfo = &dev->absinfo[axis];
525 absinfo->minimum = min;
526 absinfo->maximum = max;
527 absinfo->fuzz = fuzz;
528 absinfo->flat = flat;
529
530 __set_bit(EV_ABS, dev->evbit);
531 __set_bit(axis, dev->absbit);
532 }
533 EXPORT_SYMBOL(input_set_abs_params);
534
535
536 /**
537 * input_grab_device - grabs device for exclusive use
538 * @handle: input handle that wants to own the device
539 *
540 * When a device is grabbed by an input handle all events generated by
541 * the device are delivered only to this handle. Also events injected
542 * by other input handles are ignored while device is grabbed.
543 */
input_grab_device(struct input_handle * handle)544 int input_grab_device(struct input_handle *handle)
545 {
546 struct input_dev *dev = handle->dev;
547 int retval;
548
549 retval = mutex_lock_interruptible(&dev->mutex);
550 if (retval)
551 return retval;
552
553 if (dev->grab) {
554 retval = -EBUSY;
555 goto out;
556 }
557
558 rcu_assign_pointer(dev->grab, handle);
559
560 out:
561 mutex_unlock(&dev->mutex);
562 return retval;
563 }
564 EXPORT_SYMBOL(input_grab_device);
565
__input_release_device(struct input_handle * handle)566 static void __input_release_device(struct input_handle *handle)
567 {
568 struct input_dev *dev = handle->dev;
569 struct input_handle *grabber;
570
571 grabber = rcu_dereference_protected(dev->grab,
572 lockdep_is_held(&dev->mutex));
573 if (grabber == handle) {
574 rcu_assign_pointer(dev->grab, NULL);
575 /* Make sure input_pass_event() notices that grab is gone */
576 synchronize_rcu();
577
578 list_for_each_entry(handle, &dev->h_list, d_node)
579 if (handle->open && handle->handler->start)
580 handle->handler->start(handle);
581 }
582 }
583
584 /**
585 * input_release_device - release previously grabbed device
586 * @handle: input handle that owns the device
587 *
588 * Releases previously grabbed device so that other input handles can
589 * start receiving input events. Upon release all handlers attached
590 * to the device have their start() method called so they have a change
591 * to synchronize device state with the rest of the system.
592 */
input_release_device(struct input_handle * handle)593 void input_release_device(struct input_handle *handle)
594 {
595 struct input_dev *dev = handle->dev;
596
597 mutex_lock(&dev->mutex);
598 __input_release_device(handle);
599 mutex_unlock(&dev->mutex);
600 }
601 EXPORT_SYMBOL(input_release_device);
602
603 /**
604 * input_open_device - open input device
605 * @handle: handle through which device is being accessed
606 *
607 * This function should be called by input handlers when they
608 * want to start receive events from given input device.
609 */
input_open_device(struct input_handle * handle)610 int input_open_device(struct input_handle *handle)
611 {
612 struct input_dev *dev = handle->dev;
613 int retval;
614
615 retval = mutex_lock_interruptible(&dev->mutex);
616 if (retval)
617 return retval;
618
619 if (dev->going_away) {
620 retval = -ENODEV;
621 goto out;
622 }
623
624 handle->open++;
625
626 if (dev->users++) {
627 /*
628 * Device is already opened, so we can exit immediately and
629 * report success.
630 */
631 goto out;
632 }
633
634 if (dev->open) {
635 retval = dev->open(dev);
636 if (retval) {
637 dev->users--;
638 handle->open--;
639 /*
640 * Make sure we are not delivering any more events
641 * through this handle
642 */
643 synchronize_rcu();
644 goto out;
645 }
646 }
647
648 if (dev->poller)
649 input_dev_poller_start(dev->poller);
650
651 out:
652 mutex_unlock(&dev->mutex);
653 return retval;
654 }
655 EXPORT_SYMBOL(input_open_device);
656
input_flush_device(struct input_handle * handle,struct file * file)657 int input_flush_device(struct input_handle *handle, struct file *file)
658 {
659 struct input_dev *dev = handle->dev;
660 int retval;
661
662 retval = mutex_lock_interruptible(&dev->mutex);
663 if (retval)
664 return retval;
665
666 if (dev->flush)
667 retval = dev->flush(dev, file);
668
669 mutex_unlock(&dev->mutex);
670 return retval;
671 }
672 EXPORT_SYMBOL(input_flush_device);
673
674 /**
675 * input_close_device - close input device
676 * @handle: handle through which device is being accessed
677 *
678 * This function should be called by input handlers when they
679 * want to stop receive events from given input device.
680 */
input_close_device(struct input_handle * handle)681 void input_close_device(struct input_handle *handle)
682 {
683 struct input_dev *dev = handle->dev;
684
685 mutex_lock(&dev->mutex);
686
687 __input_release_device(handle);
688
689 if (!--dev->users) {
690 if (dev->poller)
691 input_dev_poller_stop(dev->poller);
692
693 if (dev->close)
694 dev->close(dev);
695 }
696
697 if (!--handle->open) {
698 /*
699 * synchronize_rcu() makes sure that input_pass_event()
700 * completed and that no more input events are delivered
701 * through this handle
702 */
703 synchronize_rcu();
704 }
705
706 mutex_unlock(&dev->mutex);
707 }
708 EXPORT_SYMBOL(input_close_device);
709
710 /*
711 * Simulate keyup events for all keys that are marked as pressed.
712 * The function must be called with dev->event_lock held.
713 */
input_dev_release_keys(struct input_dev * dev)714 static void input_dev_release_keys(struct input_dev *dev)
715 {
716 bool need_sync = false;
717 int code;
718
719 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
720 for_each_set_bit(code, dev->key, KEY_CNT) {
721 input_pass_event(dev, EV_KEY, code, 0);
722 need_sync = true;
723 }
724
725 if (need_sync)
726 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
727
728 memset(dev->key, 0, sizeof(dev->key));
729 }
730 }
731
732 /*
733 * Prepare device for unregistering
734 */
input_disconnect_device(struct input_dev * dev)735 static void input_disconnect_device(struct input_dev *dev)
736 {
737 struct input_handle *handle;
738
739 /*
740 * Mark device as going away. Note that we take dev->mutex here
741 * not to protect access to dev->going_away but rather to ensure
742 * that there are no threads in the middle of input_open_device()
743 */
744 mutex_lock(&dev->mutex);
745 dev->going_away = true;
746 mutex_unlock(&dev->mutex);
747
748 spin_lock_irq(&dev->event_lock);
749
750 /*
751 * Simulate keyup events for all pressed keys so that handlers
752 * are not left with "stuck" keys. The driver may continue
753 * generate events even after we done here but they will not
754 * reach any handlers.
755 */
756 input_dev_release_keys(dev);
757
758 list_for_each_entry(handle, &dev->h_list, d_node)
759 handle->open = 0;
760
761 spin_unlock_irq(&dev->event_lock);
762 }
763
764 /**
765 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
766 * @ke: keymap entry containing scancode to be converted.
767 * @scancode: pointer to the location where converted scancode should
768 * be stored.
769 *
770 * This function is used to convert scancode stored in &struct keymap_entry
771 * into scalar form understood by legacy keymap handling methods. These
772 * methods expect scancodes to be represented as 'unsigned int'.
773 */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)774 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
775 unsigned int *scancode)
776 {
777 switch (ke->len) {
778 case 1:
779 *scancode = *((u8 *)ke->scancode);
780 break;
781
782 case 2:
783 *scancode = *((u16 *)ke->scancode);
784 break;
785
786 case 4:
787 *scancode = *((u32 *)ke->scancode);
788 break;
789
790 default:
791 return -EINVAL;
792 }
793
794 return 0;
795 }
796 EXPORT_SYMBOL(input_scancode_to_scalar);
797
798 /*
799 * Those routines handle the default case where no [gs]etkeycode() is
800 * defined. In this case, an array indexed by the scancode is used.
801 */
802
input_fetch_keycode(struct input_dev * dev,unsigned int index)803 static unsigned int input_fetch_keycode(struct input_dev *dev,
804 unsigned int index)
805 {
806 switch (dev->keycodesize) {
807 case 1:
808 return ((u8 *)dev->keycode)[index];
809
810 case 2:
811 return ((u16 *)dev->keycode)[index];
812
813 default:
814 return ((u32 *)dev->keycode)[index];
815 }
816 }
817
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)818 static int input_default_getkeycode(struct input_dev *dev,
819 struct input_keymap_entry *ke)
820 {
821 unsigned int index;
822 int error;
823
824 if (!dev->keycodesize)
825 return -EINVAL;
826
827 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
828 index = ke->index;
829 else {
830 error = input_scancode_to_scalar(ke, &index);
831 if (error)
832 return error;
833 }
834
835 if (index >= dev->keycodemax)
836 return -EINVAL;
837
838 ke->keycode = input_fetch_keycode(dev, index);
839 ke->index = index;
840 ke->len = sizeof(index);
841 memcpy(ke->scancode, &index, sizeof(index));
842
843 return 0;
844 }
845
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)846 static int input_default_setkeycode(struct input_dev *dev,
847 const struct input_keymap_entry *ke,
848 unsigned int *old_keycode)
849 {
850 unsigned int index;
851 int error;
852 int i;
853
854 if (!dev->keycodesize)
855 return -EINVAL;
856
857 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
858 index = ke->index;
859 } else {
860 error = input_scancode_to_scalar(ke, &index);
861 if (error)
862 return error;
863 }
864
865 if (index >= dev->keycodemax)
866 return -EINVAL;
867
868 if (dev->keycodesize < sizeof(ke->keycode) &&
869 (ke->keycode >> (dev->keycodesize * 8)))
870 return -EINVAL;
871
872 switch (dev->keycodesize) {
873 case 1: {
874 u8 *k = (u8 *)dev->keycode;
875 *old_keycode = k[index];
876 k[index] = ke->keycode;
877 break;
878 }
879 case 2: {
880 u16 *k = (u16 *)dev->keycode;
881 *old_keycode = k[index];
882 k[index] = ke->keycode;
883 break;
884 }
885 default: {
886 u32 *k = (u32 *)dev->keycode;
887 *old_keycode = k[index];
888 k[index] = ke->keycode;
889 break;
890 }
891 }
892
893 if (*old_keycode <= KEY_MAX) {
894 __clear_bit(*old_keycode, dev->keybit);
895 for (i = 0; i < dev->keycodemax; i++) {
896 if (input_fetch_keycode(dev, i) == *old_keycode) {
897 __set_bit(*old_keycode, dev->keybit);
898 /* Setting the bit twice is useless, so break */
899 break;
900 }
901 }
902 }
903
904 __set_bit(ke->keycode, dev->keybit);
905 return 0;
906 }
907
908 /**
909 * input_get_keycode - retrieve keycode currently mapped to a given scancode
910 * @dev: input device which keymap is being queried
911 * @ke: keymap entry
912 *
913 * This function should be called by anyone interested in retrieving current
914 * keymap. Presently evdev handlers use it.
915 */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)916 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
917 {
918 unsigned long flags;
919 int retval;
920
921 spin_lock_irqsave(&dev->event_lock, flags);
922 retval = dev->getkeycode(dev, ke);
923 spin_unlock_irqrestore(&dev->event_lock, flags);
924
925 return retval;
926 }
927 EXPORT_SYMBOL(input_get_keycode);
928
929 /**
930 * input_set_keycode - attribute a keycode to a given scancode
931 * @dev: input device which keymap is being updated
932 * @ke: new keymap entry
933 *
934 * This function should be called by anyone needing to update current
935 * keymap. Presently keyboard and evdev handlers use it.
936 */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)937 int input_set_keycode(struct input_dev *dev,
938 const struct input_keymap_entry *ke)
939 {
940 unsigned long flags;
941 unsigned int old_keycode;
942 int retval;
943
944 if (ke->keycode > KEY_MAX)
945 return -EINVAL;
946
947 spin_lock_irqsave(&dev->event_lock, flags);
948
949 retval = dev->setkeycode(dev, ke, &old_keycode);
950 if (retval)
951 goto out;
952
953 /* Make sure KEY_RESERVED did not get enabled. */
954 __clear_bit(KEY_RESERVED, dev->keybit);
955
956 /*
957 * Simulate keyup event if keycode is not present
958 * in the keymap anymore
959 */
960 if (old_keycode > KEY_MAX) {
961 dev_warn(dev->dev.parent ?: &dev->dev,
962 "%s: got too big old keycode %#x\n",
963 __func__, old_keycode);
964 } else if (test_bit(EV_KEY, dev->evbit) &&
965 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
966 __test_and_clear_bit(old_keycode, dev->key)) {
967 struct input_value vals[] = {
968 { EV_KEY, old_keycode, 0 },
969 input_value_sync
970 };
971
972 input_pass_values(dev, vals, ARRAY_SIZE(vals));
973 }
974
975 out:
976 spin_unlock_irqrestore(&dev->event_lock, flags);
977
978 return retval;
979 }
980 EXPORT_SYMBOL(input_set_keycode);
981
input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)982 bool input_match_device_id(const struct input_dev *dev,
983 const struct input_device_id *id)
984 {
985 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
986 if (id->bustype != dev->id.bustype)
987 return false;
988
989 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
990 if (id->vendor != dev->id.vendor)
991 return false;
992
993 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
994 if (id->product != dev->id.product)
995 return false;
996
997 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
998 if (id->version != dev->id.version)
999 return false;
1000
1001 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1002 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1003 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1004 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1005 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1006 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1007 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1008 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1009 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1010 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1011 return false;
1012 }
1013
1014 return true;
1015 }
1016 EXPORT_SYMBOL(input_match_device_id);
1017
input_match_device(struct input_handler * handler,struct input_dev * dev)1018 static const struct input_device_id *input_match_device(struct input_handler *handler,
1019 struct input_dev *dev)
1020 {
1021 const struct input_device_id *id;
1022
1023 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1024 if (input_match_device_id(dev, id) &&
1025 (!handler->match || handler->match(handler, dev))) {
1026 return id;
1027 }
1028 }
1029
1030 return NULL;
1031 }
1032
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1033 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1034 {
1035 const struct input_device_id *id;
1036 int error;
1037
1038 id = input_match_device(handler, dev);
1039 if (!id)
1040 return -ENODEV;
1041
1042 error = handler->connect(handler, dev, id);
1043 if (error && error != -ENODEV)
1044 pr_err("failed to attach handler %s to device %s, error: %d\n",
1045 handler->name, kobject_name(&dev->dev.kobj), error);
1046
1047 return error;
1048 }
1049
1050 #ifdef CONFIG_COMPAT
1051
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1052 static int input_bits_to_string(char *buf, int buf_size,
1053 unsigned long bits, bool skip_empty)
1054 {
1055 int len = 0;
1056
1057 if (in_compat_syscall()) {
1058 u32 dword = bits >> 32;
1059 if (dword || !skip_empty)
1060 len += snprintf(buf, buf_size, "%x ", dword);
1061
1062 dword = bits & 0xffffffffUL;
1063 if (dword || !skip_empty || len)
1064 len += snprintf(buf + len, max(buf_size - len, 0),
1065 "%x", dword);
1066 } else {
1067 if (bits || !skip_empty)
1068 len += snprintf(buf, buf_size, "%lx", bits);
1069 }
1070
1071 return len;
1072 }
1073
1074 #else /* !CONFIG_COMPAT */
1075
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1076 static int input_bits_to_string(char *buf, int buf_size,
1077 unsigned long bits, bool skip_empty)
1078 {
1079 return bits || !skip_empty ?
1080 snprintf(buf, buf_size, "%lx", bits) : 0;
1081 }
1082
1083 #endif
1084
1085 #ifdef CONFIG_PROC_FS
1086
1087 static struct proc_dir_entry *proc_bus_input_dir;
1088 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1089 static int input_devices_state;
1090
input_wakeup_procfs_readers(void)1091 static inline void input_wakeup_procfs_readers(void)
1092 {
1093 input_devices_state++;
1094 wake_up(&input_devices_poll_wait);
1095 }
1096
input_proc_devices_poll(struct file * file,poll_table * wait)1097 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1098 {
1099 poll_wait(file, &input_devices_poll_wait, wait);
1100 if (file->f_version != input_devices_state) {
1101 file->f_version = input_devices_state;
1102 return EPOLLIN | EPOLLRDNORM;
1103 }
1104
1105 return 0;
1106 }
1107
1108 union input_seq_state {
1109 struct {
1110 unsigned short pos;
1111 bool mutex_acquired;
1112 };
1113 void *p;
1114 };
1115
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1116 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1117 {
1118 union input_seq_state *state = (union input_seq_state *)&seq->private;
1119 int error;
1120
1121 /* We need to fit into seq->private pointer */
1122 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1123
1124 error = mutex_lock_interruptible(&input_mutex);
1125 if (error) {
1126 state->mutex_acquired = false;
1127 return ERR_PTR(error);
1128 }
1129
1130 state->mutex_acquired = true;
1131
1132 return seq_list_start(&input_dev_list, *pos);
1133 }
1134
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1135 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1136 {
1137 return seq_list_next(v, &input_dev_list, pos);
1138 }
1139
input_seq_stop(struct seq_file * seq,void * v)1140 static void input_seq_stop(struct seq_file *seq, void *v)
1141 {
1142 union input_seq_state *state = (union input_seq_state *)&seq->private;
1143
1144 if (state->mutex_acquired)
1145 mutex_unlock(&input_mutex);
1146 }
1147
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1148 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1149 unsigned long *bitmap, int max)
1150 {
1151 int i;
1152 bool skip_empty = true;
1153 char buf[18];
1154
1155 seq_printf(seq, "B: %s=", name);
1156
1157 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1158 if (input_bits_to_string(buf, sizeof(buf),
1159 bitmap[i], skip_empty)) {
1160 skip_empty = false;
1161 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1162 }
1163 }
1164
1165 /*
1166 * If no output was produced print a single 0.
1167 */
1168 if (skip_empty)
1169 seq_putc(seq, '0');
1170
1171 seq_putc(seq, '\n');
1172 }
1173
input_devices_seq_show(struct seq_file * seq,void * v)1174 static int input_devices_seq_show(struct seq_file *seq, void *v)
1175 {
1176 struct input_dev *dev = container_of(v, struct input_dev, node);
1177 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1178 struct input_handle *handle;
1179
1180 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1181 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1182
1183 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1184 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1185 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1186 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1187 seq_puts(seq, "H: Handlers=");
1188
1189 list_for_each_entry(handle, &dev->h_list, d_node)
1190 seq_printf(seq, "%s ", handle->name);
1191 seq_putc(seq, '\n');
1192
1193 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1194
1195 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1196 if (test_bit(EV_KEY, dev->evbit))
1197 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1198 if (test_bit(EV_REL, dev->evbit))
1199 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1200 if (test_bit(EV_ABS, dev->evbit))
1201 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1202 if (test_bit(EV_MSC, dev->evbit))
1203 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1204 if (test_bit(EV_LED, dev->evbit))
1205 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1206 if (test_bit(EV_SND, dev->evbit))
1207 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1208 if (test_bit(EV_FF, dev->evbit))
1209 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1210 if (test_bit(EV_SW, dev->evbit))
1211 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1212
1213 seq_putc(seq, '\n');
1214
1215 kfree(path);
1216 return 0;
1217 }
1218
1219 static const struct seq_operations input_devices_seq_ops = {
1220 .start = input_devices_seq_start,
1221 .next = input_devices_seq_next,
1222 .stop = input_seq_stop,
1223 .show = input_devices_seq_show,
1224 };
1225
input_proc_devices_open(struct inode * inode,struct file * file)1226 static int input_proc_devices_open(struct inode *inode, struct file *file)
1227 {
1228 return seq_open(file, &input_devices_seq_ops);
1229 }
1230
1231 static const struct proc_ops input_devices_proc_ops = {
1232 .proc_open = input_proc_devices_open,
1233 .proc_poll = input_proc_devices_poll,
1234 .proc_read = seq_read,
1235 .proc_lseek = seq_lseek,
1236 .proc_release = seq_release,
1237 };
1238
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1239 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1240 {
1241 union input_seq_state *state = (union input_seq_state *)&seq->private;
1242 int error;
1243
1244 /* We need to fit into seq->private pointer */
1245 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1246
1247 error = mutex_lock_interruptible(&input_mutex);
1248 if (error) {
1249 state->mutex_acquired = false;
1250 return ERR_PTR(error);
1251 }
1252
1253 state->mutex_acquired = true;
1254 state->pos = *pos;
1255
1256 return seq_list_start(&input_handler_list, *pos);
1257 }
1258
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1259 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1260 {
1261 union input_seq_state *state = (union input_seq_state *)&seq->private;
1262
1263 state->pos = *pos + 1;
1264 return seq_list_next(v, &input_handler_list, pos);
1265 }
1266
input_handlers_seq_show(struct seq_file * seq,void * v)1267 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1268 {
1269 struct input_handler *handler = container_of(v, struct input_handler, node);
1270 union input_seq_state *state = (union input_seq_state *)&seq->private;
1271
1272 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1273 if (handler->filter)
1274 seq_puts(seq, " (filter)");
1275 if (handler->legacy_minors)
1276 seq_printf(seq, " Minor=%d", handler->minor);
1277 seq_putc(seq, '\n');
1278
1279 return 0;
1280 }
1281
1282 static const struct seq_operations input_handlers_seq_ops = {
1283 .start = input_handlers_seq_start,
1284 .next = input_handlers_seq_next,
1285 .stop = input_seq_stop,
1286 .show = input_handlers_seq_show,
1287 };
1288
input_proc_handlers_open(struct inode * inode,struct file * file)1289 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1290 {
1291 return seq_open(file, &input_handlers_seq_ops);
1292 }
1293
1294 static const struct proc_ops input_handlers_proc_ops = {
1295 .proc_open = input_proc_handlers_open,
1296 .proc_read = seq_read,
1297 .proc_lseek = seq_lseek,
1298 .proc_release = seq_release,
1299 };
1300
input_proc_init(void)1301 static int __init input_proc_init(void)
1302 {
1303 struct proc_dir_entry *entry;
1304
1305 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1306 if (!proc_bus_input_dir)
1307 return -ENOMEM;
1308
1309 entry = proc_create("devices", 0, proc_bus_input_dir,
1310 &input_devices_proc_ops);
1311 if (!entry)
1312 goto fail1;
1313
1314 entry = proc_create("handlers", 0, proc_bus_input_dir,
1315 &input_handlers_proc_ops);
1316 if (!entry)
1317 goto fail2;
1318
1319 return 0;
1320
1321 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1322 fail1: remove_proc_entry("bus/input", NULL);
1323 return -ENOMEM;
1324 }
1325
input_proc_exit(void)1326 static void input_proc_exit(void)
1327 {
1328 remove_proc_entry("devices", proc_bus_input_dir);
1329 remove_proc_entry("handlers", proc_bus_input_dir);
1330 remove_proc_entry("bus/input", NULL);
1331 }
1332
1333 #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1334 static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1335 static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1336 static inline void input_proc_exit(void) { }
1337 #endif
1338
1339 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1340 static ssize_t input_dev_show_##name(struct device *dev, \
1341 struct device_attribute *attr, \
1342 char *buf) \
1343 { \
1344 struct input_dev *input_dev = to_input_dev(dev); \
1345 \
1346 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1347 input_dev->name ? input_dev->name : ""); \
1348 } \
1349 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1350
1351 INPUT_DEV_STRING_ATTR_SHOW(name);
1352 INPUT_DEV_STRING_ATTR_SHOW(phys);
1353 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1354
input_print_modalias_bits(char * buf,int size,char name,unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1355 static int input_print_modalias_bits(char *buf, int size,
1356 char name, unsigned long *bm,
1357 unsigned int min_bit, unsigned int max_bit)
1358 {
1359 int len = 0, i;
1360
1361 len += snprintf(buf, max(size, 0), "%c", name);
1362 for (i = min_bit; i < max_bit; i++)
1363 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1364 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1365 return len;
1366 }
1367
input_print_modalias(char * buf,int size,struct input_dev * id,int add_cr)1368 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1369 int add_cr)
1370 {
1371 int len;
1372
1373 len = snprintf(buf, max(size, 0),
1374 "input:b%04Xv%04Xp%04Xe%04X-",
1375 id->id.bustype, id->id.vendor,
1376 id->id.product, id->id.version);
1377
1378 len += input_print_modalias_bits(buf + len, size - len,
1379 'e', id->evbit, 0, EV_MAX);
1380 len += input_print_modalias_bits(buf + len, size - len,
1381 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1382 len += input_print_modalias_bits(buf + len, size - len,
1383 'r', id->relbit, 0, REL_MAX);
1384 len += input_print_modalias_bits(buf + len, size - len,
1385 'a', id->absbit, 0, ABS_MAX);
1386 len += input_print_modalias_bits(buf + len, size - len,
1387 'm', id->mscbit, 0, MSC_MAX);
1388 len += input_print_modalias_bits(buf + len, size - len,
1389 'l', id->ledbit, 0, LED_MAX);
1390 len += input_print_modalias_bits(buf + len, size - len,
1391 's', id->sndbit, 0, SND_MAX);
1392 len += input_print_modalias_bits(buf + len, size - len,
1393 'f', id->ffbit, 0, FF_MAX);
1394 len += input_print_modalias_bits(buf + len, size - len,
1395 'w', id->swbit, 0, SW_MAX);
1396
1397 if (add_cr)
1398 len += snprintf(buf + len, max(size - len, 0), "\n");
1399
1400 return len;
1401 }
1402
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1403 static ssize_t input_dev_show_modalias(struct device *dev,
1404 struct device_attribute *attr,
1405 char *buf)
1406 {
1407 struct input_dev *id = to_input_dev(dev);
1408 ssize_t len;
1409
1410 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1411
1412 return min_t(int, len, PAGE_SIZE);
1413 }
1414 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1415
1416 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1417 int max, int add_cr);
1418
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1419 static ssize_t input_dev_show_properties(struct device *dev,
1420 struct device_attribute *attr,
1421 char *buf)
1422 {
1423 struct input_dev *input_dev = to_input_dev(dev);
1424 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1425 INPUT_PROP_MAX, true);
1426 return min_t(int, len, PAGE_SIZE);
1427 }
1428 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1429
1430 static struct attribute *input_dev_attrs[] = {
1431 &dev_attr_name.attr,
1432 &dev_attr_phys.attr,
1433 &dev_attr_uniq.attr,
1434 &dev_attr_modalias.attr,
1435 &dev_attr_properties.attr,
1436 NULL
1437 };
1438
1439 static const struct attribute_group input_dev_attr_group = {
1440 .attrs = input_dev_attrs,
1441 };
1442
1443 #define INPUT_DEV_ID_ATTR(name) \
1444 static ssize_t input_dev_show_id_##name(struct device *dev, \
1445 struct device_attribute *attr, \
1446 char *buf) \
1447 { \
1448 struct input_dev *input_dev = to_input_dev(dev); \
1449 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1450 } \
1451 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1452
1453 INPUT_DEV_ID_ATTR(bustype);
1454 INPUT_DEV_ID_ATTR(vendor);
1455 INPUT_DEV_ID_ATTR(product);
1456 INPUT_DEV_ID_ATTR(version);
1457
1458 static struct attribute *input_dev_id_attrs[] = {
1459 &dev_attr_bustype.attr,
1460 &dev_attr_vendor.attr,
1461 &dev_attr_product.attr,
1462 &dev_attr_version.attr,
1463 NULL
1464 };
1465
1466 static const struct attribute_group input_dev_id_attr_group = {
1467 .name = "id",
1468 .attrs = input_dev_id_attrs,
1469 };
1470
input_print_bitmap(char * buf,int buf_size,unsigned long * bitmap,int max,int add_cr)1471 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1472 int max, int add_cr)
1473 {
1474 int i;
1475 int len = 0;
1476 bool skip_empty = true;
1477
1478 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1479 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1480 bitmap[i], skip_empty);
1481 if (len) {
1482 skip_empty = false;
1483 if (i > 0)
1484 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1485 }
1486 }
1487
1488 /*
1489 * If no output was produced print a single 0.
1490 */
1491 if (len == 0)
1492 len = snprintf(buf, buf_size, "%d", 0);
1493
1494 if (add_cr)
1495 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1496
1497 return len;
1498 }
1499
1500 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1501 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1502 struct device_attribute *attr, \
1503 char *buf) \
1504 { \
1505 struct input_dev *input_dev = to_input_dev(dev); \
1506 int len = input_print_bitmap(buf, PAGE_SIZE, \
1507 input_dev->bm##bit, ev##_MAX, \
1508 true); \
1509 return min_t(int, len, PAGE_SIZE); \
1510 } \
1511 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1512
1513 INPUT_DEV_CAP_ATTR(EV, ev);
1514 INPUT_DEV_CAP_ATTR(KEY, key);
1515 INPUT_DEV_CAP_ATTR(REL, rel);
1516 INPUT_DEV_CAP_ATTR(ABS, abs);
1517 INPUT_DEV_CAP_ATTR(MSC, msc);
1518 INPUT_DEV_CAP_ATTR(LED, led);
1519 INPUT_DEV_CAP_ATTR(SND, snd);
1520 INPUT_DEV_CAP_ATTR(FF, ff);
1521 INPUT_DEV_CAP_ATTR(SW, sw);
1522
1523 static struct attribute *input_dev_caps_attrs[] = {
1524 &dev_attr_ev.attr,
1525 &dev_attr_key.attr,
1526 &dev_attr_rel.attr,
1527 &dev_attr_abs.attr,
1528 &dev_attr_msc.attr,
1529 &dev_attr_led.attr,
1530 &dev_attr_snd.attr,
1531 &dev_attr_ff.attr,
1532 &dev_attr_sw.attr,
1533 NULL
1534 };
1535
1536 static const struct attribute_group input_dev_caps_attr_group = {
1537 .name = "capabilities",
1538 .attrs = input_dev_caps_attrs,
1539 };
1540
1541 static const struct attribute_group *input_dev_attr_groups[] = {
1542 &input_dev_attr_group,
1543 &input_dev_id_attr_group,
1544 &input_dev_caps_attr_group,
1545 &input_poller_attribute_group,
1546 NULL
1547 };
1548
input_dev_release(struct device * device)1549 static void input_dev_release(struct device *device)
1550 {
1551 struct input_dev *dev = to_input_dev(device);
1552
1553 input_ff_destroy(dev);
1554 input_mt_destroy_slots(dev);
1555 kfree(dev->poller);
1556 kfree(dev->absinfo);
1557 kfree(dev->vals);
1558 kfree(dev);
1559
1560 module_put(THIS_MODULE);
1561 }
1562
1563 /*
1564 * Input uevent interface - loading event handlers based on
1565 * device bitfields.
1566 */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,unsigned long * bitmap,int max)1567 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1568 const char *name, unsigned long *bitmap, int max)
1569 {
1570 int len;
1571
1572 if (add_uevent_var(env, "%s", name))
1573 return -ENOMEM;
1574
1575 len = input_print_bitmap(&env->buf[env->buflen - 1],
1576 sizeof(env->buf) - env->buflen,
1577 bitmap, max, false);
1578 if (len >= (sizeof(env->buf) - env->buflen))
1579 return -ENOMEM;
1580
1581 env->buflen += len;
1582 return 0;
1583 }
1584
input_add_uevent_modalias_var(struct kobj_uevent_env * env,struct input_dev * dev)1585 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1586 struct input_dev *dev)
1587 {
1588 int len;
1589
1590 if (add_uevent_var(env, "MODALIAS="))
1591 return -ENOMEM;
1592
1593 len = input_print_modalias(&env->buf[env->buflen - 1],
1594 sizeof(env->buf) - env->buflen,
1595 dev, 0);
1596 if (len >= (sizeof(env->buf) - env->buflen))
1597 return -ENOMEM;
1598
1599 env->buflen += len;
1600 return 0;
1601 }
1602
1603 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1604 do { \
1605 int err = add_uevent_var(env, fmt, val); \
1606 if (err) \
1607 return err; \
1608 } while (0)
1609
1610 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1611 do { \
1612 int err = input_add_uevent_bm_var(env, name, bm, max); \
1613 if (err) \
1614 return err; \
1615 } while (0)
1616
1617 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1618 do { \
1619 int err = input_add_uevent_modalias_var(env, dev); \
1620 if (err) \
1621 return err; \
1622 } while (0)
1623
input_dev_uevent(struct device * device,struct kobj_uevent_env * env)1624 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1625 {
1626 struct input_dev *dev = to_input_dev(device);
1627
1628 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1629 dev->id.bustype, dev->id.vendor,
1630 dev->id.product, dev->id.version);
1631 if (dev->name)
1632 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1633 if (dev->phys)
1634 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1635 if (dev->uniq)
1636 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1637
1638 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1639
1640 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1641 if (test_bit(EV_KEY, dev->evbit))
1642 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1643 if (test_bit(EV_REL, dev->evbit))
1644 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1645 if (test_bit(EV_ABS, dev->evbit))
1646 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1647 if (test_bit(EV_MSC, dev->evbit))
1648 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1649 if (test_bit(EV_LED, dev->evbit))
1650 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1651 if (test_bit(EV_SND, dev->evbit))
1652 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1653 if (test_bit(EV_FF, dev->evbit))
1654 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1655 if (test_bit(EV_SW, dev->evbit))
1656 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1657
1658 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1659
1660 return 0;
1661 }
1662
1663 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1664 do { \
1665 int i; \
1666 bool active; \
1667 \
1668 if (!test_bit(EV_##type, dev->evbit)) \
1669 break; \
1670 \
1671 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1672 active = test_bit(i, dev->bits); \
1673 if (!active && !on) \
1674 continue; \
1675 \
1676 dev->event(dev, EV_##type, i, on ? active : 0); \
1677 } \
1678 } while (0)
1679
input_dev_toggle(struct input_dev * dev,bool activate)1680 static void input_dev_toggle(struct input_dev *dev, bool activate)
1681 {
1682 if (!dev->event)
1683 return;
1684
1685 INPUT_DO_TOGGLE(dev, LED, led, activate);
1686 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1687
1688 if (activate && test_bit(EV_REP, dev->evbit)) {
1689 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1690 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1691 }
1692 }
1693
1694 /**
1695 * input_reset_device() - reset/restore the state of input device
1696 * @dev: input device whose state needs to be reset
1697 *
1698 * This function tries to reset the state of an opened input device and
1699 * bring internal state and state if the hardware in sync with each other.
1700 * We mark all keys as released, restore LED state, repeat rate, etc.
1701 */
input_reset_device(struct input_dev * dev)1702 void input_reset_device(struct input_dev *dev)
1703 {
1704 unsigned long flags;
1705
1706 mutex_lock(&dev->mutex);
1707 spin_lock_irqsave(&dev->event_lock, flags);
1708
1709 input_dev_toggle(dev, true);
1710 input_dev_release_keys(dev);
1711
1712 spin_unlock_irqrestore(&dev->event_lock, flags);
1713 mutex_unlock(&dev->mutex);
1714 }
1715 EXPORT_SYMBOL(input_reset_device);
1716
1717 #ifdef CONFIG_PM_SLEEP
input_dev_suspend(struct device * dev)1718 static int input_dev_suspend(struct device *dev)
1719 {
1720 struct input_dev *input_dev = to_input_dev(dev);
1721
1722 spin_lock_irq(&input_dev->event_lock);
1723
1724 /*
1725 * Keys that are pressed now are unlikely to be
1726 * still pressed when we resume.
1727 */
1728 input_dev_release_keys(input_dev);
1729
1730 /* Turn off LEDs and sounds, if any are active. */
1731 input_dev_toggle(input_dev, false);
1732
1733 spin_unlock_irq(&input_dev->event_lock);
1734
1735 return 0;
1736 }
1737
input_dev_resume(struct device * dev)1738 static int input_dev_resume(struct device *dev)
1739 {
1740 struct input_dev *input_dev = to_input_dev(dev);
1741
1742 spin_lock_irq(&input_dev->event_lock);
1743
1744 /* Restore state of LEDs and sounds, if any were active. */
1745 input_dev_toggle(input_dev, true);
1746
1747 spin_unlock_irq(&input_dev->event_lock);
1748
1749 return 0;
1750 }
1751
input_dev_freeze(struct device * dev)1752 static int input_dev_freeze(struct device *dev)
1753 {
1754 struct input_dev *input_dev = to_input_dev(dev);
1755
1756 spin_lock_irq(&input_dev->event_lock);
1757
1758 /*
1759 * Keys that are pressed now are unlikely to be
1760 * still pressed when we resume.
1761 */
1762 input_dev_release_keys(input_dev);
1763
1764 spin_unlock_irq(&input_dev->event_lock);
1765
1766 return 0;
1767 }
1768
input_dev_poweroff(struct device * dev)1769 static int input_dev_poweroff(struct device *dev)
1770 {
1771 struct input_dev *input_dev = to_input_dev(dev);
1772
1773 spin_lock_irq(&input_dev->event_lock);
1774
1775 /* Turn off LEDs and sounds, if any are active. */
1776 input_dev_toggle(input_dev, false);
1777
1778 spin_unlock_irq(&input_dev->event_lock);
1779
1780 return 0;
1781 }
1782
1783 static const struct dev_pm_ops input_dev_pm_ops = {
1784 .suspend = input_dev_suspend,
1785 .resume = input_dev_resume,
1786 .freeze = input_dev_freeze,
1787 .poweroff = input_dev_poweroff,
1788 .restore = input_dev_resume,
1789 };
1790 #endif /* CONFIG_PM */
1791
1792 static const struct device_type input_dev_type = {
1793 .groups = input_dev_attr_groups,
1794 .release = input_dev_release,
1795 .uevent = input_dev_uevent,
1796 #ifdef CONFIG_PM_SLEEP
1797 .pm = &input_dev_pm_ops,
1798 #endif
1799 };
1800
input_devnode(struct device * dev,umode_t * mode)1801 static char *input_devnode(struct device *dev, umode_t *mode)
1802 {
1803 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1804 }
1805
1806 struct class input_class = {
1807 .name = "input",
1808 .devnode = input_devnode,
1809 };
1810 EXPORT_SYMBOL_GPL(input_class);
1811
1812 /**
1813 * input_allocate_device - allocate memory for new input device
1814 *
1815 * Returns prepared struct input_dev or %NULL.
1816 *
1817 * NOTE: Use input_free_device() to free devices that have not been
1818 * registered; input_unregister_device() should be used for already
1819 * registered devices.
1820 */
input_allocate_device(void)1821 struct input_dev *input_allocate_device(void)
1822 {
1823 static atomic_t input_no = ATOMIC_INIT(-1);
1824 struct input_dev *dev;
1825
1826 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1827 if (dev) {
1828 dev->dev.type = &input_dev_type;
1829 dev->dev.class = &input_class;
1830 device_initialize(&dev->dev);
1831 mutex_init(&dev->mutex);
1832 spin_lock_init(&dev->event_lock);
1833 timer_setup(&dev->timer, NULL, 0);
1834 INIT_LIST_HEAD(&dev->h_list);
1835 INIT_LIST_HEAD(&dev->node);
1836
1837 dev_set_name(&dev->dev, "input%lu",
1838 (unsigned long)atomic_inc_return(&input_no));
1839
1840 __module_get(THIS_MODULE);
1841 }
1842
1843 return dev;
1844 }
1845 EXPORT_SYMBOL(input_allocate_device);
1846
1847 struct input_devres {
1848 struct input_dev *input;
1849 };
1850
devm_input_device_match(struct device * dev,void * res,void * data)1851 static int devm_input_device_match(struct device *dev, void *res, void *data)
1852 {
1853 struct input_devres *devres = res;
1854
1855 return devres->input == data;
1856 }
1857
devm_input_device_release(struct device * dev,void * res)1858 static void devm_input_device_release(struct device *dev, void *res)
1859 {
1860 struct input_devres *devres = res;
1861 struct input_dev *input = devres->input;
1862
1863 dev_dbg(dev, "%s: dropping reference to %s\n",
1864 __func__, dev_name(&input->dev));
1865 input_put_device(input);
1866 }
1867
1868 /**
1869 * devm_input_allocate_device - allocate managed input device
1870 * @dev: device owning the input device being created
1871 *
1872 * Returns prepared struct input_dev or %NULL.
1873 *
1874 * Managed input devices do not need to be explicitly unregistered or
1875 * freed as it will be done automatically when owner device unbinds from
1876 * its driver (or binding fails). Once managed input device is allocated,
1877 * it is ready to be set up and registered in the same fashion as regular
1878 * input device. There are no special devm_input_device_[un]register()
1879 * variants, regular ones work with both managed and unmanaged devices,
1880 * should you need them. In most cases however, managed input device need
1881 * not be explicitly unregistered or freed.
1882 *
1883 * NOTE: the owner device is set up as parent of input device and users
1884 * should not override it.
1885 */
devm_input_allocate_device(struct device * dev)1886 struct input_dev *devm_input_allocate_device(struct device *dev)
1887 {
1888 struct input_dev *input;
1889 struct input_devres *devres;
1890
1891 devres = devres_alloc(devm_input_device_release,
1892 sizeof(*devres), GFP_KERNEL);
1893 if (!devres)
1894 return NULL;
1895
1896 input = input_allocate_device();
1897 if (!input) {
1898 devres_free(devres);
1899 return NULL;
1900 }
1901
1902 input->dev.parent = dev;
1903 input->devres_managed = true;
1904
1905 devres->input = input;
1906 devres_add(dev, devres);
1907
1908 return input;
1909 }
1910 EXPORT_SYMBOL(devm_input_allocate_device);
1911
1912 /**
1913 * input_free_device - free memory occupied by input_dev structure
1914 * @dev: input device to free
1915 *
1916 * This function should only be used if input_register_device()
1917 * was not called yet or if it failed. Once device was registered
1918 * use input_unregister_device() and memory will be freed once last
1919 * reference to the device is dropped.
1920 *
1921 * Device should be allocated by input_allocate_device().
1922 *
1923 * NOTE: If there are references to the input device then memory
1924 * will not be freed until last reference is dropped.
1925 */
input_free_device(struct input_dev * dev)1926 void input_free_device(struct input_dev *dev)
1927 {
1928 if (dev) {
1929 if (dev->devres_managed)
1930 WARN_ON(devres_destroy(dev->dev.parent,
1931 devm_input_device_release,
1932 devm_input_device_match,
1933 dev));
1934 input_put_device(dev);
1935 }
1936 }
1937 EXPORT_SYMBOL(input_free_device);
1938
1939 /**
1940 * input_set_timestamp - set timestamp for input events
1941 * @dev: input device to set timestamp for
1942 * @timestamp: the time at which the event has occurred
1943 * in CLOCK_MONOTONIC
1944 *
1945 * This function is intended to provide to the input system a more
1946 * accurate time of when an event actually occurred. The driver should
1947 * call this function as soon as a timestamp is acquired ensuring
1948 * clock conversions in input_set_timestamp are done correctly.
1949 *
1950 * The system entering suspend state between timestamp acquisition and
1951 * calling input_set_timestamp can result in inaccurate conversions.
1952 */
input_set_timestamp(struct input_dev * dev,ktime_t timestamp)1953 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1954 {
1955 dev->timestamp[INPUT_CLK_MONO] = timestamp;
1956 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1957 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1958 TK_OFFS_BOOT);
1959 }
1960 EXPORT_SYMBOL(input_set_timestamp);
1961
1962 /**
1963 * input_get_timestamp - get timestamp for input events
1964 * @dev: input device to get timestamp from
1965 *
1966 * A valid timestamp is a timestamp of non-zero value.
1967 */
input_get_timestamp(struct input_dev * dev)1968 ktime_t *input_get_timestamp(struct input_dev *dev)
1969 {
1970 const ktime_t invalid_timestamp = ktime_set(0, 0);
1971
1972 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1973 input_set_timestamp(dev, ktime_get());
1974
1975 return dev->timestamp;
1976 }
1977 EXPORT_SYMBOL(input_get_timestamp);
1978
1979 /**
1980 * input_set_capability - mark device as capable of a certain event
1981 * @dev: device that is capable of emitting or accepting event
1982 * @type: type of the event (EV_KEY, EV_REL, etc...)
1983 * @code: event code
1984 *
1985 * In addition to setting up corresponding bit in appropriate capability
1986 * bitmap the function also adjusts dev->evbit.
1987 */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)1988 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1989 {
1990 if (type < EV_CNT && input_max_code[type] &&
1991 code > input_max_code[type]) {
1992 pr_err("%s: invalid code %u for type %u\n", __func__, code,
1993 type);
1994 dump_stack();
1995 return;
1996 }
1997
1998 switch (type) {
1999 case EV_KEY:
2000 __set_bit(code, dev->keybit);
2001 break;
2002
2003 case EV_REL:
2004 __set_bit(code, dev->relbit);
2005 break;
2006
2007 case EV_ABS:
2008 input_alloc_absinfo(dev);
2009 if (!dev->absinfo)
2010 return;
2011
2012 __set_bit(code, dev->absbit);
2013 break;
2014
2015 case EV_MSC:
2016 __set_bit(code, dev->mscbit);
2017 break;
2018
2019 case EV_SW:
2020 __set_bit(code, dev->swbit);
2021 break;
2022
2023 case EV_LED:
2024 __set_bit(code, dev->ledbit);
2025 break;
2026
2027 case EV_SND:
2028 __set_bit(code, dev->sndbit);
2029 break;
2030
2031 case EV_FF:
2032 __set_bit(code, dev->ffbit);
2033 break;
2034
2035 case EV_PWR:
2036 /* do nothing */
2037 break;
2038
2039 default:
2040 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2041 dump_stack();
2042 return;
2043 }
2044
2045 __set_bit(type, dev->evbit);
2046 }
2047 EXPORT_SYMBOL(input_set_capability);
2048
input_estimate_events_per_packet(struct input_dev * dev)2049 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2050 {
2051 int mt_slots;
2052 int i;
2053 unsigned int events;
2054
2055 if (dev->mt) {
2056 mt_slots = dev->mt->num_slots;
2057 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2058 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2059 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2060 mt_slots = clamp(mt_slots, 2, 32);
2061 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2062 mt_slots = 2;
2063 } else {
2064 mt_slots = 0;
2065 }
2066
2067 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2068
2069 if (test_bit(EV_ABS, dev->evbit))
2070 for_each_set_bit(i, dev->absbit, ABS_CNT)
2071 events += input_is_mt_axis(i) ? mt_slots : 1;
2072
2073 if (test_bit(EV_REL, dev->evbit))
2074 events += bitmap_weight(dev->relbit, REL_CNT);
2075
2076 /* Make room for KEY and MSC events */
2077 events += 7;
2078
2079 return events;
2080 }
2081
2082 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2083 do { \
2084 if (!test_bit(EV_##type, dev->evbit)) \
2085 memset(dev->bits##bit, 0, \
2086 sizeof(dev->bits##bit)); \
2087 } while (0)
2088
input_cleanse_bitmasks(struct input_dev * dev)2089 static void input_cleanse_bitmasks(struct input_dev *dev)
2090 {
2091 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2092 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2093 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2094 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2095 INPUT_CLEANSE_BITMASK(dev, LED, led);
2096 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2097 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2098 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2099 }
2100
__input_unregister_device(struct input_dev * dev)2101 static void __input_unregister_device(struct input_dev *dev)
2102 {
2103 struct input_handle *handle, *next;
2104
2105 input_disconnect_device(dev);
2106
2107 mutex_lock(&input_mutex);
2108
2109 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2110 handle->handler->disconnect(handle);
2111 WARN_ON(!list_empty(&dev->h_list));
2112
2113 del_timer_sync(&dev->timer);
2114 list_del_init(&dev->node);
2115
2116 input_wakeup_procfs_readers();
2117
2118 mutex_unlock(&input_mutex);
2119
2120 device_del(&dev->dev);
2121 }
2122
devm_input_device_unregister(struct device * dev,void * res)2123 static void devm_input_device_unregister(struct device *dev, void *res)
2124 {
2125 struct input_devres *devres = res;
2126 struct input_dev *input = devres->input;
2127
2128 dev_dbg(dev, "%s: unregistering device %s\n",
2129 __func__, dev_name(&input->dev));
2130 __input_unregister_device(input);
2131 }
2132
2133 /**
2134 * input_enable_softrepeat - enable software autorepeat
2135 * @dev: input device
2136 * @delay: repeat delay
2137 * @period: repeat period
2138 *
2139 * Enable software autorepeat on the input device.
2140 */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2141 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2142 {
2143 dev->timer.function = input_repeat_key;
2144 dev->rep[REP_DELAY] = delay;
2145 dev->rep[REP_PERIOD] = period;
2146 }
2147 EXPORT_SYMBOL(input_enable_softrepeat);
2148
2149 /**
2150 * input_register_device - register device with input core
2151 * @dev: device to be registered
2152 *
2153 * This function registers device with input core. The device must be
2154 * allocated with input_allocate_device() and all it's capabilities
2155 * set up before registering.
2156 * If function fails the device must be freed with input_free_device().
2157 * Once device has been successfully registered it can be unregistered
2158 * with input_unregister_device(); input_free_device() should not be
2159 * called in this case.
2160 *
2161 * Note that this function is also used to register managed input devices
2162 * (ones allocated with devm_input_allocate_device()). Such managed input
2163 * devices need not be explicitly unregistered or freed, their tear down
2164 * is controlled by the devres infrastructure. It is also worth noting
2165 * that tear down of managed input devices is internally a 2-step process:
2166 * registered managed input device is first unregistered, but stays in
2167 * memory and can still handle input_event() calls (although events will
2168 * not be delivered anywhere). The freeing of managed input device will
2169 * happen later, when devres stack is unwound to the point where device
2170 * allocation was made.
2171 */
input_register_device(struct input_dev * dev)2172 int input_register_device(struct input_dev *dev)
2173 {
2174 struct input_devres *devres = NULL;
2175 struct input_handler *handler;
2176 unsigned int packet_size;
2177 const char *path;
2178 int error;
2179
2180 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2181 dev_err(&dev->dev,
2182 "Absolute device without dev->absinfo, refusing to register\n");
2183 return -EINVAL;
2184 }
2185
2186 if (dev->devres_managed) {
2187 devres = devres_alloc(devm_input_device_unregister,
2188 sizeof(*devres), GFP_KERNEL);
2189 if (!devres)
2190 return -ENOMEM;
2191
2192 devres->input = dev;
2193 }
2194
2195 /* Every input device generates EV_SYN/SYN_REPORT events. */
2196 __set_bit(EV_SYN, dev->evbit);
2197
2198 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2199 __clear_bit(KEY_RESERVED, dev->keybit);
2200
2201 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2202 input_cleanse_bitmasks(dev);
2203
2204 packet_size = input_estimate_events_per_packet(dev);
2205 if (dev->hint_events_per_packet < packet_size)
2206 dev->hint_events_per_packet = packet_size;
2207
2208 dev->max_vals = dev->hint_events_per_packet + 2;
2209 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2210 if (!dev->vals) {
2211 error = -ENOMEM;
2212 goto err_devres_free;
2213 }
2214
2215 /*
2216 * If delay and period are pre-set by the driver, then autorepeating
2217 * is handled by the driver itself and we don't do it in input.c.
2218 */
2219 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2220 input_enable_softrepeat(dev, 250, 33);
2221
2222 if (!dev->getkeycode)
2223 dev->getkeycode = input_default_getkeycode;
2224
2225 if (!dev->setkeycode)
2226 dev->setkeycode = input_default_setkeycode;
2227
2228 if (dev->poller)
2229 input_dev_poller_finalize(dev->poller);
2230
2231 error = device_add(&dev->dev);
2232 if (error)
2233 goto err_free_vals;
2234
2235 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2236 pr_info("%s as %s\n",
2237 dev->name ? dev->name : "Unspecified device",
2238 path ? path : "N/A");
2239 kfree(path);
2240
2241 error = mutex_lock_interruptible(&input_mutex);
2242 if (error)
2243 goto err_device_del;
2244
2245 list_add_tail(&dev->node, &input_dev_list);
2246
2247 list_for_each_entry(handler, &input_handler_list, node)
2248 input_attach_handler(dev, handler);
2249
2250 input_wakeup_procfs_readers();
2251
2252 mutex_unlock(&input_mutex);
2253
2254 if (dev->devres_managed) {
2255 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2256 __func__, dev_name(&dev->dev));
2257 devres_add(dev->dev.parent, devres);
2258 }
2259 return 0;
2260
2261 err_device_del:
2262 device_del(&dev->dev);
2263 err_free_vals:
2264 kfree(dev->vals);
2265 dev->vals = NULL;
2266 err_devres_free:
2267 devres_free(devres);
2268 return error;
2269 }
2270 EXPORT_SYMBOL(input_register_device);
2271
2272 /**
2273 * input_unregister_device - unregister previously registered device
2274 * @dev: device to be unregistered
2275 *
2276 * This function unregisters an input device. Once device is unregistered
2277 * the caller should not try to access it as it may get freed at any moment.
2278 */
input_unregister_device(struct input_dev * dev)2279 void input_unregister_device(struct input_dev *dev)
2280 {
2281 if (dev->devres_managed) {
2282 WARN_ON(devres_destroy(dev->dev.parent,
2283 devm_input_device_unregister,
2284 devm_input_device_match,
2285 dev));
2286 __input_unregister_device(dev);
2287 /*
2288 * We do not do input_put_device() here because it will be done
2289 * when 2nd devres fires up.
2290 */
2291 } else {
2292 __input_unregister_device(dev);
2293 input_put_device(dev);
2294 }
2295 }
2296 EXPORT_SYMBOL(input_unregister_device);
2297
2298 /**
2299 * input_register_handler - register a new input handler
2300 * @handler: handler to be registered
2301 *
2302 * This function registers a new input handler (interface) for input
2303 * devices in the system and attaches it to all input devices that
2304 * are compatible with the handler.
2305 */
input_register_handler(struct input_handler * handler)2306 int input_register_handler(struct input_handler *handler)
2307 {
2308 struct input_dev *dev;
2309 int error;
2310
2311 error = mutex_lock_interruptible(&input_mutex);
2312 if (error)
2313 return error;
2314
2315 INIT_LIST_HEAD(&handler->h_list);
2316
2317 list_add_tail(&handler->node, &input_handler_list);
2318
2319 list_for_each_entry(dev, &input_dev_list, node)
2320 input_attach_handler(dev, handler);
2321
2322 input_wakeup_procfs_readers();
2323
2324 mutex_unlock(&input_mutex);
2325 return 0;
2326 }
2327 EXPORT_SYMBOL(input_register_handler);
2328
2329 /**
2330 * input_unregister_handler - unregisters an input handler
2331 * @handler: handler to be unregistered
2332 *
2333 * This function disconnects a handler from its input devices and
2334 * removes it from lists of known handlers.
2335 */
input_unregister_handler(struct input_handler * handler)2336 void input_unregister_handler(struct input_handler *handler)
2337 {
2338 struct input_handle *handle, *next;
2339
2340 mutex_lock(&input_mutex);
2341
2342 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2343 handler->disconnect(handle);
2344 WARN_ON(!list_empty(&handler->h_list));
2345
2346 list_del_init(&handler->node);
2347
2348 input_wakeup_procfs_readers();
2349
2350 mutex_unlock(&input_mutex);
2351 }
2352 EXPORT_SYMBOL(input_unregister_handler);
2353
2354 /**
2355 * input_handler_for_each_handle - handle iterator
2356 * @handler: input handler to iterate
2357 * @data: data for the callback
2358 * @fn: function to be called for each handle
2359 *
2360 * Iterate over @bus's list of devices, and call @fn for each, passing
2361 * it @data and stop when @fn returns a non-zero value. The function is
2362 * using RCU to traverse the list and therefore may be using in atomic
2363 * contexts. The @fn callback is invoked from RCU critical section and
2364 * thus must not sleep.
2365 */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2366 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2367 int (*fn)(struct input_handle *, void *))
2368 {
2369 struct input_handle *handle;
2370 int retval = 0;
2371
2372 rcu_read_lock();
2373
2374 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2375 retval = fn(handle, data);
2376 if (retval)
2377 break;
2378 }
2379
2380 rcu_read_unlock();
2381
2382 return retval;
2383 }
2384 EXPORT_SYMBOL(input_handler_for_each_handle);
2385
2386 /**
2387 * input_register_handle - register a new input handle
2388 * @handle: handle to register
2389 *
2390 * This function puts a new input handle onto device's
2391 * and handler's lists so that events can flow through
2392 * it once it is opened using input_open_device().
2393 *
2394 * This function is supposed to be called from handler's
2395 * connect() method.
2396 */
input_register_handle(struct input_handle * handle)2397 int input_register_handle(struct input_handle *handle)
2398 {
2399 struct input_handler *handler = handle->handler;
2400 struct input_dev *dev = handle->dev;
2401 int error;
2402
2403 /*
2404 * We take dev->mutex here to prevent race with
2405 * input_release_device().
2406 */
2407 error = mutex_lock_interruptible(&dev->mutex);
2408 if (error)
2409 return error;
2410
2411 /*
2412 * Filters go to the head of the list, normal handlers
2413 * to the tail.
2414 */
2415 if (handler->filter)
2416 list_add_rcu(&handle->d_node, &dev->h_list);
2417 else
2418 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2419
2420 mutex_unlock(&dev->mutex);
2421
2422 /*
2423 * Since we are supposed to be called from ->connect()
2424 * which is mutually exclusive with ->disconnect()
2425 * we can't be racing with input_unregister_handle()
2426 * and so separate lock is not needed here.
2427 */
2428 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2429
2430 if (handler->start)
2431 handler->start(handle);
2432
2433 return 0;
2434 }
2435 EXPORT_SYMBOL(input_register_handle);
2436
2437 /**
2438 * input_unregister_handle - unregister an input handle
2439 * @handle: handle to unregister
2440 *
2441 * This function removes input handle from device's
2442 * and handler's lists.
2443 *
2444 * This function is supposed to be called from handler's
2445 * disconnect() method.
2446 */
input_unregister_handle(struct input_handle * handle)2447 void input_unregister_handle(struct input_handle *handle)
2448 {
2449 struct input_dev *dev = handle->dev;
2450
2451 list_del_rcu(&handle->h_node);
2452
2453 /*
2454 * Take dev->mutex to prevent race with input_release_device().
2455 */
2456 mutex_lock(&dev->mutex);
2457 list_del_rcu(&handle->d_node);
2458 mutex_unlock(&dev->mutex);
2459
2460 synchronize_rcu();
2461 }
2462 EXPORT_SYMBOL(input_unregister_handle);
2463
2464 /**
2465 * input_get_new_minor - allocates a new input minor number
2466 * @legacy_base: beginning or the legacy range to be searched
2467 * @legacy_num: size of legacy range
2468 * @allow_dynamic: whether we can also take ID from the dynamic range
2469 *
2470 * This function allocates a new device minor for from input major namespace.
2471 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2472 * parameters and whether ID can be allocated from dynamic range if there are
2473 * no free IDs in legacy range.
2474 */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2475 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2476 bool allow_dynamic)
2477 {
2478 /*
2479 * This function should be called from input handler's ->connect()
2480 * methods, which are serialized with input_mutex, so no additional
2481 * locking is needed here.
2482 */
2483 if (legacy_base >= 0) {
2484 int minor = ida_simple_get(&input_ida,
2485 legacy_base,
2486 legacy_base + legacy_num,
2487 GFP_KERNEL);
2488 if (minor >= 0 || !allow_dynamic)
2489 return minor;
2490 }
2491
2492 return ida_simple_get(&input_ida,
2493 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2494 GFP_KERNEL);
2495 }
2496 EXPORT_SYMBOL(input_get_new_minor);
2497
2498 /**
2499 * input_free_minor - release previously allocated minor
2500 * @minor: minor to be released
2501 *
2502 * This function releases previously allocated input minor so that it can be
2503 * reused later.
2504 */
input_free_minor(unsigned int minor)2505 void input_free_minor(unsigned int minor)
2506 {
2507 ida_simple_remove(&input_ida, minor);
2508 }
2509 EXPORT_SYMBOL(input_free_minor);
2510
input_init(void)2511 static int __init input_init(void)
2512 {
2513 int err;
2514
2515 err = class_register(&input_class);
2516 if (err) {
2517 pr_err("unable to register input_dev class\n");
2518 return err;
2519 }
2520
2521 err = input_proc_init();
2522 if (err)
2523 goto fail1;
2524
2525 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2526 INPUT_MAX_CHAR_DEVICES, "input");
2527 if (err) {
2528 pr_err("unable to register char major %d", INPUT_MAJOR);
2529 goto fail2;
2530 }
2531
2532 return 0;
2533
2534 fail2: input_proc_exit();
2535 fail1: class_unregister(&input_class);
2536 return err;
2537 }
2538
input_exit(void)2539 static void __exit input_exit(void)
2540 {
2541 input_proc_exit();
2542 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2543 INPUT_MAX_CHAR_DEVICES);
2544 class_unregister(&input_class);
2545 }
2546
2547 subsys_initcall(input_init);
2548 module_exit(input_exit);
2549