• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28 
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32 
33 #define INPUT_MAX_CHAR_DEVICES		1024
34 #define INPUT_FIRST_DYNAMIC_DEV		256
35 static DEFINE_IDA(input_ida);
36 
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39 
40 /*
41  * input_mutex protects access to both input_dev_list and input_handler_list.
42  * This also causes input_[un]register_device and input_[un]register_handler
43  * be mutually exclusive which simplifies locking in drivers implementing
44  * input handlers.
45  */
46 static DEFINE_MUTEX(input_mutex);
47 
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49 
50 static const unsigned int input_max_code[EV_CNT] = {
51 	[EV_KEY] = KEY_MAX,
52 	[EV_REL] = REL_MAX,
53 	[EV_ABS] = ABS_MAX,
54 	[EV_MSC] = MSC_MAX,
55 	[EV_SW] = SW_MAX,
56 	[EV_LED] = LED_MAX,
57 	[EV_SND] = SND_MAX,
58 	[EV_FF] = FF_MAX,
59 };
60 
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)61 static inline int is_event_supported(unsigned int code,
62 				     unsigned long *bm, unsigned int max)
63 {
64 	return code <= max && test_bit(code, bm);
65 }
66 
input_defuzz_abs_event(int value,int old_val,int fuzz)67 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
68 {
69 	if (fuzz) {
70 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
71 			return old_val;
72 
73 		if (value > old_val - fuzz && value < old_val + fuzz)
74 			return (old_val * 3 + value) / 4;
75 
76 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
77 			return (old_val + value) / 2;
78 	}
79 
80 	return value;
81 }
82 
input_start_autorepeat(struct input_dev * dev,int code)83 static void input_start_autorepeat(struct input_dev *dev, int code)
84 {
85 	if (test_bit(EV_REP, dev->evbit) &&
86 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
87 	    dev->timer.function) {
88 		dev->repeat_key = code;
89 		mod_timer(&dev->timer,
90 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
91 	}
92 }
93 
input_stop_autorepeat(struct input_dev * dev)94 static void input_stop_autorepeat(struct input_dev *dev)
95 {
96 	del_timer(&dev->timer);
97 }
98 
99 /*
100  * Pass event first through all filters and then, if event has not been
101  * filtered out, through all open handles. This function is called with
102  * dev->event_lock held and interrupts disabled.
103  */
input_to_handler(struct input_handle * handle,struct input_value * vals,unsigned int count)104 static unsigned int input_to_handler(struct input_handle *handle,
105 			struct input_value *vals, unsigned int count)
106 {
107 	struct input_handler *handler = handle->handler;
108 	struct input_value *end = vals;
109 	struct input_value *v;
110 
111 	if (handler->filter) {
112 		for (v = vals; v != vals + count; v++) {
113 			if (handler->filter(handle, v->type, v->code, v->value))
114 				continue;
115 			if (end != v)
116 				*end = *v;
117 			end++;
118 		}
119 		count = end - vals;
120 	}
121 
122 	if (!count)
123 		return 0;
124 
125 	if (handler->events)
126 		handler->events(handle, vals, count);
127 	else if (handler->event)
128 		for (v = vals; v != vals + count; v++)
129 			handler->event(handle, v->type, v->code, v->value);
130 
131 	return count;
132 }
133 
134 /*
135  * Pass values first through all filters and then, if event has not been
136  * filtered out, through all open handles. This function is called with
137  * dev->event_lock held and interrupts disabled.
138  */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)139 static void input_pass_values(struct input_dev *dev,
140 			      struct input_value *vals, unsigned int count)
141 {
142 	struct input_handle *handle;
143 	struct input_value *v;
144 
145 	if (!count)
146 		return;
147 
148 	rcu_read_lock();
149 
150 	handle = rcu_dereference(dev->grab);
151 	if (handle) {
152 		count = input_to_handler(handle, vals, count);
153 	} else {
154 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
155 			if (handle->open) {
156 				count = input_to_handler(handle, vals, count);
157 				if (!count)
158 					break;
159 			}
160 	}
161 
162 	rcu_read_unlock();
163 
164 	/* trigger auto repeat for key events */
165 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
166 		for (v = vals; v != vals + count; v++) {
167 			if (v->type == EV_KEY && v->value != 2) {
168 				if (v->value)
169 					input_start_autorepeat(dev, v->code);
170 				else
171 					input_stop_autorepeat(dev);
172 			}
173 		}
174 	}
175 }
176 
input_pass_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)177 static void input_pass_event(struct input_dev *dev,
178 			     unsigned int type, unsigned int code, int value)
179 {
180 	struct input_value vals[] = { { type, code, value } };
181 
182 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
183 }
184 
185 /*
186  * Generate software autorepeat event. Note that we take
187  * dev->event_lock here to avoid racing with input_event
188  * which may cause keys get "stuck".
189  */
input_repeat_key(struct timer_list * t)190 static void input_repeat_key(struct timer_list *t)
191 {
192 	struct input_dev *dev = from_timer(dev, t, timer);
193 	unsigned long flags;
194 
195 	spin_lock_irqsave(&dev->event_lock, flags);
196 
197 	if (test_bit(dev->repeat_key, dev->key) &&
198 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
199 		struct input_value vals[] =  {
200 			{ EV_KEY, dev->repeat_key, 2 },
201 			input_value_sync
202 		};
203 
204 		input_set_timestamp(dev, ktime_get());
205 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
206 
207 		if (dev->rep[REP_PERIOD])
208 			mod_timer(&dev->timer, jiffies +
209 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
210 	}
211 
212 	spin_unlock_irqrestore(&dev->event_lock, flags);
213 }
214 
215 #define INPUT_IGNORE_EVENT	0
216 #define INPUT_PASS_TO_HANDLERS	1
217 #define INPUT_PASS_TO_DEVICE	2
218 #define INPUT_SLOT		4
219 #define INPUT_FLUSH		8
220 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
221 
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)222 static int input_handle_abs_event(struct input_dev *dev,
223 				  unsigned int code, int *pval)
224 {
225 	struct input_mt *mt = dev->mt;
226 	bool is_mt_event;
227 	int *pold;
228 
229 	if (code == ABS_MT_SLOT) {
230 		/*
231 		 * "Stage" the event; we'll flush it later, when we
232 		 * get actual touch data.
233 		 */
234 		if (mt && *pval >= 0 && *pval < mt->num_slots)
235 			mt->slot = *pval;
236 
237 		return INPUT_IGNORE_EVENT;
238 	}
239 
240 	is_mt_event = input_is_mt_value(code);
241 
242 	if (!is_mt_event) {
243 		pold = &dev->absinfo[code].value;
244 	} else if (mt) {
245 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
246 	} else {
247 		/*
248 		 * Bypass filtering for multi-touch events when
249 		 * not employing slots.
250 		 */
251 		pold = NULL;
252 	}
253 
254 	if (pold) {
255 		*pval = input_defuzz_abs_event(*pval, *pold,
256 						dev->absinfo[code].fuzz);
257 		if (*pold == *pval)
258 			return INPUT_IGNORE_EVENT;
259 
260 		*pold = *pval;
261 	}
262 
263 	/* Flush pending "slot" event */
264 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
265 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
266 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
267 	}
268 
269 	return INPUT_PASS_TO_HANDLERS;
270 }
271 
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)272 static int input_get_disposition(struct input_dev *dev,
273 			  unsigned int type, unsigned int code, int *pval)
274 {
275 	int disposition = INPUT_IGNORE_EVENT;
276 	int value = *pval;
277 
278 	switch (type) {
279 
280 	case EV_SYN:
281 		switch (code) {
282 		case SYN_CONFIG:
283 			disposition = INPUT_PASS_TO_ALL;
284 			break;
285 
286 		case SYN_REPORT:
287 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
288 			break;
289 		case SYN_MT_REPORT:
290 			disposition = INPUT_PASS_TO_HANDLERS;
291 			break;
292 		}
293 		break;
294 
295 	case EV_KEY:
296 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
297 
298 			/* auto-repeat bypasses state updates */
299 			if (value == 2) {
300 				disposition = INPUT_PASS_TO_HANDLERS;
301 				break;
302 			}
303 
304 			if (!!test_bit(code, dev->key) != !!value) {
305 
306 				__change_bit(code, dev->key);
307 				disposition = INPUT_PASS_TO_HANDLERS;
308 			}
309 		}
310 		break;
311 
312 	case EV_SW:
313 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
314 		    !!test_bit(code, dev->sw) != !!value) {
315 
316 			__change_bit(code, dev->sw);
317 			disposition = INPUT_PASS_TO_HANDLERS;
318 		}
319 		break;
320 
321 	case EV_ABS:
322 		if (is_event_supported(code, dev->absbit, ABS_MAX))
323 			disposition = input_handle_abs_event(dev, code, &value);
324 
325 		break;
326 
327 	case EV_REL:
328 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
329 			disposition = INPUT_PASS_TO_HANDLERS;
330 
331 		break;
332 
333 	case EV_MSC:
334 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
335 			disposition = INPUT_PASS_TO_ALL;
336 
337 		break;
338 
339 	case EV_LED:
340 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
341 		    !!test_bit(code, dev->led) != !!value) {
342 
343 			__change_bit(code, dev->led);
344 			disposition = INPUT_PASS_TO_ALL;
345 		}
346 		break;
347 
348 	case EV_SND:
349 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
350 
351 			if (!!test_bit(code, dev->snd) != !!value)
352 				__change_bit(code, dev->snd);
353 			disposition = INPUT_PASS_TO_ALL;
354 		}
355 		break;
356 
357 	case EV_REP:
358 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
359 			dev->rep[code] = value;
360 			disposition = INPUT_PASS_TO_ALL;
361 		}
362 		break;
363 
364 	case EV_FF:
365 		if (value >= 0)
366 			disposition = INPUT_PASS_TO_ALL;
367 		break;
368 
369 	case EV_PWR:
370 		disposition = INPUT_PASS_TO_ALL;
371 		break;
372 	}
373 
374 	*pval = value;
375 	return disposition;
376 }
377 
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)378 static void input_handle_event(struct input_dev *dev,
379 			       unsigned int type, unsigned int code, int value)
380 {
381 	int disposition = input_get_disposition(dev, type, code, &value);
382 
383 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
384 		add_input_randomness(type, code, value);
385 
386 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
387 		dev->event(dev, type, code, value);
388 
389 	if (!dev->vals)
390 		return;
391 
392 	if (disposition & INPUT_PASS_TO_HANDLERS) {
393 		struct input_value *v;
394 
395 		if (disposition & INPUT_SLOT) {
396 			v = &dev->vals[dev->num_vals++];
397 			v->type = EV_ABS;
398 			v->code = ABS_MT_SLOT;
399 			v->value = dev->mt->slot;
400 		}
401 
402 		v = &dev->vals[dev->num_vals++];
403 		v->type = type;
404 		v->code = code;
405 		v->value = value;
406 	}
407 
408 	if (disposition & INPUT_FLUSH) {
409 		if (dev->num_vals >= 2)
410 			input_pass_values(dev, dev->vals, dev->num_vals);
411 		dev->num_vals = 0;
412 		/*
413 		 * Reset the timestamp on flush so we won't end up
414 		 * with a stale one. Note we only need to reset the
415 		 * monolithic one as we use its presence when deciding
416 		 * whether to generate a synthetic timestamp.
417 		 */
418 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
419 	} else if (dev->num_vals >= dev->max_vals - 2) {
420 		dev->vals[dev->num_vals++] = input_value_sync;
421 		input_pass_values(dev, dev->vals, dev->num_vals);
422 		dev->num_vals = 0;
423 	}
424 
425 }
426 
427 /**
428  * input_event() - report new input event
429  * @dev: device that generated the event
430  * @type: type of the event
431  * @code: event code
432  * @value: value of the event
433  *
434  * This function should be used by drivers implementing various input
435  * devices to report input events. See also input_inject_event().
436  *
437  * NOTE: input_event() may be safely used right after input device was
438  * allocated with input_allocate_device(), even before it is registered
439  * with input_register_device(), but the event will not reach any of the
440  * input handlers. Such early invocation of input_event() may be used
441  * to 'seed' initial state of a switch or initial position of absolute
442  * axis, etc.
443  */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)444 void input_event(struct input_dev *dev,
445 		 unsigned int type, unsigned int code, int value)
446 {
447 	unsigned long flags;
448 
449 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
450 
451 		spin_lock_irqsave(&dev->event_lock, flags);
452 		input_handle_event(dev, type, code, value);
453 		spin_unlock_irqrestore(&dev->event_lock, flags);
454 	}
455 }
456 EXPORT_SYMBOL(input_event);
457 
458 /**
459  * input_inject_event() - send input event from input handler
460  * @handle: input handle to send event through
461  * @type: type of the event
462  * @code: event code
463  * @value: value of the event
464  *
465  * Similar to input_event() but will ignore event if device is
466  * "grabbed" and handle injecting event is not the one that owns
467  * the device.
468  */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)469 void input_inject_event(struct input_handle *handle,
470 			unsigned int type, unsigned int code, int value)
471 {
472 	struct input_dev *dev = handle->dev;
473 	struct input_handle *grab;
474 	unsigned long flags;
475 
476 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
477 		spin_lock_irqsave(&dev->event_lock, flags);
478 
479 		rcu_read_lock();
480 		grab = rcu_dereference(dev->grab);
481 		if (!grab || grab == handle)
482 			input_handle_event(dev, type, code, value);
483 		rcu_read_unlock();
484 
485 		spin_unlock_irqrestore(&dev->event_lock, flags);
486 	}
487 }
488 EXPORT_SYMBOL(input_inject_event);
489 
490 /**
491  * input_alloc_absinfo - allocates array of input_absinfo structs
492  * @dev: the input device emitting absolute events
493  *
494  * If the absinfo struct the caller asked for is already allocated, this
495  * functions will not do anything.
496  */
input_alloc_absinfo(struct input_dev * dev)497 void input_alloc_absinfo(struct input_dev *dev)
498 {
499 	if (dev->absinfo)
500 		return;
501 
502 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
503 	if (!dev->absinfo) {
504 		dev_err(dev->dev.parent ?: &dev->dev,
505 			"%s: unable to allocate memory\n", __func__);
506 		/*
507 		 * We will handle this allocation failure in
508 		 * input_register_device() when we refuse to register input
509 		 * device with ABS bits but without absinfo.
510 		 */
511 	}
512 }
513 EXPORT_SYMBOL(input_alloc_absinfo);
514 
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)515 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
516 			  int min, int max, int fuzz, int flat)
517 {
518 	struct input_absinfo *absinfo;
519 
520 	input_alloc_absinfo(dev);
521 	if (!dev->absinfo)
522 		return;
523 
524 	absinfo = &dev->absinfo[axis];
525 	absinfo->minimum = min;
526 	absinfo->maximum = max;
527 	absinfo->fuzz = fuzz;
528 	absinfo->flat = flat;
529 
530 	__set_bit(EV_ABS, dev->evbit);
531 	__set_bit(axis, dev->absbit);
532 }
533 EXPORT_SYMBOL(input_set_abs_params);
534 
535 
536 /**
537  * input_grab_device - grabs device for exclusive use
538  * @handle: input handle that wants to own the device
539  *
540  * When a device is grabbed by an input handle all events generated by
541  * the device are delivered only to this handle. Also events injected
542  * by other input handles are ignored while device is grabbed.
543  */
input_grab_device(struct input_handle * handle)544 int input_grab_device(struct input_handle *handle)
545 {
546 	struct input_dev *dev = handle->dev;
547 	int retval;
548 
549 	retval = mutex_lock_interruptible(&dev->mutex);
550 	if (retval)
551 		return retval;
552 
553 	if (dev->grab) {
554 		retval = -EBUSY;
555 		goto out;
556 	}
557 
558 	rcu_assign_pointer(dev->grab, handle);
559 
560  out:
561 	mutex_unlock(&dev->mutex);
562 	return retval;
563 }
564 EXPORT_SYMBOL(input_grab_device);
565 
__input_release_device(struct input_handle * handle)566 static void __input_release_device(struct input_handle *handle)
567 {
568 	struct input_dev *dev = handle->dev;
569 	struct input_handle *grabber;
570 
571 	grabber = rcu_dereference_protected(dev->grab,
572 					    lockdep_is_held(&dev->mutex));
573 	if (grabber == handle) {
574 		rcu_assign_pointer(dev->grab, NULL);
575 		/* Make sure input_pass_event() notices that grab is gone */
576 		synchronize_rcu();
577 
578 		list_for_each_entry(handle, &dev->h_list, d_node)
579 			if (handle->open && handle->handler->start)
580 				handle->handler->start(handle);
581 	}
582 }
583 
584 /**
585  * input_release_device - release previously grabbed device
586  * @handle: input handle that owns the device
587  *
588  * Releases previously grabbed device so that other input handles can
589  * start receiving input events. Upon release all handlers attached
590  * to the device have their start() method called so they have a change
591  * to synchronize device state with the rest of the system.
592  */
input_release_device(struct input_handle * handle)593 void input_release_device(struct input_handle *handle)
594 {
595 	struct input_dev *dev = handle->dev;
596 
597 	mutex_lock(&dev->mutex);
598 	__input_release_device(handle);
599 	mutex_unlock(&dev->mutex);
600 }
601 EXPORT_SYMBOL(input_release_device);
602 
603 /**
604  * input_open_device - open input device
605  * @handle: handle through which device is being accessed
606  *
607  * This function should be called by input handlers when they
608  * want to start receive events from given input device.
609  */
input_open_device(struct input_handle * handle)610 int input_open_device(struct input_handle *handle)
611 {
612 	struct input_dev *dev = handle->dev;
613 	int retval;
614 
615 	retval = mutex_lock_interruptible(&dev->mutex);
616 	if (retval)
617 		return retval;
618 
619 	if (dev->going_away) {
620 		retval = -ENODEV;
621 		goto out;
622 	}
623 
624 	handle->open++;
625 
626 	if (dev->users++) {
627 		/*
628 		 * Device is already opened, so we can exit immediately and
629 		 * report success.
630 		 */
631 		goto out;
632 	}
633 
634 	if (dev->open) {
635 		retval = dev->open(dev);
636 		if (retval) {
637 			dev->users--;
638 			handle->open--;
639 			/*
640 			 * Make sure we are not delivering any more events
641 			 * through this handle
642 			 */
643 			synchronize_rcu();
644 			goto out;
645 		}
646 	}
647 
648 	if (dev->poller)
649 		input_dev_poller_start(dev->poller);
650 
651  out:
652 	mutex_unlock(&dev->mutex);
653 	return retval;
654 }
655 EXPORT_SYMBOL(input_open_device);
656 
input_flush_device(struct input_handle * handle,struct file * file)657 int input_flush_device(struct input_handle *handle, struct file *file)
658 {
659 	struct input_dev *dev = handle->dev;
660 	int retval;
661 
662 	retval = mutex_lock_interruptible(&dev->mutex);
663 	if (retval)
664 		return retval;
665 
666 	if (dev->flush)
667 		retval = dev->flush(dev, file);
668 
669 	mutex_unlock(&dev->mutex);
670 	return retval;
671 }
672 EXPORT_SYMBOL(input_flush_device);
673 
674 /**
675  * input_close_device - close input device
676  * @handle: handle through which device is being accessed
677  *
678  * This function should be called by input handlers when they
679  * want to stop receive events from given input device.
680  */
input_close_device(struct input_handle * handle)681 void input_close_device(struct input_handle *handle)
682 {
683 	struct input_dev *dev = handle->dev;
684 
685 	mutex_lock(&dev->mutex);
686 
687 	__input_release_device(handle);
688 
689 	if (!--dev->users) {
690 		if (dev->poller)
691 			input_dev_poller_stop(dev->poller);
692 
693 		if (dev->close)
694 			dev->close(dev);
695 	}
696 
697 	if (!--handle->open) {
698 		/*
699 		 * synchronize_rcu() makes sure that input_pass_event()
700 		 * completed and that no more input events are delivered
701 		 * through this handle
702 		 */
703 		synchronize_rcu();
704 	}
705 
706 	mutex_unlock(&dev->mutex);
707 }
708 EXPORT_SYMBOL(input_close_device);
709 
710 /*
711  * Simulate keyup events for all keys that are marked as pressed.
712  * The function must be called with dev->event_lock held.
713  */
input_dev_release_keys(struct input_dev * dev)714 static void input_dev_release_keys(struct input_dev *dev)
715 {
716 	bool need_sync = false;
717 	int code;
718 
719 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
720 		for_each_set_bit(code, dev->key, KEY_CNT) {
721 			input_pass_event(dev, EV_KEY, code, 0);
722 			need_sync = true;
723 		}
724 
725 		if (need_sync)
726 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
727 
728 		memset(dev->key, 0, sizeof(dev->key));
729 	}
730 }
731 
732 /*
733  * Prepare device for unregistering
734  */
input_disconnect_device(struct input_dev * dev)735 static void input_disconnect_device(struct input_dev *dev)
736 {
737 	struct input_handle *handle;
738 
739 	/*
740 	 * Mark device as going away. Note that we take dev->mutex here
741 	 * not to protect access to dev->going_away but rather to ensure
742 	 * that there are no threads in the middle of input_open_device()
743 	 */
744 	mutex_lock(&dev->mutex);
745 	dev->going_away = true;
746 	mutex_unlock(&dev->mutex);
747 
748 	spin_lock_irq(&dev->event_lock);
749 
750 	/*
751 	 * Simulate keyup events for all pressed keys so that handlers
752 	 * are not left with "stuck" keys. The driver may continue
753 	 * generate events even after we done here but they will not
754 	 * reach any handlers.
755 	 */
756 	input_dev_release_keys(dev);
757 
758 	list_for_each_entry(handle, &dev->h_list, d_node)
759 		handle->open = 0;
760 
761 	spin_unlock_irq(&dev->event_lock);
762 }
763 
764 /**
765  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
766  * @ke: keymap entry containing scancode to be converted.
767  * @scancode: pointer to the location where converted scancode should
768  *	be stored.
769  *
770  * This function is used to convert scancode stored in &struct keymap_entry
771  * into scalar form understood by legacy keymap handling methods. These
772  * methods expect scancodes to be represented as 'unsigned int'.
773  */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)774 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
775 			     unsigned int *scancode)
776 {
777 	switch (ke->len) {
778 	case 1:
779 		*scancode = *((u8 *)ke->scancode);
780 		break;
781 
782 	case 2:
783 		*scancode = *((u16 *)ke->scancode);
784 		break;
785 
786 	case 4:
787 		*scancode = *((u32 *)ke->scancode);
788 		break;
789 
790 	default:
791 		return -EINVAL;
792 	}
793 
794 	return 0;
795 }
796 EXPORT_SYMBOL(input_scancode_to_scalar);
797 
798 /*
799  * Those routines handle the default case where no [gs]etkeycode() is
800  * defined. In this case, an array indexed by the scancode is used.
801  */
802 
input_fetch_keycode(struct input_dev * dev,unsigned int index)803 static unsigned int input_fetch_keycode(struct input_dev *dev,
804 					unsigned int index)
805 {
806 	switch (dev->keycodesize) {
807 	case 1:
808 		return ((u8 *)dev->keycode)[index];
809 
810 	case 2:
811 		return ((u16 *)dev->keycode)[index];
812 
813 	default:
814 		return ((u32 *)dev->keycode)[index];
815 	}
816 }
817 
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)818 static int input_default_getkeycode(struct input_dev *dev,
819 				    struct input_keymap_entry *ke)
820 {
821 	unsigned int index;
822 	int error;
823 
824 	if (!dev->keycodesize)
825 		return -EINVAL;
826 
827 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
828 		index = ke->index;
829 	else {
830 		error = input_scancode_to_scalar(ke, &index);
831 		if (error)
832 			return error;
833 	}
834 
835 	if (index >= dev->keycodemax)
836 		return -EINVAL;
837 
838 	ke->keycode = input_fetch_keycode(dev, index);
839 	ke->index = index;
840 	ke->len = sizeof(index);
841 	memcpy(ke->scancode, &index, sizeof(index));
842 
843 	return 0;
844 }
845 
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)846 static int input_default_setkeycode(struct input_dev *dev,
847 				    const struct input_keymap_entry *ke,
848 				    unsigned int *old_keycode)
849 {
850 	unsigned int index;
851 	int error;
852 	int i;
853 
854 	if (!dev->keycodesize)
855 		return -EINVAL;
856 
857 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
858 		index = ke->index;
859 	} else {
860 		error = input_scancode_to_scalar(ke, &index);
861 		if (error)
862 			return error;
863 	}
864 
865 	if (index >= dev->keycodemax)
866 		return -EINVAL;
867 
868 	if (dev->keycodesize < sizeof(ke->keycode) &&
869 			(ke->keycode >> (dev->keycodesize * 8)))
870 		return -EINVAL;
871 
872 	switch (dev->keycodesize) {
873 		case 1: {
874 			u8 *k = (u8 *)dev->keycode;
875 			*old_keycode = k[index];
876 			k[index] = ke->keycode;
877 			break;
878 		}
879 		case 2: {
880 			u16 *k = (u16 *)dev->keycode;
881 			*old_keycode = k[index];
882 			k[index] = ke->keycode;
883 			break;
884 		}
885 		default: {
886 			u32 *k = (u32 *)dev->keycode;
887 			*old_keycode = k[index];
888 			k[index] = ke->keycode;
889 			break;
890 		}
891 	}
892 
893 	if (*old_keycode <= KEY_MAX) {
894 		__clear_bit(*old_keycode, dev->keybit);
895 		for (i = 0; i < dev->keycodemax; i++) {
896 			if (input_fetch_keycode(dev, i) == *old_keycode) {
897 				__set_bit(*old_keycode, dev->keybit);
898 				/* Setting the bit twice is useless, so break */
899 				break;
900 			}
901 		}
902 	}
903 
904 	__set_bit(ke->keycode, dev->keybit);
905 	return 0;
906 }
907 
908 /**
909  * input_get_keycode - retrieve keycode currently mapped to a given scancode
910  * @dev: input device which keymap is being queried
911  * @ke: keymap entry
912  *
913  * This function should be called by anyone interested in retrieving current
914  * keymap. Presently evdev handlers use it.
915  */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)916 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
917 {
918 	unsigned long flags;
919 	int retval;
920 
921 	spin_lock_irqsave(&dev->event_lock, flags);
922 	retval = dev->getkeycode(dev, ke);
923 	spin_unlock_irqrestore(&dev->event_lock, flags);
924 
925 	return retval;
926 }
927 EXPORT_SYMBOL(input_get_keycode);
928 
929 /**
930  * input_set_keycode - attribute a keycode to a given scancode
931  * @dev: input device which keymap is being updated
932  * @ke: new keymap entry
933  *
934  * This function should be called by anyone needing to update current
935  * keymap. Presently keyboard and evdev handlers use it.
936  */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)937 int input_set_keycode(struct input_dev *dev,
938 		      const struct input_keymap_entry *ke)
939 {
940 	unsigned long flags;
941 	unsigned int old_keycode;
942 	int retval;
943 
944 	if (ke->keycode > KEY_MAX)
945 		return -EINVAL;
946 
947 	spin_lock_irqsave(&dev->event_lock, flags);
948 
949 	retval = dev->setkeycode(dev, ke, &old_keycode);
950 	if (retval)
951 		goto out;
952 
953 	/* Make sure KEY_RESERVED did not get enabled. */
954 	__clear_bit(KEY_RESERVED, dev->keybit);
955 
956 	/*
957 	 * Simulate keyup event if keycode is not present
958 	 * in the keymap anymore
959 	 */
960 	if (old_keycode > KEY_MAX) {
961 		dev_warn(dev->dev.parent ?: &dev->dev,
962 			 "%s: got too big old keycode %#x\n",
963 			 __func__, old_keycode);
964 	} else if (test_bit(EV_KEY, dev->evbit) &&
965 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
966 		   __test_and_clear_bit(old_keycode, dev->key)) {
967 		struct input_value vals[] =  {
968 			{ EV_KEY, old_keycode, 0 },
969 			input_value_sync
970 		};
971 
972 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
973 	}
974 
975  out:
976 	spin_unlock_irqrestore(&dev->event_lock, flags);
977 
978 	return retval;
979 }
980 EXPORT_SYMBOL(input_set_keycode);
981 
input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)982 bool input_match_device_id(const struct input_dev *dev,
983 			   const struct input_device_id *id)
984 {
985 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
986 		if (id->bustype != dev->id.bustype)
987 			return false;
988 
989 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
990 		if (id->vendor != dev->id.vendor)
991 			return false;
992 
993 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
994 		if (id->product != dev->id.product)
995 			return false;
996 
997 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
998 		if (id->version != dev->id.version)
999 			return false;
1000 
1001 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1002 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1003 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1004 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1005 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1006 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1007 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1008 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1009 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1010 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1011 		return false;
1012 	}
1013 
1014 	return true;
1015 }
1016 EXPORT_SYMBOL(input_match_device_id);
1017 
input_match_device(struct input_handler * handler,struct input_dev * dev)1018 static const struct input_device_id *input_match_device(struct input_handler *handler,
1019 							struct input_dev *dev)
1020 {
1021 	const struct input_device_id *id;
1022 
1023 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1024 		if (input_match_device_id(dev, id) &&
1025 		    (!handler->match || handler->match(handler, dev))) {
1026 			return id;
1027 		}
1028 	}
1029 
1030 	return NULL;
1031 }
1032 
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1033 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1034 {
1035 	const struct input_device_id *id;
1036 	int error;
1037 
1038 	id = input_match_device(handler, dev);
1039 	if (!id)
1040 		return -ENODEV;
1041 
1042 	error = handler->connect(handler, dev, id);
1043 	if (error && error != -ENODEV)
1044 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1045 		       handler->name, kobject_name(&dev->dev.kobj), error);
1046 
1047 	return error;
1048 }
1049 
1050 #ifdef CONFIG_COMPAT
1051 
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1052 static int input_bits_to_string(char *buf, int buf_size,
1053 				unsigned long bits, bool skip_empty)
1054 {
1055 	int len = 0;
1056 
1057 	if (in_compat_syscall()) {
1058 		u32 dword = bits >> 32;
1059 		if (dword || !skip_empty)
1060 			len += snprintf(buf, buf_size, "%x ", dword);
1061 
1062 		dword = bits & 0xffffffffUL;
1063 		if (dword || !skip_empty || len)
1064 			len += snprintf(buf + len, max(buf_size - len, 0),
1065 					"%x", dword);
1066 	} else {
1067 		if (bits || !skip_empty)
1068 			len += snprintf(buf, buf_size, "%lx", bits);
1069 	}
1070 
1071 	return len;
1072 }
1073 
1074 #else /* !CONFIG_COMPAT */
1075 
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1076 static int input_bits_to_string(char *buf, int buf_size,
1077 				unsigned long bits, bool skip_empty)
1078 {
1079 	return bits || !skip_empty ?
1080 		snprintf(buf, buf_size, "%lx", bits) : 0;
1081 }
1082 
1083 #endif
1084 
1085 #ifdef CONFIG_PROC_FS
1086 
1087 static struct proc_dir_entry *proc_bus_input_dir;
1088 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1089 static int input_devices_state;
1090 
input_wakeup_procfs_readers(void)1091 static inline void input_wakeup_procfs_readers(void)
1092 {
1093 	input_devices_state++;
1094 	wake_up(&input_devices_poll_wait);
1095 }
1096 
input_proc_devices_poll(struct file * file,poll_table * wait)1097 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1098 {
1099 	poll_wait(file, &input_devices_poll_wait, wait);
1100 	if (file->f_version != input_devices_state) {
1101 		file->f_version = input_devices_state;
1102 		return EPOLLIN | EPOLLRDNORM;
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 union input_seq_state {
1109 	struct {
1110 		unsigned short pos;
1111 		bool mutex_acquired;
1112 	};
1113 	void *p;
1114 };
1115 
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1116 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1117 {
1118 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1119 	int error;
1120 
1121 	/* We need to fit into seq->private pointer */
1122 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1123 
1124 	error = mutex_lock_interruptible(&input_mutex);
1125 	if (error) {
1126 		state->mutex_acquired = false;
1127 		return ERR_PTR(error);
1128 	}
1129 
1130 	state->mutex_acquired = true;
1131 
1132 	return seq_list_start(&input_dev_list, *pos);
1133 }
1134 
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1135 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1136 {
1137 	return seq_list_next(v, &input_dev_list, pos);
1138 }
1139 
input_seq_stop(struct seq_file * seq,void * v)1140 static void input_seq_stop(struct seq_file *seq, void *v)
1141 {
1142 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1143 
1144 	if (state->mutex_acquired)
1145 		mutex_unlock(&input_mutex);
1146 }
1147 
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1148 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1149 				   unsigned long *bitmap, int max)
1150 {
1151 	int i;
1152 	bool skip_empty = true;
1153 	char buf[18];
1154 
1155 	seq_printf(seq, "B: %s=", name);
1156 
1157 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1158 		if (input_bits_to_string(buf, sizeof(buf),
1159 					 bitmap[i], skip_empty)) {
1160 			skip_empty = false;
1161 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1162 		}
1163 	}
1164 
1165 	/*
1166 	 * If no output was produced print a single 0.
1167 	 */
1168 	if (skip_empty)
1169 		seq_putc(seq, '0');
1170 
1171 	seq_putc(seq, '\n');
1172 }
1173 
input_devices_seq_show(struct seq_file * seq,void * v)1174 static int input_devices_seq_show(struct seq_file *seq, void *v)
1175 {
1176 	struct input_dev *dev = container_of(v, struct input_dev, node);
1177 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1178 	struct input_handle *handle;
1179 
1180 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1181 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1182 
1183 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1184 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1185 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1186 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1187 	seq_puts(seq, "H: Handlers=");
1188 
1189 	list_for_each_entry(handle, &dev->h_list, d_node)
1190 		seq_printf(seq, "%s ", handle->name);
1191 	seq_putc(seq, '\n');
1192 
1193 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1194 
1195 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1196 	if (test_bit(EV_KEY, dev->evbit))
1197 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1198 	if (test_bit(EV_REL, dev->evbit))
1199 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1200 	if (test_bit(EV_ABS, dev->evbit))
1201 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1202 	if (test_bit(EV_MSC, dev->evbit))
1203 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1204 	if (test_bit(EV_LED, dev->evbit))
1205 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1206 	if (test_bit(EV_SND, dev->evbit))
1207 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1208 	if (test_bit(EV_FF, dev->evbit))
1209 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1210 	if (test_bit(EV_SW, dev->evbit))
1211 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1212 
1213 	seq_putc(seq, '\n');
1214 
1215 	kfree(path);
1216 	return 0;
1217 }
1218 
1219 static const struct seq_operations input_devices_seq_ops = {
1220 	.start	= input_devices_seq_start,
1221 	.next	= input_devices_seq_next,
1222 	.stop	= input_seq_stop,
1223 	.show	= input_devices_seq_show,
1224 };
1225 
input_proc_devices_open(struct inode * inode,struct file * file)1226 static int input_proc_devices_open(struct inode *inode, struct file *file)
1227 {
1228 	return seq_open(file, &input_devices_seq_ops);
1229 }
1230 
1231 static const struct proc_ops input_devices_proc_ops = {
1232 	.proc_open	= input_proc_devices_open,
1233 	.proc_poll	= input_proc_devices_poll,
1234 	.proc_read	= seq_read,
1235 	.proc_lseek	= seq_lseek,
1236 	.proc_release	= seq_release,
1237 };
1238 
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1239 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1240 {
1241 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1242 	int error;
1243 
1244 	/* We need to fit into seq->private pointer */
1245 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1246 
1247 	error = mutex_lock_interruptible(&input_mutex);
1248 	if (error) {
1249 		state->mutex_acquired = false;
1250 		return ERR_PTR(error);
1251 	}
1252 
1253 	state->mutex_acquired = true;
1254 	state->pos = *pos;
1255 
1256 	return seq_list_start(&input_handler_list, *pos);
1257 }
1258 
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1259 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1260 {
1261 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1262 
1263 	state->pos = *pos + 1;
1264 	return seq_list_next(v, &input_handler_list, pos);
1265 }
1266 
input_handlers_seq_show(struct seq_file * seq,void * v)1267 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1268 {
1269 	struct input_handler *handler = container_of(v, struct input_handler, node);
1270 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1271 
1272 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1273 	if (handler->filter)
1274 		seq_puts(seq, " (filter)");
1275 	if (handler->legacy_minors)
1276 		seq_printf(seq, " Minor=%d", handler->minor);
1277 	seq_putc(seq, '\n');
1278 
1279 	return 0;
1280 }
1281 
1282 static const struct seq_operations input_handlers_seq_ops = {
1283 	.start	= input_handlers_seq_start,
1284 	.next	= input_handlers_seq_next,
1285 	.stop	= input_seq_stop,
1286 	.show	= input_handlers_seq_show,
1287 };
1288 
input_proc_handlers_open(struct inode * inode,struct file * file)1289 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1290 {
1291 	return seq_open(file, &input_handlers_seq_ops);
1292 }
1293 
1294 static const struct proc_ops input_handlers_proc_ops = {
1295 	.proc_open	= input_proc_handlers_open,
1296 	.proc_read	= seq_read,
1297 	.proc_lseek	= seq_lseek,
1298 	.proc_release	= seq_release,
1299 };
1300 
input_proc_init(void)1301 static int __init input_proc_init(void)
1302 {
1303 	struct proc_dir_entry *entry;
1304 
1305 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1306 	if (!proc_bus_input_dir)
1307 		return -ENOMEM;
1308 
1309 	entry = proc_create("devices", 0, proc_bus_input_dir,
1310 			    &input_devices_proc_ops);
1311 	if (!entry)
1312 		goto fail1;
1313 
1314 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1315 			    &input_handlers_proc_ops);
1316 	if (!entry)
1317 		goto fail2;
1318 
1319 	return 0;
1320 
1321  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1322  fail1: remove_proc_entry("bus/input", NULL);
1323 	return -ENOMEM;
1324 }
1325 
input_proc_exit(void)1326 static void input_proc_exit(void)
1327 {
1328 	remove_proc_entry("devices", proc_bus_input_dir);
1329 	remove_proc_entry("handlers", proc_bus_input_dir);
1330 	remove_proc_entry("bus/input", NULL);
1331 }
1332 
1333 #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1334 static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1335 static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1336 static inline void input_proc_exit(void) { }
1337 #endif
1338 
1339 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1340 static ssize_t input_dev_show_##name(struct device *dev,		\
1341 				     struct device_attribute *attr,	\
1342 				     char *buf)				\
1343 {									\
1344 	struct input_dev *input_dev = to_input_dev(dev);		\
1345 									\
1346 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1347 			 input_dev->name ? input_dev->name : "");	\
1348 }									\
1349 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1350 
1351 INPUT_DEV_STRING_ATTR_SHOW(name);
1352 INPUT_DEV_STRING_ATTR_SHOW(phys);
1353 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1354 
input_print_modalias_bits(char * buf,int size,char name,unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1355 static int input_print_modalias_bits(char *buf, int size,
1356 				     char name, unsigned long *bm,
1357 				     unsigned int min_bit, unsigned int max_bit)
1358 {
1359 	int len = 0, i;
1360 
1361 	len += snprintf(buf, max(size, 0), "%c", name);
1362 	for (i = min_bit; i < max_bit; i++)
1363 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1364 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1365 	return len;
1366 }
1367 
input_print_modalias(char * buf,int size,struct input_dev * id,int add_cr)1368 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1369 				int add_cr)
1370 {
1371 	int len;
1372 
1373 	len = snprintf(buf, max(size, 0),
1374 		       "input:b%04Xv%04Xp%04Xe%04X-",
1375 		       id->id.bustype, id->id.vendor,
1376 		       id->id.product, id->id.version);
1377 
1378 	len += input_print_modalias_bits(buf + len, size - len,
1379 				'e', id->evbit, 0, EV_MAX);
1380 	len += input_print_modalias_bits(buf + len, size - len,
1381 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1382 	len += input_print_modalias_bits(buf + len, size - len,
1383 				'r', id->relbit, 0, REL_MAX);
1384 	len += input_print_modalias_bits(buf + len, size - len,
1385 				'a', id->absbit, 0, ABS_MAX);
1386 	len += input_print_modalias_bits(buf + len, size - len,
1387 				'm', id->mscbit, 0, MSC_MAX);
1388 	len += input_print_modalias_bits(buf + len, size - len,
1389 				'l', id->ledbit, 0, LED_MAX);
1390 	len += input_print_modalias_bits(buf + len, size - len,
1391 				's', id->sndbit, 0, SND_MAX);
1392 	len += input_print_modalias_bits(buf + len, size - len,
1393 				'f', id->ffbit, 0, FF_MAX);
1394 	len += input_print_modalias_bits(buf + len, size - len,
1395 				'w', id->swbit, 0, SW_MAX);
1396 
1397 	if (add_cr)
1398 		len += snprintf(buf + len, max(size - len, 0), "\n");
1399 
1400 	return len;
1401 }
1402 
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1403 static ssize_t input_dev_show_modalias(struct device *dev,
1404 				       struct device_attribute *attr,
1405 				       char *buf)
1406 {
1407 	struct input_dev *id = to_input_dev(dev);
1408 	ssize_t len;
1409 
1410 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1411 
1412 	return min_t(int, len, PAGE_SIZE);
1413 }
1414 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1415 
1416 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1417 			      int max, int add_cr);
1418 
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1419 static ssize_t input_dev_show_properties(struct device *dev,
1420 					 struct device_attribute *attr,
1421 					 char *buf)
1422 {
1423 	struct input_dev *input_dev = to_input_dev(dev);
1424 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1425 				     INPUT_PROP_MAX, true);
1426 	return min_t(int, len, PAGE_SIZE);
1427 }
1428 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1429 
1430 static struct attribute *input_dev_attrs[] = {
1431 	&dev_attr_name.attr,
1432 	&dev_attr_phys.attr,
1433 	&dev_attr_uniq.attr,
1434 	&dev_attr_modalias.attr,
1435 	&dev_attr_properties.attr,
1436 	NULL
1437 };
1438 
1439 static const struct attribute_group input_dev_attr_group = {
1440 	.attrs	= input_dev_attrs,
1441 };
1442 
1443 #define INPUT_DEV_ID_ATTR(name)						\
1444 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1445 					struct device_attribute *attr,	\
1446 					char *buf)			\
1447 {									\
1448 	struct input_dev *input_dev = to_input_dev(dev);		\
1449 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1450 }									\
1451 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1452 
1453 INPUT_DEV_ID_ATTR(bustype);
1454 INPUT_DEV_ID_ATTR(vendor);
1455 INPUT_DEV_ID_ATTR(product);
1456 INPUT_DEV_ID_ATTR(version);
1457 
1458 static struct attribute *input_dev_id_attrs[] = {
1459 	&dev_attr_bustype.attr,
1460 	&dev_attr_vendor.attr,
1461 	&dev_attr_product.attr,
1462 	&dev_attr_version.attr,
1463 	NULL
1464 };
1465 
1466 static const struct attribute_group input_dev_id_attr_group = {
1467 	.name	= "id",
1468 	.attrs	= input_dev_id_attrs,
1469 };
1470 
input_print_bitmap(char * buf,int buf_size,unsigned long * bitmap,int max,int add_cr)1471 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1472 			      int max, int add_cr)
1473 {
1474 	int i;
1475 	int len = 0;
1476 	bool skip_empty = true;
1477 
1478 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1479 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1480 					    bitmap[i], skip_empty);
1481 		if (len) {
1482 			skip_empty = false;
1483 			if (i > 0)
1484 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1485 		}
1486 	}
1487 
1488 	/*
1489 	 * If no output was produced print a single 0.
1490 	 */
1491 	if (len == 0)
1492 		len = snprintf(buf, buf_size, "%d", 0);
1493 
1494 	if (add_cr)
1495 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1496 
1497 	return len;
1498 }
1499 
1500 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1501 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1502 				       struct device_attribute *attr,	\
1503 				       char *buf)			\
1504 {									\
1505 	struct input_dev *input_dev = to_input_dev(dev);		\
1506 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1507 				     input_dev->bm##bit, ev##_MAX,	\
1508 				     true);				\
1509 	return min_t(int, len, PAGE_SIZE);				\
1510 }									\
1511 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1512 
1513 INPUT_DEV_CAP_ATTR(EV, ev);
1514 INPUT_DEV_CAP_ATTR(KEY, key);
1515 INPUT_DEV_CAP_ATTR(REL, rel);
1516 INPUT_DEV_CAP_ATTR(ABS, abs);
1517 INPUT_DEV_CAP_ATTR(MSC, msc);
1518 INPUT_DEV_CAP_ATTR(LED, led);
1519 INPUT_DEV_CAP_ATTR(SND, snd);
1520 INPUT_DEV_CAP_ATTR(FF, ff);
1521 INPUT_DEV_CAP_ATTR(SW, sw);
1522 
1523 static struct attribute *input_dev_caps_attrs[] = {
1524 	&dev_attr_ev.attr,
1525 	&dev_attr_key.attr,
1526 	&dev_attr_rel.attr,
1527 	&dev_attr_abs.attr,
1528 	&dev_attr_msc.attr,
1529 	&dev_attr_led.attr,
1530 	&dev_attr_snd.attr,
1531 	&dev_attr_ff.attr,
1532 	&dev_attr_sw.attr,
1533 	NULL
1534 };
1535 
1536 static const struct attribute_group input_dev_caps_attr_group = {
1537 	.name	= "capabilities",
1538 	.attrs	= input_dev_caps_attrs,
1539 };
1540 
1541 static const struct attribute_group *input_dev_attr_groups[] = {
1542 	&input_dev_attr_group,
1543 	&input_dev_id_attr_group,
1544 	&input_dev_caps_attr_group,
1545 	&input_poller_attribute_group,
1546 	NULL
1547 };
1548 
input_dev_release(struct device * device)1549 static void input_dev_release(struct device *device)
1550 {
1551 	struct input_dev *dev = to_input_dev(device);
1552 
1553 	input_ff_destroy(dev);
1554 	input_mt_destroy_slots(dev);
1555 	kfree(dev->poller);
1556 	kfree(dev->absinfo);
1557 	kfree(dev->vals);
1558 	kfree(dev);
1559 
1560 	module_put(THIS_MODULE);
1561 }
1562 
1563 /*
1564  * Input uevent interface - loading event handlers based on
1565  * device bitfields.
1566  */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,unsigned long * bitmap,int max)1567 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1568 				   const char *name, unsigned long *bitmap, int max)
1569 {
1570 	int len;
1571 
1572 	if (add_uevent_var(env, "%s", name))
1573 		return -ENOMEM;
1574 
1575 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1576 				 sizeof(env->buf) - env->buflen,
1577 				 bitmap, max, false);
1578 	if (len >= (sizeof(env->buf) - env->buflen))
1579 		return -ENOMEM;
1580 
1581 	env->buflen += len;
1582 	return 0;
1583 }
1584 
input_add_uevent_modalias_var(struct kobj_uevent_env * env,struct input_dev * dev)1585 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1586 					 struct input_dev *dev)
1587 {
1588 	int len;
1589 
1590 	if (add_uevent_var(env, "MODALIAS="))
1591 		return -ENOMEM;
1592 
1593 	len = input_print_modalias(&env->buf[env->buflen - 1],
1594 				   sizeof(env->buf) - env->buflen,
1595 				   dev, 0);
1596 	if (len >= (sizeof(env->buf) - env->buflen))
1597 		return -ENOMEM;
1598 
1599 	env->buflen += len;
1600 	return 0;
1601 }
1602 
1603 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1604 	do {								\
1605 		int err = add_uevent_var(env, fmt, val);		\
1606 		if (err)						\
1607 			return err;					\
1608 	} while (0)
1609 
1610 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1611 	do {								\
1612 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1613 		if (err)						\
1614 			return err;					\
1615 	} while (0)
1616 
1617 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1618 	do {								\
1619 		int err = input_add_uevent_modalias_var(env, dev);	\
1620 		if (err)						\
1621 			return err;					\
1622 	} while (0)
1623 
input_dev_uevent(struct device * device,struct kobj_uevent_env * env)1624 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1625 {
1626 	struct input_dev *dev = to_input_dev(device);
1627 
1628 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1629 				dev->id.bustype, dev->id.vendor,
1630 				dev->id.product, dev->id.version);
1631 	if (dev->name)
1632 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1633 	if (dev->phys)
1634 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1635 	if (dev->uniq)
1636 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1637 
1638 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1639 
1640 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1641 	if (test_bit(EV_KEY, dev->evbit))
1642 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1643 	if (test_bit(EV_REL, dev->evbit))
1644 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1645 	if (test_bit(EV_ABS, dev->evbit))
1646 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1647 	if (test_bit(EV_MSC, dev->evbit))
1648 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1649 	if (test_bit(EV_LED, dev->evbit))
1650 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1651 	if (test_bit(EV_SND, dev->evbit))
1652 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1653 	if (test_bit(EV_FF, dev->evbit))
1654 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1655 	if (test_bit(EV_SW, dev->evbit))
1656 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1657 
1658 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1659 
1660 	return 0;
1661 }
1662 
1663 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1664 	do {								\
1665 		int i;							\
1666 		bool active;						\
1667 									\
1668 		if (!test_bit(EV_##type, dev->evbit))			\
1669 			break;						\
1670 									\
1671 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1672 			active = test_bit(i, dev->bits);		\
1673 			if (!active && !on)				\
1674 				continue;				\
1675 									\
1676 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1677 		}							\
1678 	} while (0)
1679 
input_dev_toggle(struct input_dev * dev,bool activate)1680 static void input_dev_toggle(struct input_dev *dev, bool activate)
1681 {
1682 	if (!dev->event)
1683 		return;
1684 
1685 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1686 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1687 
1688 	if (activate && test_bit(EV_REP, dev->evbit)) {
1689 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1690 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1691 	}
1692 }
1693 
1694 /**
1695  * input_reset_device() - reset/restore the state of input device
1696  * @dev: input device whose state needs to be reset
1697  *
1698  * This function tries to reset the state of an opened input device and
1699  * bring internal state and state if the hardware in sync with each other.
1700  * We mark all keys as released, restore LED state, repeat rate, etc.
1701  */
input_reset_device(struct input_dev * dev)1702 void input_reset_device(struct input_dev *dev)
1703 {
1704 	unsigned long flags;
1705 
1706 	mutex_lock(&dev->mutex);
1707 	spin_lock_irqsave(&dev->event_lock, flags);
1708 
1709 	input_dev_toggle(dev, true);
1710 	input_dev_release_keys(dev);
1711 
1712 	spin_unlock_irqrestore(&dev->event_lock, flags);
1713 	mutex_unlock(&dev->mutex);
1714 }
1715 EXPORT_SYMBOL(input_reset_device);
1716 
1717 #ifdef CONFIG_PM_SLEEP
input_dev_suspend(struct device * dev)1718 static int input_dev_suspend(struct device *dev)
1719 {
1720 	struct input_dev *input_dev = to_input_dev(dev);
1721 
1722 	spin_lock_irq(&input_dev->event_lock);
1723 
1724 	/*
1725 	 * Keys that are pressed now are unlikely to be
1726 	 * still pressed when we resume.
1727 	 */
1728 	input_dev_release_keys(input_dev);
1729 
1730 	/* Turn off LEDs and sounds, if any are active. */
1731 	input_dev_toggle(input_dev, false);
1732 
1733 	spin_unlock_irq(&input_dev->event_lock);
1734 
1735 	return 0;
1736 }
1737 
input_dev_resume(struct device * dev)1738 static int input_dev_resume(struct device *dev)
1739 {
1740 	struct input_dev *input_dev = to_input_dev(dev);
1741 
1742 	spin_lock_irq(&input_dev->event_lock);
1743 
1744 	/* Restore state of LEDs and sounds, if any were active. */
1745 	input_dev_toggle(input_dev, true);
1746 
1747 	spin_unlock_irq(&input_dev->event_lock);
1748 
1749 	return 0;
1750 }
1751 
input_dev_freeze(struct device * dev)1752 static int input_dev_freeze(struct device *dev)
1753 {
1754 	struct input_dev *input_dev = to_input_dev(dev);
1755 
1756 	spin_lock_irq(&input_dev->event_lock);
1757 
1758 	/*
1759 	 * Keys that are pressed now are unlikely to be
1760 	 * still pressed when we resume.
1761 	 */
1762 	input_dev_release_keys(input_dev);
1763 
1764 	spin_unlock_irq(&input_dev->event_lock);
1765 
1766 	return 0;
1767 }
1768 
input_dev_poweroff(struct device * dev)1769 static int input_dev_poweroff(struct device *dev)
1770 {
1771 	struct input_dev *input_dev = to_input_dev(dev);
1772 
1773 	spin_lock_irq(&input_dev->event_lock);
1774 
1775 	/* Turn off LEDs and sounds, if any are active. */
1776 	input_dev_toggle(input_dev, false);
1777 
1778 	spin_unlock_irq(&input_dev->event_lock);
1779 
1780 	return 0;
1781 }
1782 
1783 static const struct dev_pm_ops input_dev_pm_ops = {
1784 	.suspend	= input_dev_suspend,
1785 	.resume		= input_dev_resume,
1786 	.freeze		= input_dev_freeze,
1787 	.poweroff	= input_dev_poweroff,
1788 	.restore	= input_dev_resume,
1789 };
1790 #endif /* CONFIG_PM */
1791 
1792 static const struct device_type input_dev_type = {
1793 	.groups		= input_dev_attr_groups,
1794 	.release	= input_dev_release,
1795 	.uevent		= input_dev_uevent,
1796 #ifdef CONFIG_PM_SLEEP
1797 	.pm		= &input_dev_pm_ops,
1798 #endif
1799 };
1800 
input_devnode(struct device * dev,umode_t * mode)1801 static char *input_devnode(struct device *dev, umode_t *mode)
1802 {
1803 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1804 }
1805 
1806 struct class input_class = {
1807 	.name		= "input",
1808 	.devnode	= input_devnode,
1809 };
1810 EXPORT_SYMBOL_GPL(input_class);
1811 
1812 /**
1813  * input_allocate_device - allocate memory for new input device
1814  *
1815  * Returns prepared struct input_dev or %NULL.
1816  *
1817  * NOTE: Use input_free_device() to free devices that have not been
1818  * registered; input_unregister_device() should be used for already
1819  * registered devices.
1820  */
input_allocate_device(void)1821 struct input_dev *input_allocate_device(void)
1822 {
1823 	static atomic_t input_no = ATOMIC_INIT(-1);
1824 	struct input_dev *dev;
1825 
1826 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1827 	if (dev) {
1828 		dev->dev.type = &input_dev_type;
1829 		dev->dev.class = &input_class;
1830 		device_initialize(&dev->dev);
1831 		mutex_init(&dev->mutex);
1832 		spin_lock_init(&dev->event_lock);
1833 		timer_setup(&dev->timer, NULL, 0);
1834 		INIT_LIST_HEAD(&dev->h_list);
1835 		INIT_LIST_HEAD(&dev->node);
1836 
1837 		dev_set_name(&dev->dev, "input%lu",
1838 			     (unsigned long)atomic_inc_return(&input_no));
1839 
1840 		__module_get(THIS_MODULE);
1841 	}
1842 
1843 	return dev;
1844 }
1845 EXPORT_SYMBOL(input_allocate_device);
1846 
1847 struct input_devres {
1848 	struct input_dev *input;
1849 };
1850 
devm_input_device_match(struct device * dev,void * res,void * data)1851 static int devm_input_device_match(struct device *dev, void *res, void *data)
1852 {
1853 	struct input_devres *devres = res;
1854 
1855 	return devres->input == data;
1856 }
1857 
devm_input_device_release(struct device * dev,void * res)1858 static void devm_input_device_release(struct device *dev, void *res)
1859 {
1860 	struct input_devres *devres = res;
1861 	struct input_dev *input = devres->input;
1862 
1863 	dev_dbg(dev, "%s: dropping reference to %s\n",
1864 		__func__, dev_name(&input->dev));
1865 	input_put_device(input);
1866 }
1867 
1868 /**
1869  * devm_input_allocate_device - allocate managed input device
1870  * @dev: device owning the input device being created
1871  *
1872  * Returns prepared struct input_dev or %NULL.
1873  *
1874  * Managed input devices do not need to be explicitly unregistered or
1875  * freed as it will be done automatically when owner device unbinds from
1876  * its driver (or binding fails). Once managed input device is allocated,
1877  * it is ready to be set up and registered in the same fashion as regular
1878  * input device. There are no special devm_input_device_[un]register()
1879  * variants, regular ones work with both managed and unmanaged devices,
1880  * should you need them. In most cases however, managed input device need
1881  * not be explicitly unregistered or freed.
1882  *
1883  * NOTE: the owner device is set up as parent of input device and users
1884  * should not override it.
1885  */
devm_input_allocate_device(struct device * dev)1886 struct input_dev *devm_input_allocate_device(struct device *dev)
1887 {
1888 	struct input_dev *input;
1889 	struct input_devres *devres;
1890 
1891 	devres = devres_alloc(devm_input_device_release,
1892 			      sizeof(*devres), GFP_KERNEL);
1893 	if (!devres)
1894 		return NULL;
1895 
1896 	input = input_allocate_device();
1897 	if (!input) {
1898 		devres_free(devres);
1899 		return NULL;
1900 	}
1901 
1902 	input->dev.parent = dev;
1903 	input->devres_managed = true;
1904 
1905 	devres->input = input;
1906 	devres_add(dev, devres);
1907 
1908 	return input;
1909 }
1910 EXPORT_SYMBOL(devm_input_allocate_device);
1911 
1912 /**
1913  * input_free_device - free memory occupied by input_dev structure
1914  * @dev: input device to free
1915  *
1916  * This function should only be used if input_register_device()
1917  * was not called yet or if it failed. Once device was registered
1918  * use input_unregister_device() and memory will be freed once last
1919  * reference to the device is dropped.
1920  *
1921  * Device should be allocated by input_allocate_device().
1922  *
1923  * NOTE: If there are references to the input device then memory
1924  * will not be freed until last reference is dropped.
1925  */
input_free_device(struct input_dev * dev)1926 void input_free_device(struct input_dev *dev)
1927 {
1928 	if (dev) {
1929 		if (dev->devres_managed)
1930 			WARN_ON(devres_destroy(dev->dev.parent,
1931 						devm_input_device_release,
1932 						devm_input_device_match,
1933 						dev));
1934 		input_put_device(dev);
1935 	}
1936 }
1937 EXPORT_SYMBOL(input_free_device);
1938 
1939 /**
1940  * input_set_timestamp - set timestamp for input events
1941  * @dev: input device to set timestamp for
1942  * @timestamp: the time at which the event has occurred
1943  *   in CLOCK_MONOTONIC
1944  *
1945  * This function is intended to provide to the input system a more
1946  * accurate time of when an event actually occurred. The driver should
1947  * call this function as soon as a timestamp is acquired ensuring
1948  * clock conversions in input_set_timestamp are done correctly.
1949  *
1950  * The system entering suspend state between timestamp acquisition and
1951  * calling input_set_timestamp can result in inaccurate conversions.
1952  */
input_set_timestamp(struct input_dev * dev,ktime_t timestamp)1953 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1954 {
1955 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
1956 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1957 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1958 							   TK_OFFS_BOOT);
1959 }
1960 EXPORT_SYMBOL(input_set_timestamp);
1961 
1962 /**
1963  * input_get_timestamp - get timestamp for input events
1964  * @dev: input device to get timestamp from
1965  *
1966  * A valid timestamp is a timestamp of non-zero value.
1967  */
input_get_timestamp(struct input_dev * dev)1968 ktime_t *input_get_timestamp(struct input_dev *dev)
1969 {
1970 	const ktime_t invalid_timestamp = ktime_set(0, 0);
1971 
1972 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1973 		input_set_timestamp(dev, ktime_get());
1974 
1975 	return dev->timestamp;
1976 }
1977 EXPORT_SYMBOL(input_get_timestamp);
1978 
1979 /**
1980  * input_set_capability - mark device as capable of a certain event
1981  * @dev: device that is capable of emitting or accepting event
1982  * @type: type of the event (EV_KEY, EV_REL, etc...)
1983  * @code: event code
1984  *
1985  * In addition to setting up corresponding bit in appropriate capability
1986  * bitmap the function also adjusts dev->evbit.
1987  */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)1988 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1989 {
1990 	if (type < EV_CNT && input_max_code[type] &&
1991 	    code > input_max_code[type]) {
1992 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
1993 		       type);
1994 		dump_stack();
1995 		return;
1996 	}
1997 
1998 	switch (type) {
1999 	case EV_KEY:
2000 		__set_bit(code, dev->keybit);
2001 		break;
2002 
2003 	case EV_REL:
2004 		__set_bit(code, dev->relbit);
2005 		break;
2006 
2007 	case EV_ABS:
2008 		input_alloc_absinfo(dev);
2009 		if (!dev->absinfo)
2010 			return;
2011 
2012 		__set_bit(code, dev->absbit);
2013 		break;
2014 
2015 	case EV_MSC:
2016 		__set_bit(code, dev->mscbit);
2017 		break;
2018 
2019 	case EV_SW:
2020 		__set_bit(code, dev->swbit);
2021 		break;
2022 
2023 	case EV_LED:
2024 		__set_bit(code, dev->ledbit);
2025 		break;
2026 
2027 	case EV_SND:
2028 		__set_bit(code, dev->sndbit);
2029 		break;
2030 
2031 	case EV_FF:
2032 		__set_bit(code, dev->ffbit);
2033 		break;
2034 
2035 	case EV_PWR:
2036 		/* do nothing */
2037 		break;
2038 
2039 	default:
2040 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2041 		dump_stack();
2042 		return;
2043 	}
2044 
2045 	__set_bit(type, dev->evbit);
2046 }
2047 EXPORT_SYMBOL(input_set_capability);
2048 
input_estimate_events_per_packet(struct input_dev * dev)2049 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2050 {
2051 	int mt_slots;
2052 	int i;
2053 	unsigned int events;
2054 
2055 	if (dev->mt) {
2056 		mt_slots = dev->mt->num_slots;
2057 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2058 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2059 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2060 		mt_slots = clamp(mt_slots, 2, 32);
2061 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2062 		mt_slots = 2;
2063 	} else {
2064 		mt_slots = 0;
2065 	}
2066 
2067 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2068 
2069 	if (test_bit(EV_ABS, dev->evbit))
2070 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2071 			events += input_is_mt_axis(i) ? mt_slots : 1;
2072 
2073 	if (test_bit(EV_REL, dev->evbit))
2074 		events += bitmap_weight(dev->relbit, REL_CNT);
2075 
2076 	/* Make room for KEY and MSC events */
2077 	events += 7;
2078 
2079 	return events;
2080 }
2081 
2082 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2083 	do {								\
2084 		if (!test_bit(EV_##type, dev->evbit))			\
2085 			memset(dev->bits##bit, 0,			\
2086 				sizeof(dev->bits##bit));		\
2087 	} while (0)
2088 
input_cleanse_bitmasks(struct input_dev * dev)2089 static void input_cleanse_bitmasks(struct input_dev *dev)
2090 {
2091 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2092 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2093 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2094 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2095 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2096 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2097 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2098 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2099 }
2100 
__input_unregister_device(struct input_dev * dev)2101 static void __input_unregister_device(struct input_dev *dev)
2102 {
2103 	struct input_handle *handle, *next;
2104 
2105 	input_disconnect_device(dev);
2106 
2107 	mutex_lock(&input_mutex);
2108 
2109 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2110 		handle->handler->disconnect(handle);
2111 	WARN_ON(!list_empty(&dev->h_list));
2112 
2113 	del_timer_sync(&dev->timer);
2114 	list_del_init(&dev->node);
2115 
2116 	input_wakeup_procfs_readers();
2117 
2118 	mutex_unlock(&input_mutex);
2119 
2120 	device_del(&dev->dev);
2121 }
2122 
devm_input_device_unregister(struct device * dev,void * res)2123 static void devm_input_device_unregister(struct device *dev, void *res)
2124 {
2125 	struct input_devres *devres = res;
2126 	struct input_dev *input = devres->input;
2127 
2128 	dev_dbg(dev, "%s: unregistering device %s\n",
2129 		__func__, dev_name(&input->dev));
2130 	__input_unregister_device(input);
2131 }
2132 
2133 /**
2134  * input_enable_softrepeat - enable software autorepeat
2135  * @dev: input device
2136  * @delay: repeat delay
2137  * @period: repeat period
2138  *
2139  * Enable software autorepeat on the input device.
2140  */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2141 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2142 {
2143 	dev->timer.function = input_repeat_key;
2144 	dev->rep[REP_DELAY] = delay;
2145 	dev->rep[REP_PERIOD] = period;
2146 }
2147 EXPORT_SYMBOL(input_enable_softrepeat);
2148 
2149 /**
2150  * input_register_device - register device with input core
2151  * @dev: device to be registered
2152  *
2153  * This function registers device with input core. The device must be
2154  * allocated with input_allocate_device() and all it's capabilities
2155  * set up before registering.
2156  * If function fails the device must be freed with input_free_device().
2157  * Once device has been successfully registered it can be unregistered
2158  * with input_unregister_device(); input_free_device() should not be
2159  * called in this case.
2160  *
2161  * Note that this function is also used to register managed input devices
2162  * (ones allocated with devm_input_allocate_device()). Such managed input
2163  * devices need not be explicitly unregistered or freed, their tear down
2164  * is controlled by the devres infrastructure. It is also worth noting
2165  * that tear down of managed input devices is internally a 2-step process:
2166  * registered managed input device is first unregistered, but stays in
2167  * memory and can still handle input_event() calls (although events will
2168  * not be delivered anywhere). The freeing of managed input device will
2169  * happen later, when devres stack is unwound to the point where device
2170  * allocation was made.
2171  */
input_register_device(struct input_dev * dev)2172 int input_register_device(struct input_dev *dev)
2173 {
2174 	struct input_devres *devres = NULL;
2175 	struct input_handler *handler;
2176 	unsigned int packet_size;
2177 	const char *path;
2178 	int error;
2179 
2180 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2181 		dev_err(&dev->dev,
2182 			"Absolute device without dev->absinfo, refusing to register\n");
2183 		return -EINVAL;
2184 	}
2185 
2186 	if (dev->devres_managed) {
2187 		devres = devres_alloc(devm_input_device_unregister,
2188 				      sizeof(*devres), GFP_KERNEL);
2189 		if (!devres)
2190 			return -ENOMEM;
2191 
2192 		devres->input = dev;
2193 	}
2194 
2195 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2196 	__set_bit(EV_SYN, dev->evbit);
2197 
2198 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2199 	__clear_bit(KEY_RESERVED, dev->keybit);
2200 
2201 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2202 	input_cleanse_bitmasks(dev);
2203 
2204 	packet_size = input_estimate_events_per_packet(dev);
2205 	if (dev->hint_events_per_packet < packet_size)
2206 		dev->hint_events_per_packet = packet_size;
2207 
2208 	dev->max_vals = dev->hint_events_per_packet + 2;
2209 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2210 	if (!dev->vals) {
2211 		error = -ENOMEM;
2212 		goto err_devres_free;
2213 	}
2214 
2215 	/*
2216 	 * If delay and period are pre-set by the driver, then autorepeating
2217 	 * is handled by the driver itself and we don't do it in input.c.
2218 	 */
2219 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2220 		input_enable_softrepeat(dev, 250, 33);
2221 
2222 	if (!dev->getkeycode)
2223 		dev->getkeycode = input_default_getkeycode;
2224 
2225 	if (!dev->setkeycode)
2226 		dev->setkeycode = input_default_setkeycode;
2227 
2228 	if (dev->poller)
2229 		input_dev_poller_finalize(dev->poller);
2230 
2231 	error = device_add(&dev->dev);
2232 	if (error)
2233 		goto err_free_vals;
2234 
2235 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2236 	pr_info("%s as %s\n",
2237 		dev->name ? dev->name : "Unspecified device",
2238 		path ? path : "N/A");
2239 	kfree(path);
2240 
2241 	error = mutex_lock_interruptible(&input_mutex);
2242 	if (error)
2243 		goto err_device_del;
2244 
2245 	list_add_tail(&dev->node, &input_dev_list);
2246 
2247 	list_for_each_entry(handler, &input_handler_list, node)
2248 		input_attach_handler(dev, handler);
2249 
2250 	input_wakeup_procfs_readers();
2251 
2252 	mutex_unlock(&input_mutex);
2253 
2254 	if (dev->devres_managed) {
2255 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2256 			__func__, dev_name(&dev->dev));
2257 		devres_add(dev->dev.parent, devres);
2258 	}
2259 	return 0;
2260 
2261 err_device_del:
2262 	device_del(&dev->dev);
2263 err_free_vals:
2264 	kfree(dev->vals);
2265 	dev->vals = NULL;
2266 err_devres_free:
2267 	devres_free(devres);
2268 	return error;
2269 }
2270 EXPORT_SYMBOL(input_register_device);
2271 
2272 /**
2273  * input_unregister_device - unregister previously registered device
2274  * @dev: device to be unregistered
2275  *
2276  * This function unregisters an input device. Once device is unregistered
2277  * the caller should not try to access it as it may get freed at any moment.
2278  */
input_unregister_device(struct input_dev * dev)2279 void input_unregister_device(struct input_dev *dev)
2280 {
2281 	if (dev->devres_managed) {
2282 		WARN_ON(devres_destroy(dev->dev.parent,
2283 					devm_input_device_unregister,
2284 					devm_input_device_match,
2285 					dev));
2286 		__input_unregister_device(dev);
2287 		/*
2288 		 * We do not do input_put_device() here because it will be done
2289 		 * when 2nd devres fires up.
2290 		 */
2291 	} else {
2292 		__input_unregister_device(dev);
2293 		input_put_device(dev);
2294 	}
2295 }
2296 EXPORT_SYMBOL(input_unregister_device);
2297 
2298 /**
2299  * input_register_handler - register a new input handler
2300  * @handler: handler to be registered
2301  *
2302  * This function registers a new input handler (interface) for input
2303  * devices in the system and attaches it to all input devices that
2304  * are compatible with the handler.
2305  */
input_register_handler(struct input_handler * handler)2306 int input_register_handler(struct input_handler *handler)
2307 {
2308 	struct input_dev *dev;
2309 	int error;
2310 
2311 	error = mutex_lock_interruptible(&input_mutex);
2312 	if (error)
2313 		return error;
2314 
2315 	INIT_LIST_HEAD(&handler->h_list);
2316 
2317 	list_add_tail(&handler->node, &input_handler_list);
2318 
2319 	list_for_each_entry(dev, &input_dev_list, node)
2320 		input_attach_handler(dev, handler);
2321 
2322 	input_wakeup_procfs_readers();
2323 
2324 	mutex_unlock(&input_mutex);
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL(input_register_handler);
2328 
2329 /**
2330  * input_unregister_handler - unregisters an input handler
2331  * @handler: handler to be unregistered
2332  *
2333  * This function disconnects a handler from its input devices and
2334  * removes it from lists of known handlers.
2335  */
input_unregister_handler(struct input_handler * handler)2336 void input_unregister_handler(struct input_handler *handler)
2337 {
2338 	struct input_handle *handle, *next;
2339 
2340 	mutex_lock(&input_mutex);
2341 
2342 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2343 		handler->disconnect(handle);
2344 	WARN_ON(!list_empty(&handler->h_list));
2345 
2346 	list_del_init(&handler->node);
2347 
2348 	input_wakeup_procfs_readers();
2349 
2350 	mutex_unlock(&input_mutex);
2351 }
2352 EXPORT_SYMBOL(input_unregister_handler);
2353 
2354 /**
2355  * input_handler_for_each_handle - handle iterator
2356  * @handler: input handler to iterate
2357  * @data: data for the callback
2358  * @fn: function to be called for each handle
2359  *
2360  * Iterate over @bus's list of devices, and call @fn for each, passing
2361  * it @data and stop when @fn returns a non-zero value. The function is
2362  * using RCU to traverse the list and therefore may be using in atomic
2363  * contexts. The @fn callback is invoked from RCU critical section and
2364  * thus must not sleep.
2365  */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2366 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2367 				  int (*fn)(struct input_handle *, void *))
2368 {
2369 	struct input_handle *handle;
2370 	int retval = 0;
2371 
2372 	rcu_read_lock();
2373 
2374 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2375 		retval = fn(handle, data);
2376 		if (retval)
2377 			break;
2378 	}
2379 
2380 	rcu_read_unlock();
2381 
2382 	return retval;
2383 }
2384 EXPORT_SYMBOL(input_handler_for_each_handle);
2385 
2386 /**
2387  * input_register_handle - register a new input handle
2388  * @handle: handle to register
2389  *
2390  * This function puts a new input handle onto device's
2391  * and handler's lists so that events can flow through
2392  * it once it is opened using input_open_device().
2393  *
2394  * This function is supposed to be called from handler's
2395  * connect() method.
2396  */
input_register_handle(struct input_handle * handle)2397 int input_register_handle(struct input_handle *handle)
2398 {
2399 	struct input_handler *handler = handle->handler;
2400 	struct input_dev *dev = handle->dev;
2401 	int error;
2402 
2403 	/*
2404 	 * We take dev->mutex here to prevent race with
2405 	 * input_release_device().
2406 	 */
2407 	error = mutex_lock_interruptible(&dev->mutex);
2408 	if (error)
2409 		return error;
2410 
2411 	/*
2412 	 * Filters go to the head of the list, normal handlers
2413 	 * to the tail.
2414 	 */
2415 	if (handler->filter)
2416 		list_add_rcu(&handle->d_node, &dev->h_list);
2417 	else
2418 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2419 
2420 	mutex_unlock(&dev->mutex);
2421 
2422 	/*
2423 	 * Since we are supposed to be called from ->connect()
2424 	 * which is mutually exclusive with ->disconnect()
2425 	 * we can't be racing with input_unregister_handle()
2426 	 * and so separate lock is not needed here.
2427 	 */
2428 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2429 
2430 	if (handler->start)
2431 		handler->start(handle);
2432 
2433 	return 0;
2434 }
2435 EXPORT_SYMBOL(input_register_handle);
2436 
2437 /**
2438  * input_unregister_handle - unregister an input handle
2439  * @handle: handle to unregister
2440  *
2441  * This function removes input handle from device's
2442  * and handler's lists.
2443  *
2444  * This function is supposed to be called from handler's
2445  * disconnect() method.
2446  */
input_unregister_handle(struct input_handle * handle)2447 void input_unregister_handle(struct input_handle *handle)
2448 {
2449 	struct input_dev *dev = handle->dev;
2450 
2451 	list_del_rcu(&handle->h_node);
2452 
2453 	/*
2454 	 * Take dev->mutex to prevent race with input_release_device().
2455 	 */
2456 	mutex_lock(&dev->mutex);
2457 	list_del_rcu(&handle->d_node);
2458 	mutex_unlock(&dev->mutex);
2459 
2460 	synchronize_rcu();
2461 }
2462 EXPORT_SYMBOL(input_unregister_handle);
2463 
2464 /**
2465  * input_get_new_minor - allocates a new input minor number
2466  * @legacy_base: beginning or the legacy range to be searched
2467  * @legacy_num: size of legacy range
2468  * @allow_dynamic: whether we can also take ID from the dynamic range
2469  *
2470  * This function allocates a new device minor for from input major namespace.
2471  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2472  * parameters and whether ID can be allocated from dynamic range if there are
2473  * no free IDs in legacy range.
2474  */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2475 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2476 			bool allow_dynamic)
2477 {
2478 	/*
2479 	 * This function should be called from input handler's ->connect()
2480 	 * methods, which are serialized with input_mutex, so no additional
2481 	 * locking is needed here.
2482 	 */
2483 	if (legacy_base >= 0) {
2484 		int minor = ida_simple_get(&input_ida,
2485 					   legacy_base,
2486 					   legacy_base + legacy_num,
2487 					   GFP_KERNEL);
2488 		if (minor >= 0 || !allow_dynamic)
2489 			return minor;
2490 	}
2491 
2492 	return ida_simple_get(&input_ida,
2493 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2494 			      GFP_KERNEL);
2495 }
2496 EXPORT_SYMBOL(input_get_new_minor);
2497 
2498 /**
2499  * input_free_minor - release previously allocated minor
2500  * @minor: minor to be released
2501  *
2502  * This function releases previously allocated input minor so that it can be
2503  * reused later.
2504  */
input_free_minor(unsigned int minor)2505 void input_free_minor(unsigned int minor)
2506 {
2507 	ida_simple_remove(&input_ida, minor);
2508 }
2509 EXPORT_SYMBOL(input_free_minor);
2510 
input_init(void)2511 static int __init input_init(void)
2512 {
2513 	int err;
2514 
2515 	err = class_register(&input_class);
2516 	if (err) {
2517 		pr_err("unable to register input_dev class\n");
2518 		return err;
2519 	}
2520 
2521 	err = input_proc_init();
2522 	if (err)
2523 		goto fail1;
2524 
2525 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2526 				     INPUT_MAX_CHAR_DEVICES, "input");
2527 	if (err) {
2528 		pr_err("unable to register char major %d", INPUT_MAJOR);
2529 		goto fail2;
2530 	}
2531 
2532 	return 0;
2533 
2534  fail2:	input_proc_exit();
2535  fail1:	class_unregister(&input_class);
2536 	return err;
2537 }
2538 
input_exit(void)2539 static void __exit input_exit(void)
2540 {
2541 	input_proc_exit();
2542 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2543 				 INPUT_MAX_CHAR_DEVICES);
2544 	class_unregister(&input_class);
2545 }
2546 
2547 subsys_initcall(input_init);
2548 module_exit(input_exit);
2549