1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <drm/drm_print.h>
26 #include <drm/i915_pciids.h>
27
28 #include "display/intel_cdclk.h"
29 #include "display/intel_de.h"
30 #include "intel_device_info.h"
31 #include "i915_drv.h"
32
33 #define PLATFORM_NAME(x) [INTEL_##x] = #x
34 static const char * const platform_names[] = {
35 PLATFORM_NAME(I830),
36 PLATFORM_NAME(I845G),
37 PLATFORM_NAME(I85X),
38 PLATFORM_NAME(I865G),
39 PLATFORM_NAME(I915G),
40 PLATFORM_NAME(I915GM),
41 PLATFORM_NAME(I945G),
42 PLATFORM_NAME(I945GM),
43 PLATFORM_NAME(G33),
44 PLATFORM_NAME(PINEVIEW),
45 PLATFORM_NAME(I965G),
46 PLATFORM_NAME(I965GM),
47 PLATFORM_NAME(G45),
48 PLATFORM_NAME(GM45),
49 PLATFORM_NAME(IRONLAKE),
50 PLATFORM_NAME(SANDYBRIDGE),
51 PLATFORM_NAME(IVYBRIDGE),
52 PLATFORM_NAME(VALLEYVIEW),
53 PLATFORM_NAME(HASWELL),
54 PLATFORM_NAME(BROADWELL),
55 PLATFORM_NAME(CHERRYVIEW),
56 PLATFORM_NAME(SKYLAKE),
57 PLATFORM_NAME(BROXTON),
58 PLATFORM_NAME(KABYLAKE),
59 PLATFORM_NAME(GEMINILAKE),
60 PLATFORM_NAME(COFFEELAKE),
61 PLATFORM_NAME(COMETLAKE),
62 PLATFORM_NAME(CANNONLAKE),
63 PLATFORM_NAME(ICELAKE),
64 PLATFORM_NAME(ELKHARTLAKE),
65 PLATFORM_NAME(TIGERLAKE),
66 PLATFORM_NAME(ROCKETLAKE),
67 PLATFORM_NAME(DG1),
68 };
69 #undef PLATFORM_NAME
70
intel_platform_name(enum intel_platform platform)71 const char *intel_platform_name(enum intel_platform platform)
72 {
73 BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
74
75 if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
76 platform_names[platform] == NULL))
77 return "<unknown>";
78
79 return platform_names[platform];
80 }
81
iommu_name(void)82 static const char *iommu_name(void)
83 {
84 const char *msg = "n/a";
85
86 #ifdef CONFIG_INTEL_IOMMU
87 msg = enableddisabled(intel_iommu_gfx_mapped);
88 #endif
89
90 return msg;
91 }
92
intel_device_info_print_static(const struct intel_device_info * info,struct drm_printer * p)93 void intel_device_info_print_static(const struct intel_device_info *info,
94 struct drm_printer *p)
95 {
96 drm_printf(p, "gen: %d\n", info->gen);
97 drm_printf(p, "gt: %d\n", info->gt);
98 drm_printf(p, "iommu: %s\n", iommu_name());
99 drm_printf(p, "memory-regions: %x\n", info->memory_regions);
100 drm_printf(p, "page-sizes: %x\n", info->page_sizes);
101 drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
102 drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
103 drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
104 drm_printf(p, "dma_mask_size: %u\n", info->dma_mask_size);
105
106 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
107 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
108 #undef PRINT_FLAG
109
110 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
111 DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
112 #undef PRINT_FLAG
113 }
114
intel_device_info_print_runtime(const struct intel_runtime_info * info,struct drm_printer * p)115 void intel_device_info_print_runtime(const struct intel_runtime_info *info,
116 struct drm_printer *p)
117 {
118 drm_printf(p, "rawclk rate: %u kHz\n", info->rawclk_freq);
119 drm_printf(p, "CS timestamp frequency: %u Hz\n",
120 info->cs_timestamp_frequency_hz);
121 }
122
read_reference_ts_freq(struct drm_i915_private * dev_priv)123 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
124 {
125 u32 ts_override = intel_uncore_read(&dev_priv->uncore,
126 GEN9_TIMESTAMP_OVERRIDE);
127 u32 base_freq, frac_freq;
128
129 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
130 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
131 base_freq *= 1000000;
132
133 frac_freq = ((ts_override &
134 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
135 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
136 frac_freq = 1000000 / (frac_freq + 1);
137
138 return base_freq + frac_freq;
139 }
140
gen10_get_crystal_clock_freq(struct drm_i915_private * dev_priv,u32 rpm_config_reg)141 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
142 u32 rpm_config_reg)
143 {
144 u32 f19_2_mhz = 19200000;
145 u32 f24_mhz = 24000000;
146 u32 crystal_clock = (rpm_config_reg &
147 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
148 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
149
150 switch (crystal_clock) {
151 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
152 return f19_2_mhz;
153 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
154 return f24_mhz;
155 default:
156 MISSING_CASE(crystal_clock);
157 return 0;
158 }
159 }
160
gen11_get_crystal_clock_freq(struct drm_i915_private * dev_priv,u32 rpm_config_reg)161 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
162 u32 rpm_config_reg)
163 {
164 u32 f19_2_mhz = 19200000;
165 u32 f24_mhz = 24000000;
166 u32 f25_mhz = 25000000;
167 u32 f38_4_mhz = 38400000;
168 u32 crystal_clock = (rpm_config_reg &
169 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
170 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
171
172 switch (crystal_clock) {
173 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
174 return f24_mhz;
175 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
176 return f19_2_mhz;
177 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
178 return f38_4_mhz;
179 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
180 return f25_mhz;
181 default:
182 MISSING_CASE(crystal_clock);
183 return 0;
184 }
185 }
186
read_timestamp_frequency(struct drm_i915_private * dev_priv)187 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
188 {
189 struct intel_uncore *uncore = &dev_priv->uncore;
190 u32 f12_5_mhz = 12500000;
191 u32 f19_2_mhz = 19200000;
192 u32 f24_mhz = 24000000;
193
194 if (INTEL_GEN(dev_priv) <= 4) {
195 /* PRMs say:
196 *
197 * "The value in this register increments once every 16
198 * hclks." (through the “Clocking Configuration”
199 * (“CLKCFG”) MCHBAR register)
200 */
201 return RUNTIME_INFO(dev_priv)->rawclk_freq * 1000 / 16;
202 } else if (INTEL_GEN(dev_priv) <= 8) {
203 /* PRMs say:
204 *
205 * "The PCU TSC counts 10ns increments; this timestamp
206 * reflects bits 38:3 of the TSC (i.e. 80ns granularity,
207 * rolling over every 1.5 hours).
208 */
209 return f12_5_mhz;
210 } else if (INTEL_GEN(dev_priv) <= 9) {
211 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
212 u32 freq = 0;
213
214 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
215 freq = read_reference_ts_freq(dev_priv);
216 } else {
217 freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
218
219 /* Now figure out how the command stream's timestamp
220 * register increments from this frequency (it might
221 * increment only every few clock cycle).
222 */
223 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
224 CTC_SHIFT_PARAMETER_SHIFT);
225 }
226
227 return freq;
228 } else if (INTEL_GEN(dev_priv) <= 12) {
229 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
230 u32 freq = 0;
231
232 /* First figure out the reference frequency. There are 2 ways
233 * we can compute the frequency, either through the
234 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
235 * tells us which one we should use.
236 */
237 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
238 freq = read_reference_ts_freq(dev_priv);
239 } else {
240 u32 rpm_config_reg = intel_uncore_read(uncore, RPM_CONFIG0);
241
242 if (INTEL_GEN(dev_priv) <= 10)
243 freq = gen10_get_crystal_clock_freq(dev_priv,
244 rpm_config_reg);
245 else
246 freq = gen11_get_crystal_clock_freq(dev_priv,
247 rpm_config_reg);
248
249 /* Now figure out how the command stream's timestamp
250 * register increments from this frequency (it might
251 * increment only every few clock cycle).
252 */
253 freq >>= 3 - ((rpm_config_reg &
254 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
255 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
256 }
257
258 return freq;
259 }
260
261 MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
262 return 0;
263 }
264
265 #undef INTEL_VGA_DEVICE
266 #define INTEL_VGA_DEVICE(id, info) (id)
267
268 static const u16 subplatform_ult_ids[] = {
269 INTEL_HSW_ULT_GT1_IDS(0),
270 INTEL_HSW_ULT_GT2_IDS(0),
271 INTEL_HSW_ULT_GT3_IDS(0),
272 INTEL_BDW_ULT_GT1_IDS(0),
273 INTEL_BDW_ULT_GT2_IDS(0),
274 INTEL_BDW_ULT_GT3_IDS(0),
275 INTEL_BDW_ULT_RSVD_IDS(0),
276 INTEL_SKL_ULT_GT1_IDS(0),
277 INTEL_SKL_ULT_GT2_IDS(0),
278 INTEL_SKL_ULT_GT3_IDS(0),
279 INTEL_KBL_ULT_GT1_IDS(0),
280 INTEL_KBL_ULT_GT2_IDS(0),
281 INTEL_KBL_ULT_GT3_IDS(0),
282 INTEL_CFL_U_GT2_IDS(0),
283 INTEL_CFL_U_GT3_IDS(0),
284 INTEL_WHL_U_GT1_IDS(0),
285 INTEL_WHL_U_GT2_IDS(0),
286 INTEL_WHL_U_GT3_IDS(0),
287 INTEL_CML_U_GT1_IDS(0),
288 INTEL_CML_U_GT2_IDS(0),
289 };
290
291 static const u16 subplatform_ulx_ids[] = {
292 INTEL_HSW_ULX_GT1_IDS(0),
293 INTEL_HSW_ULX_GT2_IDS(0),
294 INTEL_BDW_ULX_GT1_IDS(0),
295 INTEL_BDW_ULX_GT2_IDS(0),
296 INTEL_BDW_ULX_GT3_IDS(0),
297 INTEL_BDW_ULX_RSVD_IDS(0),
298 INTEL_SKL_ULX_GT1_IDS(0),
299 INTEL_SKL_ULX_GT2_IDS(0),
300 INTEL_KBL_ULX_GT1_IDS(0),
301 INTEL_KBL_ULX_GT2_IDS(0),
302 INTEL_AML_KBL_GT2_IDS(0),
303 INTEL_AML_CFL_GT2_IDS(0),
304 };
305
306 static const u16 subplatform_portf_ids[] = {
307 INTEL_CNL_PORT_F_IDS(0),
308 INTEL_ICL_PORT_F_IDS(0),
309 };
310
find_devid(u16 id,const u16 * p,unsigned int num)311 static bool find_devid(u16 id, const u16 *p, unsigned int num)
312 {
313 for (; num; num--, p++) {
314 if (*p == id)
315 return true;
316 }
317
318 return false;
319 }
320
intel_device_info_subplatform_init(struct drm_i915_private * i915)321 void intel_device_info_subplatform_init(struct drm_i915_private *i915)
322 {
323 const struct intel_device_info *info = INTEL_INFO(i915);
324 const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
325 const unsigned int pi = __platform_mask_index(rinfo, info->platform);
326 const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
327 u16 devid = INTEL_DEVID(i915);
328 u32 mask = 0;
329
330 /* Make sure IS_<platform> checks are working. */
331 RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
332
333 /* Find and mark subplatform bits based on the PCI device id. */
334 if (find_devid(devid, subplatform_ult_ids,
335 ARRAY_SIZE(subplatform_ult_ids))) {
336 mask = BIT(INTEL_SUBPLATFORM_ULT);
337 } else if (find_devid(devid, subplatform_ulx_ids,
338 ARRAY_SIZE(subplatform_ulx_ids))) {
339 mask = BIT(INTEL_SUBPLATFORM_ULX);
340 if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
341 /* ULX machines are also considered ULT. */
342 mask |= BIT(INTEL_SUBPLATFORM_ULT);
343 }
344 } else if (find_devid(devid, subplatform_portf_ids,
345 ARRAY_SIZE(subplatform_portf_ids))) {
346 mask = BIT(INTEL_SUBPLATFORM_PORTF);
347 }
348
349 if (IS_TIGERLAKE(i915)) {
350 struct pci_dev *root, *pdev = i915->drm.pdev;
351
352 root = list_first_entry(&pdev->bus->devices, typeof(*root), bus_list);
353
354 drm_WARN_ON(&i915->drm, mask);
355 drm_WARN_ON(&i915->drm, (root->device & TGL_ROOT_DEVICE_MASK) !=
356 TGL_ROOT_DEVICE_ID);
357
358 switch (root->device & TGL_ROOT_DEVICE_SKU_MASK) {
359 case TGL_ROOT_DEVICE_SKU_ULX:
360 mask = BIT(INTEL_SUBPLATFORM_ULX);
361 break;
362 case TGL_ROOT_DEVICE_SKU_ULT:
363 mask = BIT(INTEL_SUBPLATFORM_ULT);
364 break;
365 }
366 }
367
368 GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
369
370 RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
371 }
372
373 /**
374 * intel_device_info_runtime_init - initialize runtime info
375 * @dev_priv: the i915 device
376 *
377 * Determine various intel_device_info fields at runtime.
378 *
379 * Use it when either:
380 * - it's judged too laborious to fill n static structures with the limit
381 * when a simple if statement does the job,
382 * - run-time checks (eg read fuse/strap registers) are needed.
383 *
384 * This function needs to be called:
385 * - after the MMIO has been setup as we are reading registers,
386 * - after the PCH has been detected,
387 * - before the first usage of the fields it can tweak.
388 */
intel_device_info_runtime_init(struct drm_i915_private * dev_priv)389 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
390 {
391 struct intel_device_info *info = mkwrite_device_info(dev_priv);
392 struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
393 enum pipe pipe;
394
395 if (INTEL_GEN(dev_priv) >= 10) {
396 for_each_pipe(dev_priv, pipe)
397 runtime->num_scalers[pipe] = 2;
398 } else if (IS_GEN(dev_priv, 9)) {
399 runtime->num_scalers[PIPE_A] = 2;
400 runtime->num_scalers[PIPE_B] = 2;
401 runtime->num_scalers[PIPE_C] = 1;
402 }
403
404 BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
405
406 if (IS_ROCKETLAKE(dev_priv))
407 for_each_pipe(dev_priv, pipe)
408 runtime->num_sprites[pipe] = 4;
409 else if (INTEL_GEN(dev_priv) >= 11)
410 for_each_pipe(dev_priv, pipe)
411 runtime->num_sprites[pipe] = 6;
412 else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
413 for_each_pipe(dev_priv, pipe)
414 runtime->num_sprites[pipe] = 3;
415 else if (IS_BROXTON(dev_priv)) {
416 /*
417 * Skylake and Broxton currently don't expose the topmost plane as its
418 * use is exclusive with the legacy cursor and we only want to expose
419 * one of those, not both. Until we can safely expose the topmost plane
420 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
421 * we don't expose the topmost plane at all to prevent ABI breakage
422 * down the line.
423 */
424
425 runtime->num_sprites[PIPE_A] = 2;
426 runtime->num_sprites[PIPE_B] = 2;
427 runtime->num_sprites[PIPE_C] = 1;
428 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
429 for_each_pipe(dev_priv, pipe)
430 runtime->num_sprites[pipe] = 2;
431 } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
432 for_each_pipe(dev_priv, pipe)
433 runtime->num_sprites[pipe] = 1;
434 }
435
436 if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
437 HAS_PCH_SPLIT(dev_priv)) {
438 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
439 u32 sfuse_strap = intel_de_read(dev_priv, SFUSE_STRAP);
440
441 /*
442 * SFUSE_STRAP is supposed to have a bit signalling the display
443 * is fused off. Unfortunately it seems that, at least in
444 * certain cases, fused off display means that PCH display
445 * reads don't land anywhere. In that case, we read 0s.
446 *
447 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
448 * should be set when taking over after the firmware.
449 */
450 if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
451 sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
452 (HAS_PCH_CPT(dev_priv) &&
453 !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
454 drm_info(&dev_priv->drm,
455 "Display fused off, disabling\n");
456 info->pipe_mask = 0;
457 info->cpu_transcoder_mask = 0;
458 } else if (fuse_strap & IVB_PIPE_C_DISABLE) {
459 drm_info(&dev_priv->drm, "PipeC fused off\n");
460 info->pipe_mask &= ~BIT(PIPE_C);
461 info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
462 }
463 } else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
464 u32 dfsm = intel_de_read(dev_priv, SKL_DFSM);
465
466 if (dfsm & SKL_DFSM_PIPE_A_DISABLE) {
467 info->pipe_mask &= ~BIT(PIPE_A);
468 info->cpu_transcoder_mask &= ~BIT(TRANSCODER_A);
469 }
470 if (dfsm & SKL_DFSM_PIPE_B_DISABLE) {
471 info->pipe_mask &= ~BIT(PIPE_B);
472 info->cpu_transcoder_mask &= ~BIT(TRANSCODER_B);
473 }
474 if (dfsm & SKL_DFSM_PIPE_C_DISABLE) {
475 info->pipe_mask &= ~BIT(PIPE_C);
476 info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
477 }
478 if (INTEL_GEN(dev_priv) >= 12 &&
479 (dfsm & TGL_DFSM_PIPE_D_DISABLE)) {
480 info->pipe_mask &= ~BIT(PIPE_D);
481 info->cpu_transcoder_mask &= ~BIT(TRANSCODER_D);
482 }
483
484 if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
485 info->display.has_hdcp = 0;
486
487 if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
488 info->display.has_fbc = 0;
489
490 if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
491 info->display.has_csr = 0;
492
493 if (INTEL_GEN(dev_priv) >= 10 &&
494 (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
495 info->display.has_dsc = 0;
496 }
497
498 if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
499 drm_info(&dev_priv->drm,
500 "Disabling ppGTT for VT-d support\n");
501 info->ppgtt_type = INTEL_PPGTT_NONE;
502 }
503
504 runtime->rawclk_freq = intel_read_rawclk(dev_priv);
505 drm_dbg(&dev_priv->drm, "rawclk rate: %d kHz\n", runtime->rawclk_freq);
506
507 /* Initialize command stream timestamp frequency */
508 runtime->cs_timestamp_frequency_hz =
509 read_timestamp_frequency(dev_priv);
510 if (runtime->cs_timestamp_frequency_hz) {
511 runtime->cs_timestamp_period_ns =
512 i915_cs_timestamp_ticks_to_ns(dev_priv, 1);
513 drm_dbg(&dev_priv->drm,
514 "CS timestamp wraparound in %lldms\n",
515 div_u64(mul_u32_u32(runtime->cs_timestamp_period_ns,
516 S32_MAX),
517 USEC_PER_SEC));
518 }
519
520 if (!HAS_DISPLAY(dev_priv)) {
521 dev_priv->drm.driver_features &= ~(DRIVER_MODESET |
522 DRIVER_ATOMIC);
523 memset(&info->display, 0, sizeof(info->display));
524 memset(runtime->num_sprites, 0, sizeof(runtime->num_sprites));
525 memset(runtime->num_scalers, 0, sizeof(runtime->num_scalers));
526 }
527 }
528
intel_driver_caps_print(const struct intel_driver_caps * caps,struct drm_printer * p)529 void intel_driver_caps_print(const struct intel_driver_caps *caps,
530 struct drm_printer *p)
531 {
532 drm_printf(p, "Has logical contexts? %s\n",
533 yesno(caps->has_logical_contexts));
534 drm_printf(p, "scheduler: %x\n", caps->scheduler);
535 }
536