1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2008-2018 Intel Corporation
5 */
6
7 #include <linux/sched/mm.h>
8 #include <linux/stop_machine.h>
9
10 #include "display/intel_display_types.h"
11 #include "display/intel_overlay.h"
12
13 #include "gem/i915_gem_context.h"
14
15 #include "i915_drv.h"
16 #include "i915_gpu_error.h"
17 #include "i915_irq.h"
18 #include "intel_breadcrumbs.h"
19 #include "intel_engine_pm.h"
20 #include "intel_gt.h"
21 #include "intel_gt_pm.h"
22 #include "intel_reset.h"
23
24 #include "uc/intel_guc.h"
25 #include "uc/intel_guc_submission.h"
26
27 #define RESET_MAX_RETRIES 3
28
29 /* XXX How to handle concurrent GGTT updates using tiling registers? */
30 #define RESET_UNDER_STOP_MACHINE 0
31
rmw_set_fw(struct intel_uncore * uncore,i915_reg_t reg,u32 set)32 static void rmw_set_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
33 {
34 intel_uncore_rmw_fw(uncore, reg, 0, set);
35 }
36
rmw_clear_fw(struct intel_uncore * uncore,i915_reg_t reg,u32 clr)37 static void rmw_clear_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
38 {
39 intel_uncore_rmw_fw(uncore, reg, clr, 0);
40 }
41
engine_skip_context(struct i915_request * rq)42 static void engine_skip_context(struct i915_request *rq)
43 {
44 struct intel_engine_cs *engine = rq->engine;
45 struct intel_context *hung_ctx = rq->context;
46
47 if (!i915_request_is_active(rq))
48 return;
49
50 lockdep_assert_held(&engine->active.lock);
51 list_for_each_entry_continue(rq, &engine->active.requests, sched.link)
52 if (rq->context == hung_ctx) {
53 i915_request_set_error_once(rq, -EIO);
54 __i915_request_skip(rq);
55 }
56 }
57
client_mark_guilty(struct i915_gem_context * ctx,bool banned)58 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned)
59 {
60 struct drm_i915_file_private *file_priv = ctx->file_priv;
61 unsigned long prev_hang;
62 unsigned int score;
63
64 if (IS_ERR_OR_NULL(file_priv))
65 return;
66
67 score = 0;
68 if (banned)
69 score = I915_CLIENT_SCORE_CONTEXT_BAN;
70
71 prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
72 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
73 score += I915_CLIENT_SCORE_HANG_FAST;
74
75 if (score) {
76 atomic_add(score, &file_priv->ban_score);
77
78 drm_dbg(&ctx->i915->drm,
79 "client %s: gained %u ban score, now %u\n",
80 ctx->name, score,
81 atomic_read(&file_priv->ban_score));
82 }
83 }
84
mark_guilty(struct i915_request * rq)85 static bool mark_guilty(struct i915_request *rq)
86 {
87 struct i915_gem_context *ctx;
88 unsigned long prev_hang;
89 bool banned;
90 int i;
91
92 if (intel_context_is_closed(rq->context)) {
93 intel_context_set_banned(rq->context);
94 return true;
95 }
96
97 rcu_read_lock();
98 ctx = rcu_dereference(rq->context->gem_context);
99 if (ctx && !kref_get_unless_zero(&ctx->ref))
100 ctx = NULL;
101 rcu_read_unlock();
102 if (!ctx)
103 return intel_context_is_banned(rq->context);
104
105 atomic_inc(&ctx->guilty_count);
106
107 /* Cool contexts are too cool to be banned! (Used for reset testing.) */
108 if (!i915_gem_context_is_bannable(ctx)) {
109 banned = false;
110 goto out;
111 }
112
113 drm_notice(&ctx->i915->drm,
114 "%s context reset due to GPU hang\n",
115 ctx->name);
116
117 /* Record the timestamp for the last N hangs */
118 prev_hang = ctx->hang_timestamp[0];
119 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++)
120 ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1];
121 ctx->hang_timestamp[i] = jiffies;
122
123 /* If we have hung N+1 times in rapid succession, we ban the context! */
124 banned = !i915_gem_context_is_recoverable(ctx);
125 if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES))
126 banned = true;
127 if (banned) {
128 drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n",
129 ctx->name, atomic_read(&ctx->guilty_count));
130 intel_context_set_banned(rq->context);
131 }
132
133 client_mark_guilty(ctx, banned);
134
135 out:
136 i915_gem_context_put(ctx);
137 return banned;
138 }
139
mark_innocent(struct i915_request * rq)140 static void mark_innocent(struct i915_request *rq)
141 {
142 struct i915_gem_context *ctx;
143
144 rcu_read_lock();
145 ctx = rcu_dereference(rq->context->gem_context);
146 if (ctx)
147 atomic_inc(&ctx->active_count);
148 rcu_read_unlock();
149 }
150
__i915_request_reset(struct i915_request * rq,bool guilty)151 void __i915_request_reset(struct i915_request *rq, bool guilty)
152 {
153 RQ_TRACE(rq, "guilty? %s\n", yesno(guilty));
154
155 GEM_BUG_ON(i915_request_completed(rq));
156
157 rcu_read_lock(); /* protect the GEM context */
158 if (guilty) {
159 i915_request_set_error_once(rq, -EIO);
160 __i915_request_skip(rq);
161 if (mark_guilty(rq))
162 engine_skip_context(rq);
163 } else {
164 i915_request_set_error_once(rq, -EAGAIN);
165 mark_innocent(rq);
166 }
167 rcu_read_unlock();
168 }
169
i915_in_reset(struct pci_dev * pdev)170 static bool i915_in_reset(struct pci_dev *pdev)
171 {
172 u8 gdrst;
173
174 pci_read_config_byte(pdev, I915_GDRST, &gdrst);
175 return gdrst & GRDOM_RESET_STATUS;
176 }
177
i915_do_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)178 static int i915_do_reset(struct intel_gt *gt,
179 intel_engine_mask_t engine_mask,
180 unsigned int retry)
181 {
182 struct pci_dev *pdev = gt->i915->drm.pdev;
183 int err;
184
185 /* Assert reset for at least 20 usec, and wait for acknowledgement. */
186 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
187 udelay(50);
188 err = wait_for_atomic(i915_in_reset(pdev), 50);
189
190 /* Clear the reset request. */
191 pci_write_config_byte(pdev, I915_GDRST, 0);
192 udelay(50);
193 if (!err)
194 err = wait_for_atomic(!i915_in_reset(pdev), 50);
195
196 return err;
197 }
198
g4x_reset_complete(struct pci_dev * pdev)199 static bool g4x_reset_complete(struct pci_dev *pdev)
200 {
201 u8 gdrst;
202
203 pci_read_config_byte(pdev, I915_GDRST, &gdrst);
204 return (gdrst & GRDOM_RESET_ENABLE) == 0;
205 }
206
g33_do_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)207 static int g33_do_reset(struct intel_gt *gt,
208 intel_engine_mask_t engine_mask,
209 unsigned int retry)
210 {
211 struct pci_dev *pdev = gt->i915->drm.pdev;
212
213 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
214 return wait_for_atomic(g4x_reset_complete(pdev), 50);
215 }
216
g4x_do_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)217 static int g4x_do_reset(struct intel_gt *gt,
218 intel_engine_mask_t engine_mask,
219 unsigned int retry)
220 {
221 struct pci_dev *pdev = gt->i915->drm.pdev;
222 struct intel_uncore *uncore = gt->uncore;
223 int ret;
224
225 /* WaVcpClkGateDisableForMediaReset:ctg,elk */
226 rmw_set_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE);
227 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
228
229 pci_write_config_byte(pdev, I915_GDRST,
230 GRDOM_MEDIA | GRDOM_RESET_ENABLE);
231 ret = wait_for_atomic(g4x_reset_complete(pdev), 50);
232 if (ret) {
233 drm_dbg(>->i915->drm, "Wait for media reset failed\n");
234 goto out;
235 }
236
237 pci_write_config_byte(pdev, I915_GDRST,
238 GRDOM_RENDER | GRDOM_RESET_ENABLE);
239 ret = wait_for_atomic(g4x_reset_complete(pdev), 50);
240 if (ret) {
241 drm_dbg(>->i915->drm, "Wait for render reset failed\n");
242 goto out;
243 }
244
245 out:
246 pci_write_config_byte(pdev, I915_GDRST, 0);
247
248 rmw_clear_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE);
249 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
250
251 return ret;
252 }
253
ilk_do_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)254 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask,
255 unsigned int retry)
256 {
257 struct intel_uncore *uncore = gt->uncore;
258 int ret;
259
260 intel_uncore_write_fw(uncore, ILK_GDSR,
261 ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE);
262 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
263 ILK_GRDOM_RESET_ENABLE, 0,
264 5000, 0,
265 NULL);
266 if (ret) {
267 drm_dbg(>->i915->drm, "Wait for render reset failed\n");
268 goto out;
269 }
270
271 intel_uncore_write_fw(uncore, ILK_GDSR,
272 ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE);
273 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
274 ILK_GRDOM_RESET_ENABLE, 0,
275 5000, 0,
276 NULL);
277 if (ret) {
278 drm_dbg(>->i915->drm, "Wait for media reset failed\n");
279 goto out;
280 }
281
282 out:
283 intel_uncore_write_fw(uncore, ILK_GDSR, 0);
284 intel_uncore_posting_read_fw(uncore, ILK_GDSR);
285 return ret;
286 }
287
288 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */
gen6_hw_domain_reset(struct intel_gt * gt,u32 hw_domain_mask)289 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask)
290 {
291 struct intel_uncore *uncore = gt->uncore;
292 int loops = 2;
293 int err;
294
295 /*
296 * GEN6_GDRST is not in the gt power well, no need to check
297 * for fifo space for the write or forcewake the chip for
298 * the read
299 */
300 do {
301 intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask);
302
303 /*
304 * Wait for the device to ack the reset requests.
305 *
306 * On some platforms, e.g. Jasperlake, we see that the
307 * engine register state is not cleared until shortly after
308 * GDRST reports completion, causing a failure as we try
309 * to immediately resume while the internal state is still
310 * in flux. If we immediately repeat the reset, the second
311 * reset appears to serialise with the first, and since
312 * it is a no-op, the registers should retain their reset
313 * value. However, there is still a concern that upon
314 * leaving the second reset, the internal engine state
315 * is still in flux and not ready for resuming.
316 */
317 err = __intel_wait_for_register_fw(uncore, GEN6_GDRST,
318 hw_domain_mask, 0,
319 2000, 0,
320 NULL);
321 } while (err == 0 && --loops);
322 if (err)
323 drm_dbg(>->i915->drm,
324 "Wait for 0x%08x engines reset failed\n",
325 hw_domain_mask);
326
327 /*
328 * As we have observed that the engine state is still volatile
329 * after GDRST is acked, impose a small delay to let everything settle.
330 */
331 udelay(50);
332
333 return err;
334 }
335
gen6_reset_engines(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)336 static int gen6_reset_engines(struct intel_gt *gt,
337 intel_engine_mask_t engine_mask,
338 unsigned int retry)
339 {
340 static const u32 hw_engine_mask[] = {
341 [RCS0] = GEN6_GRDOM_RENDER,
342 [BCS0] = GEN6_GRDOM_BLT,
343 [VCS0] = GEN6_GRDOM_MEDIA,
344 [VCS1] = GEN8_GRDOM_MEDIA2,
345 [VECS0] = GEN6_GRDOM_VECS,
346 };
347 struct intel_engine_cs *engine;
348 u32 hw_mask;
349
350 if (engine_mask == ALL_ENGINES) {
351 hw_mask = GEN6_GRDOM_FULL;
352 } else {
353 intel_engine_mask_t tmp;
354
355 hw_mask = 0;
356 for_each_engine_masked(engine, gt, engine_mask, tmp) {
357 GEM_BUG_ON(engine->id >= ARRAY_SIZE(hw_engine_mask));
358 hw_mask |= hw_engine_mask[engine->id];
359 }
360 }
361
362 return gen6_hw_domain_reset(gt, hw_mask);
363 }
364
gen11_lock_sfc(struct intel_engine_cs * engine,u32 * hw_mask)365 static int gen11_lock_sfc(struct intel_engine_cs *engine, u32 *hw_mask)
366 {
367 struct intel_uncore *uncore = engine->uncore;
368 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
369 i915_reg_t sfc_forced_lock, sfc_forced_lock_ack;
370 u32 sfc_forced_lock_bit, sfc_forced_lock_ack_bit;
371 i915_reg_t sfc_usage;
372 u32 sfc_usage_bit;
373 u32 sfc_reset_bit;
374 int ret;
375
376 switch (engine->class) {
377 case VIDEO_DECODE_CLASS:
378 if ((BIT(engine->instance) & vdbox_sfc_access) == 0)
379 return 0;
380
381 sfc_forced_lock = GEN11_VCS_SFC_FORCED_LOCK(engine);
382 sfc_forced_lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT;
383
384 sfc_forced_lock_ack = GEN11_VCS_SFC_LOCK_STATUS(engine);
385 sfc_forced_lock_ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT;
386
387 sfc_usage = GEN11_VCS_SFC_LOCK_STATUS(engine);
388 sfc_usage_bit = GEN11_VCS_SFC_USAGE_BIT;
389 sfc_reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance);
390 break;
391
392 case VIDEO_ENHANCEMENT_CLASS:
393 sfc_forced_lock = GEN11_VECS_SFC_FORCED_LOCK(engine);
394 sfc_forced_lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT;
395
396 sfc_forced_lock_ack = GEN11_VECS_SFC_LOCK_ACK(engine);
397 sfc_forced_lock_ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT;
398
399 sfc_usage = GEN11_VECS_SFC_USAGE(engine);
400 sfc_usage_bit = GEN11_VECS_SFC_USAGE_BIT;
401 sfc_reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance);
402 break;
403
404 default:
405 return 0;
406 }
407
408 /*
409 * If the engine is using a SFC, tell the engine that a software reset
410 * is going to happen. The engine will then try to force lock the SFC.
411 * If SFC ends up being locked to the engine we want to reset, we have
412 * to reset it as well (we will unlock it once the reset sequence is
413 * completed).
414 */
415 if (!(intel_uncore_read_fw(uncore, sfc_usage) & sfc_usage_bit))
416 return 0;
417
418 rmw_set_fw(uncore, sfc_forced_lock, sfc_forced_lock_bit);
419
420 ret = __intel_wait_for_register_fw(uncore,
421 sfc_forced_lock_ack,
422 sfc_forced_lock_ack_bit,
423 sfc_forced_lock_ack_bit,
424 1000, 0, NULL);
425
426 /* Was the SFC released while we were trying to lock it? */
427 if (!(intel_uncore_read_fw(uncore, sfc_usage) & sfc_usage_bit))
428 return 0;
429
430 if (ret) {
431 drm_dbg(&engine->i915->drm,
432 "Wait for SFC forced lock ack failed\n");
433 return ret;
434 }
435
436 *hw_mask |= sfc_reset_bit;
437 return 0;
438 }
439
gen11_unlock_sfc(struct intel_engine_cs * engine)440 static void gen11_unlock_sfc(struct intel_engine_cs *engine)
441 {
442 struct intel_uncore *uncore = engine->uncore;
443 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
444 i915_reg_t sfc_forced_lock;
445 u32 sfc_forced_lock_bit;
446
447 switch (engine->class) {
448 case VIDEO_DECODE_CLASS:
449 if ((BIT(engine->instance) & vdbox_sfc_access) == 0)
450 return;
451
452 sfc_forced_lock = GEN11_VCS_SFC_FORCED_LOCK(engine);
453 sfc_forced_lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT;
454 break;
455
456 case VIDEO_ENHANCEMENT_CLASS:
457 sfc_forced_lock = GEN11_VECS_SFC_FORCED_LOCK(engine);
458 sfc_forced_lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT;
459 break;
460
461 default:
462 return;
463 }
464
465 rmw_clear_fw(uncore, sfc_forced_lock, sfc_forced_lock_bit);
466 }
467
gen11_reset_engines(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)468 static int gen11_reset_engines(struct intel_gt *gt,
469 intel_engine_mask_t engine_mask,
470 unsigned int retry)
471 {
472 static const u32 hw_engine_mask[] = {
473 [RCS0] = GEN11_GRDOM_RENDER,
474 [BCS0] = GEN11_GRDOM_BLT,
475 [VCS0] = GEN11_GRDOM_MEDIA,
476 [VCS1] = GEN11_GRDOM_MEDIA2,
477 [VCS2] = GEN11_GRDOM_MEDIA3,
478 [VCS3] = GEN11_GRDOM_MEDIA4,
479 [VECS0] = GEN11_GRDOM_VECS,
480 [VECS1] = GEN11_GRDOM_VECS2,
481 };
482 struct intel_engine_cs *engine;
483 intel_engine_mask_t tmp;
484 u32 hw_mask;
485 int ret;
486
487 if (engine_mask == ALL_ENGINES) {
488 hw_mask = GEN11_GRDOM_FULL;
489 } else {
490 hw_mask = 0;
491 for_each_engine_masked(engine, gt, engine_mask, tmp) {
492 GEM_BUG_ON(engine->id >= ARRAY_SIZE(hw_engine_mask));
493 hw_mask |= hw_engine_mask[engine->id];
494 ret = gen11_lock_sfc(engine, &hw_mask);
495 if (ret)
496 goto sfc_unlock;
497 }
498 }
499
500 ret = gen6_hw_domain_reset(gt, hw_mask);
501
502 sfc_unlock:
503 /*
504 * We unlock the SFC based on the lock status and not the result of
505 * gen11_lock_sfc to make sure that we clean properly if something
506 * wrong happened during the lock (e.g. lock acquired after timeout
507 * expiration).
508 */
509 if (engine_mask != ALL_ENGINES)
510 for_each_engine_masked(engine, gt, engine_mask, tmp)
511 gen11_unlock_sfc(engine);
512
513 return ret;
514 }
515
gen8_engine_reset_prepare(struct intel_engine_cs * engine)516 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine)
517 {
518 struct intel_uncore *uncore = engine->uncore;
519 const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base);
520 u32 request, mask, ack;
521 int ret;
522
523 ack = intel_uncore_read_fw(uncore, reg);
524 if (ack & RESET_CTL_CAT_ERROR) {
525 /*
526 * For catastrophic errors, ready-for-reset sequence
527 * needs to be bypassed: HAS#396813
528 */
529 request = RESET_CTL_CAT_ERROR;
530 mask = RESET_CTL_CAT_ERROR;
531
532 /* Catastrophic errors need to be cleared by HW */
533 ack = 0;
534 } else if (!(ack & RESET_CTL_READY_TO_RESET)) {
535 request = RESET_CTL_REQUEST_RESET;
536 mask = RESET_CTL_READY_TO_RESET;
537 ack = RESET_CTL_READY_TO_RESET;
538 } else {
539 return 0;
540 }
541
542 intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request));
543 ret = __intel_wait_for_register_fw(uncore, reg, mask, ack,
544 700, 0, NULL);
545 if (ret)
546 drm_err(&engine->i915->drm,
547 "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n",
548 engine->name, request,
549 intel_uncore_read_fw(uncore, reg));
550
551 return ret;
552 }
553
gen8_engine_reset_cancel(struct intel_engine_cs * engine)554 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine)
555 {
556 intel_uncore_write_fw(engine->uncore,
557 RING_RESET_CTL(engine->mmio_base),
558 _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET));
559 }
560
gen8_reset_engines(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)561 static int gen8_reset_engines(struct intel_gt *gt,
562 intel_engine_mask_t engine_mask,
563 unsigned int retry)
564 {
565 struct intel_engine_cs *engine;
566 const bool reset_non_ready = retry >= 1;
567 intel_engine_mask_t tmp;
568 int ret;
569
570 for_each_engine_masked(engine, gt, engine_mask, tmp) {
571 ret = gen8_engine_reset_prepare(engine);
572 if (ret && !reset_non_ready)
573 goto skip_reset;
574
575 /*
576 * If this is not the first failed attempt to prepare,
577 * we decide to proceed anyway.
578 *
579 * By doing so we risk context corruption and with
580 * some gens (kbl), possible system hang if reset
581 * happens during active bb execution.
582 *
583 * We rather take context corruption instead of
584 * failed reset with a wedged driver/gpu. And
585 * active bb execution case should be covered by
586 * stop_engines() we have before the reset.
587 */
588 }
589
590 if (INTEL_GEN(gt->i915) >= 11)
591 ret = gen11_reset_engines(gt, engine_mask, retry);
592 else
593 ret = gen6_reset_engines(gt, engine_mask, retry);
594
595 skip_reset:
596 for_each_engine_masked(engine, gt, engine_mask, tmp)
597 gen8_engine_reset_cancel(engine);
598
599 return ret;
600 }
601
mock_reset(struct intel_gt * gt,intel_engine_mask_t mask,unsigned int retry)602 static int mock_reset(struct intel_gt *gt,
603 intel_engine_mask_t mask,
604 unsigned int retry)
605 {
606 return 0;
607 }
608
609 typedef int (*reset_func)(struct intel_gt *,
610 intel_engine_mask_t engine_mask,
611 unsigned int retry);
612
intel_get_gpu_reset(const struct intel_gt * gt)613 static reset_func intel_get_gpu_reset(const struct intel_gt *gt)
614 {
615 struct drm_i915_private *i915 = gt->i915;
616
617 if (is_mock_gt(gt))
618 return mock_reset;
619 else if (INTEL_GEN(i915) >= 8)
620 return gen8_reset_engines;
621 else if (INTEL_GEN(i915) >= 6)
622 return gen6_reset_engines;
623 else if (INTEL_GEN(i915) >= 5)
624 return ilk_do_reset;
625 else if (IS_G4X(i915))
626 return g4x_do_reset;
627 else if (IS_G33(i915) || IS_PINEVIEW(i915))
628 return g33_do_reset;
629 else if (INTEL_GEN(i915) >= 3)
630 return i915_do_reset;
631 else
632 return NULL;
633 }
634
__intel_gt_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask)635 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask)
636 {
637 const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1;
638 reset_func reset;
639 int ret = -ETIMEDOUT;
640 int retry;
641
642 reset = intel_get_gpu_reset(gt);
643 if (!reset)
644 return -ENODEV;
645
646 /*
647 * If the power well sleeps during the reset, the reset
648 * request may be dropped and never completes (causing -EIO).
649 */
650 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
651 for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) {
652 GT_TRACE(gt, "engine_mask=%x\n", engine_mask);
653 preempt_disable();
654 ret = reset(gt, engine_mask, retry);
655 preempt_enable();
656 }
657 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
658
659 return ret;
660 }
661
intel_has_gpu_reset(const struct intel_gt * gt)662 bool intel_has_gpu_reset(const struct intel_gt *gt)
663 {
664 if (!gt->i915->params.reset)
665 return NULL;
666
667 return intel_get_gpu_reset(gt);
668 }
669
intel_has_reset_engine(const struct intel_gt * gt)670 bool intel_has_reset_engine(const struct intel_gt *gt)
671 {
672 if (gt->i915->params.reset < 2)
673 return false;
674
675 return INTEL_INFO(gt->i915)->has_reset_engine;
676 }
677
intel_reset_guc(struct intel_gt * gt)678 int intel_reset_guc(struct intel_gt *gt)
679 {
680 u32 guc_domain =
681 INTEL_GEN(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC;
682 int ret;
683
684 GEM_BUG_ON(!HAS_GT_UC(gt->i915));
685
686 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
687 ret = gen6_hw_domain_reset(gt, guc_domain);
688 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
689
690 return ret;
691 }
692
693 /*
694 * Ensure irq handler finishes, and not run again.
695 * Also return the active request so that we only search for it once.
696 */
reset_prepare_engine(struct intel_engine_cs * engine)697 static void reset_prepare_engine(struct intel_engine_cs *engine)
698 {
699 /*
700 * During the reset sequence, we must prevent the engine from
701 * entering RC6. As the context state is undefined until we restart
702 * the engine, if it does enter RC6 during the reset, the state
703 * written to the powercontext is undefined and so we may lose
704 * GPU state upon resume, i.e. fail to restart after a reset.
705 */
706 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
707 if (engine->reset.prepare)
708 engine->reset.prepare(engine);
709 }
710
revoke_mmaps(struct intel_gt * gt)711 static void revoke_mmaps(struct intel_gt *gt)
712 {
713 int i;
714
715 for (i = 0; i < gt->ggtt->num_fences; i++) {
716 struct drm_vma_offset_node *node;
717 struct i915_vma *vma;
718 u64 vma_offset;
719
720 vma = READ_ONCE(gt->ggtt->fence_regs[i].vma);
721 if (!vma)
722 continue;
723
724 if (!i915_vma_has_userfault(vma))
725 continue;
726
727 GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]);
728
729 if (!vma->mmo)
730 continue;
731
732 node = &vma->mmo->vma_node;
733 vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT;
734
735 unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping,
736 drm_vma_node_offset_addr(node) + vma_offset,
737 vma->size,
738 1);
739 }
740 }
741
reset_prepare(struct intel_gt * gt)742 static intel_engine_mask_t reset_prepare(struct intel_gt *gt)
743 {
744 struct intel_engine_cs *engine;
745 intel_engine_mask_t awake = 0;
746 enum intel_engine_id id;
747
748 for_each_engine(engine, gt, id) {
749 if (intel_engine_pm_get_if_awake(engine))
750 awake |= engine->mask;
751 reset_prepare_engine(engine);
752 }
753
754 intel_uc_reset_prepare(>->uc);
755
756 return awake;
757 }
758
gt_revoke(struct intel_gt * gt)759 static void gt_revoke(struct intel_gt *gt)
760 {
761 revoke_mmaps(gt);
762 }
763
gt_reset(struct intel_gt * gt,intel_engine_mask_t stalled_mask)764 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
765 {
766 struct intel_engine_cs *engine;
767 enum intel_engine_id id;
768 int err;
769
770 /*
771 * Everything depends on having the GTT running, so we need to start
772 * there.
773 */
774 err = i915_ggtt_enable_hw(gt->i915);
775 if (err)
776 return err;
777
778 for_each_engine(engine, gt, id)
779 __intel_engine_reset(engine, stalled_mask & engine->mask);
780
781 intel_ggtt_restore_fences(gt->ggtt);
782
783 return err;
784 }
785
reset_finish_engine(struct intel_engine_cs * engine)786 static void reset_finish_engine(struct intel_engine_cs *engine)
787 {
788 if (engine->reset.finish)
789 engine->reset.finish(engine);
790 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
791
792 intel_engine_signal_breadcrumbs(engine);
793 }
794
reset_finish(struct intel_gt * gt,intel_engine_mask_t awake)795 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake)
796 {
797 struct intel_engine_cs *engine;
798 enum intel_engine_id id;
799
800 for_each_engine(engine, gt, id) {
801 reset_finish_engine(engine);
802 if (awake & engine->mask)
803 intel_engine_pm_put(engine);
804 }
805 }
806
nop_submit_request(struct i915_request * request)807 static void nop_submit_request(struct i915_request *request)
808 {
809 struct intel_engine_cs *engine = request->engine;
810 unsigned long flags;
811
812 RQ_TRACE(request, "-EIO\n");
813 i915_request_set_error_once(request, -EIO);
814
815 spin_lock_irqsave(&engine->active.lock, flags);
816 __i915_request_submit(request);
817 i915_request_mark_complete(request);
818 spin_unlock_irqrestore(&engine->active.lock, flags);
819
820 intel_engine_signal_breadcrumbs(engine);
821 }
822
__intel_gt_set_wedged(struct intel_gt * gt)823 static void __intel_gt_set_wedged(struct intel_gt *gt)
824 {
825 struct intel_engine_cs *engine;
826 intel_engine_mask_t awake;
827 enum intel_engine_id id;
828
829 if (test_bit(I915_WEDGED, >->reset.flags))
830 return;
831
832 GT_TRACE(gt, "start\n");
833
834 /*
835 * First, stop submission to hw, but do not yet complete requests by
836 * rolling the global seqno forward (since this would complete requests
837 * for which we haven't set the fence error to EIO yet).
838 */
839 awake = reset_prepare(gt);
840
841 /* Even if the GPU reset fails, it should still stop the engines */
842 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
843 __intel_gt_reset(gt, ALL_ENGINES);
844
845 for_each_engine(engine, gt, id)
846 engine->submit_request = nop_submit_request;
847
848 /*
849 * Make sure no request can slip through without getting completed by
850 * either this call here to intel_engine_write_global_seqno, or the one
851 * in nop_submit_request.
852 */
853 synchronize_rcu_expedited();
854 set_bit(I915_WEDGED, >->reset.flags);
855
856 /* Mark all executing requests as skipped */
857 for_each_engine(engine, gt, id)
858 if (engine->reset.cancel)
859 engine->reset.cancel(engine);
860
861 reset_finish(gt, awake);
862
863 GT_TRACE(gt, "end\n");
864 }
865
intel_gt_set_wedged(struct intel_gt * gt)866 void intel_gt_set_wedged(struct intel_gt *gt)
867 {
868 intel_wakeref_t wakeref;
869
870 if (test_bit(I915_WEDGED, >->reset.flags))
871 return;
872
873 wakeref = intel_runtime_pm_get(gt->uncore->rpm);
874 mutex_lock(>->reset.mutex);
875
876 if (GEM_SHOW_DEBUG()) {
877 struct drm_printer p = drm_debug_printer(__func__);
878 struct intel_engine_cs *engine;
879 enum intel_engine_id id;
880
881 drm_printf(&p, "called from %pS\n", (void *)_RET_IP_);
882 for_each_engine(engine, gt, id) {
883 if (intel_engine_is_idle(engine))
884 continue;
885
886 intel_engine_dump(engine, &p, "%s\n", engine->name);
887 }
888 }
889
890 __intel_gt_set_wedged(gt);
891
892 mutex_unlock(>->reset.mutex);
893 intel_runtime_pm_put(gt->uncore->rpm, wakeref);
894 }
895
__intel_gt_unset_wedged(struct intel_gt * gt)896 static bool __intel_gt_unset_wedged(struct intel_gt *gt)
897 {
898 struct intel_gt_timelines *timelines = >->timelines;
899 struct intel_timeline *tl;
900 bool ok;
901
902 if (!test_bit(I915_WEDGED, >->reset.flags))
903 return true;
904
905 /* Never fully initialised, recovery impossible */
906 if (intel_gt_has_unrecoverable_error(gt))
907 return false;
908
909 GT_TRACE(gt, "start\n");
910
911 /*
912 * Before unwedging, make sure that all pending operations
913 * are flushed and errored out - we may have requests waiting upon
914 * third party fences. We marked all inflight requests as EIO, and
915 * every execbuf since returned EIO, for consistency we want all
916 * the currently pending requests to also be marked as EIO, which
917 * is done inside our nop_submit_request - and so we must wait.
918 *
919 * No more can be submitted until we reset the wedged bit.
920 */
921 spin_lock(&timelines->lock);
922 list_for_each_entry(tl, &timelines->active_list, link) {
923 struct dma_fence *fence;
924
925 fence = i915_active_fence_get(&tl->last_request);
926 if (!fence)
927 continue;
928
929 spin_unlock(&timelines->lock);
930
931 /*
932 * All internal dependencies (i915_requests) will have
933 * been flushed by the set-wedge, but we may be stuck waiting
934 * for external fences. These should all be capped to 10s
935 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded
936 * in the worst case.
937 */
938 dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT);
939 dma_fence_put(fence);
940
941 /* Restart iteration after droping lock */
942 spin_lock(&timelines->lock);
943 tl = list_entry(&timelines->active_list, typeof(*tl), link);
944 }
945 spin_unlock(&timelines->lock);
946
947 /* We must reset pending GPU events before restoring our submission */
948 ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */
949 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
950 ok = __intel_gt_reset(gt, ALL_ENGINES) == 0;
951 if (!ok) {
952 /*
953 * Warn CI about the unrecoverable wedged condition.
954 * Time for a reboot.
955 */
956 add_taint_for_CI(gt->i915, TAINT_WARN);
957 return false;
958 }
959
960 /*
961 * Undo nop_submit_request. We prevent all new i915 requests from
962 * being queued (by disallowing execbuf whilst wedged) so having
963 * waited for all active requests above, we know the system is idle
964 * and do not have to worry about a thread being inside
965 * engine->submit_request() as we swap over. So unlike installing
966 * the nop_submit_request on reset, we can do this from normal
967 * context and do not require stop_machine().
968 */
969 intel_engines_reset_default_submission(gt);
970
971 GT_TRACE(gt, "end\n");
972
973 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
974 clear_bit(I915_WEDGED, >->reset.flags);
975
976 return true;
977 }
978
intel_gt_unset_wedged(struct intel_gt * gt)979 bool intel_gt_unset_wedged(struct intel_gt *gt)
980 {
981 bool result;
982
983 mutex_lock(>->reset.mutex);
984 result = __intel_gt_unset_wedged(gt);
985 mutex_unlock(>->reset.mutex);
986
987 return result;
988 }
989
do_reset(struct intel_gt * gt,intel_engine_mask_t stalled_mask)990 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
991 {
992 int err, i;
993
994 gt_revoke(gt);
995
996 err = __intel_gt_reset(gt, ALL_ENGINES);
997 for (i = 0; err && i < RESET_MAX_RETRIES; i++) {
998 msleep(10 * (i + 1));
999 err = __intel_gt_reset(gt, ALL_ENGINES);
1000 }
1001 if (err)
1002 return err;
1003
1004 return gt_reset(gt, stalled_mask);
1005 }
1006
resume(struct intel_gt * gt)1007 static int resume(struct intel_gt *gt)
1008 {
1009 struct intel_engine_cs *engine;
1010 enum intel_engine_id id;
1011 int ret;
1012
1013 for_each_engine(engine, gt, id) {
1014 ret = intel_engine_resume(engine);
1015 if (ret)
1016 return ret;
1017 }
1018
1019 return 0;
1020 }
1021
1022 /**
1023 * intel_gt_reset - reset chip after a hang
1024 * @gt: #intel_gt to reset
1025 * @stalled_mask: mask of the stalled engines with the guilty requests
1026 * @reason: user error message for why we are resetting
1027 *
1028 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1029 * on failure.
1030 *
1031 * Procedure is fairly simple:
1032 * - reset the chip using the reset reg
1033 * - re-init context state
1034 * - re-init hardware status page
1035 * - re-init ring buffer
1036 * - re-init interrupt state
1037 * - re-init display
1038 */
intel_gt_reset(struct intel_gt * gt,intel_engine_mask_t stalled_mask,const char * reason)1039 void intel_gt_reset(struct intel_gt *gt,
1040 intel_engine_mask_t stalled_mask,
1041 const char *reason)
1042 {
1043 intel_engine_mask_t awake;
1044 int ret;
1045
1046 GT_TRACE(gt, "flags=%lx\n", gt->reset.flags);
1047
1048 might_sleep();
1049 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags));
1050 mutex_lock(>->reset.mutex);
1051
1052 /* Clear any previous failed attempts at recovery. Time to try again. */
1053 if (!__intel_gt_unset_wedged(gt))
1054 goto unlock;
1055
1056 if (reason)
1057 drm_notice(>->i915->drm,
1058 "Resetting chip for %s\n", reason);
1059 atomic_inc(>->i915->gpu_error.reset_count);
1060
1061 awake = reset_prepare(gt);
1062
1063 if (!intel_has_gpu_reset(gt)) {
1064 if (gt->i915->params.reset)
1065 drm_err(>->i915->drm, "GPU reset not supported\n");
1066 else
1067 drm_dbg(>->i915->drm, "GPU reset disabled\n");
1068 goto error;
1069 }
1070
1071 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1072 intel_runtime_pm_disable_interrupts(gt->i915);
1073
1074 if (do_reset(gt, stalled_mask)) {
1075 drm_err(>->i915->drm, "Failed to reset chip\n");
1076 goto taint;
1077 }
1078
1079 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1080 intel_runtime_pm_enable_interrupts(gt->i915);
1081
1082 intel_overlay_reset(gt->i915);
1083
1084 /*
1085 * Next we need to restore the context, but we don't use those
1086 * yet either...
1087 *
1088 * Ring buffer needs to be re-initialized in the KMS case, or if X
1089 * was running at the time of the reset (i.e. we weren't VT
1090 * switched away).
1091 */
1092 ret = intel_gt_init_hw(gt);
1093 if (ret) {
1094 drm_err(>->i915->drm,
1095 "Failed to initialise HW following reset (%d)\n",
1096 ret);
1097 goto taint;
1098 }
1099
1100 ret = resume(gt);
1101 if (ret)
1102 goto taint;
1103
1104 finish:
1105 reset_finish(gt, awake);
1106 unlock:
1107 mutex_unlock(>->reset.mutex);
1108 return;
1109
1110 taint:
1111 /*
1112 * History tells us that if we cannot reset the GPU now, we
1113 * never will. This then impacts everything that is run
1114 * subsequently. On failing the reset, we mark the driver
1115 * as wedged, preventing further execution on the GPU.
1116 * We also want to go one step further and add a taint to the
1117 * kernel so that any subsequent faults can be traced back to
1118 * this failure. This is important for CI, where if the
1119 * GPU/driver fails we would like to reboot and restart testing
1120 * rather than continue on into oblivion. For everyone else,
1121 * the system should still plod along, but they have been warned!
1122 */
1123 add_taint_for_CI(gt->i915, TAINT_WARN);
1124 error:
1125 __intel_gt_set_wedged(gt);
1126 goto finish;
1127 }
1128
intel_gt_reset_engine(struct intel_engine_cs * engine)1129 static inline int intel_gt_reset_engine(struct intel_engine_cs *engine)
1130 {
1131 return __intel_gt_reset(engine->gt, engine->mask);
1132 }
1133
1134 /**
1135 * intel_engine_reset - reset GPU engine to recover from a hang
1136 * @engine: engine to reset
1137 * @msg: reason for GPU reset; or NULL for no drm_notice()
1138 *
1139 * Reset a specific GPU engine. Useful if a hang is detected.
1140 * Returns zero on successful reset or otherwise an error code.
1141 *
1142 * Procedure is:
1143 * - identifies the request that caused the hang and it is dropped
1144 * - reset engine (which will force the engine to idle)
1145 * - re-init/configure engine
1146 */
intel_engine_reset(struct intel_engine_cs * engine,const char * msg)1147 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg)
1148 {
1149 struct intel_gt *gt = engine->gt;
1150 bool uses_guc = intel_engine_in_guc_submission_mode(engine);
1151 int ret;
1152
1153 ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags);
1154 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags));
1155
1156 if (!intel_engine_pm_get_if_awake(engine))
1157 return 0;
1158
1159 reset_prepare_engine(engine);
1160
1161 if (msg)
1162 drm_notice(&engine->i915->drm,
1163 "Resetting %s for %s\n", engine->name, msg);
1164 atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]);
1165
1166 if (!uses_guc)
1167 ret = intel_gt_reset_engine(engine);
1168 else
1169 ret = intel_guc_reset_engine(&engine->gt->uc.guc, engine);
1170 if (ret) {
1171 /* If we fail here, we expect to fallback to a global reset */
1172 drm_dbg(>->i915->drm, "%sFailed to reset %s, ret=%d\n",
1173 uses_guc ? "GuC " : "", engine->name, ret);
1174 goto out;
1175 }
1176
1177 /*
1178 * The request that caused the hang is stuck on elsp, we know the
1179 * active request and can drop it, adjust head to skip the offending
1180 * request to resume executing remaining requests in the queue.
1181 */
1182 __intel_engine_reset(engine, true);
1183
1184 /*
1185 * The engine and its registers (and workarounds in case of render)
1186 * have been reset to their default values. Follow the init_ring
1187 * process to program RING_MODE, HWSP and re-enable submission.
1188 */
1189 ret = intel_engine_resume(engine);
1190
1191 out:
1192 intel_engine_cancel_stop_cs(engine);
1193 reset_finish_engine(engine);
1194 intel_engine_pm_put_async(engine);
1195 return ret;
1196 }
1197
intel_gt_reset_global(struct intel_gt * gt,u32 engine_mask,const char * reason)1198 static void intel_gt_reset_global(struct intel_gt *gt,
1199 u32 engine_mask,
1200 const char *reason)
1201 {
1202 struct kobject *kobj = >->i915->drm.primary->kdev->kobj;
1203 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1204 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1205 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1206 struct intel_wedge_me w;
1207
1208 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
1209
1210 drm_dbg(>->i915->drm, "resetting chip, engines=%x\n", engine_mask);
1211 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
1212
1213 /* Use a watchdog to ensure that our reset completes */
1214 intel_wedge_on_timeout(&w, gt, 5 * HZ) {
1215 intel_prepare_reset(gt->i915);
1216
1217 /* Flush everyone using a resource about to be clobbered */
1218 synchronize_srcu_expedited(>->reset.backoff_srcu);
1219
1220 intel_gt_reset(gt, engine_mask, reason);
1221
1222 intel_finish_reset(gt->i915);
1223 }
1224
1225 if (!test_bit(I915_WEDGED, >->reset.flags))
1226 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
1227 }
1228
1229 /**
1230 * intel_gt_handle_error - handle a gpu error
1231 * @gt: the intel_gt
1232 * @engine_mask: mask representing engines that are hung
1233 * @flags: control flags
1234 * @fmt: Error message format string
1235 *
1236 * Do some basic checking of register state at error time and
1237 * dump it to the syslog. Also call i915_capture_error_state() to make
1238 * sure we get a record and make it available in debugfs. Fire a uevent
1239 * so userspace knows something bad happened (should trigger collection
1240 * of a ring dump etc.).
1241 */
intel_gt_handle_error(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned long flags,const char * fmt,...)1242 void intel_gt_handle_error(struct intel_gt *gt,
1243 intel_engine_mask_t engine_mask,
1244 unsigned long flags,
1245 const char *fmt, ...)
1246 {
1247 struct intel_engine_cs *engine;
1248 intel_wakeref_t wakeref;
1249 intel_engine_mask_t tmp;
1250 char error_msg[80];
1251 char *msg = NULL;
1252
1253 if (fmt) {
1254 va_list args;
1255
1256 va_start(args, fmt);
1257 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
1258 va_end(args);
1259
1260 msg = error_msg;
1261 }
1262
1263 /*
1264 * In most cases it's guaranteed that we get here with an RPM
1265 * reference held, for example because there is a pending GPU
1266 * request that won't finish until the reset is done. This
1267 * isn't the case at least when we get here by doing a
1268 * simulated reset via debugfs, so get an RPM reference.
1269 */
1270 wakeref = intel_runtime_pm_get(gt->uncore->rpm);
1271
1272 engine_mask &= gt->info.engine_mask;
1273
1274 if (flags & I915_ERROR_CAPTURE) {
1275 i915_capture_error_state(gt->i915);
1276 intel_gt_clear_error_registers(gt, engine_mask);
1277 }
1278
1279 /*
1280 * Try engine reset when available. We fall back to full reset if
1281 * single reset fails.
1282 */
1283 if (intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) {
1284 for_each_engine_masked(engine, gt, engine_mask, tmp) {
1285 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
1286 if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1287 >->reset.flags))
1288 continue;
1289
1290 if (intel_engine_reset(engine, msg) == 0)
1291 engine_mask &= ~engine->mask;
1292
1293 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
1294 >->reset.flags);
1295 }
1296 }
1297
1298 if (!engine_mask)
1299 goto out;
1300
1301 /* Full reset needs the mutex, stop any other user trying to do so. */
1302 if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) {
1303 wait_event(gt->reset.queue,
1304 !test_bit(I915_RESET_BACKOFF, >->reset.flags));
1305 goto out; /* piggy-back on the other reset */
1306 }
1307
1308 /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */
1309 synchronize_rcu_expedited();
1310
1311 /* Prevent any other reset-engine attempt. */
1312 for_each_engine(engine, gt, tmp) {
1313 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1314 >->reset.flags))
1315 wait_on_bit(>->reset.flags,
1316 I915_RESET_ENGINE + engine->id,
1317 TASK_UNINTERRUPTIBLE);
1318 }
1319
1320 intel_gt_reset_global(gt, engine_mask, msg);
1321
1322 for_each_engine(engine, gt, tmp)
1323 clear_bit_unlock(I915_RESET_ENGINE + engine->id,
1324 >->reset.flags);
1325 clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags);
1326 smp_mb__after_atomic();
1327 wake_up_all(>->reset.queue);
1328
1329 out:
1330 intel_runtime_pm_put(gt->uncore->rpm, wakeref);
1331 }
1332
intel_gt_reset_trylock(struct intel_gt * gt,int * srcu)1333 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu)
1334 {
1335 might_lock(>->reset.backoff_srcu);
1336 might_sleep();
1337
1338 rcu_read_lock();
1339 while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) {
1340 rcu_read_unlock();
1341
1342 if (wait_event_interruptible(gt->reset.queue,
1343 !test_bit(I915_RESET_BACKOFF,
1344 >->reset.flags)))
1345 return -EINTR;
1346
1347 rcu_read_lock();
1348 }
1349 *srcu = srcu_read_lock(>->reset.backoff_srcu);
1350 rcu_read_unlock();
1351
1352 return 0;
1353 }
1354
intel_gt_reset_unlock(struct intel_gt * gt,int tag)1355 void intel_gt_reset_unlock(struct intel_gt *gt, int tag)
1356 __releases(>->reset.backoff_srcu)
1357 {
1358 srcu_read_unlock(>->reset.backoff_srcu, tag);
1359 }
1360
intel_gt_terminally_wedged(struct intel_gt * gt)1361 int intel_gt_terminally_wedged(struct intel_gt *gt)
1362 {
1363 might_sleep();
1364
1365 if (!intel_gt_is_wedged(gt))
1366 return 0;
1367
1368 if (intel_gt_has_unrecoverable_error(gt))
1369 return -EIO;
1370
1371 /* Reset still in progress? Maybe we will recover? */
1372 if (wait_event_interruptible(gt->reset.queue,
1373 !test_bit(I915_RESET_BACKOFF,
1374 >->reset.flags)))
1375 return -EINTR;
1376
1377 return intel_gt_is_wedged(gt) ? -EIO : 0;
1378 }
1379
intel_gt_set_wedged_on_init(struct intel_gt * gt)1380 void intel_gt_set_wedged_on_init(struct intel_gt *gt)
1381 {
1382 BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES >
1383 I915_WEDGED_ON_INIT);
1384 intel_gt_set_wedged(gt);
1385 set_bit(I915_WEDGED_ON_INIT, >->reset.flags);
1386
1387 /* Wedged on init is non-recoverable */
1388 add_taint_for_CI(gt->i915, TAINT_WARN);
1389 }
1390
intel_gt_set_wedged_on_fini(struct intel_gt * gt)1391 void intel_gt_set_wedged_on_fini(struct intel_gt *gt)
1392 {
1393 intel_gt_set_wedged(gt);
1394 set_bit(I915_WEDGED_ON_FINI, >->reset.flags);
1395 }
1396
intel_gt_init_reset(struct intel_gt * gt)1397 void intel_gt_init_reset(struct intel_gt *gt)
1398 {
1399 init_waitqueue_head(>->reset.queue);
1400 mutex_init(>->reset.mutex);
1401 init_srcu_struct(>->reset.backoff_srcu);
1402
1403 /* no GPU until we are ready! */
1404 __set_bit(I915_WEDGED, >->reset.flags);
1405 }
1406
intel_gt_fini_reset(struct intel_gt * gt)1407 void intel_gt_fini_reset(struct intel_gt *gt)
1408 {
1409 cleanup_srcu_struct(>->reset.backoff_srcu);
1410 }
1411
intel_wedge_me(struct work_struct * work)1412 static void intel_wedge_me(struct work_struct *work)
1413 {
1414 struct intel_wedge_me *w = container_of(work, typeof(*w), work.work);
1415
1416 drm_err(&w->gt->i915->drm,
1417 "%s timed out, cancelling all in-flight rendering.\n",
1418 w->name);
1419 intel_gt_set_wedged(w->gt);
1420 }
1421
__intel_init_wedge(struct intel_wedge_me * w,struct intel_gt * gt,long timeout,const char * name)1422 void __intel_init_wedge(struct intel_wedge_me *w,
1423 struct intel_gt *gt,
1424 long timeout,
1425 const char *name)
1426 {
1427 w->gt = gt;
1428 w->name = name;
1429
1430 INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me);
1431 schedule_delayed_work(&w->work, timeout);
1432 }
1433
__intel_fini_wedge(struct intel_wedge_me * w)1434 void __intel_fini_wedge(struct intel_wedge_me *w)
1435 {
1436 cancel_delayed_work_sync(&w->work);
1437 destroy_delayed_work_on_stack(&w->work);
1438 w->gt = NULL;
1439 }
1440
1441 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1442 #include "selftest_reset.c"
1443 #include "selftest_hangcheck.c"
1444 #endif
1445