1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2019 Intel Corporation
4 */
5
6 #include "gt/intel_gt.h"
7 #include "gt/intel_gt_irq.h"
8 #include "gt/intel_gt_pm_irq.h"
9 #include "intel_guc.h"
10 #include "intel_guc_ads.h"
11 #include "intel_guc_submission.h"
12 #include "i915_drv.h"
13
14 /**
15 * DOC: GuC
16 *
17 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
18 * designed to offload some of the functionality usually performed by the host
19 * driver; currently the main operations it can take care of are:
20 *
21 * - Authentication of the HuC, which is required to fully enable HuC usage.
22 * - Low latency graphics context scheduling (a.k.a. GuC submission).
23 * - GT Power management.
24 *
25 * The enable_guc module parameter can be used to select which of those
26 * operations to enable within GuC. Note that not all the operations are
27 * supported on all gen9+ platforms.
28 *
29 * Enabling the GuC is not mandatory and therefore the firmware is only loaded
30 * if at least one of the operations is selected. However, not loading the GuC
31 * might result in the loss of some features that do require the GuC (currently
32 * just the HuC, but more are expected to land in the future).
33 */
34
intel_guc_notify(struct intel_guc * guc)35 void intel_guc_notify(struct intel_guc *guc)
36 {
37 struct intel_gt *gt = guc_to_gt(guc);
38
39 /*
40 * On Gen11+, the value written to the register is passes as a payload
41 * to the FW. However, the FW currently treats all values the same way
42 * (H2G interrupt), so we can just write the value that the HW expects
43 * on older gens.
44 */
45 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
46 }
47
guc_send_reg(struct intel_guc * guc,u32 i)48 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
49 {
50 GEM_BUG_ON(!guc->send_regs.base);
51 GEM_BUG_ON(!guc->send_regs.count);
52 GEM_BUG_ON(i >= guc->send_regs.count);
53
54 return _MMIO(guc->send_regs.base + 4 * i);
55 }
56
intel_guc_init_send_regs(struct intel_guc * guc)57 void intel_guc_init_send_regs(struct intel_guc *guc)
58 {
59 struct intel_gt *gt = guc_to_gt(guc);
60 enum forcewake_domains fw_domains = 0;
61 unsigned int i;
62
63 if (INTEL_GEN(gt->i915) >= 11) {
64 guc->send_regs.base =
65 i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
66 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
67 } else {
68 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
69 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
70 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
71 }
72
73 for (i = 0; i < guc->send_regs.count; i++) {
74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
75 guc_send_reg(guc, i),
76 FW_REG_READ | FW_REG_WRITE);
77 }
78 guc->send_regs.fw_domains = fw_domains;
79 }
80
gen9_reset_guc_interrupts(struct intel_guc * guc)81 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
82 {
83 struct intel_gt *gt = guc_to_gt(guc);
84
85 assert_rpm_wakelock_held(>->i915->runtime_pm);
86
87 spin_lock_irq(>->irq_lock);
88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
89 spin_unlock_irq(>->irq_lock);
90 }
91
gen9_enable_guc_interrupts(struct intel_guc * guc)92 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
93 {
94 struct intel_gt *gt = guc_to_gt(guc);
95
96 assert_rpm_wakelock_held(>->i915->runtime_pm);
97
98 spin_lock_irq(>->irq_lock);
99 if (!guc->interrupts.enabled) {
100 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
101 gt->pm_guc_events);
102 guc->interrupts.enabled = true;
103 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
104 }
105 spin_unlock_irq(>->irq_lock);
106 }
107
gen9_disable_guc_interrupts(struct intel_guc * guc)108 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
109 {
110 struct intel_gt *gt = guc_to_gt(guc);
111
112 assert_rpm_wakelock_held(>->i915->runtime_pm);
113
114 spin_lock_irq(>->irq_lock);
115 guc->interrupts.enabled = false;
116
117 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
118
119 spin_unlock_irq(>->irq_lock);
120 intel_synchronize_irq(gt->i915);
121
122 gen9_reset_guc_interrupts(guc);
123 }
124
gen11_reset_guc_interrupts(struct intel_guc * guc)125 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
126 {
127 struct intel_gt *gt = guc_to_gt(guc);
128
129 spin_lock_irq(>->irq_lock);
130 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
131 spin_unlock_irq(>->irq_lock);
132 }
133
gen11_enable_guc_interrupts(struct intel_guc * guc)134 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
135 {
136 struct intel_gt *gt = guc_to_gt(guc);
137
138 spin_lock_irq(>->irq_lock);
139 if (!guc->interrupts.enabled) {
140 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
141
142 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
143 intel_uncore_write(gt->uncore,
144 GEN11_GUC_SG_INTR_ENABLE, events);
145 intel_uncore_write(gt->uncore,
146 GEN11_GUC_SG_INTR_MASK, ~events);
147 guc->interrupts.enabled = true;
148 }
149 spin_unlock_irq(>->irq_lock);
150 }
151
gen11_disable_guc_interrupts(struct intel_guc * guc)152 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
153 {
154 struct intel_gt *gt = guc_to_gt(guc);
155
156 spin_lock_irq(>->irq_lock);
157 guc->interrupts.enabled = false;
158
159 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
160 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
161
162 spin_unlock_irq(>->irq_lock);
163 intel_synchronize_irq(gt->i915);
164
165 gen11_reset_guc_interrupts(guc);
166 }
167
intel_guc_init_early(struct intel_guc * guc)168 void intel_guc_init_early(struct intel_guc *guc)
169 {
170 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
171
172 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
173 intel_guc_ct_init_early(&guc->ct);
174 intel_guc_log_init_early(&guc->log);
175 intel_guc_submission_init_early(guc);
176
177 mutex_init(&guc->send_mutex);
178 spin_lock_init(&guc->irq_lock);
179 if (INTEL_GEN(i915) >= 11) {
180 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
181 guc->interrupts.reset = gen11_reset_guc_interrupts;
182 guc->interrupts.enable = gen11_enable_guc_interrupts;
183 guc->interrupts.disable = gen11_disable_guc_interrupts;
184 } else {
185 guc->notify_reg = GUC_SEND_INTERRUPT;
186 guc->interrupts.reset = gen9_reset_guc_interrupts;
187 guc->interrupts.enable = gen9_enable_guc_interrupts;
188 guc->interrupts.disable = gen9_disable_guc_interrupts;
189 }
190 }
191
guc_ctl_debug_flags(struct intel_guc * guc)192 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
193 {
194 u32 level = intel_guc_log_get_level(&guc->log);
195 u32 flags = 0;
196
197 if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
198 flags |= GUC_LOG_DISABLED;
199 else
200 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
201 GUC_LOG_VERBOSITY_SHIFT;
202
203 return flags;
204 }
205
guc_ctl_feature_flags(struct intel_guc * guc)206 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
207 {
208 u32 flags = 0;
209
210 if (!intel_guc_submission_is_used(guc))
211 flags |= GUC_CTL_DISABLE_SCHEDULER;
212
213 return flags;
214 }
215
guc_ctl_ctxinfo_flags(struct intel_guc * guc)216 static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
217 {
218 u32 flags = 0;
219
220 if (intel_guc_submission_is_used(guc)) {
221 u32 ctxnum, base;
222
223 base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
224 ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
225
226 base >>= PAGE_SHIFT;
227 flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
228 (ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
229 }
230 return flags;
231 }
232
guc_ctl_log_params_flags(struct intel_guc * guc)233 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
234 {
235 u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
236 u32 flags;
237
238 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
239 #define UNIT SZ_1M
240 #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
241 #else
242 #define UNIT SZ_4K
243 #define FLAG 0
244 #endif
245
246 BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
247 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
248 BUILD_BUG_ON(!DPC_BUFFER_SIZE);
249 BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
250 BUILD_BUG_ON(!ISR_BUFFER_SIZE);
251 BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
252
253 BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
254 (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
255 BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
256 (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
257 BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
258 (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
259
260 flags = GUC_LOG_VALID |
261 GUC_LOG_NOTIFY_ON_HALF_FULL |
262 FLAG |
263 ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
264 ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
265 ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
266 (offset << GUC_LOG_BUF_ADDR_SHIFT);
267
268 #undef UNIT
269 #undef FLAG
270
271 return flags;
272 }
273
guc_ctl_ads_flags(struct intel_guc * guc)274 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
275 {
276 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
277 u32 flags = ads << GUC_ADS_ADDR_SHIFT;
278
279 return flags;
280 }
281
282 /*
283 * Initialise the GuC parameter block before starting the firmware
284 * transfer. These parameters are read by the firmware on startup
285 * and cannot be changed thereafter.
286 */
guc_init_params(struct intel_guc * guc)287 static void guc_init_params(struct intel_guc *guc)
288 {
289 u32 *params = guc->params;
290 int i;
291
292 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
293
294 params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
295 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
296 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
297 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
298 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
299
300 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
301 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
302 }
303
304 /*
305 * Initialise the GuC parameter block before starting the firmware
306 * transfer. These parameters are read by the firmware on startup
307 * and cannot be changed thereafter.
308 */
intel_guc_write_params(struct intel_guc * guc)309 void intel_guc_write_params(struct intel_guc *guc)
310 {
311 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
312 int i;
313
314 /*
315 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
316 * they are power context saved so it's ok to release forcewake
317 * when we are done here and take it again at xfer time.
318 */
319 intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER);
320
321 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
322
323 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
324 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
325
326 intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER);
327 }
328
intel_guc_init(struct intel_guc * guc)329 int intel_guc_init(struct intel_guc *guc)
330 {
331 struct intel_gt *gt = guc_to_gt(guc);
332 int ret;
333
334 ret = intel_uc_fw_init(&guc->fw);
335 if (ret)
336 goto out;
337
338 ret = intel_guc_log_create(&guc->log);
339 if (ret)
340 goto err_fw;
341
342 ret = intel_guc_ads_create(guc);
343 if (ret)
344 goto err_log;
345 GEM_BUG_ON(!guc->ads_vma);
346
347 ret = intel_guc_ct_init(&guc->ct);
348 if (ret)
349 goto err_ads;
350
351 if (intel_guc_submission_is_used(guc)) {
352 /*
353 * This is stuff we need to have available at fw load time
354 * if we are planning to enable submission later
355 */
356 ret = intel_guc_submission_init(guc);
357 if (ret)
358 goto err_ct;
359 }
360
361 /* now that everything is perma-pinned, initialize the parameters */
362 guc_init_params(guc);
363
364 /* We need to notify the guc whenever we change the GGTT */
365 i915_ggtt_enable_guc(gt->ggtt);
366
367 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
368
369 return 0;
370
371 err_ct:
372 intel_guc_ct_fini(&guc->ct);
373 err_ads:
374 intel_guc_ads_destroy(guc);
375 err_log:
376 intel_guc_log_destroy(&guc->log);
377 err_fw:
378 intel_uc_fw_fini(&guc->fw);
379 out:
380 i915_probe_error(gt->i915, "failed with %d\n", ret);
381 return ret;
382 }
383
intel_guc_fini(struct intel_guc * guc)384 void intel_guc_fini(struct intel_guc *guc)
385 {
386 struct intel_gt *gt = guc_to_gt(guc);
387
388 if (!intel_uc_fw_is_loadable(&guc->fw))
389 return;
390
391 i915_ggtt_disable_guc(gt->ggtt);
392
393 if (intel_guc_submission_is_used(guc))
394 intel_guc_submission_fini(guc);
395
396 intel_guc_ct_fini(&guc->ct);
397
398 intel_guc_ads_destroy(guc);
399 intel_guc_log_destroy(&guc->log);
400 intel_uc_fw_fini(&guc->fw);
401 }
402
403 /*
404 * This function implements the MMIO based host to GuC interface.
405 */
intel_guc_send_mmio(struct intel_guc * guc,const u32 * action,u32 len,u32 * response_buf,u32 response_buf_size)406 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
407 u32 *response_buf, u32 response_buf_size)
408 {
409 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
410 u32 status;
411 int i;
412 int ret;
413
414 GEM_BUG_ON(!len);
415 GEM_BUG_ON(len > guc->send_regs.count);
416
417 /* We expect only action code */
418 GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
419
420 /* If CT is available, we expect to use MMIO only during init/fini */
421 GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
422 *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
423
424 mutex_lock(&guc->send_mutex);
425 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
426
427 for (i = 0; i < len; i++)
428 intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]);
429
430 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
431
432 intel_guc_notify(guc);
433
434 /*
435 * No GuC command should ever take longer than 10ms.
436 * Fast commands should still complete in 10us.
437 */
438 ret = __intel_wait_for_register_fw(uncore,
439 guc_send_reg(guc, 0),
440 INTEL_GUC_MSG_TYPE_MASK,
441 INTEL_GUC_MSG_TYPE_RESPONSE <<
442 INTEL_GUC_MSG_TYPE_SHIFT,
443 10, 10, &status);
444 /* If GuC explicitly returned an error, convert it to -EIO */
445 if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
446 ret = -EIO;
447
448 if (ret) {
449 DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
450 action[0], ret, status);
451 goto out;
452 }
453
454 if (response_buf) {
455 int count = min(response_buf_size, guc->send_regs.count - 1);
456
457 for (i = 0; i < count; i++)
458 response_buf[i] = intel_uncore_read(uncore,
459 guc_send_reg(guc, i + 1));
460 }
461
462 /* Use data from the GuC response as our return value */
463 ret = INTEL_GUC_MSG_TO_DATA(status);
464
465 out:
466 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
467 mutex_unlock(&guc->send_mutex);
468
469 return ret;
470 }
471
intel_guc_to_host_process_recv_msg(struct intel_guc * guc,const u32 * payload,u32 len)472 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
473 const u32 *payload, u32 len)
474 {
475 u32 msg;
476
477 if (unlikely(!len))
478 return -EPROTO;
479
480 /* Make sure to handle only enabled messages */
481 msg = payload[0] & guc->msg_enabled_mask;
482
483 if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
484 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
485 intel_guc_log_handle_flush_event(&guc->log);
486
487 return 0;
488 }
489
intel_guc_sample_forcewake(struct intel_guc * guc)490 int intel_guc_sample_forcewake(struct intel_guc *guc)
491 {
492 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
493 u32 action[2];
494
495 action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
496 /* WaRsDisableCoarsePowerGating:skl,cnl */
497 if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
498 action[1] = 0;
499 else
500 /* bit 0 and 1 are for Render and Media domain separately */
501 action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
502
503 return intel_guc_send(guc, action, ARRAY_SIZE(action));
504 }
505
506 /**
507 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
508 * @guc: intel_guc structure
509 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
510 *
511 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
512 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
513 * intel_huc_auth().
514 *
515 * Return: non-zero code on error
516 */
intel_guc_auth_huc(struct intel_guc * guc,u32 rsa_offset)517 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
518 {
519 u32 action[] = {
520 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
521 rsa_offset
522 };
523
524 return intel_guc_send(guc, action, ARRAY_SIZE(action));
525 }
526
527 /**
528 * intel_guc_suspend() - notify GuC entering suspend state
529 * @guc: the guc
530 */
intel_guc_suspend(struct intel_guc * guc)531 int intel_guc_suspend(struct intel_guc *guc)
532 {
533 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
534 int ret;
535 u32 status;
536 u32 action[] = {
537 INTEL_GUC_ACTION_ENTER_S_STATE,
538 GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
539 };
540
541 /*
542 * If GuC communication is enabled but submission is not supported,
543 * we do not need to suspend the GuC.
544 */
545 if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc))
546 return 0;
547
548 /*
549 * The ENTER_S_STATE action queues the save/restore operation in GuC FW
550 * and then returns, so waiting on the H2G is not enough to guarantee
551 * GuC is done. When all the processing is done, GuC writes
552 * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll
553 * on that. Note that GuC does not ensure that the value in the register
554 * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is
555 * in progress so we need to take care of that ourselves as well.
556 */
557
558 intel_uncore_write(uncore, SOFT_SCRATCH(14),
559 INTEL_GUC_SLEEP_STATE_INVALID_MASK);
560
561 ret = intel_guc_send(guc, action, ARRAY_SIZE(action));
562 if (ret)
563 return ret;
564
565 ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14),
566 INTEL_GUC_SLEEP_STATE_INVALID_MASK,
567 0, 0, 10, &status);
568 if (ret)
569 return ret;
570
571 if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
572 DRM_ERROR("GuC failed to change sleep state. "
573 "action=0x%x, err=%u\n",
574 action[0], status);
575 return -EIO;
576 }
577
578 return 0;
579 }
580
581 /**
582 * intel_guc_reset_engine() - ask GuC to reset an engine
583 * @guc: intel_guc structure
584 * @engine: engine to be reset
585 */
intel_guc_reset_engine(struct intel_guc * guc,struct intel_engine_cs * engine)586 int intel_guc_reset_engine(struct intel_guc *guc,
587 struct intel_engine_cs *engine)
588 {
589 /* XXX: to be implemented with submission interface rework */
590
591 return -ENODEV;
592 }
593
594 /**
595 * intel_guc_resume() - notify GuC resuming from suspend state
596 * @guc: the guc
597 */
intel_guc_resume(struct intel_guc * guc)598 int intel_guc_resume(struct intel_guc *guc)
599 {
600 u32 action[] = {
601 INTEL_GUC_ACTION_EXIT_S_STATE,
602 GUC_POWER_D0,
603 };
604
605 /*
606 * If GuC communication is enabled but submission is not supported,
607 * we do not need to resume the GuC but we do need to enable the
608 * GuC communication on resume (above).
609 */
610 if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc))
611 return 0;
612
613 return intel_guc_send(guc, action, ARRAY_SIZE(action));
614 }
615
616 /**
617 * DOC: GuC Memory Management
618 *
619 * GuC can't allocate any memory for its own usage, so all the allocations must
620 * be handled by the host driver. GuC accesses the memory via the GGTT, with the
621 * exception of the top and bottom parts of the 4GB address space, which are
622 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
623 * or other parts of the HW. The driver must take care not to place objects that
624 * the GuC is going to access in these reserved ranges. The layout of the GuC
625 * address space is shown below:
626 *
627 * ::
628 *
629 * +===========> +====================+ <== FFFF_FFFF
630 * ^ | Reserved |
631 * | +====================+ <== GUC_GGTT_TOP
632 * | | |
633 * | | DRAM |
634 * GuC | |
635 * Address +===> +====================+ <== GuC ggtt_pin_bias
636 * Space ^ | |
637 * | | | |
638 * | GuC | GuC |
639 * | WOPCM | WOPCM |
640 * | Size | |
641 * | | | |
642 * v v | |
643 * +=======+===> +====================+ <== 0000_0000
644 *
645 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
646 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
647 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
648 */
649
650 /**
651 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
652 * @guc: the guc
653 * @size: size of area to allocate (both virtual space and memory)
654 *
655 * This is a wrapper to create an object for use with the GuC. In order to
656 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
657 * both some backing storage and a range inside the Global GTT. We must pin
658 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
659 * range is reserved inside GuC.
660 *
661 * Return: A i915_vma if successful, otherwise an ERR_PTR.
662 */
intel_guc_allocate_vma(struct intel_guc * guc,u32 size)663 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
664 {
665 struct intel_gt *gt = guc_to_gt(guc);
666 struct drm_i915_gem_object *obj;
667 struct i915_vma *vma;
668 u64 flags;
669 int ret;
670
671 obj = i915_gem_object_create_shmem(gt->i915, size);
672 if (IS_ERR(obj))
673 return ERR_CAST(obj);
674
675 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
676 if (IS_ERR(vma))
677 goto err;
678
679 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
680 ret = i915_ggtt_pin(vma, NULL, 0, flags);
681 if (ret) {
682 vma = ERR_PTR(ret);
683 goto err;
684 }
685
686 return i915_vma_make_unshrinkable(vma);
687
688 err:
689 i915_gem_object_put(obj);
690 return vma;
691 }
692
693 /**
694 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
695 * @guc: the guc
696 * @size: size of area to allocate (both virtual space and memory)
697 * @out_vma: return variable for the allocated vma pointer
698 * @out_vaddr: return variable for the obj mapping
699 *
700 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
701 * object with I915_MAP_WB.
702 *
703 * Return: 0 if successful, a negative errno code otherwise.
704 */
intel_guc_allocate_and_map_vma(struct intel_guc * guc,u32 size,struct i915_vma ** out_vma,void ** out_vaddr)705 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
706 struct i915_vma **out_vma, void **out_vaddr)
707 {
708 struct i915_vma *vma;
709 void *vaddr;
710
711 vma = intel_guc_allocate_vma(guc, size);
712 if (IS_ERR(vma))
713 return PTR_ERR(vma);
714
715 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
716 if (IS_ERR(vaddr)) {
717 i915_vma_unpin_and_release(&vma, 0);
718 return PTR_ERR(vaddr);
719 }
720
721 *out_vma = vma;
722 *out_vaddr = vaddr;
723
724 return 0;
725 }
726
727 /**
728 * intel_guc_load_status - dump information about GuC load status
729 * @guc: the GuC
730 * @p: the &drm_printer
731 *
732 * Pretty printer for GuC load status.
733 */
intel_guc_load_status(struct intel_guc * guc,struct drm_printer * p)734 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
735 {
736 struct intel_gt *gt = guc_to_gt(guc);
737 struct intel_uncore *uncore = gt->uncore;
738 intel_wakeref_t wakeref;
739
740 if (!intel_guc_is_supported(guc)) {
741 drm_printf(p, "GuC not supported\n");
742 return;
743 }
744
745 if (!intel_guc_is_wanted(guc)) {
746 drm_printf(p, "GuC disabled\n");
747 return;
748 }
749
750 intel_uc_fw_dump(&guc->fw, p);
751
752 with_intel_runtime_pm(uncore->rpm, wakeref) {
753 u32 status = intel_uncore_read(uncore, GUC_STATUS);
754 u32 i;
755
756 drm_printf(p, "\nGuC status 0x%08x:\n", status);
757 drm_printf(p, "\tBootrom status = 0x%x\n",
758 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
759 drm_printf(p, "\tuKernel status = 0x%x\n",
760 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
761 drm_printf(p, "\tMIA Core status = 0x%x\n",
762 (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
763 drm_puts(p, "\nScratch registers:\n");
764 for (i = 0; i < 16; i++) {
765 drm_printf(p, "\t%2d: \t0x%x\n",
766 i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
767 }
768 }
769 }
770