1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_gt.h"
12 #include "gt/intel_gt_pm.h"
13 #include "gt/intel_lrc_reg.h"
14 #include "gt/intel_ring.h"
15
16 #include "intel_guc_submission.h"
17
18 #include "i915_drv.h"
19 #include "i915_trace.h"
20
21 /**
22 * DOC: GuC-based command submission
23 *
24 * IMPORTANT NOTE: GuC submission is currently not supported in i915. The GuC
25 * firmware is moving to an updated submission interface and we plan to
26 * turn submission back on when that lands. The below documentation (and related
27 * code) matches the old submission model and will be updated as part of the
28 * upgrade to the new flow.
29 *
30 * GuC stage descriptor:
31 * During initialization, the driver allocates a static pool of 1024 such
32 * descriptors, and shares them with the GuC. Currently, we only use one
33 * descriptor. This stage descriptor lets the GuC know about the workqueue and
34 * process descriptor. Theoretically, it also lets the GuC know about our HW
35 * contexts (context ID, etc...), but we actually employ a kind of submission
36 * where the GuC uses the LRCA sent via the work item instead. This is called
37 * a "proxy" submission.
38 *
39 * The Scratch registers:
40 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
41 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
42 * triggers an interrupt on the GuC via another register write (0xC4C8).
43 * Firmware writes a success/fail code back to the action register after
44 * processes the request. The kernel driver polls waiting for this update and
45 * then proceeds.
46 *
47 * Work Items:
48 * There are several types of work items that the host may place into a
49 * workqueue, each with its own requirements and limitations. Currently only
50 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
51 * represents in-order queue. The kernel driver packs ring tail pointer and an
52 * ELSP context descriptor dword into Work Item.
53 * See guc_add_request()
54 *
55 */
56
to_priolist(struct rb_node * rb)57 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
58 {
59 return rb_entry(rb, struct i915_priolist, node);
60 }
61
__get_stage_desc(struct intel_guc * guc,u32 id)62 static struct guc_stage_desc *__get_stage_desc(struct intel_guc *guc, u32 id)
63 {
64 struct guc_stage_desc *base = guc->stage_desc_pool_vaddr;
65
66 return &base[id];
67 }
68
guc_workqueue_create(struct intel_guc * guc)69 static int guc_workqueue_create(struct intel_guc *guc)
70 {
71 return intel_guc_allocate_and_map_vma(guc, GUC_WQ_SIZE, &guc->workqueue,
72 &guc->workqueue_vaddr);
73 }
74
guc_workqueue_destroy(struct intel_guc * guc)75 static void guc_workqueue_destroy(struct intel_guc *guc)
76 {
77 i915_vma_unpin_and_release(&guc->workqueue, I915_VMA_RELEASE_MAP);
78 }
79
80 /*
81 * Initialise the process descriptor shared with the GuC firmware.
82 */
guc_proc_desc_create(struct intel_guc * guc)83 static int guc_proc_desc_create(struct intel_guc *guc)
84 {
85 const u32 size = PAGE_ALIGN(sizeof(struct guc_process_desc));
86
87 return intel_guc_allocate_and_map_vma(guc, size, &guc->proc_desc,
88 &guc->proc_desc_vaddr);
89 }
90
guc_proc_desc_destroy(struct intel_guc * guc)91 static void guc_proc_desc_destroy(struct intel_guc *guc)
92 {
93 i915_vma_unpin_and_release(&guc->proc_desc, I915_VMA_RELEASE_MAP);
94 }
95
guc_proc_desc_init(struct intel_guc * guc)96 static void guc_proc_desc_init(struct intel_guc *guc)
97 {
98 struct guc_process_desc *desc;
99
100 desc = memset(guc->proc_desc_vaddr, 0, sizeof(*desc));
101
102 /*
103 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
104 * space for ring3 clients (set them as in mmap_ioctl) or kernel
105 * space for kernel clients (map on demand instead? May make debug
106 * easier to have it mapped).
107 */
108 desc->wq_base_addr = 0;
109 desc->db_base_addr = 0;
110
111 desc->wq_size_bytes = GUC_WQ_SIZE;
112 desc->wq_status = WQ_STATUS_ACTIVE;
113 desc->priority = GUC_CLIENT_PRIORITY_KMD_NORMAL;
114 }
115
guc_proc_desc_fini(struct intel_guc * guc)116 static void guc_proc_desc_fini(struct intel_guc *guc)
117 {
118 memset(guc->proc_desc_vaddr, 0, sizeof(struct guc_process_desc));
119 }
120
guc_stage_desc_pool_create(struct intel_guc * guc)121 static int guc_stage_desc_pool_create(struct intel_guc *guc)
122 {
123 u32 size = PAGE_ALIGN(sizeof(struct guc_stage_desc) *
124 GUC_MAX_STAGE_DESCRIPTORS);
125
126 return intel_guc_allocate_and_map_vma(guc, size, &guc->stage_desc_pool,
127 &guc->stage_desc_pool_vaddr);
128 }
129
guc_stage_desc_pool_destroy(struct intel_guc * guc)130 static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
131 {
132 i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
133 }
134
135 /*
136 * Initialise/clear the stage descriptor shared with the GuC firmware.
137 *
138 * This descriptor tells the GuC where (in GGTT space) to find the important
139 * data structures related to work submission (process descriptor, write queue,
140 * etc).
141 */
guc_stage_desc_init(struct intel_guc * guc)142 static void guc_stage_desc_init(struct intel_guc *guc)
143 {
144 struct guc_stage_desc *desc;
145
146 /* we only use 1 stage desc, so hardcode it to 0 */
147 desc = __get_stage_desc(guc, 0);
148 memset(desc, 0, sizeof(*desc));
149
150 desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
151 GUC_STAGE_DESC_ATTR_KERNEL;
152
153 desc->stage_id = 0;
154 desc->priority = GUC_CLIENT_PRIORITY_KMD_NORMAL;
155
156 desc->process_desc = intel_guc_ggtt_offset(guc, guc->proc_desc);
157 desc->wq_addr = intel_guc_ggtt_offset(guc, guc->workqueue);
158 desc->wq_size = GUC_WQ_SIZE;
159 }
160
guc_stage_desc_fini(struct intel_guc * guc)161 static void guc_stage_desc_fini(struct intel_guc *guc)
162 {
163 struct guc_stage_desc *desc;
164
165 desc = __get_stage_desc(guc, 0);
166 memset(desc, 0, sizeof(*desc));
167 }
168
169 /* Construct a Work Item and append it to the GuC's Work Queue */
guc_wq_item_append(struct intel_guc * guc,u32 target_engine,u32 context_desc,u32 ring_tail,u32 fence_id)170 static void guc_wq_item_append(struct intel_guc *guc,
171 u32 target_engine, u32 context_desc,
172 u32 ring_tail, u32 fence_id)
173 {
174 /* wqi_len is in DWords, and does not include the one-word header */
175 const size_t wqi_size = sizeof(struct guc_wq_item);
176 const u32 wqi_len = wqi_size / sizeof(u32) - 1;
177 struct guc_process_desc *desc = guc->proc_desc_vaddr;
178 struct guc_wq_item *wqi;
179 u32 wq_off;
180
181 lockdep_assert_held(&guc->wq_lock);
182
183 /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
184 * should not have the case where structure wqi is across page, neither
185 * wrapped to the beginning. This simplifies the implementation below.
186 *
187 * XXX: if not the case, we need save data to a temp wqi and copy it to
188 * workqueue buffer dw by dw.
189 */
190 BUILD_BUG_ON(wqi_size != 16);
191
192 /* We expect the WQ to be active if we're appending items to it */
193 GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);
194
195 /* Free space is guaranteed. */
196 wq_off = READ_ONCE(desc->tail);
197 GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
198 GUC_WQ_SIZE) < wqi_size);
199 GEM_BUG_ON(wq_off & (wqi_size - 1));
200
201 wqi = guc->workqueue_vaddr + wq_off;
202
203 /* Now fill in the 4-word work queue item */
204 wqi->header = WQ_TYPE_INORDER |
205 (wqi_len << WQ_LEN_SHIFT) |
206 (target_engine << WQ_TARGET_SHIFT) |
207 WQ_NO_WCFLUSH_WAIT;
208 wqi->context_desc = context_desc;
209 wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
210 GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
211 wqi->fence_id = fence_id;
212
213 /* Make the update visible to GuC */
214 WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
215 }
216
guc_add_request(struct intel_guc * guc,struct i915_request * rq)217 static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
218 {
219 struct intel_engine_cs *engine = rq->engine;
220 u32 ctx_desc = rq->context->lrc.ccid;
221 u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
222
223 guc_wq_item_append(guc, engine->guc_id, ctx_desc,
224 ring_tail, rq->fence.seqno);
225 }
226
227 /*
228 * When we're doing submissions using regular execlists backend, writing to
229 * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
230 * pinned in mappable aperture portion of GGTT are visible to command streamer.
231 * Writes done by GuC on our behalf are not guaranteeing such ordering,
232 * therefore, to ensure the flush, we're issuing a POSTING READ.
233 */
flush_ggtt_writes(struct i915_vma * vma)234 static void flush_ggtt_writes(struct i915_vma *vma)
235 {
236 if (i915_vma_is_map_and_fenceable(vma))
237 intel_uncore_posting_read_fw(vma->vm->gt->uncore,
238 GUC_STATUS);
239 }
240
guc_submit(struct intel_engine_cs * engine,struct i915_request ** out,struct i915_request ** end)241 static void guc_submit(struct intel_engine_cs *engine,
242 struct i915_request **out,
243 struct i915_request **end)
244 {
245 struct intel_guc *guc = &engine->gt->uc.guc;
246
247 spin_lock(&guc->wq_lock);
248
249 do {
250 struct i915_request *rq = *out++;
251
252 flush_ggtt_writes(rq->ring->vma);
253 guc_add_request(guc, rq);
254 } while (out != end);
255
256 spin_unlock(&guc->wq_lock);
257 }
258
rq_prio(const struct i915_request * rq)259 static inline int rq_prio(const struct i915_request *rq)
260 {
261 return rq->sched.attr.priority;
262 }
263
schedule_in(struct i915_request * rq,int idx)264 static struct i915_request *schedule_in(struct i915_request *rq, int idx)
265 {
266 trace_i915_request_in(rq, idx);
267
268 /*
269 * Currently we are not tracking the rq->context being inflight
270 * (ce->inflight = rq->engine). It is only used by the execlists
271 * backend at the moment, a similar counting strategy would be
272 * required if we generalise the inflight tracking.
273 */
274
275 __intel_gt_pm_get(rq->engine->gt);
276 return i915_request_get(rq);
277 }
278
schedule_out(struct i915_request * rq)279 static void schedule_out(struct i915_request *rq)
280 {
281 trace_i915_request_out(rq);
282
283 intel_gt_pm_put_async(rq->engine->gt);
284 i915_request_put(rq);
285 }
286
__guc_dequeue(struct intel_engine_cs * engine)287 static void __guc_dequeue(struct intel_engine_cs *engine)
288 {
289 struct intel_engine_execlists * const execlists = &engine->execlists;
290 struct i915_request **first = execlists->inflight;
291 struct i915_request ** const last_port = first + execlists->port_mask;
292 struct i915_request *last = first[0];
293 struct i915_request **port;
294 bool submit = false;
295 struct rb_node *rb;
296
297 lockdep_assert_held(&engine->active.lock);
298
299 if (last) {
300 if (*++first)
301 return;
302
303 last = NULL;
304 }
305
306 /*
307 * We write directly into the execlists->inflight queue and don't use
308 * the execlists->pending queue, as we don't have a distinct switch
309 * event.
310 */
311 port = first;
312 while ((rb = rb_first_cached(&execlists->queue))) {
313 struct i915_priolist *p = to_priolist(rb);
314 struct i915_request *rq, *rn;
315 int i;
316
317 priolist_for_each_request_consume(rq, rn, p, i) {
318 if (last && rq->context != last->context) {
319 if (port == last_port)
320 goto done;
321
322 *port = schedule_in(last,
323 port - execlists->inflight);
324 port++;
325 }
326
327 list_del_init(&rq->sched.link);
328 __i915_request_submit(rq);
329 submit = true;
330 last = rq;
331 }
332
333 rb_erase_cached(&p->node, &execlists->queue);
334 i915_priolist_free(p);
335 }
336 done:
337 execlists->queue_priority_hint =
338 rb ? to_priolist(rb)->priority : INT_MIN;
339 if (submit) {
340 *port = schedule_in(last, port - execlists->inflight);
341 *++port = NULL;
342 guc_submit(engine, first, port);
343 }
344 execlists->active = execlists->inflight;
345 }
346
guc_submission_tasklet(unsigned long data)347 static void guc_submission_tasklet(unsigned long data)
348 {
349 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
350 struct intel_engine_execlists * const execlists = &engine->execlists;
351 struct i915_request **port, *rq;
352 unsigned long flags;
353
354 spin_lock_irqsave(&engine->active.lock, flags);
355
356 for (port = execlists->inflight; (rq = *port); port++) {
357 if (!i915_request_completed(rq))
358 break;
359
360 schedule_out(rq);
361 }
362 if (port != execlists->inflight) {
363 int idx = port - execlists->inflight;
364 int rem = ARRAY_SIZE(execlists->inflight) - idx;
365 memmove(execlists->inflight, port, rem * sizeof(*port));
366 }
367
368 __guc_dequeue(engine);
369
370 spin_unlock_irqrestore(&engine->active.lock, flags);
371 }
372
guc_reset_prepare(struct intel_engine_cs * engine)373 static void guc_reset_prepare(struct intel_engine_cs *engine)
374 {
375 struct intel_engine_execlists * const execlists = &engine->execlists;
376
377 ENGINE_TRACE(engine, "\n");
378
379 /*
380 * Prevent request submission to the hardware until we have
381 * completed the reset in i915_gem_reset_finish(). If a request
382 * is completed by one engine, it may then queue a request
383 * to a second via its execlists->tasklet *just* as we are
384 * calling engine->init_hw() and also writing the ELSP.
385 * Turning off the execlists->tasklet until the reset is over
386 * prevents the race.
387 */
388 __tasklet_disable_sync_once(&execlists->tasklet);
389 }
390
391 static void
cancel_port_requests(struct intel_engine_execlists * const execlists)392 cancel_port_requests(struct intel_engine_execlists * const execlists)
393 {
394 struct i915_request * const *port, *rq;
395
396 /* Note we are only using the inflight and not the pending queue */
397
398 for (port = execlists->active; (rq = *port); port++)
399 schedule_out(rq);
400 execlists->active =
401 memset(execlists->inflight, 0, sizeof(execlists->inflight));
402 }
403
guc_reset_rewind(struct intel_engine_cs * engine,bool stalled)404 static void guc_reset_rewind(struct intel_engine_cs *engine, bool stalled)
405 {
406 struct intel_engine_execlists * const execlists = &engine->execlists;
407 struct i915_request *rq;
408 unsigned long flags;
409
410 spin_lock_irqsave(&engine->active.lock, flags);
411
412 cancel_port_requests(execlists);
413
414 /* Push back any incomplete requests for replay after the reset. */
415 rq = execlists_unwind_incomplete_requests(execlists);
416 if (!rq)
417 goto out_unlock;
418
419 if (!i915_request_started(rq))
420 stalled = false;
421
422 __i915_request_reset(rq, stalled);
423 intel_lr_context_reset(engine, rq->context, rq->head, stalled);
424
425 out_unlock:
426 spin_unlock_irqrestore(&engine->active.lock, flags);
427 }
428
guc_reset_cancel(struct intel_engine_cs * engine)429 static void guc_reset_cancel(struct intel_engine_cs *engine)
430 {
431 struct intel_engine_execlists * const execlists = &engine->execlists;
432 struct i915_request *rq, *rn;
433 struct rb_node *rb;
434 unsigned long flags;
435
436 ENGINE_TRACE(engine, "\n");
437
438 /*
439 * Before we call engine->cancel_requests(), we should have exclusive
440 * access to the submission state. This is arranged for us by the
441 * caller disabling the interrupt generation, the tasklet and other
442 * threads that may then access the same state, giving us a free hand
443 * to reset state. However, we still need to let lockdep be aware that
444 * we know this state may be accessed in hardirq context, so we
445 * disable the irq around this manipulation and we want to keep
446 * the spinlock focused on its duties and not accidentally conflate
447 * coverage to the submission's irq state. (Similarly, although we
448 * shouldn't need to disable irq around the manipulation of the
449 * submission's irq state, we also wish to remind ourselves that
450 * it is irq state.)
451 */
452 spin_lock_irqsave(&engine->active.lock, flags);
453
454 /* Cancel the requests on the HW and clear the ELSP tracker. */
455 cancel_port_requests(execlists);
456
457 /* Mark all executing requests as skipped. */
458 list_for_each_entry(rq, &engine->active.requests, sched.link) {
459 i915_request_set_error_once(rq, -EIO);
460 i915_request_mark_complete(rq);
461 }
462
463 /* Flush the queued requests to the timeline list (for retiring). */
464 while ((rb = rb_first_cached(&execlists->queue))) {
465 struct i915_priolist *p = to_priolist(rb);
466 int i;
467
468 priolist_for_each_request_consume(rq, rn, p, i) {
469 list_del_init(&rq->sched.link);
470 __i915_request_submit(rq);
471 dma_fence_set_error(&rq->fence, -EIO);
472 i915_request_mark_complete(rq);
473 }
474
475 rb_erase_cached(&p->node, &execlists->queue);
476 i915_priolist_free(p);
477 }
478
479 /* Remaining _unready_ requests will be nop'ed when submitted */
480
481 execlists->queue_priority_hint = INT_MIN;
482 execlists->queue = RB_ROOT_CACHED;
483
484 spin_unlock_irqrestore(&engine->active.lock, flags);
485 }
486
guc_reset_finish(struct intel_engine_cs * engine)487 static void guc_reset_finish(struct intel_engine_cs *engine)
488 {
489 struct intel_engine_execlists * const execlists = &engine->execlists;
490
491 if (__tasklet_enable(&execlists->tasklet))
492 /* And kick in case we missed a new request submission. */
493 tasklet_hi_schedule(&execlists->tasklet);
494
495 ENGINE_TRACE(engine, "depth->%d\n",
496 atomic_read(&execlists->tasklet.count));
497 }
498
499 /*
500 * Everything below here is concerned with setup & teardown, and is
501 * therefore not part of the somewhat time-critical batch-submission
502 * path of guc_submit() above.
503 */
504
505 /*
506 * Set up the memory resources to be shared with the GuC (via the GGTT)
507 * at firmware loading time.
508 */
intel_guc_submission_init(struct intel_guc * guc)509 int intel_guc_submission_init(struct intel_guc *guc)
510 {
511 int ret;
512
513 if (guc->stage_desc_pool)
514 return 0;
515
516 ret = guc_stage_desc_pool_create(guc);
517 if (ret)
518 return ret;
519 /*
520 * Keep static analysers happy, let them know that we allocated the
521 * vma after testing that it didn't exist earlier.
522 */
523 GEM_BUG_ON(!guc->stage_desc_pool);
524
525 ret = guc_workqueue_create(guc);
526 if (ret)
527 goto err_pool;
528
529 ret = guc_proc_desc_create(guc);
530 if (ret)
531 goto err_workqueue;
532
533 spin_lock_init(&guc->wq_lock);
534
535 return 0;
536
537 err_workqueue:
538 guc_workqueue_destroy(guc);
539 err_pool:
540 guc_stage_desc_pool_destroy(guc);
541 return ret;
542 }
543
intel_guc_submission_fini(struct intel_guc * guc)544 void intel_guc_submission_fini(struct intel_guc *guc)
545 {
546 if (guc->stage_desc_pool) {
547 guc_proc_desc_destroy(guc);
548 guc_workqueue_destroy(guc);
549 guc_stage_desc_pool_destroy(guc);
550 }
551 }
552
guc_interrupts_capture(struct intel_gt * gt)553 static void guc_interrupts_capture(struct intel_gt *gt)
554 {
555 struct intel_uncore *uncore = gt->uncore;
556 u32 irqs = GT_CONTEXT_SWITCH_INTERRUPT;
557 u32 dmask = irqs << 16 | irqs;
558
559 GEM_BUG_ON(INTEL_GEN(gt->i915) < 11);
560
561 /* Don't handle the ctx switch interrupt in GuC submission mode */
562 intel_uncore_rmw(uncore, GEN11_RENDER_COPY_INTR_ENABLE, dmask, 0);
563 intel_uncore_rmw(uncore, GEN11_VCS_VECS_INTR_ENABLE, dmask, 0);
564 }
565
guc_interrupts_release(struct intel_gt * gt)566 static void guc_interrupts_release(struct intel_gt *gt)
567 {
568 struct intel_uncore *uncore = gt->uncore;
569 u32 irqs = GT_CONTEXT_SWITCH_INTERRUPT;
570 u32 dmask = irqs << 16 | irqs;
571
572 GEM_BUG_ON(INTEL_GEN(gt->i915) < 11);
573
574 /* Handle ctx switch interrupts again */
575 intel_uncore_rmw(uncore, GEN11_RENDER_COPY_INTR_ENABLE, 0, dmask);
576 intel_uncore_rmw(uncore, GEN11_VCS_VECS_INTR_ENABLE, 0, dmask);
577 }
578
guc_set_default_submission(struct intel_engine_cs * engine)579 static void guc_set_default_submission(struct intel_engine_cs *engine)
580 {
581 /*
582 * We inherit a bunch of functions from execlists that we'd like
583 * to keep using:
584 *
585 * engine->submit_request = execlists_submit_request;
586 * engine->cancel_requests = execlists_cancel_requests;
587 * engine->schedule = execlists_schedule;
588 *
589 * But we need to override the actual submission backend in order
590 * to talk to the GuC.
591 */
592 intel_execlists_set_default_submission(engine);
593
594 engine->execlists.tasklet.func = guc_submission_tasklet;
595
596 /* do not use execlists park/unpark */
597 engine->park = engine->unpark = NULL;
598
599 engine->reset.prepare = guc_reset_prepare;
600 engine->reset.rewind = guc_reset_rewind;
601 engine->reset.cancel = guc_reset_cancel;
602 engine->reset.finish = guc_reset_finish;
603
604 engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
605 engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
606
607 /*
608 * For the breadcrumb irq to work we need the interrupts to stay
609 * enabled. However, on all platforms on which we'll have support for
610 * GuC submission we don't allow disabling the interrupts at runtime, so
611 * we're always safe with the current flow.
612 */
613 GEM_BUG_ON(engine->irq_enable || engine->irq_disable);
614 }
615
intel_guc_submission_enable(struct intel_guc * guc)616 void intel_guc_submission_enable(struct intel_guc *guc)
617 {
618 struct intel_gt *gt = guc_to_gt(guc);
619 struct intel_engine_cs *engine;
620 enum intel_engine_id id;
621
622 /*
623 * We're using GuC work items for submitting work through GuC. Since
624 * we're coalescing multiple requests from a single context into a
625 * single work item prior to assigning it to execlist_port, we can
626 * never have more work items than the total number of ports (for all
627 * engines). The GuC firmware is controlling the HEAD of work queue,
628 * and it is guaranteed that it will remove the work item from the
629 * queue before our request is completed.
630 */
631 BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.inflight) *
632 sizeof(struct guc_wq_item) *
633 I915_NUM_ENGINES > GUC_WQ_SIZE);
634
635 guc_proc_desc_init(guc);
636 guc_stage_desc_init(guc);
637
638 /* Take over from manual control of ELSP (execlists) */
639 guc_interrupts_capture(gt);
640
641 for_each_engine(engine, gt, id) {
642 engine->set_default_submission = guc_set_default_submission;
643 engine->set_default_submission(engine);
644 }
645 }
646
intel_guc_submission_disable(struct intel_guc * guc)647 void intel_guc_submission_disable(struct intel_guc *guc)
648 {
649 struct intel_gt *gt = guc_to_gt(guc);
650
651 GEM_BUG_ON(gt->awake); /* GT should be parked first */
652
653 /* Note: By the time we're here, GuC may have already been reset */
654
655 guc_interrupts_release(gt);
656
657 guc_stage_desc_fini(guc);
658 guc_proc_desc_fini(guc);
659 }
660
__guc_submission_selected(struct intel_guc * guc)661 static bool __guc_submission_selected(struct intel_guc *guc)
662 {
663 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
664
665 if (!intel_guc_submission_is_supported(guc))
666 return false;
667
668 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
669 }
670
intel_guc_submission_init_early(struct intel_guc * guc)671 void intel_guc_submission_init_early(struct intel_guc *guc)
672 {
673 guc->submission_selected = __guc_submission_selected(guc);
674 }
675
intel_engine_in_guc_submission_mode(const struct intel_engine_cs * engine)676 bool intel_engine_in_guc_submission_mode(const struct intel_engine_cs *engine)
677 {
678 return engine->set_default_submission == guc_set_default_submission;
679 }
680