• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 /*
25  * Structure allocated for each page or THP when block size < page size
26  * to track sub-page uptodate status and I/O completions.
27  */
28 struct iomap_page {
29 	atomic_t		read_bytes_pending;
30 	atomic_t		write_bytes_pending;
31 	spinlock_t		uptodate_lock;
32 	unsigned long		uptodate[];
33 };
34 
to_iomap_page(struct page * page)35 static inline struct iomap_page *to_iomap_page(struct page *page)
36 {
37 	/*
38 	 * per-block data is stored in the head page.  Callers should
39 	 * not be dealing with tail pages (and if they are, they can
40 	 * call thp_head() first.
41 	 */
42 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
43 
44 	if (page_has_private(page))
45 		return (struct iomap_page *)page_private(page);
46 	return NULL;
47 }
48 
49 static struct bio_set iomap_ioend_bioset;
50 
51 static struct iomap_page *
iomap_page_create(struct inode * inode,struct page * page)52 iomap_page_create(struct inode *inode, struct page *page)
53 {
54 	struct iomap_page *iop = to_iomap_page(page);
55 	unsigned int nr_blocks = i_blocks_per_page(inode, page);
56 
57 	if (iop || nr_blocks <= 1)
58 		return iop;
59 
60 	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
61 			GFP_NOFS | __GFP_NOFAIL);
62 	spin_lock_init(&iop->uptodate_lock);
63 	if (PageUptodate(page))
64 		bitmap_fill(iop->uptodate, nr_blocks);
65 	attach_page_private(page, iop);
66 	return iop;
67 }
68 
69 static void
iomap_page_release(struct page * page)70 iomap_page_release(struct page *page)
71 {
72 	struct iomap_page *iop = detach_page_private(page);
73 	unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page);
74 
75 	if (!iop)
76 		return;
77 	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
78 	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
79 	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
80 			PageUptodate(page));
81 	kfree(iop);
82 }
83 
84 /*
85  * Calculate the range inside the page that we actually need to read.
86  */
87 static void
iomap_adjust_read_range(struct inode * inode,struct iomap_page * iop,loff_t * pos,loff_t length,unsigned * offp,unsigned * lenp)88 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
89 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
90 {
91 	loff_t orig_pos = *pos;
92 	loff_t isize = i_size_read(inode);
93 	unsigned block_bits = inode->i_blkbits;
94 	unsigned block_size = (1 << block_bits);
95 	unsigned poff = offset_in_page(*pos);
96 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
97 	unsigned first = poff >> block_bits;
98 	unsigned last = (poff + plen - 1) >> block_bits;
99 
100 	/*
101 	 * If the block size is smaller than the page size we need to check the
102 	 * per-block uptodate status and adjust the offset and length if needed
103 	 * to avoid reading in already uptodate ranges.
104 	 */
105 	if (iop) {
106 		unsigned int i;
107 
108 		/* move forward for each leading block marked uptodate */
109 		for (i = first; i <= last; i++) {
110 			if (!test_bit(i, iop->uptodate))
111 				break;
112 			*pos += block_size;
113 			poff += block_size;
114 			plen -= block_size;
115 			first++;
116 		}
117 
118 		/* truncate len if we find any trailing uptodate block(s) */
119 		for ( ; i <= last; i++) {
120 			if (test_bit(i, iop->uptodate)) {
121 				plen -= (last - i + 1) * block_size;
122 				last = i - 1;
123 				break;
124 			}
125 		}
126 	}
127 
128 	/*
129 	 * If the extent spans the block that contains the i_size we need to
130 	 * handle both halves separately so that we properly zero data in the
131 	 * page cache for blocks that are entirely outside of i_size.
132 	 */
133 	if (orig_pos <= isize && orig_pos + length > isize) {
134 		unsigned end = offset_in_page(isize - 1) >> block_bits;
135 
136 		if (first <= end && last > end)
137 			plen -= (last - end) * block_size;
138 	}
139 
140 	*offp = poff;
141 	*lenp = plen;
142 }
143 
144 static void
iomap_iop_set_range_uptodate(struct page * page,unsigned off,unsigned len)145 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
146 {
147 	struct iomap_page *iop = to_iomap_page(page);
148 	struct inode *inode = page->mapping->host;
149 	unsigned first = off >> inode->i_blkbits;
150 	unsigned last = (off + len - 1) >> inode->i_blkbits;
151 	unsigned long flags;
152 
153 	spin_lock_irqsave(&iop->uptodate_lock, flags);
154 	bitmap_set(iop->uptodate, first, last - first + 1);
155 	if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page)))
156 		SetPageUptodate(page);
157 	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
158 }
159 
160 static void
iomap_set_range_uptodate(struct page * page,unsigned off,unsigned len)161 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
162 {
163 	if (PageError(page))
164 		return;
165 
166 	if (page_has_private(page))
167 		iomap_iop_set_range_uptodate(page, off, len);
168 	else
169 		SetPageUptodate(page);
170 }
171 
172 static void
iomap_read_page_end_io(struct bio_vec * bvec,int error)173 iomap_read_page_end_io(struct bio_vec *bvec, int error)
174 {
175 	struct page *page = bvec->bv_page;
176 	struct iomap_page *iop = to_iomap_page(page);
177 
178 	if (unlikely(error)) {
179 		ClearPageUptodate(page);
180 		SetPageError(page);
181 	} else {
182 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
183 	}
184 
185 	if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending))
186 		unlock_page(page);
187 }
188 
189 static void
iomap_read_end_io(struct bio * bio)190 iomap_read_end_io(struct bio *bio)
191 {
192 	int error = blk_status_to_errno(bio->bi_status);
193 	struct bio_vec *bvec;
194 	struct bvec_iter_all iter_all;
195 
196 	bio_for_each_segment_all(bvec, bio, iter_all)
197 		iomap_read_page_end_io(bvec, error);
198 	bio_put(bio);
199 }
200 
201 struct iomap_readpage_ctx {
202 	struct page		*cur_page;
203 	bool			cur_page_in_bio;
204 	struct bio		*bio;
205 	struct readahead_control *rac;
206 };
207 
208 static void
iomap_read_inline_data(struct inode * inode,struct page * page,struct iomap * iomap)209 iomap_read_inline_data(struct inode *inode, struct page *page,
210 		struct iomap *iomap)
211 {
212 	size_t size = i_size_read(inode);
213 	void *addr;
214 
215 	if (PageUptodate(page))
216 		return;
217 
218 	BUG_ON(page->index);
219 	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
220 
221 	addr = kmap_atomic(page);
222 	memcpy(addr, iomap->inline_data, size);
223 	memset(addr + size, 0, PAGE_SIZE - size);
224 	kunmap_atomic(addr);
225 	SetPageUptodate(page);
226 }
227 
iomap_block_needs_zeroing(struct inode * inode,struct iomap * iomap,loff_t pos)228 static inline bool iomap_block_needs_zeroing(struct inode *inode,
229 		struct iomap *iomap, loff_t pos)
230 {
231 	return iomap->type != IOMAP_MAPPED ||
232 		(iomap->flags & IOMAP_F_NEW) ||
233 		pos >= i_size_read(inode);
234 }
235 
236 static loff_t
iomap_readpage_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)237 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
238 		struct iomap *iomap, struct iomap *srcmap)
239 {
240 	struct iomap_readpage_ctx *ctx = data;
241 	struct page *page = ctx->cur_page;
242 	struct iomap_page *iop = iomap_page_create(inode, page);
243 	bool same_page = false, is_contig = false;
244 	loff_t orig_pos = pos;
245 	unsigned poff, plen;
246 	sector_t sector;
247 
248 	if (iomap->type == IOMAP_INLINE) {
249 		WARN_ON_ONCE(pos);
250 		iomap_read_inline_data(inode, page, iomap);
251 		return PAGE_SIZE;
252 	}
253 
254 	/* zero post-eof blocks as the page may be mapped */
255 	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
256 	if (plen == 0)
257 		goto done;
258 
259 	if (iomap_block_needs_zeroing(inode, iomap, pos)) {
260 		zero_user(page, poff, plen);
261 		iomap_set_range_uptodate(page, poff, plen);
262 		goto done;
263 	}
264 
265 	ctx->cur_page_in_bio = true;
266 	if (iop)
267 		atomic_add(plen, &iop->read_bytes_pending);
268 
269 	/* Try to merge into a previous segment if we can */
270 	sector = iomap_sector(iomap, pos);
271 	if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
272 		if (__bio_try_merge_page(ctx->bio, page, plen, poff,
273 				&same_page))
274 			goto done;
275 		is_contig = true;
276 	}
277 
278 	if (!is_contig || bio_full(ctx->bio, plen)) {
279 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
280 		gfp_t orig_gfp = gfp;
281 		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
282 
283 		if (ctx->bio)
284 			submit_bio(ctx->bio);
285 
286 		if (ctx->rac) /* same as readahead_gfp_mask */
287 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
288 		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
289 		/*
290 		 * If the bio_alloc fails, try it again for a single page to
291 		 * avoid having to deal with partial page reads.  This emulates
292 		 * what do_mpage_readpage does.
293 		 */
294 		if (!ctx->bio)
295 			ctx->bio = bio_alloc(orig_gfp, 1);
296 		ctx->bio->bi_opf = REQ_OP_READ;
297 		if (ctx->rac)
298 			ctx->bio->bi_opf |= REQ_RAHEAD;
299 		ctx->bio->bi_iter.bi_sector = sector;
300 		bio_set_dev(ctx->bio, iomap->bdev);
301 		ctx->bio->bi_end_io = iomap_read_end_io;
302 	}
303 
304 	bio_add_page(ctx->bio, page, plen, poff);
305 done:
306 	/*
307 	 * Move the caller beyond our range so that it keeps making progress.
308 	 * For that we have to include any leading non-uptodate ranges, but
309 	 * we can skip trailing ones as they will be handled in the next
310 	 * iteration.
311 	 */
312 	return pos - orig_pos + plen;
313 }
314 
315 int
iomap_readpage(struct page * page,const struct iomap_ops * ops)316 iomap_readpage(struct page *page, const struct iomap_ops *ops)
317 {
318 	struct iomap_readpage_ctx ctx = { .cur_page = page };
319 	struct inode *inode = page->mapping->host;
320 	unsigned poff;
321 	loff_t ret;
322 
323 	trace_iomap_readpage(page->mapping->host, 1);
324 
325 	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
326 		ret = iomap_apply(inode, page_offset(page) + poff,
327 				PAGE_SIZE - poff, 0, ops, &ctx,
328 				iomap_readpage_actor);
329 		if (ret <= 0) {
330 			WARN_ON_ONCE(ret == 0);
331 			SetPageError(page);
332 			break;
333 		}
334 	}
335 
336 	if (ctx.bio) {
337 		submit_bio(ctx.bio);
338 		WARN_ON_ONCE(!ctx.cur_page_in_bio);
339 	} else {
340 		WARN_ON_ONCE(ctx.cur_page_in_bio);
341 		unlock_page(page);
342 	}
343 
344 	/*
345 	 * Just like mpage_readahead and block_read_full_page we always
346 	 * return 0 and just mark the page as PageError on errors.  This
347 	 * should be cleaned up all through the stack eventually.
348 	 */
349 	return 0;
350 }
351 EXPORT_SYMBOL_GPL(iomap_readpage);
352 
353 static loff_t
iomap_readahead_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)354 iomap_readahead_actor(struct inode *inode, loff_t pos, loff_t length,
355 		void *data, struct iomap *iomap, struct iomap *srcmap)
356 {
357 	struct iomap_readpage_ctx *ctx = data;
358 	loff_t done, ret;
359 
360 	for (done = 0; done < length; done += ret) {
361 		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
362 			if (!ctx->cur_page_in_bio)
363 				unlock_page(ctx->cur_page);
364 			put_page(ctx->cur_page);
365 			ctx->cur_page = NULL;
366 		}
367 		if (!ctx->cur_page) {
368 			ctx->cur_page = readahead_page(ctx->rac);
369 			ctx->cur_page_in_bio = false;
370 		}
371 		ret = iomap_readpage_actor(inode, pos + done, length - done,
372 				ctx, iomap, srcmap);
373 	}
374 
375 	return done;
376 }
377 
378 /**
379  * iomap_readahead - Attempt to read pages from a file.
380  * @rac: Describes the pages to be read.
381  * @ops: The operations vector for the filesystem.
382  *
383  * This function is for filesystems to call to implement their readahead
384  * address_space operation.
385  *
386  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
387  * blocks from disc), and may wait for it.  The caller may be trying to
388  * access a different page, and so sleeping excessively should be avoided.
389  * It may allocate memory, but should avoid costly allocations.  This
390  * function is called with memalloc_nofs set, so allocations will not cause
391  * the filesystem to be reentered.
392  */
iomap_readahead(struct readahead_control * rac,const struct iomap_ops * ops)393 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
394 {
395 	struct inode *inode = rac->mapping->host;
396 	loff_t pos = readahead_pos(rac);
397 	loff_t length = readahead_length(rac);
398 	struct iomap_readpage_ctx ctx = {
399 		.rac	= rac,
400 	};
401 
402 	trace_iomap_readahead(inode, readahead_count(rac));
403 
404 	while (length > 0) {
405 		loff_t ret = iomap_apply(inode, pos, length, 0, ops,
406 				&ctx, iomap_readahead_actor);
407 		if (ret <= 0) {
408 			WARN_ON_ONCE(ret == 0);
409 			break;
410 		}
411 		pos += ret;
412 		length -= ret;
413 	}
414 
415 	if (ctx.bio)
416 		submit_bio(ctx.bio);
417 	if (ctx.cur_page) {
418 		if (!ctx.cur_page_in_bio)
419 			unlock_page(ctx.cur_page);
420 		put_page(ctx.cur_page);
421 	}
422 }
423 EXPORT_SYMBOL_GPL(iomap_readahead);
424 
425 /*
426  * iomap_is_partially_uptodate checks whether blocks within a page are
427  * uptodate or not.
428  *
429  * Returns true if all blocks which correspond to a file portion
430  * we want to read within the page are uptodate.
431  */
432 int
iomap_is_partially_uptodate(struct page * page,unsigned long from,unsigned long count)433 iomap_is_partially_uptodate(struct page *page, unsigned long from,
434 		unsigned long count)
435 {
436 	struct iomap_page *iop = to_iomap_page(page);
437 	struct inode *inode = page->mapping->host;
438 	unsigned len, first, last;
439 	unsigned i;
440 
441 	/* Limit range to one page */
442 	len = min_t(unsigned, PAGE_SIZE - from, count);
443 
444 	/* First and last blocks in range within page */
445 	first = from >> inode->i_blkbits;
446 	last = (from + len - 1) >> inode->i_blkbits;
447 
448 	if (iop) {
449 		for (i = first; i <= last; i++)
450 			if (!test_bit(i, iop->uptodate))
451 				return 0;
452 		return 1;
453 	}
454 
455 	return 0;
456 }
457 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
458 
459 int
iomap_releasepage(struct page * page,gfp_t gfp_mask)460 iomap_releasepage(struct page *page, gfp_t gfp_mask)
461 {
462 	trace_iomap_releasepage(page->mapping->host, page_offset(page),
463 			PAGE_SIZE);
464 
465 	/*
466 	 * mm accommodates an old ext3 case where clean pages might not have had
467 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
468 	 * ->releasepage() via shrink_active_list(), skip those here.
469 	 */
470 	if (PageDirty(page) || PageWriteback(page))
471 		return 0;
472 	iomap_page_release(page);
473 	return 1;
474 }
475 EXPORT_SYMBOL_GPL(iomap_releasepage);
476 
477 void
iomap_invalidatepage(struct page * page,unsigned int offset,unsigned int len)478 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
479 {
480 	trace_iomap_invalidatepage(page->mapping->host, offset, len);
481 
482 	/*
483 	 * If we are invalidating the entire page, clear the dirty state from it
484 	 * and release it to avoid unnecessary buildup of the LRU.
485 	 */
486 	if (offset == 0 && len == PAGE_SIZE) {
487 		WARN_ON_ONCE(PageWriteback(page));
488 		cancel_dirty_page(page);
489 		iomap_page_release(page);
490 	}
491 }
492 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
493 
494 #ifdef CONFIG_MIGRATION
495 int
iomap_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)496 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
497 		struct page *page, enum migrate_mode mode)
498 {
499 	int ret;
500 
501 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
502 	if (ret != MIGRATEPAGE_SUCCESS)
503 		return ret;
504 
505 	if (page_has_private(page))
506 		attach_page_private(newpage, detach_page_private(page));
507 
508 	if (mode != MIGRATE_SYNC_NO_COPY)
509 		migrate_page_copy(newpage, page);
510 	else
511 		migrate_page_states(newpage, page);
512 	return MIGRATEPAGE_SUCCESS;
513 }
514 EXPORT_SYMBOL_GPL(iomap_migrate_page);
515 #endif /* CONFIG_MIGRATION */
516 
517 enum {
518 	IOMAP_WRITE_F_UNSHARE		= (1 << 0),
519 };
520 
521 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)522 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
523 {
524 	loff_t i_size = i_size_read(inode);
525 
526 	/*
527 	 * Only truncate newly allocated pages beyoned EOF, even if the
528 	 * write started inside the existing inode size.
529 	 */
530 	if (pos + len > i_size)
531 		truncate_pagecache_range(inode, max(pos, i_size),
532 					 pos + len - 1);
533 }
534 
535 static int
iomap_read_page_sync(loff_t block_start,struct page * page,unsigned poff,unsigned plen,struct iomap * iomap)536 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
537 		unsigned plen, struct iomap *iomap)
538 {
539 	struct bio_vec bvec;
540 	struct bio bio;
541 
542 	bio_init(&bio, &bvec, 1);
543 	bio.bi_opf = REQ_OP_READ;
544 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
545 	bio_set_dev(&bio, iomap->bdev);
546 	__bio_add_page(&bio, page, plen, poff);
547 	return submit_bio_wait(&bio);
548 }
549 
550 static int
__iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,int flags,struct page * page,struct iomap * srcmap)551 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
552 		struct page *page, struct iomap *srcmap)
553 {
554 	struct iomap_page *iop = iomap_page_create(inode, page);
555 	loff_t block_size = i_blocksize(inode);
556 	loff_t block_start = round_down(pos, block_size);
557 	loff_t block_end = round_up(pos + len, block_size);
558 	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
559 
560 	if (PageUptodate(page))
561 		return 0;
562 	ClearPageError(page);
563 
564 	do {
565 		iomap_adjust_read_range(inode, iop, &block_start,
566 				block_end - block_start, &poff, &plen);
567 		if (plen == 0)
568 			break;
569 
570 		if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
571 		    (from <= poff || from >= poff + plen) &&
572 		    (to <= poff || to >= poff + plen))
573 			continue;
574 
575 		if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
576 			if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
577 				return -EIO;
578 			zero_user_segments(page, poff, from, to, poff + plen);
579 		} else {
580 			int status = iomap_read_page_sync(block_start, page,
581 					poff, plen, srcmap);
582 			if (status)
583 				return status;
584 		}
585 		iomap_set_range_uptodate(page, poff, plen);
586 	} while ((block_start += plen) < block_end);
587 
588 	return 0;
589 }
590 
591 static int
iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,struct iomap * iomap,struct iomap * srcmap)592 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
593 		struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
594 {
595 	const struct iomap_page_ops *page_ops = iomap->page_ops;
596 	struct page *page;
597 	int status = 0;
598 
599 	BUG_ON(pos + len > iomap->offset + iomap->length);
600 	if (srcmap != iomap)
601 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
602 
603 	if (fatal_signal_pending(current))
604 		return -EINTR;
605 
606 	if (page_ops && page_ops->page_prepare) {
607 		status = page_ops->page_prepare(inode, pos, len, iomap);
608 		if (status)
609 			return status;
610 	}
611 
612 	page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
613 			AOP_FLAG_NOFS);
614 	if (!page) {
615 		status = -ENOMEM;
616 		goto out_no_page;
617 	}
618 
619 	if (srcmap->type == IOMAP_INLINE)
620 		iomap_read_inline_data(inode, page, srcmap);
621 	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
622 		status = __block_write_begin_int(page, pos, len, NULL, srcmap);
623 	else
624 		status = __iomap_write_begin(inode, pos, len, flags, page,
625 				srcmap);
626 
627 	if (unlikely(status))
628 		goto out_unlock;
629 
630 	*pagep = page;
631 	return 0;
632 
633 out_unlock:
634 	unlock_page(page);
635 	put_page(page);
636 	iomap_write_failed(inode, pos, len);
637 
638 out_no_page:
639 	if (page_ops && page_ops->page_done)
640 		page_ops->page_done(inode, pos, 0, NULL, iomap);
641 	return status;
642 }
643 
644 int
iomap_set_page_dirty(struct page * page)645 iomap_set_page_dirty(struct page *page)
646 {
647 	struct address_space *mapping = page_mapping(page);
648 	int newly_dirty;
649 
650 	if (unlikely(!mapping))
651 		return !TestSetPageDirty(page);
652 
653 	/*
654 	 * Lock out page->mem_cgroup migration to keep PageDirty
655 	 * synchronized with per-memcg dirty page counters.
656 	 */
657 	lock_page_memcg(page);
658 	newly_dirty = !TestSetPageDirty(page);
659 	if (newly_dirty)
660 		__set_page_dirty(page, mapping, 0);
661 	unlock_page_memcg(page);
662 
663 	if (newly_dirty)
664 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
665 	return newly_dirty;
666 }
667 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
668 
__iomap_write_end(struct inode * inode,loff_t pos,size_t len,size_t copied,struct page * page)669 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
670 		size_t copied, struct page *page)
671 {
672 	flush_dcache_page(page);
673 
674 	/*
675 	 * The blocks that were entirely written will now be uptodate, so we
676 	 * don't have to worry about a readpage reading them and overwriting a
677 	 * partial write.  However if we have encountered a short write and only
678 	 * partially written into a block, it will not be marked uptodate, so a
679 	 * readpage might come in and destroy our partial write.
680 	 *
681 	 * Do the simplest thing, and just treat any short write to a non
682 	 * uptodate page as a zero-length write, and force the caller to redo
683 	 * the whole thing.
684 	 */
685 	if (unlikely(copied < len && !PageUptodate(page)))
686 		return 0;
687 	iomap_set_range_uptodate(page, offset_in_page(pos), len);
688 	iomap_set_page_dirty(page);
689 	return copied;
690 }
691 
iomap_write_end_inline(struct inode * inode,struct page * page,struct iomap * iomap,loff_t pos,size_t copied)692 static size_t iomap_write_end_inline(struct inode *inode, struct page *page,
693 		struct iomap *iomap, loff_t pos, size_t copied)
694 {
695 	void *addr;
696 
697 	WARN_ON_ONCE(!PageUptodate(page));
698 	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
699 
700 	flush_dcache_page(page);
701 	addr = kmap_atomic(page);
702 	memcpy(iomap->inline_data + pos, addr + pos, copied);
703 	kunmap_atomic(addr);
704 
705 	mark_inode_dirty(inode);
706 	return copied;
707 }
708 
709 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
iomap_write_end(struct inode * inode,loff_t pos,size_t len,size_t copied,struct page * page,struct iomap * iomap,struct iomap * srcmap)710 static size_t iomap_write_end(struct inode *inode, loff_t pos, size_t len,
711 		size_t copied, struct page *page, struct iomap *iomap,
712 		struct iomap *srcmap)
713 {
714 	const struct iomap_page_ops *page_ops = iomap->page_ops;
715 	loff_t old_size = inode->i_size;
716 	size_t ret;
717 
718 	if (srcmap->type == IOMAP_INLINE) {
719 		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
720 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
721 		ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
722 				page, NULL);
723 	} else {
724 		ret = __iomap_write_end(inode, pos, len, copied, page);
725 	}
726 
727 	/*
728 	 * Update the in-memory inode size after copying the data into the page
729 	 * cache.  It's up to the file system to write the updated size to disk,
730 	 * preferably after I/O completion so that no stale data is exposed.
731 	 */
732 	if (pos + ret > old_size) {
733 		i_size_write(inode, pos + ret);
734 		iomap->flags |= IOMAP_F_SIZE_CHANGED;
735 	}
736 	unlock_page(page);
737 
738 	if (old_size < pos)
739 		pagecache_isize_extended(inode, old_size, pos);
740 	if (page_ops && page_ops->page_done)
741 		page_ops->page_done(inode, pos, ret, page, iomap);
742 	put_page(page);
743 
744 	if (ret < len)
745 		iomap_write_failed(inode, pos, len);
746 	return ret;
747 }
748 
749 static loff_t
iomap_write_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)750 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
751 		struct iomap *iomap, struct iomap *srcmap)
752 {
753 	struct iov_iter *i = data;
754 	long status = 0;
755 	ssize_t written = 0;
756 
757 	do {
758 		struct page *page;
759 		unsigned long offset;	/* Offset into pagecache page */
760 		unsigned long bytes;	/* Bytes to write to page */
761 		size_t copied;		/* Bytes copied from user */
762 
763 		offset = offset_in_page(pos);
764 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
765 						iov_iter_count(i));
766 again:
767 		if (bytes > length)
768 			bytes = length;
769 
770 		/*
771 		 * Bring in the user page that we will copy from _first_.
772 		 * Otherwise there's a nasty deadlock on copying from the
773 		 * same page as we're writing to, without it being marked
774 		 * up-to-date.
775 		 *
776 		 * Not only is this an optimisation, but it is also required
777 		 * to check that the address is actually valid, when atomic
778 		 * usercopies are used, below.
779 		 */
780 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
781 			status = -EFAULT;
782 			break;
783 		}
784 
785 		status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
786 				srcmap);
787 		if (unlikely(status))
788 			break;
789 
790 		if (mapping_writably_mapped(inode->i_mapping))
791 			flush_dcache_page(page);
792 
793 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
794 
795 		copied = iomap_write_end(inode, pos, bytes, copied, page, iomap,
796 				srcmap);
797 
798 		cond_resched();
799 
800 		iov_iter_advance(i, copied);
801 		if (unlikely(copied == 0)) {
802 			/*
803 			 * If we were unable to copy any data at all, we must
804 			 * fall back to a single segment length write.
805 			 *
806 			 * If we didn't fallback here, we could livelock
807 			 * because not all segments in the iov can be copied at
808 			 * once without a pagefault.
809 			 */
810 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
811 						iov_iter_single_seg_count(i));
812 			goto again;
813 		}
814 		pos += copied;
815 		written += copied;
816 		length -= copied;
817 
818 		balance_dirty_pages_ratelimited(inode->i_mapping);
819 	} while (iov_iter_count(i) && length);
820 
821 	return written ? written : status;
822 }
823 
824 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops)825 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
826 		const struct iomap_ops *ops)
827 {
828 	struct inode *inode = iocb->ki_filp->f_mapping->host;
829 	loff_t pos = iocb->ki_pos, ret = 0, written = 0;
830 
831 	while (iov_iter_count(iter)) {
832 		ret = iomap_apply(inode, pos, iov_iter_count(iter),
833 				IOMAP_WRITE, ops, iter, iomap_write_actor);
834 		if (ret <= 0)
835 			break;
836 		pos += ret;
837 		written += ret;
838 	}
839 
840 	return written ? written : ret;
841 }
842 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
843 
844 static loff_t
iomap_unshare_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)845 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
846 		struct iomap *iomap, struct iomap *srcmap)
847 {
848 	long status = 0;
849 	loff_t written = 0;
850 
851 	/* don't bother with blocks that are not shared to start with */
852 	if (!(iomap->flags & IOMAP_F_SHARED))
853 		return length;
854 	/* don't bother with holes or unwritten extents */
855 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
856 		return length;
857 
858 	do {
859 		unsigned long offset = offset_in_page(pos);
860 		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
861 		struct page *page;
862 
863 		status = iomap_write_begin(inode, pos, bytes,
864 				IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
865 		if (unlikely(status))
866 			return status;
867 
868 		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
869 				srcmap);
870 		if (WARN_ON_ONCE(status == 0))
871 			return -EIO;
872 
873 		cond_resched();
874 
875 		pos += status;
876 		written += status;
877 		length -= status;
878 
879 		balance_dirty_pages_ratelimited(inode->i_mapping);
880 	} while (length);
881 
882 	return written;
883 }
884 
885 int
iomap_file_unshare(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops)886 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
887 		const struct iomap_ops *ops)
888 {
889 	loff_t ret;
890 
891 	while (len) {
892 		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
893 				iomap_unshare_actor);
894 		if (ret <= 0)
895 			return ret;
896 		pos += ret;
897 		len -= ret;
898 	}
899 
900 	return 0;
901 }
902 EXPORT_SYMBOL_GPL(iomap_file_unshare);
903 
iomap_zero(struct inode * inode,loff_t pos,u64 length,struct iomap * iomap,struct iomap * srcmap)904 static s64 iomap_zero(struct inode *inode, loff_t pos, u64 length,
905 		struct iomap *iomap, struct iomap *srcmap)
906 {
907 	struct page *page;
908 	int status;
909 	unsigned offset = offset_in_page(pos);
910 	unsigned bytes = min_t(u64, PAGE_SIZE - offset, length);
911 
912 	status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
913 	if (status)
914 		return status;
915 
916 	zero_user(page, offset, bytes);
917 	mark_page_accessed(page);
918 
919 	return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
920 }
921 
iomap_zero_range_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)922 static loff_t iomap_zero_range_actor(struct inode *inode, loff_t pos,
923 		loff_t length, void *data, struct iomap *iomap,
924 		struct iomap *srcmap)
925 {
926 	bool *did_zero = data;
927 	loff_t written = 0;
928 
929 	/* already zeroed?  we're done. */
930 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
931 		return length;
932 
933 	do {
934 		s64 bytes;
935 
936 		if (IS_DAX(inode))
937 			bytes = dax_iomap_zero(pos, length, iomap);
938 		else
939 			bytes = iomap_zero(inode, pos, length, iomap, srcmap);
940 		if (bytes < 0)
941 			return bytes;
942 
943 		pos += bytes;
944 		length -= bytes;
945 		written += bytes;
946 		if (did_zero)
947 			*did_zero = true;
948 	} while (length > 0);
949 
950 	return written;
951 }
952 
953 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops)954 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
955 		const struct iomap_ops *ops)
956 {
957 	loff_t ret;
958 
959 	while (len > 0) {
960 		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
961 				ops, did_zero, iomap_zero_range_actor);
962 		if (ret <= 0)
963 			return ret;
964 
965 		pos += ret;
966 		len -= ret;
967 	}
968 
969 	return 0;
970 }
971 EXPORT_SYMBOL_GPL(iomap_zero_range);
972 
973 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops)974 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
975 		const struct iomap_ops *ops)
976 {
977 	unsigned int blocksize = i_blocksize(inode);
978 	unsigned int off = pos & (blocksize - 1);
979 
980 	/* Block boundary? Nothing to do */
981 	if (!off)
982 		return 0;
983 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
984 }
985 EXPORT_SYMBOL_GPL(iomap_truncate_page);
986 
987 static loff_t
iomap_page_mkwrite_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)988 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
989 		void *data, struct iomap *iomap, struct iomap *srcmap)
990 {
991 	struct page *page = data;
992 	int ret;
993 
994 	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
995 		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
996 		if (ret)
997 			return ret;
998 		block_commit_write(page, 0, length);
999 	} else {
1000 		WARN_ON_ONCE(!PageUptodate(page));
1001 		iomap_page_create(inode, page);
1002 		set_page_dirty(page);
1003 	}
1004 
1005 	return length;
1006 }
1007 
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops)1008 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1009 {
1010 	struct page *page = vmf->page;
1011 	struct inode *inode = file_inode(vmf->vma->vm_file);
1012 	unsigned long length;
1013 	loff_t offset;
1014 	ssize_t ret;
1015 
1016 	lock_page(page);
1017 	ret = page_mkwrite_check_truncate(page, inode);
1018 	if (ret < 0)
1019 		goto out_unlock;
1020 	length = ret;
1021 
1022 	offset = page_offset(page);
1023 	while (length > 0) {
1024 		ret = iomap_apply(inode, offset, length,
1025 				IOMAP_WRITE | IOMAP_FAULT, ops, page,
1026 				iomap_page_mkwrite_actor);
1027 		if (unlikely(ret <= 0))
1028 			goto out_unlock;
1029 		offset += ret;
1030 		length -= ret;
1031 	}
1032 
1033 	wait_for_stable_page(page);
1034 	return VM_FAULT_LOCKED;
1035 out_unlock:
1036 	unlock_page(page);
1037 	return block_page_mkwrite_return(ret);
1038 }
1039 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1040 
1041 static void
iomap_finish_page_writeback(struct inode * inode,struct page * page,int error,unsigned int len)1042 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1043 		int error, unsigned int len)
1044 {
1045 	struct iomap_page *iop = to_iomap_page(page);
1046 
1047 	if (error) {
1048 		SetPageError(page);
1049 		mapping_set_error(inode->i_mapping, error);
1050 	}
1051 
1052 	WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1053 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1054 
1055 	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1056 		end_page_writeback(page);
1057 }
1058 
1059 /*
1060  * We're now finished for good with this ioend structure.  Update the page
1061  * state, release holds on bios, and finally free up memory.  Do not use the
1062  * ioend after this.
1063  */
1064 static void
iomap_finish_ioend(struct iomap_ioend * ioend,int error)1065 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1066 {
1067 	struct inode *inode = ioend->io_inode;
1068 	struct bio *bio = &ioend->io_inline_bio;
1069 	struct bio *last = ioend->io_bio, *next;
1070 	u64 start = bio->bi_iter.bi_sector;
1071 	loff_t offset = ioend->io_offset;
1072 	bool quiet = bio_flagged(bio, BIO_QUIET);
1073 
1074 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1075 		struct bio_vec *bv;
1076 		struct bvec_iter_all iter_all;
1077 
1078 		/*
1079 		 * For the last bio, bi_private points to the ioend, so we
1080 		 * need to explicitly end the iteration here.
1081 		 */
1082 		if (bio == last)
1083 			next = NULL;
1084 		else
1085 			next = bio->bi_private;
1086 
1087 		/* walk each page on bio, ending page IO on them */
1088 		bio_for_each_segment_all(bv, bio, iter_all)
1089 			iomap_finish_page_writeback(inode, bv->bv_page, error,
1090 					bv->bv_len);
1091 		bio_put(bio);
1092 	}
1093 	/* The ioend has been freed by bio_put() */
1094 
1095 	if (unlikely(error && !quiet)) {
1096 		printk_ratelimited(KERN_ERR
1097 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1098 			inode->i_sb->s_id, inode->i_ino, offset, start);
1099 	}
1100 }
1101 
1102 void
iomap_finish_ioends(struct iomap_ioend * ioend,int error)1103 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1104 {
1105 	struct list_head tmp;
1106 
1107 	list_replace_init(&ioend->io_list, &tmp);
1108 	iomap_finish_ioend(ioend, error);
1109 
1110 	while (!list_empty(&tmp)) {
1111 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1112 		list_del_init(&ioend->io_list);
1113 		iomap_finish_ioend(ioend, error);
1114 	}
1115 }
1116 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1117 
1118 /*
1119  * We can merge two adjacent ioends if they have the same set of work to do.
1120  */
1121 static bool
iomap_ioend_can_merge(struct iomap_ioend * ioend,struct iomap_ioend * next)1122 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1123 {
1124 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1125 		return false;
1126 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1127 	    (next->io_flags & IOMAP_F_SHARED))
1128 		return false;
1129 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1130 	    (next->io_type == IOMAP_UNWRITTEN))
1131 		return false;
1132 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1133 		return false;
1134 	return true;
1135 }
1136 
1137 void
iomap_ioend_try_merge(struct iomap_ioend * ioend,struct list_head * more_ioends,void (* merge_private)(struct iomap_ioend * ioend,struct iomap_ioend * next))1138 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
1139 		void (*merge_private)(struct iomap_ioend *ioend,
1140 				struct iomap_ioend *next))
1141 {
1142 	struct iomap_ioend *next;
1143 
1144 	INIT_LIST_HEAD(&ioend->io_list);
1145 
1146 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1147 			io_list))) {
1148 		if (!iomap_ioend_can_merge(ioend, next))
1149 			break;
1150 		list_move_tail(&next->io_list, &ioend->io_list);
1151 		ioend->io_size += next->io_size;
1152 		if (next->io_private && merge_private)
1153 			merge_private(ioend, next);
1154 	}
1155 }
1156 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1157 
1158 static int
iomap_ioend_compare(void * priv,struct list_head * a,struct list_head * b)1159 iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b)
1160 {
1161 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1162 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1163 
1164 	if (ia->io_offset < ib->io_offset)
1165 		return -1;
1166 	if (ia->io_offset > ib->io_offset)
1167 		return 1;
1168 	return 0;
1169 }
1170 
1171 void
iomap_sort_ioends(struct list_head * ioend_list)1172 iomap_sort_ioends(struct list_head *ioend_list)
1173 {
1174 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1175 }
1176 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1177 
iomap_writepage_end_bio(struct bio * bio)1178 static void iomap_writepage_end_bio(struct bio *bio)
1179 {
1180 	struct iomap_ioend *ioend = bio->bi_private;
1181 
1182 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1183 }
1184 
1185 /*
1186  * Submit the final bio for an ioend.
1187  *
1188  * If @error is non-zero, it means that we have a situation where some part of
1189  * the submission process has failed after we have marked paged for writeback
1190  * and unlocked them.  In this situation, we need to fail the bio instead of
1191  * submitting it.  This typically only happens on a filesystem shutdown.
1192  */
1193 static int
iomap_submit_ioend(struct iomap_writepage_ctx * wpc,struct iomap_ioend * ioend,int error)1194 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1195 		int error)
1196 {
1197 	ioend->io_bio->bi_private = ioend;
1198 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1199 
1200 	if (wpc->ops->prepare_ioend)
1201 		error = wpc->ops->prepare_ioend(ioend, error);
1202 	if (error) {
1203 		/*
1204 		 * If we are failing the IO now, just mark the ioend with an
1205 		 * error and finish it.  This will run IO completion immediately
1206 		 * as there is only one reference to the ioend at this point in
1207 		 * time.
1208 		 */
1209 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1210 		bio_endio(ioend->io_bio);
1211 		return error;
1212 	}
1213 
1214 	submit_bio(ioend->io_bio);
1215 	return 0;
1216 }
1217 
1218 static struct iomap_ioend *
iomap_alloc_ioend(struct inode * inode,struct iomap_writepage_ctx * wpc,loff_t offset,sector_t sector,struct writeback_control * wbc)1219 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1220 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1221 {
1222 	struct iomap_ioend *ioend;
1223 	struct bio *bio;
1224 
1225 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
1226 	bio_set_dev(bio, wpc->iomap.bdev);
1227 	bio->bi_iter.bi_sector = sector;
1228 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1229 	bio->bi_write_hint = inode->i_write_hint;
1230 	wbc_init_bio(wbc, bio);
1231 
1232 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1233 	INIT_LIST_HEAD(&ioend->io_list);
1234 	ioend->io_type = wpc->iomap.type;
1235 	ioend->io_flags = wpc->iomap.flags;
1236 	ioend->io_inode = inode;
1237 	ioend->io_size = 0;
1238 	ioend->io_offset = offset;
1239 	ioend->io_private = NULL;
1240 	ioend->io_bio = bio;
1241 	return ioend;
1242 }
1243 
1244 /*
1245  * Allocate a new bio, and chain the old bio to the new one.
1246  *
1247  * Note that we have to do perform the chaining in this unintuitive order
1248  * so that the bi_private linkage is set up in the right direction for the
1249  * traversal in iomap_finish_ioend().
1250  */
1251 static struct bio *
iomap_chain_bio(struct bio * prev)1252 iomap_chain_bio(struct bio *prev)
1253 {
1254 	struct bio *new;
1255 
1256 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
1257 	bio_copy_dev(new, prev);/* also copies over blkcg information */
1258 	new->bi_iter.bi_sector = bio_end_sector(prev);
1259 	new->bi_opf = prev->bi_opf;
1260 	new->bi_write_hint = prev->bi_write_hint;
1261 
1262 	bio_chain(prev, new);
1263 	bio_get(prev);		/* for iomap_finish_ioend */
1264 	submit_bio(prev);
1265 	return new;
1266 }
1267 
1268 static bool
iomap_can_add_to_ioend(struct iomap_writepage_ctx * wpc,loff_t offset,sector_t sector)1269 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1270 		sector_t sector)
1271 {
1272 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1273 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1274 		return false;
1275 	if (wpc->iomap.type != wpc->ioend->io_type)
1276 		return false;
1277 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1278 		return false;
1279 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1280 		return false;
1281 	return true;
1282 }
1283 
1284 /*
1285  * Test to see if we have an existing ioend structure that we could append to
1286  * first, otherwise finish off the current ioend and start another.
1287  */
1288 static void
iomap_add_to_ioend(struct inode * inode,loff_t offset,struct page * page,struct iomap_page * iop,struct iomap_writepage_ctx * wpc,struct writeback_control * wbc,struct list_head * iolist)1289 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1290 		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1291 		struct writeback_control *wbc, struct list_head *iolist)
1292 {
1293 	sector_t sector = iomap_sector(&wpc->iomap, offset);
1294 	unsigned len = i_blocksize(inode);
1295 	unsigned poff = offset & (PAGE_SIZE - 1);
1296 	bool merged, same_page = false;
1297 
1298 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1299 		if (wpc->ioend)
1300 			list_add(&wpc->ioend->io_list, iolist);
1301 		wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1302 	}
1303 
1304 	merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1305 			&same_page);
1306 	if (iop)
1307 		atomic_add(len, &iop->write_bytes_pending);
1308 
1309 	if (!merged) {
1310 		if (bio_full(wpc->ioend->io_bio, len)) {
1311 			wpc->ioend->io_bio =
1312 				iomap_chain_bio(wpc->ioend->io_bio);
1313 		}
1314 		bio_add_page(wpc->ioend->io_bio, page, len, poff);
1315 	}
1316 
1317 	wpc->ioend->io_size += len;
1318 	wbc_account_cgroup_owner(wbc, page, len);
1319 }
1320 
1321 /*
1322  * We implement an immediate ioend submission policy here to avoid needing to
1323  * chain multiple ioends and hence nest mempool allocations which can violate
1324  * forward progress guarantees we need to provide. The current ioend we are
1325  * adding blocks to is cached on the writepage context, and if the new block
1326  * does not append to the cached ioend it will create a new ioend and cache that
1327  * instead.
1328  *
1329  * If a new ioend is created and cached, the old ioend is returned and queued
1330  * locally for submission once the entire page is processed or an error has been
1331  * detected.  While ioends are submitted immediately after they are completed,
1332  * batching optimisations are provided by higher level block plugging.
1333  *
1334  * At the end of a writeback pass, there will be a cached ioend remaining on the
1335  * writepage context that the caller will need to submit.
1336  */
1337 static int
iomap_writepage_map(struct iomap_writepage_ctx * wpc,struct writeback_control * wbc,struct inode * inode,struct page * page,u64 end_offset)1338 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1339 		struct writeback_control *wbc, struct inode *inode,
1340 		struct page *page, u64 end_offset)
1341 {
1342 	struct iomap_page *iop = to_iomap_page(page);
1343 	struct iomap_ioend *ioend, *next;
1344 	unsigned len = i_blocksize(inode);
1345 	u64 file_offset; /* file offset of page */
1346 	int error = 0, count = 0, i;
1347 	LIST_HEAD(submit_list);
1348 
1349 	WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1350 	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1351 
1352 	/*
1353 	 * Walk through the page to find areas to write back. If we run off the
1354 	 * end of the current map or find the current map invalid, grab a new
1355 	 * one.
1356 	 */
1357 	for (i = 0, file_offset = page_offset(page);
1358 	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1359 	     i++, file_offset += len) {
1360 		if (iop && !test_bit(i, iop->uptodate))
1361 			continue;
1362 
1363 		error = wpc->ops->map_blocks(wpc, inode, file_offset);
1364 		if (error)
1365 			break;
1366 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1367 			continue;
1368 		if (wpc->iomap.type == IOMAP_HOLE)
1369 			continue;
1370 		iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1371 				 &submit_list);
1372 		count++;
1373 	}
1374 
1375 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1376 	WARN_ON_ONCE(!PageLocked(page));
1377 	WARN_ON_ONCE(PageWriteback(page));
1378 	WARN_ON_ONCE(PageDirty(page));
1379 
1380 	/*
1381 	 * We cannot cancel the ioend directly here on error.  We may have
1382 	 * already set other pages under writeback and hence we have to run I/O
1383 	 * completion to mark the error state of the pages under writeback
1384 	 * appropriately.
1385 	 */
1386 	if (unlikely(error)) {
1387 		/*
1388 		 * Let the filesystem know what portion of the current page
1389 		 * failed to map. If the page wasn't been added to ioend, it
1390 		 * won't be affected by I/O completion and we must unlock it
1391 		 * now.
1392 		 */
1393 		if (wpc->ops->discard_page)
1394 			wpc->ops->discard_page(page, file_offset);
1395 		if (!count) {
1396 			ClearPageUptodate(page);
1397 			unlock_page(page);
1398 			goto done;
1399 		}
1400 	}
1401 
1402 	set_page_writeback(page);
1403 	unlock_page(page);
1404 
1405 	/*
1406 	 * Preserve the original error if there was one, otherwise catch
1407 	 * submission errors here and propagate into subsequent ioend
1408 	 * submissions.
1409 	 */
1410 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1411 		int error2;
1412 
1413 		list_del_init(&ioend->io_list);
1414 		error2 = iomap_submit_ioend(wpc, ioend, error);
1415 		if (error2 && !error)
1416 			error = error2;
1417 	}
1418 
1419 	/*
1420 	 * We can end up here with no error and nothing to write only if we race
1421 	 * with a partial page truncate on a sub-page block sized filesystem.
1422 	 */
1423 	if (!count)
1424 		end_page_writeback(page);
1425 done:
1426 	mapping_set_error(page->mapping, error);
1427 	return error;
1428 }
1429 
1430 /*
1431  * Write out a dirty page.
1432  *
1433  * For delalloc space on the page we need to allocate space and flush it.
1434  * For unwritten space on the page we need to start the conversion to
1435  * regular allocated space.
1436  */
1437 static int
iomap_do_writepage(struct page * page,struct writeback_control * wbc,void * data)1438 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1439 {
1440 	struct iomap_writepage_ctx *wpc = data;
1441 	struct inode *inode = page->mapping->host;
1442 	pgoff_t end_index;
1443 	u64 end_offset;
1444 	loff_t offset;
1445 
1446 	trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1447 
1448 	/*
1449 	 * Refuse to write the page out if we are called from reclaim context.
1450 	 *
1451 	 * This avoids stack overflows when called from deeply used stacks in
1452 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1453 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1454 	 *
1455 	 * This should never happen except in the case of a VM regression so
1456 	 * warn about it.
1457 	 */
1458 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1459 			PF_MEMALLOC))
1460 		goto redirty;
1461 
1462 	/*
1463 	 * Is this page beyond the end of the file?
1464 	 *
1465 	 * The page index is less than the end_index, adjust the end_offset
1466 	 * to the highest offset that this page should represent.
1467 	 * -----------------------------------------------------
1468 	 * |			file mapping	       | <EOF> |
1469 	 * -----------------------------------------------------
1470 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1471 	 * ^--------------------------------^----------|--------
1472 	 * |     desired writeback range    |      see else    |
1473 	 * ---------------------------------^------------------|
1474 	 */
1475 	offset = i_size_read(inode);
1476 	end_index = offset >> PAGE_SHIFT;
1477 	if (page->index < end_index)
1478 		end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1479 	else {
1480 		/*
1481 		 * Check whether the page to write out is beyond or straddles
1482 		 * i_size or not.
1483 		 * -------------------------------------------------------
1484 		 * |		file mapping		        | <EOF>  |
1485 		 * -------------------------------------------------------
1486 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1487 		 * ^--------------------------------^-----------|---------
1488 		 * |				    |      Straddles     |
1489 		 * ---------------------------------^-----------|--------|
1490 		 */
1491 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1492 
1493 		/*
1494 		 * Skip the page if it is fully outside i_size, e.g. due to a
1495 		 * truncate operation that is in progress. We must redirty the
1496 		 * page so that reclaim stops reclaiming it. Otherwise
1497 		 * iomap_vm_releasepage() is called on it and gets confused.
1498 		 *
1499 		 * Note that the end_index is unsigned long, it would overflow
1500 		 * if the given offset is greater than 16TB on 32-bit system
1501 		 * and if we do check the page is fully outside i_size or not
1502 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1503 		 * will be evaluated to 0.  Hence this page will be redirtied
1504 		 * and be written out repeatedly which would result in an
1505 		 * infinite loop, the user program that perform this operation
1506 		 * will hang.  Instead, we can verify this situation by checking
1507 		 * if the page to write is totally beyond the i_size or if it's
1508 		 * offset is just equal to the EOF.
1509 		 */
1510 		if (page->index > end_index ||
1511 		    (page->index == end_index && offset_into_page == 0))
1512 			goto redirty;
1513 
1514 		/*
1515 		 * The page straddles i_size.  It must be zeroed out on each
1516 		 * and every writepage invocation because it may be mmapped.
1517 		 * "A file is mapped in multiples of the page size.  For a file
1518 		 * that is not a multiple of the page size, the remaining
1519 		 * memory is zeroed when mapped, and writes to that region are
1520 		 * not written out to the file."
1521 		 */
1522 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1523 
1524 		/* Adjust the end_offset to the end of file */
1525 		end_offset = offset;
1526 	}
1527 
1528 	return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1529 
1530 redirty:
1531 	redirty_page_for_writepage(wbc, page);
1532 	unlock_page(page);
1533 	return 0;
1534 }
1535 
1536 int
iomap_writepage(struct page * page,struct writeback_control * wbc,struct iomap_writepage_ctx * wpc,const struct iomap_writeback_ops * ops)1537 iomap_writepage(struct page *page, struct writeback_control *wbc,
1538 		struct iomap_writepage_ctx *wpc,
1539 		const struct iomap_writeback_ops *ops)
1540 {
1541 	int ret;
1542 
1543 	wpc->ops = ops;
1544 	ret = iomap_do_writepage(page, wbc, wpc);
1545 	if (!wpc->ioend)
1546 		return ret;
1547 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1548 }
1549 EXPORT_SYMBOL_GPL(iomap_writepage);
1550 
1551 int
iomap_writepages(struct address_space * mapping,struct writeback_control * wbc,struct iomap_writepage_ctx * wpc,const struct iomap_writeback_ops * ops)1552 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1553 		struct iomap_writepage_ctx *wpc,
1554 		const struct iomap_writeback_ops *ops)
1555 {
1556 	int			ret;
1557 
1558 	wpc->ops = ops;
1559 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1560 	if (!wpc->ioend)
1561 		return ret;
1562 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1563 }
1564 EXPORT_SYMBOL_GPL(iomap_writepages);
1565 
iomap_init(void)1566 static int __init iomap_init(void)
1567 {
1568 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1569 			   offsetof(struct iomap_ioend, io_inline_bio),
1570 			   BIOSET_NEED_BVECS);
1571 }
1572 fs_initcall(iomap_init);
1573