• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
ext4_dio_supported(struct kiocb * iocb,struct iov_iter * iter)39 static bool ext4_dio_supported(struct kiocb *iocb, struct iov_iter *iter)
40 {
41 	struct inode *inode = file_inode(iocb->ki_filp);
42 
43 	if (!fscrypt_dio_supported(iocb, iter))
44 		return false;
45 	if (fsverity_active(inode))
46 		return false;
47 	if (ext4_should_journal_data(inode))
48 		return false;
49 	if (ext4_has_inline_data(inode))
50 		return false;
51 	return true;
52 }
53 
ext4_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)54 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
55 {
56 	ssize_t ret;
57 	struct inode *inode = file_inode(iocb->ki_filp);
58 
59 	if (iocb->ki_flags & IOCB_NOWAIT) {
60 		if (!inode_trylock_shared(inode))
61 			return -EAGAIN;
62 	} else {
63 		inode_lock_shared(inode);
64 	}
65 
66 	if (!ext4_dio_supported(iocb, to)) {
67 		inode_unlock_shared(inode);
68 		/*
69 		 * Fallback to buffered I/O if the operation being performed on
70 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
71 		 * flag needs to be cleared here in order to ensure that the
72 		 * direct I/O path within generic_file_read_iter() is not
73 		 * taken.
74 		 */
75 		iocb->ki_flags &= ~IOCB_DIRECT;
76 		return generic_file_read_iter(iocb, to);
77 	}
78 
79 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL,
80 			   is_sync_kiocb(iocb));
81 	inode_unlock_shared(inode);
82 
83 	file_accessed(iocb->ki_filp);
84 	return ret;
85 }
86 
87 #ifdef CONFIG_FS_DAX
ext4_dax_read_iter(struct kiocb * iocb,struct iov_iter * to)88 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
89 {
90 	struct inode *inode = file_inode(iocb->ki_filp);
91 	ssize_t ret;
92 
93 	if (iocb->ki_flags & IOCB_NOWAIT) {
94 		if (!inode_trylock_shared(inode))
95 			return -EAGAIN;
96 	} else {
97 		inode_lock_shared(inode);
98 	}
99 	/*
100 	 * Recheck under inode lock - at this point we are sure it cannot
101 	 * change anymore
102 	 */
103 	if (!IS_DAX(inode)) {
104 		inode_unlock_shared(inode);
105 		/* Fallback to buffered IO in case we cannot support DAX */
106 		return generic_file_read_iter(iocb, to);
107 	}
108 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
109 	inode_unlock_shared(inode);
110 
111 	file_accessed(iocb->ki_filp);
112 	return ret;
113 }
114 #endif
115 
ext4_file_read_iter(struct kiocb * iocb,struct iov_iter * to)116 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
117 {
118 	struct inode *inode = file_inode(iocb->ki_filp);
119 
120 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
121 		return -EIO;
122 
123 	if (!iov_iter_count(to))
124 		return 0; /* skip atime */
125 
126 #ifdef CONFIG_FS_DAX
127 	if (IS_DAX(inode))
128 		return ext4_dax_read_iter(iocb, to);
129 #endif
130 	if (iocb->ki_flags & IOCB_DIRECT)
131 		return ext4_dio_read_iter(iocb, to);
132 
133 	return generic_file_read_iter(iocb, to);
134 }
135 
136 /*
137  * Called when an inode is released. Note that this is different
138  * from ext4_file_open: open gets called at every open, but release
139  * gets called only when /all/ the files are closed.
140  */
ext4_release_file(struct inode * inode,struct file * filp)141 static int ext4_release_file(struct inode *inode, struct file *filp)
142 {
143 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
144 		ext4_alloc_da_blocks(inode);
145 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
146 	}
147 	/* if we are the last writer on the inode, drop the block reservation */
148 	if ((filp->f_mode & FMODE_WRITE) &&
149 			(atomic_read(&inode->i_writecount) == 1) &&
150 			!EXT4_I(inode)->i_reserved_data_blocks) {
151 		down_write(&EXT4_I(inode)->i_data_sem);
152 		ext4_discard_preallocations(inode, 0);
153 		up_write(&EXT4_I(inode)->i_data_sem);
154 	}
155 	if (is_dx(inode) && filp->private_data)
156 		ext4_htree_free_dir_info(filp->private_data);
157 
158 	return 0;
159 }
160 
161 /*
162  * This tests whether the IO in question is block-aligned or not.
163  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
164  * are converted to written only after the IO is complete.  Until they are
165  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
166  * it needs to zero out portions of the start and/or end block.  If 2 AIO
167  * threads are at work on the same unwritten block, they must be synchronized
168  * or one thread will zero the other's data, causing corruption.
169  */
170 static bool
ext4_unaligned_io(struct inode * inode,struct iov_iter * from,loff_t pos)171 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
172 {
173 	struct super_block *sb = inode->i_sb;
174 	unsigned long blockmask = sb->s_blocksize - 1;
175 
176 	if ((pos | iov_iter_alignment(from)) & blockmask)
177 		return true;
178 
179 	return false;
180 }
181 
182 static bool
ext4_extending_io(struct inode * inode,loff_t offset,size_t len)183 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
184 {
185 	if (offset + len > i_size_read(inode) ||
186 	    offset + len > EXT4_I(inode)->i_disksize)
187 		return true;
188 	return false;
189 }
190 
191 /* Is IO overwriting allocated and initialized blocks? */
ext4_overwrite_io(struct inode * inode,loff_t pos,loff_t len)192 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
193 {
194 	struct ext4_map_blocks map;
195 	unsigned int blkbits = inode->i_blkbits;
196 	int err, blklen;
197 
198 	if (pos + len > i_size_read(inode))
199 		return false;
200 
201 	map.m_lblk = pos >> blkbits;
202 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
203 	blklen = map.m_len;
204 
205 	err = ext4_map_blocks(NULL, inode, &map, 0);
206 	/*
207 	 * 'err==len' means that all of the blocks have been preallocated,
208 	 * regardless of whether they have been initialized or not. To exclude
209 	 * unwritten extents, we need to check m_flags.
210 	 */
211 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
212 }
213 
ext4_generic_write_checks(struct kiocb * iocb,struct iov_iter * from)214 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
215 					 struct iov_iter *from)
216 {
217 	struct inode *inode = file_inode(iocb->ki_filp);
218 	ssize_t ret;
219 
220 	if (unlikely(IS_IMMUTABLE(inode)))
221 		return -EPERM;
222 
223 	ret = generic_write_checks(iocb, from);
224 	if (ret <= 0)
225 		return ret;
226 
227 	/*
228 	 * If we have encountered a bitmap-format file, the size limit
229 	 * is smaller than s_maxbytes, which is for extent-mapped files.
230 	 */
231 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
232 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
233 
234 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
235 			return -EFBIG;
236 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
237 	}
238 
239 	return iov_iter_count(from);
240 }
241 
ext4_write_checks(struct kiocb * iocb,struct iov_iter * from)242 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
243 {
244 	ssize_t ret, count;
245 
246 	count = ext4_generic_write_checks(iocb, from);
247 	if (count <= 0)
248 		return count;
249 
250 	ret = file_modified(iocb->ki_filp);
251 	if (ret)
252 		return ret;
253 	return count;
254 }
255 
ext4_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)256 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
257 					struct iov_iter *from)
258 {
259 	ssize_t ret;
260 	struct inode *inode = file_inode(iocb->ki_filp);
261 
262 	if (iocb->ki_flags & IOCB_NOWAIT)
263 		return -EOPNOTSUPP;
264 
265 	inode_lock(inode);
266 	ret = ext4_write_checks(iocb, from);
267 	if (ret <= 0)
268 		goto out;
269 
270 	current->backing_dev_info = inode_to_bdi(inode);
271 	ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
272 	current->backing_dev_info = NULL;
273 
274 out:
275 	inode_unlock(inode);
276 	if (likely(ret > 0)) {
277 		iocb->ki_pos += ret;
278 		ret = generic_write_sync(iocb, ret);
279 	}
280 
281 	return ret;
282 }
283 
ext4_handle_inode_extension(struct inode * inode,loff_t offset,ssize_t written,size_t count)284 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
285 					   ssize_t written, size_t count)
286 {
287 	handle_t *handle;
288 	bool truncate = false;
289 	u8 blkbits = inode->i_blkbits;
290 	ext4_lblk_t written_blk, end_blk;
291 	int ret;
292 
293 	/*
294 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
295 	 * inode->i_size while the I/O was running due to writeback of delalloc
296 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
297 	 * zeroed/unwritten extents if this is possible; thus we won't leave
298 	 * uninitialized blocks in a file even if we didn't succeed in writing
299 	 * as much as we intended.
300 	 */
301 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
302 	if (offset + count <= EXT4_I(inode)->i_disksize) {
303 		/*
304 		 * We need to ensure that the inode is removed from the orphan
305 		 * list if it has been added prematurely, due to writeback of
306 		 * delalloc blocks.
307 		 */
308 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
309 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
310 
311 			if (IS_ERR(handle)) {
312 				ext4_orphan_del(NULL, inode);
313 				return PTR_ERR(handle);
314 			}
315 
316 			ext4_orphan_del(handle, inode);
317 			ext4_journal_stop(handle);
318 		}
319 
320 		return written;
321 	}
322 
323 	if (written < 0)
324 		goto truncate;
325 
326 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
327 	if (IS_ERR(handle)) {
328 		written = PTR_ERR(handle);
329 		goto truncate;
330 	}
331 
332 	if (ext4_update_inode_size(inode, offset + written)) {
333 		ret = ext4_mark_inode_dirty(handle, inode);
334 		if (unlikely(ret)) {
335 			written = ret;
336 			ext4_journal_stop(handle);
337 			goto truncate;
338 		}
339 	}
340 
341 	/*
342 	 * We may need to truncate allocated but not written blocks beyond EOF.
343 	 */
344 	written_blk = ALIGN(offset + written, 1 << blkbits);
345 	end_blk = ALIGN(offset + count, 1 << blkbits);
346 	if (written_blk < end_blk && ext4_can_truncate(inode))
347 		truncate = true;
348 
349 	/*
350 	 * Remove the inode from the orphan list if it has been extended and
351 	 * everything went OK.
352 	 */
353 	if (!truncate && inode->i_nlink)
354 		ext4_orphan_del(handle, inode);
355 	ext4_journal_stop(handle);
356 
357 	if (truncate) {
358 truncate:
359 		ext4_truncate_failed_write(inode);
360 		/*
361 		 * If the truncate operation failed early, then the inode may
362 		 * still be on the orphan list. In that case, we need to try
363 		 * remove the inode from the in-memory linked list.
364 		 */
365 		if (inode->i_nlink)
366 			ext4_orphan_del(NULL, inode);
367 	}
368 
369 	return written;
370 }
371 
ext4_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)372 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
373 				 int error, unsigned int flags)
374 {
375 	loff_t pos = iocb->ki_pos;
376 	struct inode *inode = file_inode(iocb->ki_filp);
377 
378 	if (error)
379 		return error;
380 
381 	if (size && flags & IOMAP_DIO_UNWRITTEN) {
382 		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
383 		if (error < 0)
384 			return error;
385 	}
386 	/*
387 	 * If we are extending the file, we have to update i_size here before
388 	 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
389 	 * buffered reads could zero out too much from page cache pages. Update
390 	 * of on-disk size will happen later in ext4_dio_write_iter() where
391 	 * we have enough information to also perform orphan list handling etc.
392 	 * Note that we perform all extending writes synchronously under
393 	 * i_rwsem held exclusively so i_size update is safe here in that case.
394 	 * If the write was not extending, we cannot see pos > i_size here
395 	 * because operations reducing i_size like truncate wait for all
396 	 * outstanding DIO before updating i_size.
397 	 */
398 	pos += size;
399 	if (pos > i_size_read(inode))
400 		i_size_write(inode, pos);
401 
402 	return 0;
403 }
404 
405 static const struct iomap_dio_ops ext4_dio_write_ops = {
406 	.end_io = ext4_dio_write_end_io,
407 };
408 
409 /*
410  * The intention here is to start with shared lock acquired then see if any
411  * condition requires an exclusive inode lock. If yes, then we restart the
412  * whole operation by releasing the shared lock and acquiring exclusive lock.
413  *
414  * - For unaligned_io we never take shared lock as it may cause data corruption
415  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
416  *
417  * - For extending writes case we don't take the shared lock, since it requires
418  *   updating inode i_disksize and/or orphan handling with exclusive lock.
419  *
420  * - shared locking will only be true mostly with overwrites. Otherwise we will
421  *   switch to exclusive i_rwsem lock.
422  */
ext4_dio_write_checks(struct kiocb * iocb,struct iov_iter * from,bool * ilock_shared,bool * extend)423 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
424 				     bool *ilock_shared, bool *extend)
425 {
426 	struct file *file = iocb->ki_filp;
427 	struct inode *inode = file_inode(file);
428 	loff_t offset;
429 	size_t count;
430 	ssize_t ret;
431 
432 restart:
433 	ret = ext4_generic_write_checks(iocb, from);
434 	if (ret <= 0)
435 		goto out;
436 
437 	offset = iocb->ki_pos;
438 	count = ret;
439 	if (ext4_extending_io(inode, offset, count))
440 		*extend = true;
441 	/*
442 	 * Determine whether the IO operation will overwrite allocated
443 	 * and initialized blocks.
444 	 * We need exclusive i_rwsem for changing security info
445 	 * in file_modified().
446 	 */
447 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
448 	     !ext4_overwrite_io(inode, offset, count))) {
449 		if (iocb->ki_flags & IOCB_NOWAIT) {
450 			ret = -EAGAIN;
451 			goto out;
452 		}
453 		inode_unlock_shared(inode);
454 		*ilock_shared = false;
455 		inode_lock(inode);
456 		goto restart;
457 	}
458 
459 	ret = file_modified(file);
460 	if (ret < 0)
461 		goto out;
462 
463 	return count;
464 out:
465 	if (*ilock_shared)
466 		inode_unlock_shared(inode);
467 	else
468 		inode_unlock(inode);
469 	return ret;
470 }
471 
ext4_dio_write_iter(struct kiocb * iocb,struct iov_iter * from)472 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
473 {
474 	ssize_t ret;
475 	handle_t *handle;
476 	struct inode *inode = file_inode(iocb->ki_filp);
477 	loff_t offset = iocb->ki_pos;
478 	size_t count = iov_iter_count(from);
479 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
480 	bool extend = false, unaligned_io = false;
481 	bool ilock_shared = true;
482 
483 	/*
484 	 * We initially start with shared inode lock unless it is
485 	 * unaligned IO which needs exclusive lock anyways.
486 	 */
487 	if (ext4_unaligned_io(inode, from, offset)) {
488 		unaligned_io = true;
489 		ilock_shared = false;
490 	}
491 	/*
492 	 * Quick check here without any i_rwsem lock to see if it is extending
493 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
494 	 * proper locking in place.
495 	 */
496 	if (offset + count > i_size_read(inode))
497 		ilock_shared = false;
498 
499 	if (iocb->ki_flags & IOCB_NOWAIT) {
500 		if (ilock_shared) {
501 			if (!inode_trylock_shared(inode))
502 				return -EAGAIN;
503 		} else {
504 			if (!inode_trylock(inode))
505 				return -EAGAIN;
506 		}
507 	} else {
508 		if (ilock_shared)
509 			inode_lock_shared(inode);
510 		else
511 			inode_lock(inode);
512 	}
513 
514 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
515 	if (!ext4_dio_supported(iocb, from)) {
516 		if (ilock_shared)
517 			inode_unlock_shared(inode);
518 		else
519 			inode_unlock(inode);
520 		return ext4_buffered_write_iter(iocb, from);
521 	}
522 
523 	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
524 	if (ret <= 0)
525 		return ret;
526 
527 	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
528 	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
529 		ret = -EAGAIN;
530 		goto out;
531 	}
532 	/*
533 	 * Make sure inline data cannot be created anymore since we are going
534 	 * to allocate blocks for DIO. We know the inode does not have any
535 	 * inline data now because ext4_dio_supported() checked for that.
536 	 */
537 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
538 
539 	offset = iocb->ki_pos;
540 	count = ret;
541 
542 	/*
543 	 * Unaligned direct IO must be serialized among each other as zeroing
544 	 * of partial blocks of two competing unaligned IOs can result in data
545 	 * corruption.
546 	 *
547 	 * So we make sure we don't allow any unaligned IO in flight.
548 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
549 	 * below inode_dio_wait() may anyway become a no-op, since we start
550 	 * with exclusive lock.
551 	 */
552 	if (unaligned_io)
553 		inode_dio_wait(inode);
554 
555 	if (extend) {
556 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
557 		if (IS_ERR(handle)) {
558 			ret = PTR_ERR(handle);
559 			goto out;
560 		}
561 
562 		ret = ext4_orphan_add(handle, inode);
563 		if (ret) {
564 			ext4_journal_stop(handle);
565 			goto out;
566 		}
567 
568 		ext4_journal_stop(handle);
569 	}
570 
571 	if (ilock_shared)
572 		iomap_ops = &ext4_iomap_overwrite_ops;
573 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
574 			   is_sync_kiocb(iocb) || unaligned_io || extend);
575 	if (ret == -ENOTBLK)
576 		ret = 0;
577 
578 	if (extend)
579 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
580 
581 out:
582 	if (ilock_shared)
583 		inode_unlock_shared(inode);
584 	else
585 		inode_unlock(inode);
586 
587 	if (ret >= 0 && iov_iter_count(from)) {
588 		ssize_t err;
589 		loff_t endbyte;
590 
591 		offset = iocb->ki_pos;
592 		err = ext4_buffered_write_iter(iocb, from);
593 		if (err < 0)
594 			return err;
595 
596 		/*
597 		 * We need to ensure that the pages within the page cache for
598 		 * the range covered by this I/O are written to disk and
599 		 * invalidated. This is in attempt to preserve the expected
600 		 * direct I/O semantics in the case we fallback to buffered I/O
601 		 * to complete off the I/O request.
602 		 */
603 		ret += err;
604 		endbyte = offset + err - 1;
605 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
606 						   offset, endbyte);
607 		if (!err)
608 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
609 						 offset >> PAGE_SHIFT,
610 						 endbyte >> PAGE_SHIFT);
611 	}
612 
613 	return ret;
614 }
615 
616 #ifdef CONFIG_FS_DAX
617 static ssize_t
ext4_dax_write_iter(struct kiocb * iocb,struct iov_iter * from)618 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
619 {
620 	ssize_t ret;
621 	size_t count;
622 	loff_t offset;
623 	handle_t *handle;
624 	bool extend = false;
625 	struct inode *inode = file_inode(iocb->ki_filp);
626 
627 	if (iocb->ki_flags & IOCB_NOWAIT) {
628 		if (!inode_trylock(inode))
629 			return -EAGAIN;
630 	} else {
631 		inode_lock(inode);
632 	}
633 
634 	ret = ext4_write_checks(iocb, from);
635 	if (ret <= 0)
636 		goto out;
637 
638 	offset = iocb->ki_pos;
639 	count = iov_iter_count(from);
640 
641 	if (offset + count > EXT4_I(inode)->i_disksize) {
642 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
643 		if (IS_ERR(handle)) {
644 			ret = PTR_ERR(handle);
645 			goto out;
646 		}
647 
648 		ret = ext4_orphan_add(handle, inode);
649 		if (ret) {
650 			ext4_journal_stop(handle);
651 			goto out;
652 		}
653 
654 		extend = true;
655 		ext4_journal_stop(handle);
656 	}
657 
658 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
659 
660 	if (extend)
661 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
662 out:
663 	inode_unlock(inode);
664 	if (ret > 0)
665 		ret = generic_write_sync(iocb, ret);
666 	return ret;
667 }
668 #endif
669 
670 static ssize_t
ext4_file_write_iter(struct kiocb * iocb,struct iov_iter * from)671 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
672 {
673 	struct inode *inode = file_inode(iocb->ki_filp);
674 
675 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
676 		return -EIO;
677 
678 #ifdef CONFIG_FS_DAX
679 	if (IS_DAX(inode))
680 		return ext4_dax_write_iter(iocb, from);
681 #endif
682 	if (iocb->ki_flags & IOCB_DIRECT)
683 		return ext4_dio_write_iter(iocb, from);
684 	else
685 		return ext4_buffered_write_iter(iocb, from);
686 }
687 
688 #ifdef CONFIG_FS_DAX
ext4_dax_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)689 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
690 		enum page_entry_size pe_size)
691 {
692 	int error = 0;
693 	vm_fault_t result;
694 	int retries = 0;
695 	handle_t *handle = NULL;
696 	struct inode *inode = file_inode(vmf->vma->vm_file);
697 	struct super_block *sb = inode->i_sb;
698 
699 	/*
700 	 * We have to distinguish real writes from writes which will result in a
701 	 * COW page; COW writes should *not* poke the journal (the file will not
702 	 * be changed). Doing so would cause unintended failures when mounted
703 	 * read-only.
704 	 *
705 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
706 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
707 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
708 	 * we eventually come back with a COW page.
709 	 */
710 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
711 		(vmf->vma->vm_flags & VM_SHARED);
712 	pfn_t pfn;
713 
714 	if (write) {
715 		sb_start_pagefault(sb);
716 		file_update_time(vmf->vma->vm_file);
717 		down_read(&EXT4_I(inode)->i_mmap_sem);
718 retry:
719 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
720 					       EXT4_DATA_TRANS_BLOCKS(sb));
721 		if (IS_ERR(handle)) {
722 			up_read(&EXT4_I(inode)->i_mmap_sem);
723 			sb_end_pagefault(sb);
724 			return VM_FAULT_SIGBUS;
725 		}
726 	} else {
727 		down_read(&EXT4_I(inode)->i_mmap_sem);
728 	}
729 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
730 	if (write) {
731 		ext4_journal_stop(handle);
732 
733 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
734 		    ext4_should_retry_alloc(sb, &retries))
735 			goto retry;
736 		/* Handling synchronous page fault? */
737 		if (result & VM_FAULT_NEEDDSYNC)
738 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
739 		up_read(&EXT4_I(inode)->i_mmap_sem);
740 		sb_end_pagefault(sb);
741 	} else {
742 		up_read(&EXT4_I(inode)->i_mmap_sem);
743 	}
744 
745 	return result;
746 }
747 
ext4_dax_fault(struct vm_fault * vmf)748 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
749 {
750 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
751 }
752 
753 static const struct vm_operations_struct ext4_dax_vm_ops = {
754 	.fault		= ext4_dax_fault,
755 	.huge_fault	= ext4_dax_huge_fault,
756 	.page_mkwrite	= ext4_dax_fault,
757 	.pfn_mkwrite	= ext4_dax_fault,
758 };
759 #else
760 #define ext4_dax_vm_ops	ext4_file_vm_ops
761 #endif
762 
763 static const struct vm_operations_struct ext4_file_vm_ops = {
764 	.fault		= ext4_filemap_fault,
765 	.map_pages	= filemap_map_pages,
766 	.page_mkwrite   = ext4_page_mkwrite,
767 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
768 	.allow_speculation = filemap_allow_speculation,
769 #endif
770 };
771 
ext4_file_mmap(struct file * file,struct vm_area_struct * vma)772 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
773 {
774 	struct inode *inode = file->f_mapping->host;
775 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
776 	struct dax_device *dax_dev = sbi->s_daxdev;
777 
778 	if (unlikely(ext4_forced_shutdown(sbi)))
779 		return -EIO;
780 
781 	/*
782 	 * We don't support synchronous mappings for non-DAX files and
783 	 * for DAX files if underneath dax_device is not synchronous.
784 	 */
785 	if (!daxdev_mapping_supported(vma, dax_dev))
786 		return -EOPNOTSUPP;
787 
788 	file_accessed(file);
789 	if (IS_DAX(file_inode(file))) {
790 		vma->vm_ops = &ext4_dax_vm_ops;
791 		vma->vm_flags |= VM_HUGEPAGE;
792 	} else {
793 		vma->vm_ops = &ext4_file_vm_ops;
794 	}
795 	return 0;
796 }
797 
ext4_sample_last_mounted(struct super_block * sb,struct vfsmount * mnt)798 static int ext4_sample_last_mounted(struct super_block *sb,
799 				    struct vfsmount *mnt)
800 {
801 	struct ext4_sb_info *sbi = EXT4_SB(sb);
802 	struct path path;
803 	char buf[64], *cp;
804 	handle_t *handle;
805 	int err;
806 
807 	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
808 		return 0;
809 
810 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
811 		return 0;
812 
813 	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
814 	/*
815 	 * Sample where the filesystem has been mounted and
816 	 * store it in the superblock for sysadmin convenience
817 	 * when trying to sort through large numbers of block
818 	 * devices or filesystem images.
819 	 */
820 	memset(buf, 0, sizeof(buf));
821 	path.mnt = mnt;
822 	path.dentry = mnt->mnt_root;
823 	cp = d_path(&path, buf, sizeof(buf));
824 	err = 0;
825 	if (IS_ERR(cp))
826 		goto out;
827 
828 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
829 	err = PTR_ERR(handle);
830 	if (IS_ERR(handle))
831 		goto out;
832 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
833 	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
834 	if (err)
835 		goto out_journal;
836 	strncpy(sbi->s_es->s_last_mounted, cp,
837 		sizeof(sbi->s_es->s_last_mounted));
838 	ext4_handle_dirty_super(handle, sb);
839 out_journal:
840 	ext4_journal_stop(handle);
841 out:
842 	sb_end_intwrite(sb);
843 	return err;
844 }
845 
ext4_file_open(struct inode * inode,struct file * filp)846 static int ext4_file_open(struct inode *inode, struct file *filp)
847 {
848 	int ret;
849 
850 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
851 		return -EIO;
852 
853 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
854 	if (ret)
855 		return ret;
856 
857 	ret = fscrypt_file_open(inode, filp);
858 	if (ret)
859 		return ret;
860 
861 	ret = fsverity_file_open(inode, filp);
862 	if (ret)
863 		return ret;
864 
865 	/*
866 	 * Set up the jbd2_inode if we are opening the inode for
867 	 * writing and the journal is present
868 	 */
869 	if (filp->f_mode & FMODE_WRITE) {
870 		ret = ext4_inode_attach_jinode(inode);
871 		if (ret < 0)
872 			return ret;
873 	}
874 
875 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
876 	return dquot_file_open(inode, filp);
877 }
878 
879 /*
880  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
881  * by calling generic_file_llseek_size() with the appropriate maxbytes
882  * value for each.
883  */
ext4_llseek(struct file * file,loff_t offset,int whence)884 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
885 {
886 	struct inode *inode = file->f_mapping->host;
887 	loff_t maxbytes;
888 
889 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
890 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
891 	else
892 		maxbytes = inode->i_sb->s_maxbytes;
893 
894 	switch (whence) {
895 	default:
896 		return generic_file_llseek_size(file, offset, whence,
897 						maxbytes, i_size_read(inode));
898 	case SEEK_HOLE:
899 		inode_lock_shared(inode);
900 		offset = iomap_seek_hole(inode, offset,
901 					 &ext4_iomap_report_ops);
902 		inode_unlock_shared(inode);
903 		break;
904 	case SEEK_DATA:
905 		inode_lock_shared(inode);
906 		offset = iomap_seek_data(inode, offset,
907 					 &ext4_iomap_report_ops);
908 		inode_unlock_shared(inode);
909 		break;
910 	}
911 
912 	if (offset < 0)
913 		return offset;
914 	return vfs_setpos(file, offset, maxbytes);
915 }
916 
917 const struct file_operations ext4_file_operations = {
918 	.llseek		= ext4_llseek,
919 	.read_iter	= ext4_file_read_iter,
920 	.write_iter	= ext4_file_write_iter,
921 	.iopoll		= iomap_dio_iopoll,
922 	.unlocked_ioctl = ext4_ioctl,
923 #ifdef CONFIG_COMPAT
924 	.compat_ioctl	= ext4_compat_ioctl,
925 #endif
926 	.mmap		= ext4_file_mmap,
927 	.mmap_supported_flags = MAP_SYNC,
928 	.open		= ext4_file_open,
929 	.release	= ext4_release_file,
930 	.fsync		= ext4_sync_file,
931 	.get_unmapped_area = thp_get_unmapped_area,
932 	.splice_read	= generic_file_splice_read,
933 	.splice_write	= iter_file_splice_write,
934 	.fallocate	= ext4_fallocate,
935 };
936 
937 const struct inode_operations ext4_file_inode_operations = {
938 	.setattr	= ext4_setattr,
939 	.getattr	= ext4_file_getattr,
940 	.listxattr	= ext4_listxattr,
941 	.get_acl	= ext4_get_acl,
942 	.set_acl	= ext4_set_acl,
943 	.fiemap		= ext4_fiemap,
944 };
945 
946