• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *
18  * Fixes:
19  *		Alan Cox	:	Commented a couple of minor bits of surplus code
20  *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
21  *					(just stops a compiler warning).
22  *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23  *					are junked rather than corrupting things.
24  *		Alan Cox	:	Frames to bad broadcast subnets are dumped
25  *					We used to process them non broadcast and
26  *					boy could that cause havoc.
27  *		Alan Cox	:	ip_forward sets the free flag on the
28  *					new frame it queues. Still crap because
29  *					it copies the frame but at least it
30  *					doesn't eat memory too.
31  *		Alan Cox	:	Generic queue code and memory fixes.
32  *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
33  *		Gerhard Koerting:	Forward fragmented frames correctly.
34  *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
35  *		Gerhard Koerting:	IP interface addressing fix.
36  *		Linus Torvalds	:	More robustness checks
37  *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
38  *		Alan Cox	:	Save IP header pointer for later
39  *		Alan Cox	:	ip option setting
40  *		Alan Cox	:	Use ip_tos/ip_ttl settings
41  *		Alan Cox	:	Fragmentation bogosity removed
42  *					(Thanks to Mark.Bush@prg.ox.ac.uk)
43  *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
44  *		Alan Cox	:	Silly ip bug when an overlength
45  *					fragment turns up. Now frees the
46  *					queue.
47  *		Linus Torvalds/ :	Memory leakage on fragmentation
48  *		Alan Cox	:	handling.
49  *		Gerhard Koerting:	Forwarding uses IP priority hints
50  *		Teemu Rantanen	:	Fragment problems.
51  *		Alan Cox	:	General cleanup, comments and reformat
52  *		Alan Cox	:	SNMP statistics
53  *		Alan Cox	:	BSD address rule semantics. Also see
54  *					UDP as there is a nasty checksum issue
55  *					if you do things the wrong way.
56  *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
57  *		Alan Cox	: 	IP options adjust sk->priority.
58  *		Pedro Roque	:	Fix mtu/length error in ip_forward.
59  *		Alan Cox	:	Avoid ip_chk_addr when possible.
60  *	Richard Underwood	:	IP multicasting.
61  *		Alan Cox	:	Cleaned up multicast handlers.
62  *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
63  *		Gunther Mayer	:	Fix the SNMP reporting typo
64  *		Alan Cox	:	Always in group 224.0.0.1
65  *	Pauline Middelink	:	Fast ip_checksum update when forwarding
66  *					Masquerading support.
67  *		Alan Cox	:	Multicast loopback error for 224.0.0.1
68  *		Alan Cox	:	IP_MULTICAST_LOOP option.
69  *		Alan Cox	:	Use notifiers.
70  *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
71  *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
72  *		Stefan Becker   :       Send out ICMP HOST REDIRECT
73  *	Arnt Gulbrandsen	:	ip_build_xmit
74  *		Alan Cox	:	Per socket routing cache
75  *		Alan Cox	:	Fixed routing cache, added header cache.
76  *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
77  *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
78  *		Alan Cox	:	Incoming IP option handling.
79  *		Alan Cox	:	Set saddr on raw output frames as per BSD.
80  *		Alan Cox	:	Stopped broadcast source route explosions.
81  *		Alan Cox	:	Can disable source routing
82  *		Takeshi Sone    :	Masquerading didn't work.
83  *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
84  *		Alan Cox	:	Memory leaks, tramples, misc debugging.
85  *		Alan Cox	:	Fixed multicast (by popular demand 8))
86  *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
87  *		Alan Cox	:	Fixed SNMP statistics [I think]
88  *	Gerhard Koerting	:	IP fragmentation forwarding fix
89  *		Alan Cox	:	Device lock against page fault.
90  *		Alan Cox	:	IP_HDRINCL facility.
91  *	Werner Almesberger	:	Zero fragment bug
92  *		Alan Cox	:	RAW IP frame length bug
93  *		Alan Cox	:	Outgoing firewall on build_xmit
94  *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
95  *		Alan Cox	:	Multicast routing hooks
96  *		Jos Vos		:	Do accounting *before* call_in_firewall
97  *	Willy Konynenberg	:	Transparent proxying support
98  *
99  * To Fix:
100  *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101  *		and could be made very efficient with the addition of some virtual memory hacks to permit
102  *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
103  *		Output fragmentation wants updating along with the buffer management to use a single
104  *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105  *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106  *		fragmentation anyway.
107  */
108 
109 #define pr_fmt(fmt) "IPv4: " fmt
110 
111 #include <linux/module.h>
112 #include <linux/types.h>
113 #include <linux/kernel.h>
114 #include <linux/string.h>
115 #include <linux/errno.h>
116 #include <linux/slab.h>
117 
118 #include <linux/net.h>
119 #include <linux/socket.h>
120 #include <linux/sockios.h>
121 #include <linux/in.h>
122 #include <linux/inet.h>
123 #include <linux/inetdevice.h>
124 #include <linux/netdevice.h>
125 #include <linux/etherdevice.h>
126 #include <linux/indirect_call_wrapper.h>
127 
128 #include <net/snmp.h>
129 #include <net/ip.h>
130 #include <net/protocol.h>
131 #include <net/route.h>
132 #include <linux/skbuff.h>
133 #include <net/sock.h>
134 #include <net/arp.h>
135 #include <net/icmp.h>
136 #include <net/raw.h>
137 #include <net/checksum.h>
138 #include <net/inet_ecn.h>
139 #include <linux/netfilter_ipv4.h>
140 #include <net/xfrm.h>
141 #include <linux/mroute.h>
142 #include <linux/netlink.h>
143 #include <net/dst_metadata.h>
144 
145 /*
146  *	Process Router Attention IP option (RFC 2113)
147  */
ip_call_ra_chain(struct sk_buff * skb)148 bool ip_call_ra_chain(struct sk_buff *skb)
149 {
150 	struct ip_ra_chain *ra;
151 	u8 protocol = ip_hdr(skb)->protocol;
152 	struct sock *last = NULL;
153 	struct net_device *dev = skb->dev;
154 	struct net *net = dev_net(dev);
155 
156 	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157 		struct sock *sk = ra->sk;
158 
159 		/* If socket is bound to an interface, only report
160 		 * the packet if it came  from that interface.
161 		 */
162 		if (sk && inet_sk(sk)->inet_num == protocol &&
163 		    (!sk->sk_bound_dev_if ||
164 		     sk->sk_bound_dev_if == dev->ifindex)) {
165 			if (ip_is_fragment(ip_hdr(skb))) {
166 				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167 					return true;
168 			}
169 			if (last) {
170 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171 				if (skb2)
172 					raw_rcv(last, skb2);
173 			}
174 			last = sk;
175 		}
176 	}
177 
178 	if (last) {
179 		raw_rcv(last, skb);
180 		return true;
181 	}
182 	return false;
183 }
184 
185 INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186 INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
ip_protocol_deliver_rcu(struct net * net,struct sk_buff * skb,int protocol)187 void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188 {
189 	const struct net_protocol *ipprot;
190 	int raw, ret;
191 
192 resubmit:
193 	raw = raw_local_deliver(skb, protocol);
194 
195 	ipprot = rcu_dereference(inet_protos[protocol]);
196 	if (ipprot) {
197 		if (!ipprot->no_policy) {
198 			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199 				kfree_skb(skb);
200 				return;
201 			}
202 			nf_reset_ct(skb);
203 		}
204 		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
205 				      skb);
206 		if (ret < 0) {
207 			protocol = -ret;
208 			goto resubmit;
209 		}
210 		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
211 	} else {
212 		if (!raw) {
213 			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
214 				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
215 				icmp_send(skb, ICMP_DEST_UNREACH,
216 					  ICMP_PROT_UNREACH, 0);
217 			}
218 			kfree_skb(skb);
219 		} else {
220 			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
221 			consume_skb(skb);
222 		}
223 	}
224 }
225 
ip_local_deliver_finish(struct net * net,struct sock * sk,struct sk_buff * skb)226 static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
227 {
228 	__skb_pull(skb, skb_network_header_len(skb));
229 
230 	rcu_read_lock();
231 	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
232 	rcu_read_unlock();
233 
234 	return 0;
235 }
236 
237 /*
238  * 	Deliver IP Packets to the higher protocol layers.
239  */
ip_local_deliver(struct sk_buff * skb)240 int ip_local_deliver(struct sk_buff *skb)
241 {
242 	/*
243 	 *	Reassemble IP fragments.
244 	 */
245 	struct net *net = dev_net(skb->dev);
246 
247 	if (ip_is_fragment(ip_hdr(skb))) {
248 		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
249 			return 0;
250 	}
251 
252 	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
253 		       net, NULL, skb, skb->dev, NULL,
254 		       ip_local_deliver_finish);
255 }
256 
ip_rcv_options(struct sk_buff * skb,struct net_device * dev)257 static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
258 {
259 	struct ip_options *opt;
260 	const struct iphdr *iph;
261 
262 	/* It looks as overkill, because not all
263 	   IP options require packet mangling.
264 	   But it is the easiest for now, especially taking
265 	   into account that combination of IP options
266 	   and running sniffer is extremely rare condition.
267 					      --ANK (980813)
268 	*/
269 	if (skb_cow(skb, skb_headroom(skb))) {
270 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
271 		goto drop;
272 	}
273 
274 	iph = ip_hdr(skb);
275 	opt = &(IPCB(skb)->opt);
276 	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
277 
278 	if (ip_options_compile(dev_net(dev), opt, skb)) {
279 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
280 		goto drop;
281 	}
282 
283 	if (unlikely(opt->srr)) {
284 		struct in_device *in_dev = __in_dev_get_rcu(dev);
285 
286 		if (in_dev) {
287 			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
288 				if (IN_DEV_LOG_MARTIANS(in_dev))
289 					net_info_ratelimited("source route option %pI4 -> %pI4\n",
290 							     &iph->saddr,
291 							     &iph->daddr);
292 				goto drop;
293 			}
294 		}
295 
296 		if (ip_options_rcv_srr(skb, dev))
297 			goto drop;
298 	}
299 
300 	return false;
301 drop:
302 	return true;
303 }
304 
ip_can_use_hint(const struct sk_buff * skb,const struct iphdr * iph,const struct sk_buff * hint)305 static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
306 			    const struct sk_buff *hint)
307 {
308 	return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
309 	       ip_hdr(hint)->tos == iph->tos;
310 }
311 
312 int tcp_v4_early_demux(struct sk_buff *skb);
313 int udp_v4_early_demux(struct sk_buff *skb);
ip_rcv_finish_core(struct net * net,struct sock * sk,struct sk_buff * skb,struct net_device * dev,const struct sk_buff * hint)314 static int ip_rcv_finish_core(struct net *net, struct sock *sk,
315 			      struct sk_buff *skb, struct net_device *dev,
316 			      const struct sk_buff *hint)
317 {
318 	const struct iphdr *iph = ip_hdr(skb);
319 	struct rtable *rt;
320 	int err;
321 
322 	if (ip_can_use_hint(skb, iph, hint)) {
323 		err = ip_route_use_hint(skb, iph->daddr, iph->saddr, iph->tos,
324 					dev, hint);
325 		if (unlikely(err))
326 			goto drop_error;
327 	}
328 
329 	if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) &&
330 	    !skb_dst(skb) &&
331 	    !skb->sk &&
332 	    !ip_is_fragment(iph)) {
333 		switch (iph->protocol) {
334 		case IPPROTO_TCP:
335 			if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) {
336 				tcp_v4_early_demux(skb);
337 
338 				/* must reload iph, skb->head might have changed */
339 				iph = ip_hdr(skb);
340 			}
341 			break;
342 		case IPPROTO_UDP:
343 			if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) {
344 				err = udp_v4_early_demux(skb);
345 				if (unlikely(err))
346 					goto drop_error;
347 
348 				/* must reload iph, skb->head might have changed */
349 				iph = ip_hdr(skb);
350 			}
351 			break;
352 		}
353 	}
354 
355 	/*
356 	 *	Initialise the virtual path cache for the packet. It describes
357 	 *	how the packet travels inside Linux networking.
358 	 */
359 	if (!skb_valid_dst(skb)) {
360 		err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
361 					   iph->tos, dev);
362 		if (unlikely(err))
363 			goto drop_error;
364 	}
365 
366 #ifdef CONFIG_IP_ROUTE_CLASSID
367 	if (unlikely(skb_dst(skb)->tclassid)) {
368 		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
369 		u32 idx = skb_dst(skb)->tclassid;
370 		st[idx&0xFF].o_packets++;
371 		st[idx&0xFF].o_bytes += skb->len;
372 		st[(idx>>16)&0xFF].i_packets++;
373 		st[(idx>>16)&0xFF].i_bytes += skb->len;
374 	}
375 #endif
376 
377 	if (iph->ihl > 5 && ip_rcv_options(skb, dev))
378 		goto drop;
379 
380 	rt = skb_rtable(skb);
381 	if (rt->rt_type == RTN_MULTICAST) {
382 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
383 	} else if (rt->rt_type == RTN_BROADCAST) {
384 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
385 	} else if (skb->pkt_type == PACKET_BROADCAST ||
386 		   skb->pkt_type == PACKET_MULTICAST) {
387 		struct in_device *in_dev = __in_dev_get_rcu(dev);
388 
389 		/* RFC 1122 3.3.6:
390 		 *
391 		 *   When a host sends a datagram to a link-layer broadcast
392 		 *   address, the IP destination address MUST be a legal IP
393 		 *   broadcast or IP multicast address.
394 		 *
395 		 *   A host SHOULD silently discard a datagram that is received
396 		 *   via a link-layer broadcast (see Section 2.4) but does not
397 		 *   specify an IP multicast or broadcast destination address.
398 		 *
399 		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
400 		 * in a way a form of multicast and the most common use case for
401 		 * this is 802.11 protecting against cross-station spoofing (the
402 		 * so-called "hole-196" attack) so do it for both.
403 		 */
404 		if (in_dev &&
405 		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
406 			goto drop;
407 	}
408 
409 	return NET_RX_SUCCESS;
410 
411 drop:
412 	kfree_skb(skb);
413 	return NET_RX_DROP;
414 
415 drop_error:
416 	if (err == -EXDEV)
417 		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
418 	goto drop;
419 }
420 
ip_rcv_finish(struct net * net,struct sock * sk,struct sk_buff * skb)421 static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
422 {
423 	struct net_device *dev = skb->dev;
424 	int ret;
425 
426 	/* if ingress device is enslaved to an L3 master device pass the
427 	 * skb to its handler for processing
428 	 */
429 	skb = l3mdev_ip_rcv(skb);
430 	if (!skb)
431 		return NET_RX_SUCCESS;
432 
433 	ret = ip_rcv_finish_core(net, sk, skb, dev, NULL);
434 	if (ret != NET_RX_DROP)
435 		ret = dst_input(skb);
436 	return ret;
437 }
438 
439 /*
440  * 	Main IP Receive routine.
441  */
ip_rcv_core(struct sk_buff * skb,struct net * net)442 static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
443 {
444 	const struct iphdr *iph;
445 	u32 len;
446 
447 	/* When the interface is in promisc. mode, drop all the crap
448 	 * that it receives, do not try to analyse it.
449 	 */
450 	if (skb->pkt_type == PACKET_OTHERHOST)
451 		goto drop;
452 
453 	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
454 
455 	skb = skb_share_check(skb, GFP_ATOMIC);
456 	if (!skb) {
457 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
458 		goto out;
459 	}
460 
461 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
462 		goto inhdr_error;
463 
464 	iph = ip_hdr(skb);
465 
466 	/*
467 	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
468 	 *
469 	 *	Is the datagram acceptable?
470 	 *
471 	 *	1.	Length at least the size of an ip header
472 	 *	2.	Version of 4
473 	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
474 	 *	4.	Doesn't have a bogus length
475 	 */
476 
477 	if (iph->ihl < 5 || iph->version != 4)
478 		goto inhdr_error;
479 
480 	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
481 	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
482 	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
483 	__IP_ADD_STATS(net,
484 		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
485 		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
486 
487 	if (!pskb_may_pull(skb, iph->ihl*4))
488 		goto inhdr_error;
489 
490 	iph = ip_hdr(skb);
491 
492 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
493 		goto csum_error;
494 
495 	len = ntohs(iph->tot_len);
496 	if (skb->len < len) {
497 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
498 		goto drop;
499 	} else if (len < (iph->ihl*4))
500 		goto inhdr_error;
501 
502 	/* Our transport medium may have padded the buffer out. Now we know it
503 	 * is IP we can trim to the true length of the frame.
504 	 * Note this now means skb->len holds ntohs(iph->tot_len).
505 	 */
506 	if (pskb_trim_rcsum(skb, len)) {
507 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
508 		goto drop;
509 	}
510 
511 	iph = ip_hdr(skb);
512 	skb->transport_header = skb->network_header + iph->ihl*4;
513 
514 	/* Remove any debris in the socket control block */
515 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
516 	IPCB(skb)->iif = skb->skb_iif;
517 
518 	/* Must drop socket now because of tproxy. */
519 	if (!skb_sk_is_prefetched(skb))
520 		skb_orphan(skb);
521 
522 	return skb;
523 
524 csum_error:
525 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
526 inhdr_error:
527 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
528 drop:
529 	kfree_skb(skb);
530 out:
531 	return NULL;
532 }
533 
534 /*
535  * IP receive entry point
536  */
ip_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)537 int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
538 	   struct net_device *orig_dev)
539 {
540 	struct net *net = dev_net(dev);
541 
542 	skb = ip_rcv_core(skb, net);
543 	if (skb == NULL)
544 		return NET_RX_DROP;
545 
546 	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
547 		       net, NULL, skb, dev, NULL,
548 		       ip_rcv_finish);
549 }
550 
ip_sublist_rcv_finish(struct list_head * head)551 static void ip_sublist_rcv_finish(struct list_head *head)
552 {
553 	struct sk_buff *skb, *next;
554 
555 	list_for_each_entry_safe(skb, next, head, list) {
556 		skb_list_del_init(skb);
557 		dst_input(skb);
558 	}
559 }
560 
ip_extract_route_hint(const struct net * net,struct sk_buff * skb,int rt_type)561 static struct sk_buff *ip_extract_route_hint(const struct net *net,
562 					     struct sk_buff *skb, int rt_type)
563 {
564 	if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST ||
565 	    IPCB(skb)->flags & IPSKB_MULTIPATH)
566 		return NULL;
567 
568 	return skb;
569 }
570 
ip_list_rcv_finish(struct net * net,struct sock * sk,struct list_head * head)571 static void ip_list_rcv_finish(struct net *net, struct sock *sk,
572 			       struct list_head *head)
573 {
574 	struct sk_buff *skb, *next, *hint = NULL;
575 	struct dst_entry *curr_dst = NULL;
576 	struct list_head sublist;
577 
578 	INIT_LIST_HEAD(&sublist);
579 	list_for_each_entry_safe(skb, next, head, list) {
580 		struct net_device *dev = skb->dev;
581 		struct dst_entry *dst;
582 
583 		skb_list_del_init(skb);
584 		/* if ingress device is enslaved to an L3 master device pass the
585 		 * skb to its handler for processing
586 		 */
587 		skb = l3mdev_ip_rcv(skb);
588 		if (!skb)
589 			continue;
590 		if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP)
591 			continue;
592 
593 		dst = skb_dst(skb);
594 		if (curr_dst != dst) {
595 			hint = ip_extract_route_hint(net, skb,
596 					       ((struct rtable *)dst)->rt_type);
597 
598 			/* dispatch old sublist */
599 			if (!list_empty(&sublist))
600 				ip_sublist_rcv_finish(&sublist);
601 			/* start new sublist */
602 			INIT_LIST_HEAD(&sublist);
603 			curr_dst = dst;
604 		}
605 		list_add_tail(&skb->list, &sublist);
606 	}
607 	/* dispatch final sublist */
608 	ip_sublist_rcv_finish(&sublist);
609 }
610 
ip_sublist_rcv(struct list_head * head,struct net_device * dev,struct net * net)611 static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
612 			   struct net *net)
613 {
614 	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
615 		     head, dev, NULL, ip_rcv_finish);
616 	ip_list_rcv_finish(net, NULL, head);
617 }
618 
619 /* Receive a list of IP packets */
ip_list_rcv(struct list_head * head,struct packet_type * pt,struct net_device * orig_dev)620 void ip_list_rcv(struct list_head *head, struct packet_type *pt,
621 		 struct net_device *orig_dev)
622 {
623 	struct net_device *curr_dev = NULL;
624 	struct net *curr_net = NULL;
625 	struct sk_buff *skb, *next;
626 	struct list_head sublist;
627 
628 	INIT_LIST_HEAD(&sublist);
629 	list_for_each_entry_safe(skb, next, head, list) {
630 		struct net_device *dev = skb->dev;
631 		struct net *net = dev_net(dev);
632 
633 		skb_list_del_init(skb);
634 		skb = ip_rcv_core(skb, net);
635 		if (skb == NULL)
636 			continue;
637 
638 		if (curr_dev != dev || curr_net != net) {
639 			/* dispatch old sublist */
640 			if (!list_empty(&sublist))
641 				ip_sublist_rcv(&sublist, curr_dev, curr_net);
642 			/* start new sublist */
643 			INIT_LIST_HEAD(&sublist);
644 			curr_dev = dev;
645 			curr_net = net;
646 		}
647 		list_add_tail(&skb->list, &sublist);
648 	}
649 	/* dispatch final sublist */
650 	if (!list_empty(&sublist))
651 		ip_sublist_rcv(&sublist, curr_dev, curr_net);
652 }
653