1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/realmode.h>
47 #include <asm/text-patching.h>
48 #include <asm/ftrace.h>
49 #include <asm/traps.h>
50 #include <asm/desc.h>
51 #include <asm/fpu/internal.h>
52 #include <asm/cpu.h>
53 #include <asm/cpu_entry_area.h>
54 #include <asm/mce.h>
55 #include <asm/fixmap.h>
56 #include <asm/mach_traps.h>
57 #include <asm/alternative.h>
58 #include <asm/fpu/xstate.h>
59 #include <asm/vm86.h>
60 #include <asm/umip.h>
61 #include <asm/insn.h>
62 #include <asm/insn-eval.h>
63
64 #ifdef CONFIG_X86_64
65 #include <asm/x86_init.h>
66 #include <asm/proto.h>
67 #else
68 #include <asm/processor-flags.h>
69 #include <asm/setup.h>
70 #include <asm/proto.h>
71 #endif
72
73 DECLARE_BITMAP(system_vectors, NR_VECTORS);
74
cond_local_irq_enable(struct pt_regs * regs)75 static inline void cond_local_irq_enable(struct pt_regs *regs)
76 {
77 if (regs->flags & X86_EFLAGS_IF)
78 local_irq_enable();
79 }
80
cond_local_irq_disable(struct pt_regs * regs)81 static inline void cond_local_irq_disable(struct pt_regs *regs)
82 {
83 if (regs->flags & X86_EFLAGS_IF)
84 local_irq_disable();
85 }
86
is_valid_bugaddr(unsigned long addr)87 __always_inline int is_valid_bugaddr(unsigned long addr)
88 {
89 if (addr < TASK_SIZE_MAX)
90 return 0;
91
92 /*
93 * We got #UD, if the text isn't readable we'd have gotten
94 * a different exception.
95 */
96 return *(unsigned short *)addr == INSN_UD2;
97 }
98
99 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,const char * str,struct pt_regs * regs,long error_code)100 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
101 struct pt_regs *regs, long error_code)
102 {
103 if (v8086_mode(regs)) {
104 /*
105 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
106 * On nmi (interrupt 2), do_trap should not be called.
107 */
108 if (trapnr < X86_TRAP_UD) {
109 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
110 error_code, trapnr))
111 return 0;
112 }
113 } else if (!user_mode(regs)) {
114 if (fixup_exception(regs, trapnr, error_code, 0))
115 return 0;
116
117 tsk->thread.error_code = error_code;
118 tsk->thread.trap_nr = trapnr;
119 die(str, regs, error_code);
120 }
121
122 /*
123 * We want error_code and trap_nr set for userspace faults and
124 * kernelspace faults which result in die(), but not
125 * kernelspace faults which are fixed up. die() gives the
126 * process no chance to handle the signal and notice the
127 * kernel fault information, so that won't result in polluting
128 * the information about previously queued, but not yet
129 * delivered, faults. See also exc_general_protection below.
130 */
131 tsk->thread.error_code = error_code;
132 tsk->thread.trap_nr = trapnr;
133
134 return -1;
135 }
136
show_signal(struct task_struct * tsk,int signr,const char * type,const char * desc,struct pt_regs * regs,long error_code)137 static void show_signal(struct task_struct *tsk, int signr,
138 const char *type, const char *desc,
139 struct pt_regs *regs, long error_code)
140 {
141 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
142 printk_ratelimit()) {
143 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
144 tsk->comm, task_pid_nr(tsk), type, desc,
145 regs->ip, regs->sp, error_code);
146 print_vma_addr(KERN_CONT " in ", regs->ip);
147 pr_cont("\n");
148 }
149 }
150
151 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,int sicode,void __user * addr)152 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
153 long error_code, int sicode, void __user *addr)
154 {
155 struct task_struct *tsk = current;
156
157 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
158 return;
159
160 show_signal(tsk, signr, "trap ", str, regs, error_code);
161
162 if (!sicode)
163 force_sig(signr);
164 else
165 force_sig_fault(signr, sicode, addr);
166 }
167 NOKPROBE_SYMBOL(do_trap);
168
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr,int sicode,void __user * addr)169 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
170 unsigned long trapnr, int signr, int sicode, void __user *addr)
171 {
172 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
173
174 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
175 NOTIFY_STOP) {
176 cond_local_irq_enable(regs);
177 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
178 cond_local_irq_disable(regs);
179 }
180 }
181
182 /*
183 * Posix requires to provide the address of the faulting instruction for
184 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
185 *
186 * This address is usually regs->ip, but when an uprobe moved the code out
187 * of line then regs->ip points to the XOL code which would confuse
188 * anything which analyzes the fault address vs. the unmodified binary. If
189 * a trap happened in XOL code then uprobe maps regs->ip back to the
190 * original instruction address.
191 */
error_get_trap_addr(struct pt_regs * regs)192 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
193 {
194 return (void __user *)uprobe_get_trap_addr(regs);
195 }
196
DEFINE_IDTENTRY(exc_divide_error)197 DEFINE_IDTENTRY(exc_divide_error)
198 {
199 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
200 FPE_INTDIV, error_get_trap_addr(regs));
201 }
202
DEFINE_IDTENTRY(exc_overflow)203 DEFINE_IDTENTRY(exc_overflow)
204 {
205 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
206 }
207
208 #ifdef CONFIG_X86_F00F_BUG
handle_invalid_op(struct pt_regs * regs)209 void handle_invalid_op(struct pt_regs *regs)
210 #else
211 static inline void handle_invalid_op(struct pt_regs *regs)
212 #endif
213 {
214 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
215 ILL_ILLOPN, error_get_trap_addr(regs));
216 }
217
handle_bug(struct pt_regs * regs)218 static noinstr bool handle_bug(struct pt_regs *regs)
219 {
220 bool handled = false;
221
222 if (!is_valid_bugaddr(regs->ip))
223 return handled;
224
225 /*
226 * All lies, just get the WARN/BUG out.
227 */
228 instrumentation_begin();
229 /*
230 * Since we're emulating a CALL with exceptions, restore the interrupt
231 * state to what it was at the exception site.
232 */
233 if (regs->flags & X86_EFLAGS_IF)
234 raw_local_irq_enable();
235 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
236 regs->ip += LEN_UD2;
237 handled = true;
238 }
239 if (regs->flags & X86_EFLAGS_IF)
240 raw_local_irq_disable();
241 instrumentation_end();
242
243 return handled;
244 }
245
DEFINE_IDTENTRY_RAW(exc_invalid_op)246 DEFINE_IDTENTRY_RAW(exc_invalid_op)
247 {
248 irqentry_state_t state;
249
250 /*
251 * We use UD2 as a short encoding for 'CALL __WARN', as such
252 * handle it before exception entry to avoid recursive WARN
253 * in case exception entry is the one triggering WARNs.
254 */
255 if (!user_mode(regs) && handle_bug(regs))
256 return;
257
258 state = irqentry_enter(regs);
259 instrumentation_begin();
260 handle_invalid_op(regs);
261 instrumentation_end();
262 irqentry_exit(regs, state);
263 }
264
DEFINE_IDTENTRY(exc_coproc_segment_overrun)265 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
266 {
267 do_error_trap(regs, 0, "coprocessor segment overrun",
268 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
269 }
270
DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)271 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
272 {
273 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
274 0, NULL);
275 }
276
DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)277 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
278 {
279 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
280 SIGBUS, 0, NULL);
281 }
282
DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)283 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
284 {
285 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
286 0, NULL);
287 }
288
DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)289 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
290 {
291 char *str = "alignment check";
292
293 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
294 return;
295
296 if (!user_mode(regs))
297 die("Split lock detected\n", regs, error_code);
298
299 local_irq_enable();
300
301 if (handle_user_split_lock(regs, error_code))
302 goto out;
303
304 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
305 error_code, BUS_ADRALN, NULL);
306
307 out:
308 local_irq_disable();
309 }
310
311 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(const char * message,struct pt_regs * regs,unsigned long fault_address)312 __visible void __noreturn handle_stack_overflow(const char *message,
313 struct pt_regs *regs,
314 unsigned long fault_address)
315 {
316 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
317 (void *)fault_address, current->stack,
318 (char *)current->stack + THREAD_SIZE - 1);
319 die(message, regs, 0);
320
321 /* Be absolutely certain we don't return. */
322 panic("%s", message);
323 }
324 #endif
325
326 /*
327 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
328 *
329 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
330 * SDM's warnings about double faults being unrecoverable, returning works as
331 * expected. Presumably what the SDM actually means is that the CPU may get
332 * the register state wrong on entry, so returning could be a bad idea.
333 *
334 * Various CPU engineers have promised that double faults due to an IRET fault
335 * while the stack is read-only are, in fact, recoverable.
336 *
337 * On x86_32, this is entered through a task gate, and regs are synthesized
338 * from the TSS. Returning is, in principle, okay, but changes to regs will
339 * be lost. If, for some reason, we need to return to a context with modified
340 * regs, the shim code could be adjusted to synchronize the registers.
341 *
342 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
343 * to be read before doing anything else.
344 */
DEFINE_IDTENTRY_DF(exc_double_fault)345 DEFINE_IDTENTRY_DF(exc_double_fault)
346 {
347 static const char str[] = "double fault";
348 struct task_struct *tsk = current;
349
350 #ifdef CONFIG_VMAP_STACK
351 unsigned long address = read_cr2();
352 #endif
353
354 #ifdef CONFIG_X86_ESPFIX64
355 extern unsigned char native_irq_return_iret[];
356
357 /*
358 * If IRET takes a non-IST fault on the espfix64 stack, then we
359 * end up promoting it to a doublefault. In that case, take
360 * advantage of the fact that we're not using the normal (TSS.sp0)
361 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
362 * and then modify our own IRET frame so that, when we return,
363 * we land directly at the #GP(0) vector with the stack already
364 * set up according to its expectations.
365 *
366 * The net result is that our #GP handler will think that we
367 * entered from usermode with the bad user context.
368 *
369 * No need for nmi_enter() here because we don't use RCU.
370 */
371 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
372 regs->cs == __KERNEL_CS &&
373 regs->ip == (unsigned long)native_irq_return_iret)
374 {
375 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
376 unsigned long *p = (unsigned long *)regs->sp;
377
378 /*
379 * regs->sp points to the failing IRET frame on the
380 * ESPFIX64 stack. Copy it to the entry stack. This fills
381 * in gpregs->ss through gpregs->ip.
382 *
383 */
384 gpregs->ip = p[0];
385 gpregs->cs = p[1];
386 gpregs->flags = p[2];
387 gpregs->sp = p[3];
388 gpregs->ss = p[4];
389 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
390
391 /*
392 * Adjust our frame so that we return straight to the #GP
393 * vector with the expected RSP value. This is safe because
394 * we won't enable interupts or schedule before we invoke
395 * general_protection, so nothing will clobber the stack
396 * frame we just set up.
397 *
398 * We will enter general_protection with kernel GSBASE,
399 * which is what the stub expects, given that the faulting
400 * RIP will be the IRET instruction.
401 */
402 regs->ip = (unsigned long)asm_exc_general_protection;
403 regs->sp = (unsigned long)&gpregs->orig_ax;
404
405 return;
406 }
407 #endif
408
409 irqentry_nmi_enter(regs);
410 instrumentation_begin();
411 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
412
413 tsk->thread.error_code = error_code;
414 tsk->thread.trap_nr = X86_TRAP_DF;
415
416 #ifdef CONFIG_VMAP_STACK
417 /*
418 * If we overflow the stack into a guard page, the CPU will fail
419 * to deliver #PF and will send #DF instead. Similarly, if we
420 * take any non-IST exception while too close to the bottom of
421 * the stack, the processor will get a page fault while
422 * delivering the exception and will generate a double fault.
423 *
424 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
425 * Page-Fault Exception (#PF):
426 *
427 * Processors update CR2 whenever a page fault is detected. If a
428 * second page fault occurs while an earlier page fault is being
429 * delivered, the faulting linear address of the second fault will
430 * overwrite the contents of CR2 (replacing the previous
431 * address). These updates to CR2 occur even if the page fault
432 * results in a double fault or occurs during the delivery of a
433 * double fault.
434 *
435 * The logic below has a small possibility of incorrectly diagnosing
436 * some errors as stack overflows. For example, if the IDT or GDT
437 * gets corrupted such that #GP delivery fails due to a bad descriptor
438 * causing #GP and we hit this condition while CR2 coincidentally
439 * points to the stack guard page, we'll think we overflowed the
440 * stack. Given that we're going to panic one way or another
441 * if this happens, this isn't necessarily worth fixing.
442 *
443 * If necessary, we could improve the test by only diagnosing
444 * a stack overflow if the saved RSP points within 47 bytes of
445 * the bottom of the stack: if RSP == tsk_stack + 48 and we
446 * take an exception, the stack is already aligned and there
447 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
448 * possible error code, so a stack overflow would *not* double
449 * fault. With any less space left, exception delivery could
450 * fail, and, as a practical matter, we've overflowed the
451 * stack even if the actual trigger for the double fault was
452 * something else.
453 */
454 if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
455 handle_stack_overflow("kernel stack overflow (double-fault)",
456 regs, address);
457 }
458 #endif
459
460 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
461 die("double fault", regs, error_code);
462 panic("Machine halted.");
463 instrumentation_end();
464 }
465
DEFINE_IDTENTRY(exc_bounds)466 DEFINE_IDTENTRY(exc_bounds)
467 {
468 if (notify_die(DIE_TRAP, "bounds", regs, 0,
469 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
470 return;
471 cond_local_irq_enable(regs);
472
473 if (!user_mode(regs))
474 die("bounds", regs, 0);
475
476 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
477
478 cond_local_irq_disable(regs);
479 }
480
481 enum kernel_gp_hint {
482 GP_NO_HINT,
483 GP_NON_CANONICAL,
484 GP_CANONICAL
485 };
486
487 /*
488 * When an uncaught #GP occurs, try to determine the memory address accessed by
489 * the instruction and return that address to the caller. Also, try to figure
490 * out whether any part of the access to that address was non-canonical.
491 */
get_kernel_gp_address(struct pt_regs * regs,unsigned long * addr)492 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
493 unsigned long *addr)
494 {
495 u8 insn_buf[MAX_INSN_SIZE];
496 struct insn insn;
497
498 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
499 MAX_INSN_SIZE))
500 return GP_NO_HINT;
501
502 kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
503 insn_get_modrm(&insn);
504 insn_get_sib(&insn);
505
506 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
507 if (*addr == -1UL)
508 return GP_NO_HINT;
509
510 #ifdef CONFIG_X86_64
511 /*
512 * Check that:
513 * - the operand is not in the kernel half
514 * - the last byte of the operand is not in the user canonical half
515 */
516 if (*addr < ~__VIRTUAL_MASK &&
517 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
518 return GP_NON_CANONICAL;
519 #endif
520
521 return GP_CANONICAL;
522 }
523
524 #define GPFSTR "general protection fault"
525
fixup_iopl_exception(struct pt_regs * regs)526 static bool fixup_iopl_exception(struct pt_regs *regs)
527 {
528 struct thread_struct *t = ¤t->thread;
529 unsigned char byte;
530 unsigned long ip;
531
532 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
533 return false;
534
535 ip = insn_get_effective_ip(regs);
536 if (!ip)
537 return false;
538
539 if (get_user(byte, (const char __user *)ip))
540 return false;
541
542 if (byte != 0xfa && byte != 0xfb)
543 return false;
544
545 if (!t->iopl_warn && printk_ratelimit()) {
546 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
547 current->comm, task_pid_nr(current), ip);
548 print_vma_addr(KERN_CONT " in ", ip);
549 pr_cont("\n");
550 t->iopl_warn = 1;
551 }
552
553 regs->ip += 1;
554 return true;
555 }
556
DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)557 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
558 {
559 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
560 enum kernel_gp_hint hint = GP_NO_HINT;
561 struct task_struct *tsk;
562 unsigned long gp_addr;
563 int ret;
564
565 cond_local_irq_enable(regs);
566
567 if (static_cpu_has(X86_FEATURE_UMIP)) {
568 if (user_mode(regs) && fixup_umip_exception(regs))
569 goto exit;
570 }
571
572 if (v8086_mode(regs)) {
573 local_irq_enable();
574 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
575 local_irq_disable();
576 return;
577 }
578
579 tsk = current;
580
581 if (user_mode(regs)) {
582 if (fixup_iopl_exception(regs))
583 goto exit;
584
585 tsk->thread.error_code = error_code;
586 tsk->thread.trap_nr = X86_TRAP_GP;
587
588 show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
589 force_sig(SIGSEGV);
590 goto exit;
591 }
592
593 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
594 goto exit;
595
596 tsk->thread.error_code = error_code;
597 tsk->thread.trap_nr = X86_TRAP_GP;
598
599 /*
600 * To be potentially processing a kprobe fault and to trust the result
601 * from kprobe_running(), we have to be non-preemptible.
602 */
603 if (!preemptible() &&
604 kprobe_running() &&
605 kprobe_fault_handler(regs, X86_TRAP_GP))
606 goto exit;
607
608 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
609 if (ret == NOTIFY_STOP)
610 goto exit;
611
612 if (error_code)
613 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
614 else
615 hint = get_kernel_gp_address(regs, &gp_addr);
616
617 if (hint != GP_NO_HINT)
618 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
619 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
620 : "maybe for address",
621 gp_addr);
622
623 /*
624 * KASAN is interested only in the non-canonical case, clear it
625 * otherwise.
626 */
627 if (hint != GP_NON_CANONICAL)
628 gp_addr = 0;
629
630 die_addr(desc, regs, error_code, gp_addr);
631
632 exit:
633 cond_local_irq_disable(regs);
634 }
635
do_int3(struct pt_regs * regs)636 static bool do_int3(struct pt_regs *regs)
637 {
638 int res;
639
640 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
641 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
642 SIGTRAP) == NOTIFY_STOP)
643 return true;
644 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
645
646 #ifdef CONFIG_KPROBES
647 if (kprobe_int3_handler(regs))
648 return true;
649 #endif
650 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
651
652 return res == NOTIFY_STOP;
653 }
654 NOKPROBE_SYMBOL(do_int3);
655
do_int3_user(struct pt_regs * regs)656 static void do_int3_user(struct pt_regs *regs)
657 {
658 if (do_int3(regs))
659 return;
660
661 cond_local_irq_enable(regs);
662 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
663 cond_local_irq_disable(regs);
664 }
665
DEFINE_IDTENTRY_RAW(exc_int3)666 DEFINE_IDTENTRY_RAW(exc_int3)
667 {
668 /*
669 * poke_int3_handler() is completely self contained code; it does (and
670 * must) *NOT* call out to anything, lest it hits upon yet another
671 * INT3.
672 */
673 if (poke_int3_handler(regs))
674 return;
675
676 /*
677 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
678 * and therefore can trigger INT3, hence poke_int3_handler() must
679 * be done before. If the entry came from kernel mode, then use
680 * nmi_enter() because the INT3 could have been hit in any context
681 * including NMI.
682 */
683 if (user_mode(regs)) {
684 irqentry_enter_from_user_mode(regs);
685 instrumentation_begin();
686 do_int3_user(regs);
687 instrumentation_end();
688 irqentry_exit_to_user_mode(regs);
689 } else {
690 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
691
692 instrumentation_begin();
693 if (!do_int3(regs))
694 die("int3", regs, 0);
695 instrumentation_end();
696 irqentry_nmi_exit(regs, irq_state);
697 }
698 }
699
700 #ifdef CONFIG_X86_64
701 /*
702 * Help handler running on a per-cpu (IST or entry trampoline) stack
703 * to switch to the normal thread stack if the interrupted code was in
704 * user mode. The actual stack switch is done in entry_64.S
705 */
sync_regs(struct pt_regs * eregs)706 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
707 {
708 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
709 if (regs != eregs)
710 *regs = *eregs;
711 return regs;
712 }
713
714 #ifdef CONFIG_AMD_MEM_ENCRYPT
vc_switch_off_ist(struct pt_regs * regs)715 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
716 {
717 unsigned long sp, *stack;
718 struct stack_info info;
719 struct pt_regs *regs_ret;
720
721 /*
722 * In the SYSCALL entry path the RSP value comes from user-space - don't
723 * trust it and switch to the current kernel stack
724 */
725 if (ip_within_syscall_gap(regs)) {
726 sp = this_cpu_read(cpu_current_top_of_stack);
727 goto sync;
728 }
729
730 /*
731 * From here on the RSP value is trusted. Now check whether entry
732 * happened from a safe stack. Not safe are the entry or unknown stacks,
733 * use the fall-back stack instead in this case.
734 */
735 sp = regs->sp;
736 stack = (unsigned long *)sp;
737
738 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
739 info.type > STACK_TYPE_EXCEPTION_LAST)
740 sp = __this_cpu_ist_top_va(VC2);
741
742 sync:
743 /*
744 * Found a safe stack - switch to it as if the entry didn't happen via
745 * IST stack. The code below only copies pt_regs, the real switch happens
746 * in assembly code.
747 */
748 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
749
750 regs_ret = (struct pt_regs *)sp;
751 *regs_ret = *regs;
752
753 return regs_ret;
754 }
755 #endif
756
757 struct bad_iret_stack {
758 void *error_entry_ret;
759 struct pt_regs regs;
760 };
761
762 asmlinkage __visible noinstr
fixup_bad_iret(struct bad_iret_stack * s)763 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
764 {
765 /*
766 * This is called from entry_64.S early in handling a fault
767 * caused by a bad iret to user mode. To handle the fault
768 * correctly, we want to move our stack frame to where it would
769 * be had we entered directly on the entry stack (rather than
770 * just below the IRET frame) and we want to pretend that the
771 * exception came from the IRET target.
772 */
773 struct bad_iret_stack tmp, *new_stack =
774 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
775
776 /* Copy the IRET target to the temporary storage. */
777 __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
778
779 /* Copy the remainder of the stack from the current stack. */
780 __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
781
782 /* Update the entry stack */
783 __memcpy(new_stack, &tmp, sizeof(tmp));
784
785 BUG_ON(!user_mode(&new_stack->regs));
786 return new_stack;
787 }
788 #endif
789
is_sysenter_singlestep(struct pt_regs * regs)790 static bool is_sysenter_singlestep(struct pt_regs *regs)
791 {
792 /*
793 * We don't try for precision here. If we're anywhere in the region of
794 * code that can be single-stepped in the SYSENTER entry path, then
795 * assume that this is a useless single-step trap due to SYSENTER
796 * being invoked with TF set. (We don't know in advance exactly
797 * which instructions will be hit because BTF could plausibly
798 * be set.)
799 */
800 #ifdef CONFIG_X86_32
801 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
802 (unsigned long)__end_SYSENTER_singlestep_region -
803 (unsigned long)__begin_SYSENTER_singlestep_region;
804 #elif defined(CONFIG_IA32_EMULATION)
805 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
806 (unsigned long)__end_entry_SYSENTER_compat -
807 (unsigned long)entry_SYSENTER_compat;
808 #else
809 return false;
810 #endif
811 }
812
debug_read_clear_dr6(void)813 static __always_inline unsigned long debug_read_clear_dr6(void)
814 {
815 unsigned long dr6;
816
817 /*
818 * The Intel SDM says:
819 *
820 * Certain debug exceptions may clear bits 0-3. The remaining
821 * contents of the DR6 register are never cleared by the
822 * processor. To avoid confusion in identifying debug
823 * exceptions, debug handlers should clear the register before
824 * returning to the interrupted task.
825 *
826 * Keep it simple: clear DR6 immediately.
827 */
828 get_debugreg(dr6, 6);
829 set_debugreg(DR6_RESERVED, 6);
830 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
831
832 return dr6;
833 }
834
835 /*
836 * Our handling of the processor debug registers is non-trivial.
837 * We do not clear them on entry and exit from the kernel. Therefore
838 * it is possible to get a watchpoint trap here from inside the kernel.
839 * However, the code in ./ptrace.c has ensured that the user can
840 * only set watchpoints on userspace addresses. Therefore the in-kernel
841 * watchpoint trap can only occur in code which is reading/writing
842 * from user space. Such code must not hold kernel locks (since it
843 * can equally take a page fault), therefore it is safe to call
844 * force_sig_info even though that claims and releases locks.
845 *
846 * Code in ./signal.c ensures that the debug control register
847 * is restored before we deliver any signal, and therefore that
848 * user code runs with the correct debug control register even though
849 * we clear it here.
850 *
851 * Being careful here means that we don't have to be as careful in a
852 * lot of more complicated places (task switching can be a bit lazy
853 * about restoring all the debug state, and ptrace doesn't have to
854 * find every occurrence of the TF bit that could be saved away even
855 * by user code)
856 *
857 * May run on IST stack.
858 */
859
notify_debug(struct pt_regs * regs,unsigned long * dr6)860 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
861 {
862 /*
863 * Notifiers will clear bits in @dr6 to indicate the event has been
864 * consumed - hw_breakpoint_handler(), single_stop_cont().
865 *
866 * Notifiers will set bits in @virtual_dr6 to indicate the desire
867 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
868 */
869 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
870 return true;
871
872 return false;
873 }
874
exc_debug_kernel(struct pt_regs * regs,unsigned long dr6)875 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
876 unsigned long dr6)
877 {
878 /*
879 * Disable breakpoints during exception handling; recursive exceptions
880 * are exceedingly 'fun'.
881 *
882 * Since this function is NOKPROBE, and that also applies to
883 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
884 * HW_BREAKPOINT_W on our stack)
885 *
886 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
887 * includes the entry stack is excluded for everything.
888 */
889 unsigned long dr7 = local_db_save();
890 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
891 instrumentation_begin();
892
893 /*
894 * If something gets miswired and we end up here for a user mode
895 * #DB, we will malfunction.
896 */
897 WARN_ON_ONCE(user_mode(regs));
898
899 if (test_thread_flag(TIF_BLOCKSTEP)) {
900 /*
901 * The SDM says "The processor clears the BTF flag when it
902 * generates a debug exception." but PTRACE_BLOCKSTEP requested
903 * it for userspace, but we just took a kernel #DB, so re-set
904 * BTF.
905 */
906 unsigned long debugctl;
907
908 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
909 debugctl |= DEBUGCTLMSR_BTF;
910 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
911 }
912
913 /*
914 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
915 * watchpoint at the same time then that will still be handled.
916 */
917 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
918 dr6 &= ~DR_STEP;
919
920 /*
921 * The kernel doesn't use INT1
922 */
923 if (!dr6)
924 goto out;
925
926 if (notify_debug(regs, &dr6))
927 goto out;
928
929 /*
930 * The kernel doesn't use TF single-step outside of:
931 *
932 * - Kprobes, consumed through kprobe_debug_handler()
933 * - KGDB, consumed through notify_debug()
934 *
935 * So if we get here with DR_STEP set, something is wonky.
936 *
937 * A known way to trigger this is through QEMU's GDB stub,
938 * which leaks #DB into the guest and causes IST recursion.
939 */
940 if (WARN_ON_ONCE(dr6 & DR_STEP))
941 regs->flags &= ~X86_EFLAGS_TF;
942 out:
943 instrumentation_end();
944 irqentry_nmi_exit(regs, irq_state);
945
946 local_db_restore(dr7);
947 }
948
exc_debug_user(struct pt_regs * regs,unsigned long dr6)949 static __always_inline void exc_debug_user(struct pt_regs *regs,
950 unsigned long dr6)
951 {
952 bool icebp;
953
954 /*
955 * If something gets miswired and we end up here for a kernel mode
956 * #DB, we will malfunction.
957 */
958 WARN_ON_ONCE(!user_mode(regs));
959
960 /*
961 * NB: We can't easily clear DR7 here because
962 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
963 * user memory, etc. This means that a recursive #DB is possible. If
964 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
965 * Since we're not on the IST stack right now, everything will be
966 * fine.
967 */
968
969 irqentry_enter_from_user_mode(regs);
970 instrumentation_begin();
971
972 /*
973 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
974 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
975 *
976 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
977 * even if it is not the result of PTRACE_SINGLESTEP.
978 */
979 current->thread.virtual_dr6 = (dr6 & DR_STEP);
980
981 /*
982 * The SDM says "The processor clears the BTF flag when it
983 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
984 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
985 */
986 clear_thread_flag(TIF_BLOCKSTEP);
987
988 /*
989 * If dr6 has no reason to give us about the origin of this trap,
990 * then it's very likely the result of an icebp/int01 trap.
991 * User wants a sigtrap for that.
992 */
993 icebp = !dr6;
994
995 if (notify_debug(regs, &dr6))
996 goto out;
997
998 /* It's safe to allow irq's after DR6 has been saved */
999 local_irq_enable();
1000
1001 if (v8086_mode(regs)) {
1002 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1003 goto out_irq;
1004 }
1005
1006 /* Add the virtual_dr6 bits for signals. */
1007 dr6 |= current->thread.virtual_dr6;
1008 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1009 send_sigtrap(regs, 0, get_si_code(dr6));
1010
1011 out_irq:
1012 local_irq_disable();
1013 out:
1014 instrumentation_end();
1015 irqentry_exit_to_user_mode(regs);
1016 }
1017
1018 #ifdef CONFIG_X86_64
1019 /* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)1020 DEFINE_IDTENTRY_DEBUG(exc_debug)
1021 {
1022 exc_debug_kernel(regs, debug_read_clear_dr6());
1023 }
1024
1025 /* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)1026 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1027 {
1028 exc_debug_user(regs, debug_read_clear_dr6());
1029 }
1030 #else
1031 /* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)1032 DEFINE_IDTENTRY_RAW(exc_debug)
1033 {
1034 unsigned long dr6 = debug_read_clear_dr6();
1035
1036 if (user_mode(regs))
1037 exc_debug_user(regs, dr6);
1038 else
1039 exc_debug_kernel(regs, dr6);
1040 }
1041 #endif
1042
1043 /*
1044 * Note that we play around with the 'TS' bit in an attempt to get
1045 * the correct behaviour even in the presence of the asynchronous
1046 * IRQ13 behaviour
1047 */
math_error(struct pt_regs * regs,int trapnr)1048 static void math_error(struct pt_regs *regs, int trapnr)
1049 {
1050 struct task_struct *task = current;
1051 struct fpu *fpu = &task->thread.fpu;
1052 int si_code;
1053 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1054 "simd exception";
1055
1056 cond_local_irq_enable(regs);
1057
1058 if (!user_mode(regs)) {
1059 if (fixup_exception(regs, trapnr, 0, 0))
1060 goto exit;
1061
1062 task->thread.error_code = 0;
1063 task->thread.trap_nr = trapnr;
1064
1065 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1066 SIGFPE) != NOTIFY_STOP)
1067 die(str, regs, 0);
1068 goto exit;
1069 }
1070
1071 /*
1072 * Save the info for the exception handler and clear the error.
1073 */
1074 fpu__save(fpu);
1075
1076 task->thread.trap_nr = trapnr;
1077 task->thread.error_code = 0;
1078
1079 si_code = fpu__exception_code(fpu, trapnr);
1080 /* Retry when we get spurious exceptions: */
1081 if (!si_code)
1082 goto exit;
1083
1084 force_sig_fault(SIGFPE, si_code,
1085 (void __user *)uprobe_get_trap_addr(regs));
1086 exit:
1087 cond_local_irq_disable(regs);
1088 }
1089
DEFINE_IDTENTRY(exc_coprocessor_error)1090 DEFINE_IDTENTRY(exc_coprocessor_error)
1091 {
1092 math_error(regs, X86_TRAP_MF);
1093 }
1094
DEFINE_IDTENTRY(exc_simd_coprocessor_error)1095 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1096 {
1097 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1098 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1099 if (!static_cpu_has(X86_FEATURE_XMM)) {
1100 __exc_general_protection(regs, 0);
1101 return;
1102 }
1103 }
1104 math_error(regs, X86_TRAP_XF);
1105 }
1106
DEFINE_IDTENTRY(exc_spurious_interrupt_bug)1107 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1108 {
1109 /*
1110 * This addresses a Pentium Pro Erratum:
1111 *
1112 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1113 * Virtual Wire mode implemented through the local APIC, an
1114 * interrupt vector of 0Fh (Intel reserved encoding) may be
1115 * generated by the local APIC (Int 15). This vector may be
1116 * generated upon receipt of a spurious interrupt (an interrupt
1117 * which is removed before the system receives the INTA sequence)
1118 * instead of the programmed 8259 spurious interrupt vector.
1119 *
1120 * IMPLICATION: The spurious interrupt vector programmed in the
1121 * 8259 is normally handled by an operating system's spurious
1122 * interrupt handler. However, a vector of 0Fh is unknown to some
1123 * operating systems, which would crash if this erratum occurred.
1124 *
1125 * In theory this could be limited to 32bit, but the handler is not
1126 * hurting and who knows which other CPUs suffer from this.
1127 */
1128 }
1129
DEFINE_IDTENTRY(exc_device_not_available)1130 DEFINE_IDTENTRY(exc_device_not_available)
1131 {
1132 unsigned long cr0 = read_cr0();
1133
1134 #ifdef CONFIG_MATH_EMULATION
1135 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1136 struct math_emu_info info = { };
1137
1138 cond_local_irq_enable(regs);
1139
1140 info.regs = regs;
1141 math_emulate(&info);
1142
1143 cond_local_irq_disable(regs);
1144 return;
1145 }
1146 #endif
1147
1148 /* This should not happen. */
1149 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1150 /* Try to fix it up and carry on. */
1151 write_cr0(cr0 & ~X86_CR0_TS);
1152 } else {
1153 /*
1154 * Something terrible happened, and we're better off trying
1155 * to kill the task than getting stuck in a never-ending
1156 * loop of #NM faults.
1157 */
1158 die("unexpected #NM exception", regs, 0);
1159 }
1160 }
1161
1162 #ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)1163 DEFINE_IDTENTRY_SW(iret_error)
1164 {
1165 local_irq_enable();
1166 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1167 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1168 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1169 ILL_BADSTK, (void __user *)NULL);
1170 }
1171 local_irq_disable();
1172 }
1173 #endif
1174
trap_init(void)1175 void __init trap_init(void)
1176 {
1177 /* Init cpu_entry_area before IST entries are set up */
1178 setup_cpu_entry_areas();
1179
1180 /* Init GHCB memory pages when running as an SEV-ES guest */
1181 sev_es_init_vc_handling();
1182
1183 idt_setup_traps();
1184
1185 cpu_init_exception_handling();
1186 cpu_init();
1187
1188 idt_setup_ist_traps();
1189 }
1190