• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/sysfs.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
72 #include <trace/hooks/mm.h>
73 #include <trace/hooks/dtask.h>
74 
75 /*
76  * The default value should be high enough to not crash a system that randomly
77  * crashes its kernel from time to time, but low enough to at least not permit
78  * overflowing 32-bit refcounts or the ldsem writer count.
79  */
80 static unsigned int oops_limit = 10000;
81 
82 #ifdef CONFIG_SYSCTL
83 static struct ctl_table kern_exit_table[] = {
84 	{
85 		.procname       = "oops_limit",
86 		.data           = &oops_limit,
87 		.maxlen         = sizeof(oops_limit),
88 		.mode           = 0644,
89 		.proc_handler   = proc_douintvec,
90 	},
91 	{ }
92 };
93 
kernel_exit_sysctls_init(void)94 static __init int kernel_exit_sysctls_init(void)
95 {
96 	register_sysctl_init("kernel", kern_exit_table);
97 	return 0;
98 }
99 late_initcall(kernel_exit_sysctls_init);
100 #endif
101 
102 static atomic_t oops_count = ATOMIC_INIT(0);
103 
104 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)105 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
106 			       char *page)
107 {
108 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
109 }
110 
111 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
112 
kernel_exit_sysfs_init(void)113 static __init int kernel_exit_sysfs_init(void)
114 {
115 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
116 	return 0;
117 }
118 late_initcall(kernel_exit_sysfs_init);
119 #endif
120 
__unhash_process(struct task_struct * p,bool group_dead)121 static void __unhash_process(struct task_struct *p, bool group_dead)
122 {
123 	nr_threads--;
124 	detach_pid(p, PIDTYPE_PID);
125 	if (group_dead) {
126 		detach_pid(p, PIDTYPE_TGID);
127 		detach_pid(p, PIDTYPE_PGID);
128 		detach_pid(p, PIDTYPE_SID);
129 
130 		list_del_rcu(&p->tasks);
131 		list_del_init(&p->sibling);
132 		__this_cpu_dec(process_counts);
133 	}
134 	list_del_rcu(&p->thread_group);
135 	list_del_rcu(&p->thread_node);
136 }
137 
138 /*
139  * This function expects the tasklist_lock write-locked.
140  */
__exit_signal(struct task_struct * tsk)141 static void __exit_signal(struct task_struct *tsk)
142 {
143 	struct signal_struct *sig = tsk->signal;
144 	bool group_dead = thread_group_leader(tsk);
145 	struct sighand_struct *sighand;
146 	struct tty_struct *tty;
147 	u64 utime, stime;
148 
149 	sighand = rcu_dereference_check(tsk->sighand,
150 					lockdep_tasklist_lock_is_held());
151 	spin_lock(&sighand->siglock);
152 
153 #ifdef CONFIG_POSIX_TIMERS
154 	posix_cpu_timers_exit(tsk);
155 	if (group_dead)
156 		posix_cpu_timers_exit_group(tsk);
157 #endif
158 
159 	if (group_dead) {
160 		tty = sig->tty;
161 		sig->tty = NULL;
162 	} else {
163 		/*
164 		 * If there is any task waiting for the group exit
165 		 * then notify it:
166 		 */
167 		if (sig->notify_count > 0 && !--sig->notify_count)
168 			wake_up_process(sig->group_exit_task);
169 
170 		if (tsk == sig->curr_target)
171 			sig->curr_target = next_thread(tsk);
172 	}
173 
174 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
175 			      sizeof(unsigned long long));
176 
177 	/*
178 	 * Accumulate here the counters for all threads as they die. We could
179 	 * skip the group leader because it is the last user of signal_struct,
180 	 * but we want to avoid the race with thread_group_cputime() which can
181 	 * see the empty ->thread_head list.
182 	 */
183 	task_cputime(tsk, &utime, &stime);
184 	write_seqlock(&sig->stats_lock);
185 	sig->utime += utime;
186 	sig->stime += stime;
187 	sig->gtime += task_gtime(tsk);
188 	sig->min_flt += tsk->min_flt;
189 	sig->maj_flt += tsk->maj_flt;
190 	sig->nvcsw += tsk->nvcsw;
191 	sig->nivcsw += tsk->nivcsw;
192 	sig->inblock += task_io_get_inblock(tsk);
193 	sig->oublock += task_io_get_oublock(tsk);
194 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
195 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
196 	sig->nr_threads--;
197 	__unhash_process(tsk, group_dead);
198 	write_sequnlock(&sig->stats_lock);
199 
200 	/*
201 	 * Do this under ->siglock, we can race with another thread
202 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
203 	 */
204 	flush_sigqueue(&tsk->pending);
205 	tsk->sighand = NULL;
206 	spin_unlock(&sighand->siglock);
207 
208 	__cleanup_sighand(sighand);
209 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
210 	if (group_dead) {
211 		flush_sigqueue(&sig->shared_pending);
212 		tty_kref_put(tty);
213 	}
214 }
215 
delayed_put_task_struct(struct rcu_head * rhp)216 static void delayed_put_task_struct(struct rcu_head *rhp)
217 {
218 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
219 
220 	perf_event_delayed_put(tsk);
221 	trace_sched_process_free(tsk);
222 	put_task_struct(tsk);
223 }
224 
put_task_struct_rcu_user(struct task_struct * task)225 void put_task_struct_rcu_user(struct task_struct *task)
226 {
227 	if (refcount_dec_and_test(&task->rcu_users))
228 		call_rcu(&task->rcu, delayed_put_task_struct);
229 }
230 
release_task(struct task_struct * p)231 void release_task(struct task_struct *p)
232 {
233 	struct task_struct *leader;
234 	struct pid *thread_pid;
235 	int zap_leader;
236 repeat:
237 	/* don't need to get the RCU readlock here - the process is dead and
238 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
239 	rcu_read_lock();
240 	atomic_dec(&__task_cred(p)->user->processes);
241 	rcu_read_unlock();
242 
243 	cgroup_release(p);
244 
245 	write_lock_irq(&tasklist_lock);
246 	ptrace_release_task(p);
247 	thread_pid = get_pid(p->thread_pid);
248 	__exit_signal(p);
249 
250 	/*
251 	 * If we are the last non-leader member of the thread
252 	 * group, and the leader is zombie, then notify the
253 	 * group leader's parent process. (if it wants notification.)
254 	 */
255 	zap_leader = 0;
256 	leader = p->group_leader;
257 	if (leader != p && thread_group_empty(leader)
258 			&& leader->exit_state == EXIT_ZOMBIE) {
259 		/*
260 		 * If we were the last child thread and the leader has
261 		 * exited already, and the leader's parent ignores SIGCHLD,
262 		 * then we are the one who should release the leader.
263 		 */
264 		zap_leader = do_notify_parent(leader, leader->exit_signal);
265 		if (zap_leader)
266 			leader->exit_state = EXIT_DEAD;
267 	}
268 
269 	write_unlock_irq(&tasklist_lock);
270 	seccomp_filter_release(p);
271 	proc_flush_pid(thread_pid);
272 	put_pid(thread_pid);
273 	release_thread(p);
274 	put_task_struct_rcu_user(p);
275 
276 	p = leader;
277 	if (unlikely(zap_leader))
278 		goto repeat;
279 }
280 
rcuwait_wake_up(struct rcuwait * w)281 int rcuwait_wake_up(struct rcuwait *w)
282 {
283 	int ret = 0;
284 	struct task_struct *task;
285 
286 	rcu_read_lock();
287 
288 	/*
289 	 * Order condition vs @task, such that everything prior to the load
290 	 * of @task is visible. This is the condition as to why the user called
291 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
292 	 * barrier (A) in rcuwait_wait_event().
293 	 *
294 	 *    WAIT                WAKE
295 	 *    [S] tsk = current	  [S] cond = true
296 	 *        MB (A)	      MB (B)
297 	 *    [L] cond		  [L] tsk
298 	 */
299 	smp_mb(); /* (B) */
300 
301 	task = rcu_dereference(w->task);
302 	if (task)
303 		ret = wake_up_process(task);
304 	rcu_read_unlock();
305 
306 	return ret;
307 }
308 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
309 
310 /*
311  * Determine if a process group is "orphaned", according to the POSIX
312  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
313  * by terminal-generated stop signals.  Newly orphaned process groups are
314  * to receive a SIGHUP and a SIGCONT.
315  *
316  * "I ask you, have you ever known what it is to be an orphan?"
317  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)318 static int will_become_orphaned_pgrp(struct pid *pgrp,
319 					struct task_struct *ignored_task)
320 {
321 	struct task_struct *p;
322 
323 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
324 		if ((p == ignored_task) ||
325 		    (p->exit_state && thread_group_empty(p)) ||
326 		    is_global_init(p->real_parent))
327 			continue;
328 
329 		if (task_pgrp(p->real_parent) != pgrp &&
330 		    task_session(p->real_parent) == task_session(p))
331 			return 0;
332 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
333 
334 	return 1;
335 }
336 
is_current_pgrp_orphaned(void)337 int is_current_pgrp_orphaned(void)
338 {
339 	int retval;
340 
341 	read_lock(&tasklist_lock);
342 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
343 	read_unlock(&tasklist_lock);
344 
345 	return retval;
346 }
347 
has_stopped_jobs(struct pid * pgrp)348 static bool has_stopped_jobs(struct pid *pgrp)
349 {
350 	struct task_struct *p;
351 
352 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
353 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
354 			return true;
355 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
356 
357 	return false;
358 }
359 
360 /*
361  * Check to see if any process groups have become orphaned as
362  * a result of our exiting, and if they have any stopped jobs,
363  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
364  */
365 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)366 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
367 {
368 	struct pid *pgrp = task_pgrp(tsk);
369 	struct task_struct *ignored_task = tsk;
370 
371 	if (!parent)
372 		/* exit: our father is in a different pgrp than
373 		 * we are and we were the only connection outside.
374 		 */
375 		parent = tsk->real_parent;
376 	else
377 		/* reparent: our child is in a different pgrp than
378 		 * we are, and it was the only connection outside.
379 		 */
380 		ignored_task = NULL;
381 
382 	if (task_pgrp(parent) != pgrp &&
383 	    task_session(parent) == task_session(tsk) &&
384 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
385 	    has_stopped_jobs(pgrp)) {
386 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
387 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
388 	}
389 }
390 
391 #ifdef CONFIG_MEMCG
392 /*
393  * A task is exiting.   If it owned this mm, find a new owner for the mm.
394  */
mm_update_next_owner(struct mm_struct * mm)395 void mm_update_next_owner(struct mm_struct *mm)
396 {
397 	struct task_struct *c, *g, *p = current;
398 
399 retry:
400 	/*
401 	 * If the exiting or execing task is not the owner, it's
402 	 * someone else's problem.
403 	 */
404 	if (mm->owner != p)
405 		return;
406 	/*
407 	 * The current owner is exiting/execing and there are no other
408 	 * candidates.  Do not leave the mm pointing to a possibly
409 	 * freed task structure.
410 	 */
411 	if (atomic_read(&mm->mm_users) <= 1) {
412 		WRITE_ONCE(mm->owner, NULL);
413 		return;
414 	}
415 
416 	read_lock(&tasklist_lock);
417 	/*
418 	 * Search in the children
419 	 */
420 	list_for_each_entry(c, &p->children, sibling) {
421 		if (c->mm == mm)
422 			goto assign_new_owner;
423 	}
424 
425 	/*
426 	 * Search in the siblings
427 	 */
428 	list_for_each_entry(c, &p->real_parent->children, sibling) {
429 		if (c->mm == mm)
430 			goto assign_new_owner;
431 	}
432 
433 	/*
434 	 * Search through everything else, we should not get here often.
435 	 */
436 	for_each_process(g) {
437 		if (g->flags & PF_KTHREAD)
438 			continue;
439 		for_each_thread(g, c) {
440 			if (c->mm == mm)
441 				goto assign_new_owner;
442 			if (c->mm)
443 				break;
444 		}
445 	}
446 	read_unlock(&tasklist_lock);
447 	/*
448 	 * We found no owner yet mm_users > 1: this implies that we are
449 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
450 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
451 	 */
452 	WRITE_ONCE(mm->owner, NULL);
453 	return;
454 
455 assign_new_owner:
456 	BUG_ON(c == p);
457 	get_task_struct(c);
458 	/*
459 	 * The task_lock protects c->mm from changing.
460 	 * We always want mm->owner->mm == mm
461 	 */
462 	task_lock(c);
463 	/*
464 	 * Delay read_unlock() till we have the task_lock()
465 	 * to ensure that c does not slip away underneath us
466 	 */
467 	read_unlock(&tasklist_lock);
468 	if (c->mm != mm) {
469 		task_unlock(c);
470 		put_task_struct(c);
471 		goto retry;
472 	}
473 	WRITE_ONCE(mm->owner, c);
474 	task_unlock(c);
475 	put_task_struct(c);
476 }
477 #endif /* CONFIG_MEMCG */
478 
479 /*
480  * Turn us into a lazy TLB process if we
481  * aren't already..
482  */
exit_mm(void)483 static void exit_mm(void)
484 {
485 	struct mm_struct *mm = current->mm;
486 	struct core_state *core_state;
487 
488 	exit_mm_release(current, mm);
489 	if (!mm)
490 		return;
491 	sync_mm_rss(mm);
492 	/*
493 	 * Serialize with any possible pending coredump.
494 	 * We must hold mmap_lock around checking core_state
495 	 * and clearing tsk->mm.  The core-inducing thread
496 	 * will increment ->nr_threads for each thread in the
497 	 * group with ->mm != NULL.
498 	 */
499 	mmap_read_lock(mm);
500 	core_state = mm->core_state;
501 	if (core_state) {
502 		struct core_thread self;
503 
504 		mmap_read_unlock(mm);
505 
506 		self.task = current;
507 		if (self.task->flags & PF_SIGNALED)
508 			self.next = xchg(&core_state->dumper.next, &self);
509 		else
510 			self.task = NULL;
511 		/*
512 		 * Implies mb(), the result of xchg() must be visible
513 		 * to core_state->dumper.
514 		 */
515 		if (atomic_dec_and_test(&core_state->nr_threads))
516 			complete(&core_state->startup);
517 
518 		for (;;) {
519 			set_current_state(TASK_UNINTERRUPTIBLE);
520 			if (!self.task) /* see coredump_finish() */
521 				break;
522 			freezable_schedule();
523 		}
524 		__set_current_state(TASK_RUNNING);
525 		mmap_read_lock(mm);
526 	}
527 	mmgrab(mm);
528 	BUG_ON(mm != current->active_mm);
529 	/* more a memory barrier than a real lock */
530 	task_lock(current);
531 	current->mm = NULL;
532 	mmap_read_unlock(mm);
533 	enter_lazy_tlb(mm, current);
534 	task_unlock(current);
535 	mm_update_next_owner(mm);
536 	trace_android_vh_exit_mm(mm);
537 	mmput(mm);
538 	if (test_thread_flag(TIF_MEMDIE))
539 		exit_oom_victim();
540 }
541 
find_alive_thread(struct task_struct * p)542 static struct task_struct *find_alive_thread(struct task_struct *p)
543 {
544 	struct task_struct *t;
545 
546 	for_each_thread(p, t) {
547 		if (!(t->flags & PF_EXITING))
548 			return t;
549 	}
550 	return NULL;
551 }
552 
find_child_reaper(struct task_struct * father,struct list_head * dead)553 static struct task_struct *find_child_reaper(struct task_struct *father,
554 						struct list_head *dead)
555 	__releases(&tasklist_lock)
556 	__acquires(&tasklist_lock)
557 {
558 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
559 	struct task_struct *reaper = pid_ns->child_reaper;
560 	struct task_struct *p, *n;
561 
562 	if (likely(reaper != father))
563 		return reaper;
564 
565 	reaper = find_alive_thread(father);
566 	if (reaper) {
567 		pid_ns->child_reaper = reaper;
568 		return reaper;
569 	}
570 
571 	write_unlock_irq(&tasklist_lock);
572 
573 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
574 		list_del_init(&p->ptrace_entry);
575 		release_task(p);
576 	}
577 
578 	zap_pid_ns_processes(pid_ns);
579 	write_lock_irq(&tasklist_lock);
580 
581 	return father;
582 }
583 
584 /*
585  * When we die, we re-parent all our children, and try to:
586  * 1. give them to another thread in our thread group, if such a member exists
587  * 2. give it to the first ancestor process which prctl'd itself as a
588  *    child_subreaper for its children (like a service manager)
589  * 3. give it to the init process (PID 1) in our pid namespace
590  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)591 static struct task_struct *find_new_reaper(struct task_struct *father,
592 					   struct task_struct *child_reaper)
593 {
594 	struct task_struct *thread, *reaper;
595 
596 	thread = find_alive_thread(father);
597 	if (thread)
598 		return thread;
599 
600 	if (father->signal->has_child_subreaper) {
601 		unsigned int ns_level = task_pid(father)->level;
602 		/*
603 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
604 		 * We can't check reaper != child_reaper to ensure we do not
605 		 * cross the namespaces, the exiting parent could be injected
606 		 * by setns() + fork().
607 		 * We check pid->level, this is slightly more efficient than
608 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
609 		 */
610 		for (reaper = father->real_parent;
611 		     task_pid(reaper)->level == ns_level;
612 		     reaper = reaper->real_parent) {
613 			if (reaper == &init_task)
614 				break;
615 			if (!reaper->signal->is_child_subreaper)
616 				continue;
617 			thread = find_alive_thread(reaper);
618 			if (thread)
619 				return thread;
620 		}
621 	}
622 
623 	return child_reaper;
624 }
625 
626 /*
627 * Any that need to be release_task'd are put on the @dead list.
628  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)629 static void reparent_leader(struct task_struct *father, struct task_struct *p,
630 				struct list_head *dead)
631 {
632 	if (unlikely(p->exit_state == EXIT_DEAD))
633 		return;
634 
635 	/* We don't want people slaying init. */
636 	p->exit_signal = SIGCHLD;
637 
638 	/* If it has exited notify the new parent about this child's death. */
639 	if (!p->ptrace &&
640 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
641 		if (do_notify_parent(p, p->exit_signal)) {
642 			p->exit_state = EXIT_DEAD;
643 			list_add(&p->ptrace_entry, dead);
644 		}
645 	}
646 
647 	kill_orphaned_pgrp(p, father);
648 }
649 
650 /*
651  * This does two things:
652  *
653  * A.  Make init inherit all the child processes
654  * B.  Check to see if any process groups have become orphaned
655  *	as a result of our exiting, and if they have any stopped
656  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
657  */
forget_original_parent(struct task_struct * father,struct list_head * dead)658 static void forget_original_parent(struct task_struct *father,
659 					struct list_head *dead)
660 {
661 	struct task_struct *p, *t, *reaper;
662 
663 	if (unlikely(!list_empty(&father->ptraced)))
664 		exit_ptrace(father, dead);
665 
666 	/* Can drop and reacquire tasklist_lock */
667 	reaper = find_child_reaper(father, dead);
668 	if (list_empty(&father->children))
669 		return;
670 
671 	reaper = find_new_reaper(father, reaper);
672 	list_for_each_entry(p, &father->children, sibling) {
673 		for_each_thread(p, t) {
674 			RCU_INIT_POINTER(t->real_parent, reaper);
675 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
676 			if (likely(!t->ptrace))
677 				t->parent = t->real_parent;
678 			if (t->pdeath_signal)
679 				group_send_sig_info(t->pdeath_signal,
680 						    SEND_SIG_NOINFO, t,
681 						    PIDTYPE_TGID);
682 		}
683 		/*
684 		 * If this is a threaded reparent there is no need to
685 		 * notify anyone anything has happened.
686 		 */
687 		if (!same_thread_group(reaper, father))
688 			reparent_leader(father, p, dead);
689 	}
690 	list_splice_tail_init(&father->children, &reaper->children);
691 }
692 
693 /*
694  * Send signals to all our closest relatives so that they know
695  * to properly mourn us..
696  */
exit_notify(struct task_struct * tsk,int group_dead)697 static void exit_notify(struct task_struct *tsk, int group_dead)
698 {
699 	bool autoreap;
700 	struct task_struct *p, *n;
701 	LIST_HEAD(dead);
702 
703 	write_lock_irq(&tasklist_lock);
704 	forget_original_parent(tsk, &dead);
705 
706 	if (group_dead)
707 		kill_orphaned_pgrp(tsk->group_leader, NULL);
708 
709 	tsk->exit_state = EXIT_ZOMBIE;
710 	if (unlikely(tsk->ptrace)) {
711 		int sig = thread_group_leader(tsk) &&
712 				thread_group_empty(tsk) &&
713 				!ptrace_reparented(tsk) ?
714 			tsk->exit_signal : SIGCHLD;
715 		autoreap = do_notify_parent(tsk, sig);
716 	} else if (thread_group_leader(tsk)) {
717 		autoreap = thread_group_empty(tsk) &&
718 			do_notify_parent(tsk, tsk->exit_signal);
719 	} else {
720 		autoreap = true;
721 	}
722 
723 	if (autoreap) {
724 		tsk->exit_state = EXIT_DEAD;
725 		list_add(&tsk->ptrace_entry, &dead);
726 	}
727 
728 	/* mt-exec, de_thread() is waiting for group leader */
729 	if (unlikely(tsk->signal->notify_count < 0))
730 		wake_up_process(tsk->signal->group_exit_task);
731 	write_unlock_irq(&tasklist_lock);
732 
733 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
734 		list_del_init(&p->ptrace_entry);
735 		release_task(p);
736 	}
737 }
738 
739 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)740 static void check_stack_usage(void)
741 {
742 	static DEFINE_SPINLOCK(low_water_lock);
743 	static int lowest_to_date = THREAD_SIZE;
744 	unsigned long free;
745 
746 	free = stack_not_used(current);
747 
748 	if (free >= lowest_to_date)
749 		return;
750 
751 	spin_lock(&low_water_lock);
752 	if (free < lowest_to_date) {
753 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
754 			current->comm, task_pid_nr(current), free);
755 		lowest_to_date = free;
756 	}
757 	spin_unlock(&low_water_lock);
758 }
759 #else
check_stack_usage(void)760 static inline void check_stack_usage(void) {}
761 #endif
762 
do_exit(long code)763 void __noreturn do_exit(long code)
764 {
765 	struct task_struct *tsk = current;
766 	int group_dead;
767 
768 	/*
769 	 * We can get here from a kernel oops, sometimes with preemption off.
770 	 * Start by checking for critical errors.
771 	 * Then fix up important state like USER_DS and preemption.
772 	 * Then do everything else.
773 	 */
774 
775 	WARN_ON(blk_needs_flush_plug(tsk));
776 
777 	if (unlikely(in_interrupt()))
778 		panic("Aiee, killing interrupt handler!");
779 	if (unlikely(!tsk->pid))
780 		panic("Attempted to kill the idle task!");
781 
782 	/*
783 	 * If do_exit is called because this processes oopsed, it's possible
784 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
785 	 * continuing. Amongst other possible reasons, this is to prevent
786 	 * mm_release()->clear_child_tid() from writing to a user-controlled
787 	 * kernel address.
788 	 */
789 	force_uaccess_begin();
790 
791 	if (unlikely(in_atomic())) {
792 		pr_info("note: %s[%d] exited with preempt_count %d\n",
793 			current->comm, task_pid_nr(current),
794 			preempt_count());
795 		preempt_count_set(PREEMPT_ENABLED);
796 	}
797 
798 	profile_task_exit(tsk);
799 	kcov_task_exit(tsk);
800 
801 	ptrace_event(PTRACE_EVENT_EXIT, code);
802 
803 	validate_creds_for_do_exit(tsk);
804 
805 	/*
806 	 * We're taking recursive faults here in do_exit. Safest is to just
807 	 * leave this task alone and wait for reboot.
808 	 */
809 	if (unlikely(tsk->flags & PF_EXITING)) {
810 		pr_alert("Fixing recursive fault but reboot is needed!\n");
811 		futex_exit_recursive(tsk);
812 		set_current_state(TASK_UNINTERRUPTIBLE);
813 		schedule();
814 	}
815 
816 	io_uring_files_cancel();
817 	exit_signals(tsk);  /* sets PF_EXITING */
818 
819 	/* sync mm's RSS info before statistics gathering */
820 	if (tsk->mm)
821 		sync_mm_rss(tsk->mm);
822 	acct_update_integrals(tsk);
823 	group_dead = atomic_dec_and_test(&tsk->signal->live);
824 	trace_android_vh_exit_check(current, code, group_dead);
825 	if (group_dead) {
826 		/*
827 		 * If the last thread of global init has exited, panic
828 		 * immediately to get a useable coredump.
829 		 */
830 		if (unlikely(is_global_init(tsk)))
831 			panic("Attempted to kill init! exitcode=0x%08x\n",
832 				tsk->signal->group_exit_code ?: (int)code);
833 
834 #ifdef CONFIG_POSIX_TIMERS
835 		hrtimer_cancel(&tsk->signal->real_timer);
836 		exit_itimers(tsk);
837 #endif
838 		if (tsk->mm)
839 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
840 	}
841 	acct_collect(code, group_dead);
842 	if (group_dead)
843 		tty_audit_exit();
844 	audit_free(tsk);
845 
846 	tsk->exit_code = code;
847 	taskstats_exit(tsk, group_dead);
848 
849 	exit_mm();
850 
851 	if (group_dead)
852 		acct_process();
853 	trace_sched_process_exit(tsk);
854 
855 	exit_sem(tsk);
856 	exit_shm(tsk);
857 	exit_files(tsk);
858 	exit_fs(tsk);
859 	if (group_dead)
860 		disassociate_ctty(1);
861 	exit_task_namespaces(tsk);
862 	exit_task_work(tsk);
863 	exit_thread(tsk);
864 
865 	/*
866 	 * Flush inherited counters to the parent - before the parent
867 	 * gets woken up by child-exit notifications.
868 	 *
869 	 * because of cgroup mode, must be called before cgroup_exit()
870 	 */
871 	perf_event_exit_task(tsk);
872 
873 	sched_autogroup_exit_task(tsk);
874 	cgroup_exit(tsk);
875 
876 	/*
877 	 * FIXME: do that only when needed, using sched_exit tracepoint
878 	 */
879 	flush_ptrace_hw_breakpoint(tsk);
880 
881 	exit_tasks_rcu_start();
882 	exit_notify(tsk, group_dead);
883 	proc_exit_connector(tsk);
884 	mpol_put_task_policy(tsk);
885 #ifdef CONFIG_FUTEX
886 	if (unlikely(current->pi_state_cache))
887 		kfree(current->pi_state_cache);
888 #endif
889 	/*
890 	 * Make sure we are holding no locks:
891 	 */
892 	debug_check_no_locks_held();
893 
894 	if (tsk->io_context)
895 		exit_io_context(tsk);
896 
897 	if (tsk->splice_pipe)
898 		free_pipe_info(tsk->splice_pipe);
899 
900 	if (tsk->task_frag.page)
901 		put_page(tsk->task_frag.page);
902 
903 	validate_creds_for_do_exit(tsk);
904 
905 	check_stack_usage();
906 	preempt_disable();
907 	if (tsk->nr_dirtied)
908 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
909 	exit_rcu();
910 	exit_tasks_rcu_finish();
911 
912 	lockdep_free_task(tsk);
913 	do_task_dead();
914 }
915 EXPORT_SYMBOL_GPL(do_exit);
916 
make_task_dead(int signr)917 void __noreturn make_task_dead(int signr)
918 {
919 	/*
920 	 * Take the task off the cpu after something catastrophic has
921 	 * happened.
922 	 */
923 	unsigned int limit;
924 
925 	/*
926 	 * Every time the system oopses, if the oops happens while a reference
927 	 * to an object was held, the reference leaks.
928 	 * If the oops doesn't also leak memory, repeated oopsing can cause
929 	 * reference counters to wrap around (if they're not using refcount_t).
930 	 * This means that repeated oopsing can make unexploitable-looking bugs
931 	 * exploitable through repeated oopsing.
932 	 * To make sure this can't happen, place an upper bound on how often the
933 	 * kernel may oops without panic().
934 	 */
935 	limit = READ_ONCE(oops_limit);
936 	if (atomic_inc_return(&oops_count) >= limit && limit)
937 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
938 
939 	do_exit(signr);
940 }
941 
complete_and_exit(struct completion * comp,long code)942 void complete_and_exit(struct completion *comp, long code)
943 {
944 	if (comp)
945 		complete(comp);
946 
947 	do_exit(code);
948 }
949 EXPORT_SYMBOL(complete_and_exit);
950 
SYSCALL_DEFINE1(exit,int,error_code)951 SYSCALL_DEFINE1(exit, int, error_code)
952 {
953 	do_exit((error_code&0xff)<<8);
954 }
955 
956 /*
957  * Take down every thread in the group.  This is called by fatal signals
958  * as well as by sys_exit_group (below).
959  */
960 void
do_group_exit(int exit_code)961 do_group_exit(int exit_code)
962 {
963 	struct signal_struct *sig = current->signal;
964 
965 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
966 
967 	if (signal_group_exit(sig))
968 		exit_code = sig->group_exit_code;
969 	else if (!thread_group_empty(current)) {
970 		struct sighand_struct *const sighand = current->sighand;
971 
972 		spin_lock_irq(&sighand->siglock);
973 		if (signal_group_exit(sig))
974 			/* Another thread got here before we took the lock.  */
975 			exit_code = sig->group_exit_code;
976 		else {
977 			sig->group_exit_code = exit_code;
978 			sig->flags = SIGNAL_GROUP_EXIT;
979 			zap_other_threads(current);
980 		}
981 		spin_unlock_irq(&sighand->siglock);
982 	}
983 
984 	do_exit(exit_code);
985 	/* NOTREACHED */
986 }
987 
988 /*
989  * this kills every thread in the thread group. Note that any externally
990  * wait4()-ing process will get the correct exit code - even if this
991  * thread is not the thread group leader.
992  */
SYSCALL_DEFINE1(exit_group,int,error_code)993 SYSCALL_DEFINE1(exit_group, int, error_code)
994 {
995 	do_group_exit((error_code & 0xff) << 8);
996 	/* NOTREACHED */
997 	return 0;
998 }
999 
1000 struct waitid_info {
1001 	pid_t pid;
1002 	uid_t uid;
1003 	int status;
1004 	int cause;
1005 };
1006 
1007 struct wait_opts {
1008 	enum pid_type		wo_type;
1009 	int			wo_flags;
1010 	struct pid		*wo_pid;
1011 
1012 	struct waitid_info	*wo_info;
1013 	int			wo_stat;
1014 	struct rusage		*wo_rusage;
1015 
1016 	wait_queue_entry_t		child_wait;
1017 	int			notask_error;
1018 };
1019 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1020 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1021 {
1022 	return	wo->wo_type == PIDTYPE_MAX ||
1023 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1024 }
1025 
1026 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1027 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1028 {
1029 	if (!eligible_pid(wo, p))
1030 		return 0;
1031 
1032 	/*
1033 	 * Wait for all children (clone and not) if __WALL is set or
1034 	 * if it is traced by us.
1035 	 */
1036 	if (ptrace || (wo->wo_flags & __WALL))
1037 		return 1;
1038 
1039 	/*
1040 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1041 	 * otherwise, wait for non-clone children *only*.
1042 	 *
1043 	 * Note: a "clone" child here is one that reports to its parent
1044 	 * using a signal other than SIGCHLD, or a non-leader thread which
1045 	 * we can only see if it is traced by us.
1046 	 */
1047 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1048 		return 0;
1049 
1050 	return 1;
1051 }
1052 
1053 /*
1054  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1055  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1056  * the lock and this task is uninteresting.  If we return nonzero, we have
1057  * released the lock and the system call should return.
1058  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1059 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1060 {
1061 	int state, status;
1062 	pid_t pid = task_pid_vnr(p);
1063 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1064 	struct waitid_info *infop;
1065 
1066 	if (!likely(wo->wo_flags & WEXITED))
1067 		return 0;
1068 
1069 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1070 		status = p->exit_code;
1071 		get_task_struct(p);
1072 		read_unlock(&tasklist_lock);
1073 		sched_annotate_sleep();
1074 		if (wo->wo_rusage)
1075 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1076 		put_task_struct(p);
1077 		goto out_info;
1078 	}
1079 	/*
1080 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1081 	 */
1082 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1083 		EXIT_TRACE : EXIT_DEAD;
1084 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1085 		return 0;
1086 	/*
1087 	 * We own this thread, nobody else can reap it.
1088 	 */
1089 	read_unlock(&tasklist_lock);
1090 	sched_annotate_sleep();
1091 
1092 	/*
1093 	 * Check thread_group_leader() to exclude the traced sub-threads.
1094 	 */
1095 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1096 		struct signal_struct *sig = p->signal;
1097 		struct signal_struct *psig = current->signal;
1098 		unsigned long maxrss;
1099 		u64 tgutime, tgstime;
1100 
1101 		/*
1102 		 * The resource counters for the group leader are in its
1103 		 * own task_struct.  Those for dead threads in the group
1104 		 * are in its signal_struct, as are those for the child
1105 		 * processes it has previously reaped.  All these
1106 		 * accumulate in the parent's signal_struct c* fields.
1107 		 *
1108 		 * We don't bother to take a lock here to protect these
1109 		 * p->signal fields because the whole thread group is dead
1110 		 * and nobody can change them.
1111 		 *
1112 		 * psig->stats_lock also protects us from our sub-theads
1113 		 * which can reap other children at the same time. Until
1114 		 * we change k_getrusage()-like users to rely on this lock
1115 		 * we have to take ->siglock as well.
1116 		 *
1117 		 * We use thread_group_cputime_adjusted() to get times for
1118 		 * the thread group, which consolidates times for all threads
1119 		 * in the group including the group leader.
1120 		 */
1121 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1122 		spin_lock_irq(&current->sighand->siglock);
1123 		write_seqlock(&psig->stats_lock);
1124 		psig->cutime += tgutime + sig->cutime;
1125 		psig->cstime += tgstime + sig->cstime;
1126 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1127 		psig->cmin_flt +=
1128 			p->min_flt + sig->min_flt + sig->cmin_flt;
1129 		psig->cmaj_flt +=
1130 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1131 		psig->cnvcsw +=
1132 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1133 		psig->cnivcsw +=
1134 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1135 		psig->cinblock +=
1136 			task_io_get_inblock(p) +
1137 			sig->inblock + sig->cinblock;
1138 		psig->coublock +=
1139 			task_io_get_oublock(p) +
1140 			sig->oublock + sig->coublock;
1141 		maxrss = max(sig->maxrss, sig->cmaxrss);
1142 		if (psig->cmaxrss < maxrss)
1143 			psig->cmaxrss = maxrss;
1144 		task_io_accounting_add(&psig->ioac, &p->ioac);
1145 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1146 		write_sequnlock(&psig->stats_lock);
1147 		spin_unlock_irq(&current->sighand->siglock);
1148 	}
1149 
1150 	if (wo->wo_rusage)
1151 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1152 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1153 		? p->signal->group_exit_code : p->exit_code;
1154 	wo->wo_stat = status;
1155 
1156 	if (state == EXIT_TRACE) {
1157 		write_lock_irq(&tasklist_lock);
1158 		/* We dropped tasklist, ptracer could die and untrace */
1159 		ptrace_unlink(p);
1160 
1161 		/* If parent wants a zombie, don't release it now */
1162 		state = EXIT_ZOMBIE;
1163 		if (do_notify_parent(p, p->exit_signal))
1164 			state = EXIT_DEAD;
1165 		p->exit_state = state;
1166 		write_unlock_irq(&tasklist_lock);
1167 	}
1168 	if (state == EXIT_DEAD)
1169 		release_task(p);
1170 
1171 out_info:
1172 	infop = wo->wo_info;
1173 	if (infop) {
1174 		if ((status & 0x7f) == 0) {
1175 			infop->cause = CLD_EXITED;
1176 			infop->status = status >> 8;
1177 		} else {
1178 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1179 			infop->status = status & 0x7f;
1180 		}
1181 		infop->pid = pid;
1182 		infop->uid = uid;
1183 	}
1184 
1185 	return pid;
1186 }
1187 
task_stopped_code(struct task_struct * p,bool ptrace)1188 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1189 {
1190 	if (ptrace) {
1191 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1192 			return &p->exit_code;
1193 	} else {
1194 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1195 			return &p->signal->group_exit_code;
1196 	}
1197 	return NULL;
1198 }
1199 
1200 /**
1201  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1202  * @wo: wait options
1203  * @ptrace: is the wait for ptrace
1204  * @p: task to wait for
1205  *
1206  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1207  *
1208  * CONTEXT:
1209  * read_lock(&tasklist_lock), which is released if return value is
1210  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1211  *
1212  * RETURNS:
1213  * 0 if wait condition didn't exist and search for other wait conditions
1214  * should continue.  Non-zero return, -errno on failure and @p's pid on
1215  * success, implies that tasklist_lock is released and wait condition
1216  * search should terminate.
1217  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1218 static int wait_task_stopped(struct wait_opts *wo,
1219 				int ptrace, struct task_struct *p)
1220 {
1221 	struct waitid_info *infop;
1222 	int exit_code, *p_code, why;
1223 	uid_t uid = 0; /* unneeded, required by compiler */
1224 	pid_t pid;
1225 
1226 	/*
1227 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1228 	 */
1229 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1230 		return 0;
1231 
1232 	if (!task_stopped_code(p, ptrace))
1233 		return 0;
1234 
1235 	exit_code = 0;
1236 	spin_lock_irq(&p->sighand->siglock);
1237 
1238 	p_code = task_stopped_code(p, ptrace);
1239 	if (unlikely(!p_code))
1240 		goto unlock_sig;
1241 
1242 	exit_code = *p_code;
1243 	if (!exit_code)
1244 		goto unlock_sig;
1245 
1246 	if (!unlikely(wo->wo_flags & WNOWAIT))
1247 		*p_code = 0;
1248 
1249 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1250 unlock_sig:
1251 	spin_unlock_irq(&p->sighand->siglock);
1252 	if (!exit_code)
1253 		return 0;
1254 
1255 	/*
1256 	 * Now we are pretty sure this task is interesting.
1257 	 * Make sure it doesn't get reaped out from under us while we
1258 	 * give up the lock and then examine it below.  We don't want to
1259 	 * keep holding onto the tasklist_lock while we call getrusage and
1260 	 * possibly take page faults for user memory.
1261 	 */
1262 	get_task_struct(p);
1263 	pid = task_pid_vnr(p);
1264 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1265 	read_unlock(&tasklist_lock);
1266 	sched_annotate_sleep();
1267 	if (wo->wo_rusage)
1268 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1269 	put_task_struct(p);
1270 
1271 	if (likely(!(wo->wo_flags & WNOWAIT)))
1272 		wo->wo_stat = (exit_code << 8) | 0x7f;
1273 
1274 	infop = wo->wo_info;
1275 	if (infop) {
1276 		infop->cause = why;
1277 		infop->status = exit_code;
1278 		infop->pid = pid;
1279 		infop->uid = uid;
1280 	}
1281 	return pid;
1282 }
1283 
1284 /*
1285  * Handle do_wait work for one task in a live, non-stopped state.
1286  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1287  * the lock and this task is uninteresting.  If we return nonzero, we have
1288  * released the lock and the system call should return.
1289  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1290 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1291 {
1292 	struct waitid_info *infop;
1293 	pid_t pid;
1294 	uid_t uid;
1295 
1296 	if (!unlikely(wo->wo_flags & WCONTINUED))
1297 		return 0;
1298 
1299 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1300 		return 0;
1301 
1302 	spin_lock_irq(&p->sighand->siglock);
1303 	/* Re-check with the lock held.  */
1304 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1305 		spin_unlock_irq(&p->sighand->siglock);
1306 		return 0;
1307 	}
1308 	if (!unlikely(wo->wo_flags & WNOWAIT))
1309 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1310 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1311 	spin_unlock_irq(&p->sighand->siglock);
1312 
1313 	pid = task_pid_vnr(p);
1314 	get_task_struct(p);
1315 	read_unlock(&tasklist_lock);
1316 	sched_annotate_sleep();
1317 	if (wo->wo_rusage)
1318 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1319 	put_task_struct(p);
1320 
1321 	infop = wo->wo_info;
1322 	if (!infop) {
1323 		wo->wo_stat = 0xffff;
1324 	} else {
1325 		infop->cause = CLD_CONTINUED;
1326 		infop->pid = pid;
1327 		infop->uid = uid;
1328 		infop->status = SIGCONT;
1329 	}
1330 	return pid;
1331 }
1332 
1333 /*
1334  * Consider @p for a wait by @parent.
1335  *
1336  * -ECHILD should be in ->notask_error before the first call.
1337  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1338  * Returns zero if the search for a child should continue;
1339  * then ->notask_error is 0 if @p is an eligible child,
1340  * or still -ECHILD.
1341  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1342 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1343 				struct task_struct *p)
1344 {
1345 	/*
1346 	 * We can race with wait_task_zombie() from another thread.
1347 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1348 	 * can't confuse the checks below.
1349 	 */
1350 	int exit_state = READ_ONCE(p->exit_state);
1351 	int ret;
1352 
1353 	if (unlikely(exit_state == EXIT_DEAD))
1354 		return 0;
1355 
1356 	ret = eligible_child(wo, ptrace, p);
1357 	if (!ret)
1358 		return ret;
1359 
1360 	if (unlikely(exit_state == EXIT_TRACE)) {
1361 		/*
1362 		 * ptrace == 0 means we are the natural parent. In this case
1363 		 * we should clear notask_error, debugger will notify us.
1364 		 */
1365 		if (likely(!ptrace))
1366 			wo->notask_error = 0;
1367 		return 0;
1368 	}
1369 
1370 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1371 		/*
1372 		 * If it is traced by its real parent's group, just pretend
1373 		 * the caller is ptrace_do_wait() and reap this child if it
1374 		 * is zombie.
1375 		 *
1376 		 * This also hides group stop state from real parent; otherwise
1377 		 * a single stop can be reported twice as group and ptrace stop.
1378 		 * If a ptracer wants to distinguish these two events for its
1379 		 * own children it should create a separate process which takes
1380 		 * the role of real parent.
1381 		 */
1382 		if (!ptrace_reparented(p))
1383 			ptrace = 1;
1384 	}
1385 
1386 	/* slay zombie? */
1387 	if (exit_state == EXIT_ZOMBIE) {
1388 		/* we don't reap group leaders with subthreads */
1389 		if (!delay_group_leader(p)) {
1390 			/*
1391 			 * A zombie ptracee is only visible to its ptracer.
1392 			 * Notification and reaping will be cascaded to the
1393 			 * real parent when the ptracer detaches.
1394 			 */
1395 			if (unlikely(ptrace) || likely(!p->ptrace))
1396 				return wait_task_zombie(wo, p);
1397 		}
1398 
1399 		/*
1400 		 * Allow access to stopped/continued state via zombie by
1401 		 * falling through.  Clearing of notask_error is complex.
1402 		 *
1403 		 * When !@ptrace:
1404 		 *
1405 		 * If WEXITED is set, notask_error should naturally be
1406 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1407 		 * so, if there are live subthreads, there are events to
1408 		 * wait for.  If all subthreads are dead, it's still safe
1409 		 * to clear - this function will be called again in finite
1410 		 * amount time once all the subthreads are released and
1411 		 * will then return without clearing.
1412 		 *
1413 		 * When @ptrace:
1414 		 *
1415 		 * Stopped state is per-task and thus can't change once the
1416 		 * target task dies.  Only continued and exited can happen.
1417 		 * Clear notask_error if WCONTINUED | WEXITED.
1418 		 */
1419 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1420 			wo->notask_error = 0;
1421 	} else {
1422 		/*
1423 		 * @p is alive and it's gonna stop, continue or exit, so
1424 		 * there always is something to wait for.
1425 		 */
1426 		wo->notask_error = 0;
1427 	}
1428 
1429 	/*
1430 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1431 	 * is used and the two don't interact with each other.
1432 	 */
1433 	ret = wait_task_stopped(wo, ptrace, p);
1434 	if (ret)
1435 		return ret;
1436 
1437 	/*
1438 	 * Wait for continued.  There's only one continued state and the
1439 	 * ptracer can consume it which can confuse the real parent.  Don't
1440 	 * use WCONTINUED from ptracer.  You don't need or want it.
1441 	 */
1442 	return wait_task_continued(wo, p);
1443 }
1444 
1445 /*
1446  * Do the work of do_wait() for one thread in the group, @tsk.
1447  *
1448  * -ECHILD should be in ->notask_error before the first call.
1449  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1450  * Returns zero if the search for a child should continue; then
1451  * ->notask_error is 0 if there were any eligible children,
1452  * or still -ECHILD.
1453  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1454 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1455 {
1456 	struct task_struct *p;
1457 
1458 	list_for_each_entry(p, &tsk->children, sibling) {
1459 		int ret = wait_consider_task(wo, 0, p);
1460 
1461 		if (ret)
1462 			return ret;
1463 	}
1464 
1465 	return 0;
1466 }
1467 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1468 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1469 {
1470 	struct task_struct *p;
1471 
1472 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1473 		int ret = wait_consider_task(wo, 1, p);
1474 
1475 		if (ret)
1476 			return ret;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1482 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1483 				int sync, void *key)
1484 {
1485 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1486 						child_wait);
1487 	struct task_struct *p = key;
1488 
1489 	if (!eligible_pid(wo, p))
1490 		return 0;
1491 
1492 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1493 		return 0;
1494 
1495 	return default_wake_function(wait, mode, sync, key);
1496 }
1497 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1498 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1499 {
1500 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1501 			   TASK_INTERRUPTIBLE, p);
1502 }
1503 
do_wait(struct wait_opts * wo)1504 static long do_wait(struct wait_opts *wo)
1505 {
1506 	struct task_struct *tsk;
1507 	int retval;
1508 
1509 	trace_sched_process_wait(wo->wo_pid);
1510 
1511 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1512 	wo->child_wait.private = current;
1513 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1514 repeat:
1515 	/*
1516 	 * If there is nothing that can match our criteria, just get out.
1517 	 * We will clear ->notask_error to zero if we see any child that
1518 	 * might later match our criteria, even if we are not able to reap
1519 	 * it yet.
1520 	 */
1521 	wo->notask_error = -ECHILD;
1522 	if ((wo->wo_type < PIDTYPE_MAX) &&
1523 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1524 		goto notask;
1525 
1526 	set_current_state(TASK_INTERRUPTIBLE);
1527 	read_lock(&tasklist_lock);
1528 	tsk = current;
1529 	do {
1530 		retval = do_wait_thread(wo, tsk);
1531 		if (retval)
1532 			goto end;
1533 
1534 		retval = ptrace_do_wait(wo, tsk);
1535 		if (retval)
1536 			goto end;
1537 
1538 		if (wo->wo_flags & __WNOTHREAD)
1539 			break;
1540 	} while_each_thread(current, tsk);
1541 	read_unlock(&tasklist_lock);
1542 
1543 notask:
1544 	retval = wo->notask_error;
1545 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1546 		retval = -ERESTARTSYS;
1547 		if (!signal_pending(current)) {
1548 			schedule();
1549 			goto repeat;
1550 		}
1551 	}
1552 end:
1553 	__set_current_state(TASK_RUNNING);
1554 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1555 	return retval;
1556 }
1557 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1558 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1559 			  int options, struct rusage *ru)
1560 {
1561 	struct wait_opts wo;
1562 	struct pid *pid = NULL;
1563 	enum pid_type type;
1564 	long ret;
1565 	unsigned int f_flags = 0;
1566 
1567 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1568 			__WNOTHREAD|__WCLONE|__WALL))
1569 		return -EINVAL;
1570 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1571 		return -EINVAL;
1572 
1573 	switch (which) {
1574 	case P_ALL:
1575 		type = PIDTYPE_MAX;
1576 		break;
1577 	case P_PID:
1578 		type = PIDTYPE_PID;
1579 		if (upid <= 0)
1580 			return -EINVAL;
1581 
1582 		pid = find_get_pid(upid);
1583 		break;
1584 	case P_PGID:
1585 		type = PIDTYPE_PGID;
1586 		if (upid < 0)
1587 			return -EINVAL;
1588 
1589 		if (upid)
1590 			pid = find_get_pid(upid);
1591 		else
1592 			pid = get_task_pid(current, PIDTYPE_PGID);
1593 		break;
1594 	case P_PIDFD:
1595 		type = PIDTYPE_PID;
1596 		if (upid < 0)
1597 			return -EINVAL;
1598 
1599 		pid = pidfd_get_pid(upid, &f_flags);
1600 		if (IS_ERR(pid))
1601 			return PTR_ERR(pid);
1602 
1603 		break;
1604 	default:
1605 		return -EINVAL;
1606 	}
1607 
1608 	wo.wo_type	= type;
1609 	wo.wo_pid	= pid;
1610 	wo.wo_flags	= options;
1611 	wo.wo_info	= infop;
1612 	wo.wo_rusage	= ru;
1613 	if (f_flags & O_NONBLOCK)
1614 		wo.wo_flags |= WNOHANG;
1615 
1616 	ret = do_wait(&wo);
1617 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1618 		ret = -EAGAIN;
1619 
1620 	put_pid(pid);
1621 	return ret;
1622 }
1623 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1624 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1625 		infop, int, options, struct rusage __user *, ru)
1626 {
1627 	struct rusage r;
1628 	struct waitid_info info = {.status = 0};
1629 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1630 	int signo = 0;
1631 
1632 	if (err > 0) {
1633 		signo = SIGCHLD;
1634 		err = 0;
1635 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1636 			return -EFAULT;
1637 	}
1638 	if (!infop)
1639 		return err;
1640 
1641 	if (!user_write_access_begin(infop, sizeof(*infop)))
1642 		return -EFAULT;
1643 
1644 	unsafe_put_user(signo, &infop->si_signo, Efault);
1645 	unsafe_put_user(0, &infop->si_errno, Efault);
1646 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1647 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1648 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1649 	unsafe_put_user(info.status, &infop->si_status, Efault);
1650 	user_write_access_end();
1651 	return err;
1652 Efault:
1653 	user_write_access_end();
1654 	return -EFAULT;
1655 }
1656 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1657 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1658 		  struct rusage *ru)
1659 {
1660 	struct wait_opts wo;
1661 	struct pid *pid = NULL;
1662 	enum pid_type type;
1663 	long ret;
1664 
1665 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1666 			__WNOTHREAD|__WCLONE|__WALL))
1667 		return -EINVAL;
1668 
1669 	/* -INT_MIN is not defined */
1670 	if (upid == INT_MIN)
1671 		return -ESRCH;
1672 
1673 	if (upid == -1)
1674 		type = PIDTYPE_MAX;
1675 	else if (upid < 0) {
1676 		type = PIDTYPE_PGID;
1677 		pid = find_get_pid(-upid);
1678 	} else if (upid == 0) {
1679 		type = PIDTYPE_PGID;
1680 		pid = get_task_pid(current, PIDTYPE_PGID);
1681 	} else /* upid > 0 */ {
1682 		type = PIDTYPE_PID;
1683 		pid = find_get_pid(upid);
1684 	}
1685 
1686 	wo.wo_type	= type;
1687 	wo.wo_pid	= pid;
1688 	wo.wo_flags	= options | WEXITED;
1689 	wo.wo_info	= NULL;
1690 	wo.wo_stat	= 0;
1691 	wo.wo_rusage	= ru;
1692 	ret = do_wait(&wo);
1693 	put_pid(pid);
1694 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1695 		ret = -EFAULT;
1696 
1697 	return ret;
1698 }
1699 
kernel_wait(pid_t pid,int * stat)1700 int kernel_wait(pid_t pid, int *stat)
1701 {
1702 	struct wait_opts wo = {
1703 		.wo_type	= PIDTYPE_PID,
1704 		.wo_pid		= find_get_pid(pid),
1705 		.wo_flags	= WEXITED,
1706 	};
1707 	int ret;
1708 
1709 	ret = do_wait(&wo);
1710 	if (ret > 0 && wo.wo_stat)
1711 		*stat = wo.wo_stat;
1712 	put_pid(wo.wo_pid);
1713 	return ret;
1714 }
1715 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1716 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1717 		int, options, struct rusage __user *, ru)
1718 {
1719 	struct rusage r;
1720 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1721 
1722 	if (err > 0) {
1723 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1724 			return -EFAULT;
1725 	}
1726 	return err;
1727 }
1728 
1729 #ifdef __ARCH_WANT_SYS_WAITPID
1730 
1731 /*
1732  * sys_waitpid() remains for compatibility. waitpid() should be
1733  * implemented by calling sys_wait4() from libc.a.
1734  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1735 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1736 {
1737 	return kernel_wait4(pid, stat_addr, options, NULL);
1738 }
1739 
1740 #endif
1741 
1742 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1743 COMPAT_SYSCALL_DEFINE4(wait4,
1744 	compat_pid_t, pid,
1745 	compat_uint_t __user *, stat_addr,
1746 	int, options,
1747 	struct compat_rusage __user *, ru)
1748 {
1749 	struct rusage r;
1750 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1751 	if (err > 0) {
1752 		if (ru && put_compat_rusage(&r, ru))
1753 			return -EFAULT;
1754 	}
1755 	return err;
1756 }
1757 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1758 COMPAT_SYSCALL_DEFINE5(waitid,
1759 		int, which, compat_pid_t, pid,
1760 		struct compat_siginfo __user *, infop, int, options,
1761 		struct compat_rusage __user *, uru)
1762 {
1763 	struct rusage ru;
1764 	struct waitid_info info = {.status = 0};
1765 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1766 	int signo = 0;
1767 	if (err > 0) {
1768 		signo = SIGCHLD;
1769 		err = 0;
1770 		if (uru) {
1771 			/* kernel_waitid() overwrites everything in ru */
1772 			if (COMPAT_USE_64BIT_TIME)
1773 				err = copy_to_user(uru, &ru, sizeof(ru));
1774 			else
1775 				err = put_compat_rusage(&ru, uru);
1776 			if (err)
1777 				return -EFAULT;
1778 		}
1779 	}
1780 
1781 	if (!infop)
1782 		return err;
1783 
1784 	if (!user_write_access_begin(infop, sizeof(*infop)))
1785 		return -EFAULT;
1786 
1787 	unsafe_put_user(signo, &infop->si_signo, Efault);
1788 	unsafe_put_user(0, &infop->si_errno, Efault);
1789 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1790 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1791 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1792 	unsafe_put_user(info.status, &infop->si_status, Efault);
1793 	user_write_access_end();
1794 	return err;
1795 Efault:
1796 	user_write_access_end();
1797 	return -EFAULT;
1798 }
1799 #endif
1800 
1801 /**
1802  * thread_group_exited - check that a thread group has exited
1803  * @pid: tgid of thread group to be checked.
1804  *
1805  * Test if the thread group represented by tgid has exited (all
1806  * threads are zombies, dead or completely gone).
1807  *
1808  * Return: true if the thread group has exited. false otherwise.
1809  */
thread_group_exited(struct pid * pid)1810 bool thread_group_exited(struct pid *pid)
1811 {
1812 	struct task_struct *task;
1813 	bool exited;
1814 
1815 	rcu_read_lock();
1816 	task = pid_task(pid, PIDTYPE_PID);
1817 	exited = !task ||
1818 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1819 	rcu_read_unlock();
1820 
1821 	return exited;
1822 }
1823 EXPORT_SYMBOL(thread_group_exited);
1824 
abort(void)1825 __weak void abort(void)
1826 {
1827 	BUG();
1828 
1829 	/* if that doesn't kill us, halt */
1830 	panic("Oops failed to kill thread");
1831 }
1832 EXPORT_SYMBOL(abort);
1833