1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/unicode.h>
24 #include <linux/fscrypt.h>
25
26 #include <linux/uaccess.h>
27
28 #include "internal.h"
29
simple_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)30 int simple_getattr(const struct path *path, struct kstat *stat,
31 u32 request_mask, unsigned int query_flags)
32 {
33 struct inode *inode = d_inode(path->dentry);
34 generic_fillattr(inode, stat);
35 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
36 return 0;
37 }
38 EXPORT_SYMBOL(simple_getattr);
39
simple_statfs(struct dentry * dentry,struct kstatfs * buf)40 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
41 {
42 buf->f_type = dentry->d_sb->s_magic;
43 buf->f_bsize = PAGE_SIZE;
44 buf->f_namelen = NAME_MAX;
45 return 0;
46 }
47 EXPORT_SYMBOL(simple_statfs);
48
49 /*
50 * Retaining negative dentries for an in-memory filesystem just wastes
51 * memory and lookup time: arrange for them to be deleted immediately.
52 */
always_delete_dentry(const struct dentry * dentry)53 int always_delete_dentry(const struct dentry *dentry)
54 {
55 return 1;
56 }
57 EXPORT_SYMBOL(always_delete_dentry);
58
59 const struct dentry_operations simple_dentry_operations = {
60 .d_delete = always_delete_dentry,
61 };
62 EXPORT_SYMBOL(simple_dentry_operations);
63
64 /*
65 * Lookup the data. This is trivial - if the dentry didn't already
66 * exist, we know it is negative. Set d_op to delete negative dentries.
67 */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)68 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
69 {
70 if (dentry->d_name.len > NAME_MAX)
71 return ERR_PTR(-ENAMETOOLONG);
72 if (!dentry->d_sb->s_d_op)
73 d_set_d_op(dentry, &simple_dentry_operations);
74 d_add(dentry, NULL);
75 return NULL;
76 }
77 EXPORT_SYMBOL(simple_lookup);
78
dcache_dir_open(struct inode * inode,struct file * file)79 int dcache_dir_open(struct inode *inode, struct file *file)
80 {
81 file->private_data = d_alloc_cursor(file->f_path.dentry);
82
83 return file->private_data ? 0 : -ENOMEM;
84 }
85 EXPORT_SYMBOL(dcache_dir_open);
86
dcache_dir_close(struct inode * inode,struct file * file)87 int dcache_dir_close(struct inode *inode, struct file *file)
88 {
89 dput(file->private_data);
90 return 0;
91 }
92 EXPORT_SYMBOL(dcache_dir_close);
93
94 /* parent is locked at least shared */
95 /*
96 * Returns an element of siblings' list.
97 * We are looking for <count>th positive after <p>; if
98 * found, dentry is grabbed and returned to caller.
99 * If no such element exists, NULL is returned.
100 */
scan_positives(struct dentry * cursor,struct list_head * p,loff_t count,struct dentry * last)101 static struct dentry *scan_positives(struct dentry *cursor,
102 struct list_head *p,
103 loff_t count,
104 struct dentry *last)
105 {
106 struct dentry *dentry = cursor->d_parent, *found = NULL;
107
108 spin_lock(&dentry->d_lock);
109 while ((p = p->next) != &dentry->d_subdirs) {
110 struct dentry *d = list_entry(p, struct dentry, d_child);
111 // we must at least skip cursors, to avoid livelocks
112 if (d->d_flags & DCACHE_DENTRY_CURSOR)
113 continue;
114 if (simple_positive(d) && !--count) {
115 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
116 if (simple_positive(d))
117 found = dget_dlock(d);
118 spin_unlock(&d->d_lock);
119 if (likely(found))
120 break;
121 count = 1;
122 }
123 if (need_resched()) {
124 list_move(&cursor->d_child, p);
125 p = &cursor->d_child;
126 spin_unlock(&dentry->d_lock);
127 cond_resched();
128 spin_lock(&dentry->d_lock);
129 }
130 }
131 spin_unlock(&dentry->d_lock);
132 dput(last);
133 return found;
134 }
135
dcache_dir_lseek(struct file * file,loff_t offset,int whence)136 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
137 {
138 struct dentry *dentry = file->f_path.dentry;
139 switch (whence) {
140 case 1:
141 offset += file->f_pos;
142 fallthrough;
143 case 0:
144 if (offset >= 0)
145 break;
146 fallthrough;
147 default:
148 return -EINVAL;
149 }
150 if (offset != file->f_pos) {
151 struct dentry *cursor = file->private_data;
152 struct dentry *to = NULL;
153
154 inode_lock_shared(dentry->d_inode);
155
156 if (offset > 2)
157 to = scan_positives(cursor, &dentry->d_subdirs,
158 offset - 2, NULL);
159 spin_lock(&dentry->d_lock);
160 if (to)
161 list_move(&cursor->d_child, &to->d_child);
162 else
163 list_del_init(&cursor->d_child);
164 spin_unlock(&dentry->d_lock);
165 dput(to);
166
167 file->f_pos = offset;
168
169 inode_unlock_shared(dentry->d_inode);
170 }
171 return offset;
172 }
173 EXPORT_SYMBOL(dcache_dir_lseek);
174
175 /* Relationship between i_mode and the DT_xxx types */
dt_type(struct inode * inode)176 static inline unsigned char dt_type(struct inode *inode)
177 {
178 return (inode->i_mode >> 12) & 15;
179 }
180
181 /*
182 * Directory is locked and all positive dentries in it are safe, since
183 * for ramfs-type trees they can't go away without unlink() or rmdir(),
184 * both impossible due to the lock on directory.
185 */
186
dcache_readdir(struct file * file,struct dir_context * ctx)187 int dcache_readdir(struct file *file, struct dir_context *ctx)
188 {
189 struct dentry *dentry = file->f_path.dentry;
190 struct dentry *cursor = file->private_data;
191 struct list_head *anchor = &dentry->d_subdirs;
192 struct dentry *next = NULL;
193 struct list_head *p;
194
195 if (!dir_emit_dots(file, ctx))
196 return 0;
197
198 if (ctx->pos == 2)
199 p = anchor;
200 else if (!list_empty(&cursor->d_child))
201 p = &cursor->d_child;
202 else
203 return 0;
204
205 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
206 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
207 d_inode(next)->i_ino, dt_type(d_inode(next))))
208 break;
209 ctx->pos++;
210 p = &next->d_child;
211 }
212 spin_lock(&dentry->d_lock);
213 if (next)
214 list_move_tail(&cursor->d_child, &next->d_child);
215 else
216 list_del_init(&cursor->d_child);
217 spin_unlock(&dentry->d_lock);
218 dput(next);
219
220 return 0;
221 }
222 EXPORT_SYMBOL(dcache_readdir);
223
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)224 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
225 {
226 return -EISDIR;
227 }
228 EXPORT_SYMBOL_NS(generic_read_dir, ANDROID_GKI_VFS_EXPORT_ONLY);
229
230 const struct file_operations simple_dir_operations = {
231 .open = dcache_dir_open,
232 .release = dcache_dir_close,
233 .llseek = dcache_dir_lseek,
234 .read = generic_read_dir,
235 .iterate_shared = dcache_readdir,
236 .fsync = noop_fsync,
237 };
238 EXPORT_SYMBOL(simple_dir_operations);
239
240 const struct inode_operations simple_dir_inode_operations = {
241 .lookup = simple_lookup,
242 };
243 EXPORT_SYMBOL(simple_dir_inode_operations);
244
find_next_child(struct dentry * parent,struct dentry * prev)245 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
246 {
247 struct dentry *child = NULL;
248 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
249
250 spin_lock(&parent->d_lock);
251 while ((p = p->next) != &parent->d_subdirs) {
252 struct dentry *d = container_of(p, struct dentry, d_child);
253 if (simple_positive(d)) {
254 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
255 if (simple_positive(d))
256 child = dget_dlock(d);
257 spin_unlock(&d->d_lock);
258 if (likely(child))
259 break;
260 }
261 }
262 spin_unlock(&parent->d_lock);
263 dput(prev);
264 return child;
265 }
266
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))267 void simple_recursive_removal(struct dentry *dentry,
268 void (*callback)(struct dentry *))
269 {
270 struct dentry *this = dget(dentry);
271 while (true) {
272 struct dentry *victim = NULL, *child;
273 struct inode *inode = this->d_inode;
274
275 inode_lock(inode);
276 if (d_is_dir(this))
277 inode->i_flags |= S_DEAD;
278 while ((child = find_next_child(this, victim)) == NULL) {
279 // kill and ascend
280 // update metadata while it's still locked
281 inode->i_ctime = current_time(inode);
282 clear_nlink(inode);
283 inode_unlock(inode);
284 victim = this;
285 this = this->d_parent;
286 inode = this->d_inode;
287 inode_lock(inode);
288 if (simple_positive(victim)) {
289 d_invalidate(victim); // avoid lost mounts
290 if (d_is_dir(victim))
291 fsnotify_rmdir(inode, victim);
292 else
293 fsnotify_unlink(inode, victim);
294 if (callback)
295 callback(victim);
296 dput(victim); // unpin it
297 }
298 if (victim == dentry) {
299 inode->i_ctime = inode->i_mtime =
300 current_time(inode);
301 if (d_is_dir(dentry))
302 drop_nlink(inode);
303 inode_unlock(inode);
304 dput(dentry);
305 return;
306 }
307 }
308 inode_unlock(inode);
309 this = child;
310 }
311 }
312 EXPORT_SYMBOL(simple_recursive_removal);
313
314 static const struct super_operations simple_super_operations = {
315 .statfs = simple_statfs,
316 };
317
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)318 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
319 {
320 struct pseudo_fs_context *ctx = fc->fs_private;
321 struct inode *root;
322
323 s->s_maxbytes = MAX_LFS_FILESIZE;
324 s->s_blocksize = PAGE_SIZE;
325 s->s_blocksize_bits = PAGE_SHIFT;
326 s->s_magic = ctx->magic;
327 s->s_op = ctx->ops ?: &simple_super_operations;
328 s->s_xattr = ctx->xattr;
329 s->s_time_gran = 1;
330 root = new_inode(s);
331 if (!root)
332 return -ENOMEM;
333
334 /*
335 * since this is the first inode, make it number 1. New inodes created
336 * after this must take care not to collide with it (by passing
337 * max_reserved of 1 to iunique).
338 */
339 root->i_ino = 1;
340 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
341 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
342 s->s_root = d_make_root(root);
343 if (!s->s_root)
344 return -ENOMEM;
345 s->s_d_op = ctx->dops;
346 return 0;
347 }
348
pseudo_fs_get_tree(struct fs_context * fc)349 static int pseudo_fs_get_tree(struct fs_context *fc)
350 {
351 return get_tree_nodev(fc, pseudo_fs_fill_super);
352 }
353
pseudo_fs_free(struct fs_context * fc)354 static void pseudo_fs_free(struct fs_context *fc)
355 {
356 kfree(fc->fs_private);
357 }
358
359 static const struct fs_context_operations pseudo_fs_context_ops = {
360 .free = pseudo_fs_free,
361 .get_tree = pseudo_fs_get_tree,
362 };
363
364 /*
365 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
366 * will never be mountable)
367 */
init_pseudo(struct fs_context * fc,unsigned long magic)368 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
369 unsigned long magic)
370 {
371 struct pseudo_fs_context *ctx;
372
373 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
374 if (likely(ctx)) {
375 ctx->magic = magic;
376 fc->fs_private = ctx;
377 fc->ops = &pseudo_fs_context_ops;
378 fc->sb_flags |= SB_NOUSER;
379 fc->global = true;
380 }
381 return ctx;
382 }
383 EXPORT_SYMBOL(init_pseudo);
384
simple_open(struct inode * inode,struct file * file)385 int simple_open(struct inode *inode, struct file *file)
386 {
387 if (inode->i_private)
388 file->private_data = inode->i_private;
389 return 0;
390 }
391 EXPORT_SYMBOL(simple_open);
392
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)393 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
394 {
395 struct inode *inode = d_inode(old_dentry);
396
397 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
398 inc_nlink(inode);
399 ihold(inode);
400 dget(dentry);
401 d_instantiate(dentry, inode);
402 return 0;
403 }
404 EXPORT_SYMBOL(simple_link);
405
simple_empty(struct dentry * dentry)406 int simple_empty(struct dentry *dentry)
407 {
408 struct dentry *child;
409 int ret = 0;
410
411 spin_lock(&dentry->d_lock);
412 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
413 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
414 if (simple_positive(child)) {
415 spin_unlock(&child->d_lock);
416 goto out;
417 }
418 spin_unlock(&child->d_lock);
419 }
420 ret = 1;
421 out:
422 spin_unlock(&dentry->d_lock);
423 return ret;
424 }
425 EXPORT_SYMBOL(simple_empty);
426
simple_unlink(struct inode * dir,struct dentry * dentry)427 int simple_unlink(struct inode *dir, struct dentry *dentry)
428 {
429 struct inode *inode = d_inode(dentry);
430
431 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
432 drop_nlink(inode);
433 dput(dentry);
434 return 0;
435 }
436 EXPORT_SYMBOL(simple_unlink);
437
simple_rmdir(struct inode * dir,struct dentry * dentry)438 int simple_rmdir(struct inode *dir, struct dentry *dentry)
439 {
440 if (!simple_empty(dentry))
441 return -ENOTEMPTY;
442
443 drop_nlink(d_inode(dentry));
444 simple_unlink(dir, dentry);
445 drop_nlink(dir);
446 return 0;
447 }
448 EXPORT_SYMBOL(simple_rmdir);
449
simple_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)450 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
451 struct inode *new_dir, struct dentry *new_dentry,
452 unsigned int flags)
453 {
454 struct inode *inode = d_inode(old_dentry);
455 int they_are_dirs = d_is_dir(old_dentry);
456
457 if (flags & ~RENAME_NOREPLACE)
458 return -EINVAL;
459
460 if (!simple_empty(new_dentry))
461 return -ENOTEMPTY;
462
463 if (d_really_is_positive(new_dentry)) {
464 simple_unlink(new_dir, new_dentry);
465 if (they_are_dirs) {
466 drop_nlink(d_inode(new_dentry));
467 drop_nlink(old_dir);
468 }
469 } else if (they_are_dirs) {
470 drop_nlink(old_dir);
471 inc_nlink(new_dir);
472 }
473
474 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
475 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
476
477 return 0;
478 }
479 EXPORT_SYMBOL(simple_rename);
480
481 /**
482 * simple_setattr - setattr for simple filesystem
483 * @dentry: dentry
484 * @iattr: iattr structure
485 *
486 * Returns 0 on success, -error on failure.
487 *
488 * simple_setattr is a simple ->setattr implementation without a proper
489 * implementation of size changes.
490 *
491 * It can either be used for in-memory filesystems or special files
492 * on simple regular filesystems. Anything that needs to change on-disk
493 * or wire state on size changes needs its own setattr method.
494 */
simple_setattr(struct dentry * dentry,struct iattr * iattr)495 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
496 {
497 struct inode *inode = d_inode(dentry);
498 int error;
499
500 error = setattr_prepare(dentry, iattr);
501 if (error)
502 return error;
503
504 if (iattr->ia_valid & ATTR_SIZE)
505 truncate_setsize(inode, iattr->ia_size);
506 setattr_copy(inode, iattr);
507 mark_inode_dirty(inode);
508 return 0;
509 }
510 EXPORT_SYMBOL(simple_setattr);
511
simple_readpage(struct file * file,struct page * page)512 int simple_readpage(struct file *file, struct page *page)
513 {
514 clear_highpage(page);
515 flush_dcache_page(page);
516 SetPageUptodate(page);
517 unlock_page(page);
518 return 0;
519 }
520 EXPORT_SYMBOL(simple_readpage);
521
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)522 int simple_write_begin(struct file *file, struct address_space *mapping,
523 loff_t pos, unsigned len, unsigned flags,
524 struct page **pagep, void **fsdata)
525 {
526 struct page *page;
527 pgoff_t index;
528
529 index = pos >> PAGE_SHIFT;
530
531 page = grab_cache_page_write_begin(mapping, index, flags);
532 if (!page)
533 return -ENOMEM;
534
535 *pagep = page;
536
537 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
538 unsigned from = pos & (PAGE_SIZE - 1);
539
540 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
541 }
542 return 0;
543 }
544 EXPORT_SYMBOL(simple_write_begin);
545
546 /**
547 * simple_write_end - .write_end helper for non-block-device FSes
548 * @file: See .write_end of address_space_operations
549 * @mapping: "
550 * @pos: "
551 * @len: "
552 * @copied: "
553 * @page: "
554 * @fsdata: "
555 *
556 * simple_write_end does the minimum needed for updating a page after writing is
557 * done. It has the same API signature as the .write_end of
558 * address_space_operations vector. So it can just be set onto .write_end for
559 * FSes that don't need any other processing. i_mutex is assumed to be held.
560 * Block based filesystems should use generic_write_end().
561 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
562 * is not called, so a filesystem that actually does store data in .write_inode
563 * should extend on what's done here with a call to mark_inode_dirty() in the
564 * case that i_size has changed.
565 *
566 * Use *ONLY* with simple_readpage()
567 */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)568 int simple_write_end(struct file *file, struct address_space *mapping,
569 loff_t pos, unsigned len, unsigned copied,
570 struct page *page, void *fsdata)
571 {
572 struct inode *inode = page->mapping->host;
573 loff_t last_pos = pos + copied;
574
575 /* zero the stale part of the page if we did a short copy */
576 if (!PageUptodate(page)) {
577 if (copied < len) {
578 unsigned from = pos & (PAGE_SIZE - 1);
579
580 zero_user(page, from + copied, len - copied);
581 }
582 SetPageUptodate(page);
583 }
584 /*
585 * No need to use i_size_read() here, the i_size
586 * cannot change under us because we hold the i_mutex.
587 */
588 if (last_pos > inode->i_size)
589 i_size_write(inode, last_pos);
590
591 set_page_dirty(page);
592 unlock_page(page);
593 put_page(page);
594
595 return copied;
596 }
597 EXPORT_SYMBOL(simple_write_end);
598
599 /*
600 * the inodes created here are not hashed. If you use iunique to generate
601 * unique inode values later for this filesystem, then you must take care
602 * to pass it an appropriate max_reserved value to avoid collisions.
603 */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)604 int simple_fill_super(struct super_block *s, unsigned long magic,
605 const struct tree_descr *files)
606 {
607 struct inode *inode;
608 struct dentry *root;
609 struct dentry *dentry;
610 int i;
611
612 s->s_blocksize = PAGE_SIZE;
613 s->s_blocksize_bits = PAGE_SHIFT;
614 s->s_magic = magic;
615 s->s_op = &simple_super_operations;
616 s->s_time_gran = 1;
617
618 inode = new_inode(s);
619 if (!inode)
620 return -ENOMEM;
621 /*
622 * because the root inode is 1, the files array must not contain an
623 * entry at index 1
624 */
625 inode->i_ino = 1;
626 inode->i_mode = S_IFDIR | 0755;
627 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
628 inode->i_op = &simple_dir_inode_operations;
629 inode->i_fop = &simple_dir_operations;
630 set_nlink(inode, 2);
631 root = d_make_root(inode);
632 if (!root)
633 return -ENOMEM;
634 for (i = 0; !files->name || files->name[0]; i++, files++) {
635 if (!files->name)
636 continue;
637
638 /* warn if it tries to conflict with the root inode */
639 if (unlikely(i == 1))
640 printk(KERN_WARNING "%s: %s passed in a files array"
641 "with an index of 1!\n", __func__,
642 s->s_type->name);
643
644 dentry = d_alloc_name(root, files->name);
645 if (!dentry)
646 goto out;
647 inode = new_inode(s);
648 if (!inode) {
649 dput(dentry);
650 goto out;
651 }
652 inode->i_mode = S_IFREG | files->mode;
653 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
654 inode->i_fop = files->ops;
655 inode->i_ino = i;
656 d_add(dentry, inode);
657 }
658 s->s_root = root;
659 return 0;
660 out:
661 d_genocide(root);
662 shrink_dcache_parent(root);
663 dput(root);
664 return -ENOMEM;
665 }
666 EXPORT_SYMBOL(simple_fill_super);
667
668 static DEFINE_SPINLOCK(pin_fs_lock);
669
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)670 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
671 {
672 struct vfsmount *mnt = NULL;
673 spin_lock(&pin_fs_lock);
674 if (unlikely(!*mount)) {
675 spin_unlock(&pin_fs_lock);
676 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
677 if (IS_ERR(mnt))
678 return PTR_ERR(mnt);
679 spin_lock(&pin_fs_lock);
680 if (!*mount)
681 *mount = mnt;
682 }
683 mntget(*mount);
684 ++*count;
685 spin_unlock(&pin_fs_lock);
686 mntput(mnt);
687 return 0;
688 }
689 EXPORT_SYMBOL(simple_pin_fs);
690
simple_release_fs(struct vfsmount ** mount,int * count)691 void simple_release_fs(struct vfsmount **mount, int *count)
692 {
693 struct vfsmount *mnt;
694 spin_lock(&pin_fs_lock);
695 mnt = *mount;
696 if (!--*count)
697 *mount = NULL;
698 spin_unlock(&pin_fs_lock);
699 mntput(mnt);
700 }
701 EXPORT_SYMBOL(simple_release_fs);
702
703 /**
704 * simple_read_from_buffer - copy data from the buffer to user space
705 * @to: the user space buffer to read to
706 * @count: the maximum number of bytes to read
707 * @ppos: the current position in the buffer
708 * @from: the buffer to read from
709 * @available: the size of the buffer
710 *
711 * The simple_read_from_buffer() function reads up to @count bytes from the
712 * buffer @from at offset @ppos into the user space address starting at @to.
713 *
714 * On success, the number of bytes read is returned and the offset @ppos is
715 * advanced by this number, or negative value is returned on error.
716 **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)717 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
718 const void *from, size_t available)
719 {
720 loff_t pos = *ppos;
721 size_t ret;
722
723 if (pos < 0)
724 return -EINVAL;
725 if (pos >= available || !count)
726 return 0;
727 if (count > available - pos)
728 count = available - pos;
729 ret = copy_to_user(to, from + pos, count);
730 if (ret == count)
731 return -EFAULT;
732 count -= ret;
733 *ppos = pos + count;
734 return count;
735 }
736 EXPORT_SYMBOL(simple_read_from_buffer);
737
738 /**
739 * simple_write_to_buffer - copy data from user space to the buffer
740 * @to: the buffer to write to
741 * @available: the size of the buffer
742 * @ppos: the current position in the buffer
743 * @from: the user space buffer to read from
744 * @count: the maximum number of bytes to read
745 *
746 * The simple_write_to_buffer() function reads up to @count bytes from the user
747 * space address starting at @from into the buffer @to at offset @ppos.
748 *
749 * On success, the number of bytes written is returned and the offset @ppos is
750 * advanced by this number, or negative value is returned on error.
751 **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)752 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
753 const void __user *from, size_t count)
754 {
755 loff_t pos = *ppos;
756 size_t res;
757
758 if (pos < 0)
759 return -EINVAL;
760 if (pos >= available || !count)
761 return 0;
762 if (count > available - pos)
763 count = available - pos;
764 res = copy_from_user(to + pos, from, count);
765 if (res == count)
766 return -EFAULT;
767 count -= res;
768 *ppos = pos + count;
769 return count;
770 }
771 EXPORT_SYMBOL(simple_write_to_buffer);
772
773 /**
774 * memory_read_from_buffer - copy data from the buffer
775 * @to: the kernel space buffer to read to
776 * @count: the maximum number of bytes to read
777 * @ppos: the current position in the buffer
778 * @from: the buffer to read from
779 * @available: the size of the buffer
780 *
781 * The memory_read_from_buffer() function reads up to @count bytes from the
782 * buffer @from at offset @ppos into the kernel space address starting at @to.
783 *
784 * On success, the number of bytes read is returned and the offset @ppos is
785 * advanced by this number, or negative value is returned on error.
786 **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)787 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
788 const void *from, size_t available)
789 {
790 loff_t pos = *ppos;
791
792 if (pos < 0)
793 return -EINVAL;
794 if (pos >= available)
795 return 0;
796 if (count > available - pos)
797 count = available - pos;
798 memcpy(to, from + pos, count);
799 *ppos = pos + count;
800
801 return count;
802 }
803 EXPORT_SYMBOL(memory_read_from_buffer);
804
805 /*
806 * Transaction based IO.
807 * The file expects a single write which triggers the transaction, and then
808 * possibly a read which collects the result - which is stored in a
809 * file-local buffer.
810 */
811
simple_transaction_set(struct file * file,size_t n)812 void simple_transaction_set(struct file *file, size_t n)
813 {
814 struct simple_transaction_argresp *ar = file->private_data;
815
816 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
817
818 /*
819 * The barrier ensures that ar->size will really remain zero until
820 * ar->data is ready for reading.
821 */
822 smp_mb();
823 ar->size = n;
824 }
825 EXPORT_SYMBOL(simple_transaction_set);
826
simple_transaction_get(struct file * file,const char __user * buf,size_t size)827 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
828 {
829 struct simple_transaction_argresp *ar;
830 static DEFINE_SPINLOCK(simple_transaction_lock);
831
832 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
833 return ERR_PTR(-EFBIG);
834
835 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
836 if (!ar)
837 return ERR_PTR(-ENOMEM);
838
839 spin_lock(&simple_transaction_lock);
840
841 /* only one write allowed per open */
842 if (file->private_data) {
843 spin_unlock(&simple_transaction_lock);
844 free_page((unsigned long)ar);
845 return ERR_PTR(-EBUSY);
846 }
847
848 file->private_data = ar;
849
850 spin_unlock(&simple_transaction_lock);
851
852 if (copy_from_user(ar->data, buf, size))
853 return ERR_PTR(-EFAULT);
854
855 return ar->data;
856 }
857 EXPORT_SYMBOL(simple_transaction_get);
858
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)859 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
860 {
861 struct simple_transaction_argresp *ar = file->private_data;
862
863 if (!ar)
864 return 0;
865 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
866 }
867 EXPORT_SYMBOL(simple_transaction_read);
868
simple_transaction_release(struct inode * inode,struct file * file)869 int simple_transaction_release(struct inode *inode, struct file *file)
870 {
871 free_page((unsigned long)file->private_data);
872 return 0;
873 }
874 EXPORT_SYMBOL(simple_transaction_release);
875
876 /* Simple attribute files */
877
878 struct simple_attr {
879 int (*get)(void *, u64 *);
880 int (*set)(void *, u64);
881 char get_buf[24]; /* enough to store a u64 and "\n\0" */
882 char set_buf[24];
883 void *data;
884 const char *fmt; /* format for read operation */
885 struct mutex mutex; /* protects access to these buffers */
886 };
887
888 /* simple_attr_open is called by an actual attribute open file operation
889 * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)890 int simple_attr_open(struct inode *inode, struct file *file,
891 int (*get)(void *, u64 *), int (*set)(void *, u64),
892 const char *fmt)
893 {
894 struct simple_attr *attr;
895
896 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
897 if (!attr)
898 return -ENOMEM;
899
900 attr->get = get;
901 attr->set = set;
902 attr->data = inode->i_private;
903 attr->fmt = fmt;
904 mutex_init(&attr->mutex);
905
906 file->private_data = attr;
907
908 return nonseekable_open(inode, file);
909 }
910 EXPORT_SYMBOL_GPL(simple_attr_open);
911
simple_attr_release(struct inode * inode,struct file * file)912 int simple_attr_release(struct inode *inode, struct file *file)
913 {
914 kfree(file->private_data);
915 return 0;
916 }
917 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
918
919 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)920 ssize_t simple_attr_read(struct file *file, char __user *buf,
921 size_t len, loff_t *ppos)
922 {
923 struct simple_attr *attr;
924 size_t size;
925 ssize_t ret;
926
927 attr = file->private_data;
928
929 if (!attr->get)
930 return -EACCES;
931
932 ret = mutex_lock_interruptible(&attr->mutex);
933 if (ret)
934 return ret;
935
936 if (*ppos && attr->get_buf[0]) {
937 /* continued read */
938 size = strlen(attr->get_buf);
939 } else {
940 /* first read */
941 u64 val;
942 ret = attr->get(attr->data, &val);
943 if (ret)
944 goto out;
945
946 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
947 attr->fmt, (unsigned long long)val);
948 }
949
950 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
951 out:
952 mutex_unlock(&attr->mutex);
953 return ret;
954 }
955 EXPORT_SYMBOL_GPL(simple_attr_read);
956
957 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)958 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
959 size_t len, loff_t *ppos, bool is_signed)
960 {
961 struct simple_attr *attr;
962 unsigned long long val;
963 size_t size;
964 ssize_t ret;
965
966 attr = file->private_data;
967 if (!attr->set)
968 return -EACCES;
969
970 ret = mutex_lock_interruptible(&attr->mutex);
971 if (ret)
972 return ret;
973
974 ret = -EFAULT;
975 size = min(sizeof(attr->set_buf) - 1, len);
976 if (copy_from_user(attr->set_buf, buf, size))
977 goto out;
978
979 attr->set_buf[size] = '\0';
980 if (is_signed)
981 ret = kstrtoll(attr->set_buf, 0, &val);
982 else
983 ret = kstrtoull(attr->set_buf, 0, &val);
984 if (ret)
985 goto out;
986 ret = attr->set(attr->data, val);
987 if (ret == 0)
988 ret = len; /* on success, claim we got the whole input */
989 out:
990 mutex_unlock(&attr->mutex);
991 return ret;
992 }
993
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)994 ssize_t simple_attr_write(struct file *file, const char __user *buf,
995 size_t len, loff_t *ppos)
996 {
997 return simple_attr_write_xsigned(file, buf, len, ppos, false);
998 }
999 EXPORT_SYMBOL_GPL(simple_attr_write);
1000
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1001 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1002 size_t len, loff_t *ppos)
1003 {
1004 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1005 }
1006 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1007
1008 /**
1009 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1010 * @sb: filesystem to do the file handle conversion on
1011 * @fid: file handle to convert
1012 * @fh_len: length of the file handle in bytes
1013 * @fh_type: type of file handle
1014 * @get_inode: filesystem callback to retrieve inode
1015 *
1016 * This function decodes @fid as long as it has one of the well-known
1017 * Linux filehandle types and calls @get_inode on it to retrieve the
1018 * inode for the object specified in the file handle.
1019 */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1020 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1021 int fh_len, int fh_type, struct inode *(*get_inode)
1022 (struct super_block *sb, u64 ino, u32 gen))
1023 {
1024 struct inode *inode = NULL;
1025
1026 if (fh_len < 2)
1027 return NULL;
1028
1029 switch (fh_type) {
1030 case FILEID_INO32_GEN:
1031 case FILEID_INO32_GEN_PARENT:
1032 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1033 break;
1034 }
1035
1036 return d_obtain_alias(inode);
1037 }
1038 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1039
1040 /**
1041 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1042 * @sb: filesystem to do the file handle conversion on
1043 * @fid: file handle to convert
1044 * @fh_len: length of the file handle in bytes
1045 * @fh_type: type of file handle
1046 * @get_inode: filesystem callback to retrieve inode
1047 *
1048 * This function decodes @fid as long as it has one of the well-known
1049 * Linux filehandle types and calls @get_inode on it to retrieve the
1050 * inode for the _parent_ object specified in the file handle if it
1051 * is specified in the file handle, or NULL otherwise.
1052 */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1053 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1054 int fh_len, int fh_type, struct inode *(*get_inode)
1055 (struct super_block *sb, u64 ino, u32 gen))
1056 {
1057 struct inode *inode = NULL;
1058
1059 if (fh_len <= 2)
1060 return NULL;
1061
1062 switch (fh_type) {
1063 case FILEID_INO32_GEN_PARENT:
1064 inode = get_inode(sb, fid->i32.parent_ino,
1065 (fh_len > 3 ? fid->i32.parent_gen : 0));
1066 break;
1067 }
1068
1069 return d_obtain_alias(inode);
1070 }
1071 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1072
1073 /**
1074 * __generic_file_fsync - generic fsync implementation for simple filesystems
1075 *
1076 * @file: file to synchronize
1077 * @start: start offset in bytes
1078 * @end: end offset in bytes (inclusive)
1079 * @datasync: only synchronize essential metadata if true
1080 *
1081 * This is a generic implementation of the fsync method for simple
1082 * filesystems which track all non-inode metadata in the buffers list
1083 * hanging off the address_space structure.
1084 */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1085 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1086 int datasync)
1087 {
1088 struct inode *inode = file->f_mapping->host;
1089 int err;
1090 int ret;
1091
1092 err = file_write_and_wait_range(file, start, end);
1093 if (err)
1094 return err;
1095
1096 inode_lock(inode);
1097 ret = sync_mapping_buffers(inode->i_mapping);
1098 if (!(inode->i_state & I_DIRTY_ALL))
1099 goto out;
1100 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1101 goto out;
1102
1103 err = sync_inode_metadata(inode, 1);
1104 if (ret == 0)
1105 ret = err;
1106
1107 out:
1108 inode_unlock(inode);
1109 /* check and advance again to catch errors after syncing out buffers */
1110 err = file_check_and_advance_wb_err(file);
1111 if (ret == 0)
1112 ret = err;
1113 return ret;
1114 }
1115 EXPORT_SYMBOL(__generic_file_fsync);
1116
1117 /**
1118 * generic_file_fsync - generic fsync implementation for simple filesystems
1119 * with flush
1120 * @file: file to synchronize
1121 * @start: start offset in bytes
1122 * @end: end offset in bytes (inclusive)
1123 * @datasync: only synchronize essential metadata if true
1124 *
1125 */
1126
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1127 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1128 int datasync)
1129 {
1130 struct inode *inode = file->f_mapping->host;
1131 int err;
1132
1133 err = __generic_file_fsync(file, start, end, datasync);
1134 if (err)
1135 return err;
1136 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
1137 }
1138 EXPORT_SYMBOL(generic_file_fsync);
1139
1140 /**
1141 * generic_check_addressable - Check addressability of file system
1142 * @blocksize_bits: log of file system block size
1143 * @num_blocks: number of blocks in file system
1144 *
1145 * Determine whether a file system with @num_blocks blocks (and a
1146 * block size of 2**@blocksize_bits) is addressable by the sector_t
1147 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1148 */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1149 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1150 {
1151 u64 last_fs_block = num_blocks - 1;
1152 u64 last_fs_page =
1153 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1154
1155 if (unlikely(num_blocks == 0))
1156 return 0;
1157
1158 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1159 return -EINVAL;
1160
1161 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1162 (last_fs_page > (pgoff_t)(~0ULL))) {
1163 return -EFBIG;
1164 }
1165 return 0;
1166 }
1167 EXPORT_SYMBOL(generic_check_addressable);
1168
1169 /*
1170 * No-op implementation of ->fsync for in-memory filesystems.
1171 */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1172 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1173 {
1174 return 0;
1175 }
1176 EXPORT_SYMBOL(noop_fsync);
1177
noop_set_page_dirty(struct page * page)1178 int noop_set_page_dirty(struct page *page)
1179 {
1180 /*
1181 * Unlike __set_page_dirty_no_writeback that handles dirty page
1182 * tracking in the page object, dax does all dirty tracking in
1183 * the inode address_space in response to mkwrite faults. In the
1184 * dax case we only need to worry about potentially dirty CPU
1185 * caches, not dirty page cache pages to write back.
1186 *
1187 * This callback is defined to prevent fallback to
1188 * __set_page_dirty_buffers() in set_page_dirty().
1189 */
1190 return 0;
1191 }
1192 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1193
noop_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1194 void noop_invalidatepage(struct page *page, unsigned int offset,
1195 unsigned int length)
1196 {
1197 /*
1198 * There is no page cache to invalidate in the dax case, however
1199 * we need this callback defined to prevent falling back to
1200 * block_invalidatepage() in do_invalidatepage().
1201 */
1202 }
1203 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1204
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1205 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1206 {
1207 /*
1208 * iomap based filesystems support direct I/O without need for
1209 * this callback. However, it still needs to be set in
1210 * inode->a_ops so that open/fcntl know that direct I/O is
1211 * generally supported.
1212 */
1213 return -EINVAL;
1214 }
1215 EXPORT_SYMBOL_GPL(noop_direct_IO);
1216
1217 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1218 void kfree_link(void *p)
1219 {
1220 kfree(p);
1221 }
1222 EXPORT_SYMBOL(kfree_link);
1223
1224 /*
1225 * nop .set_page_dirty method so that people can use .page_mkwrite on
1226 * anon inodes.
1227 */
anon_set_page_dirty(struct page * page)1228 static int anon_set_page_dirty(struct page *page)
1229 {
1230 return 0;
1231 };
1232
alloc_anon_inode(struct super_block * s)1233 struct inode *alloc_anon_inode(struct super_block *s)
1234 {
1235 static const struct address_space_operations anon_aops = {
1236 .set_page_dirty = anon_set_page_dirty,
1237 };
1238 struct inode *inode = new_inode_pseudo(s);
1239
1240 if (!inode)
1241 return ERR_PTR(-ENOMEM);
1242
1243 inode->i_ino = get_next_ino();
1244 inode->i_mapping->a_ops = &anon_aops;
1245
1246 /*
1247 * Mark the inode dirty from the very beginning,
1248 * that way it will never be moved to the dirty
1249 * list because mark_inode_dirty() will think
1250 * that it already _is_ on the dirty list.
1251 */
1252 inode->i_state = I_DIRTY;
1253 inode->i_mode = S_IRUSR | S_IWUSR;
1254 inode->i_uid = current_fsuid();
1255 inode->i_gid = current_fsgid();
1256 inode->i_flags |= S_PRIVATE;
1257 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1258 return inode;
1259 }
1260 EXPORT_SYMBOL(alloc_anon_inode);
1261
1262 /**
1263 * simple_nosetlease - generic helper for prohibiting leases
1264 * @filp: file pointer
1265 * @arg: type of lease to obtain
1266 * @flp: new lease supplied for insertion
1267 * @priv: private data for lm_setup operation
1268 *
1269 * Generic helper for filesystems that do not wish to allow leases to be set.
1270 * All arguments are ignored and it just returns -EINVAL.
1271 */
1272 int
simple_nosetlease(struct file * filp,long arg,struct file_lock ** flp,void ** priv)1273 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1274 void **priv)
1275 {
1276 return -EINVAL;
1277 }
1278 EXPORT_SYMBOL(simple_nosetlease);
1279
1280 /**
1281 * simple_get_link - generic helper to get the target of "fast" symlinks
1282 * @dentry: not used here
1283 * @inode: the symlink inode
1284 * @done: not used here
1285 *
1286 * Generic helper for filesystems to use for symlink inodes where a pointer to
1287 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1288 * since as an optimization the path lookup code uses any non-NULL ->i_link
1289 * directly, without calling ->get_link(). But ->get_link() still must be set,
1290 * to mark the inode_operations as being for a symlink.
1291 *
1292 * Return: the symlink target
1293 */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1294 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1295 struct delayed_call *done)
1296 {
1297 return inode->i_link;
1298 }
1299 EXPORT_SYMBOL(simple_get_link);
1300
1301 const struct inode_operations simple_symlink_inode_operations = {
1302 .get_link = simple_get_link,
1303 };
1304 EXPORT_SYMBOL(simple_symlink_inode_operations);
1305
1306 /*
1307 * Operations for a permanently empty directory.
1308 */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1309 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1310 {
1311 return ERR_PTR(-ENOENT);
1312 }
1313
empty_dir_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1314 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1315 u32 request_mask, unsigned int query_flags)
1316 {
1317 struct inode *inode = d_inode(path->dentry);
1318 generic_fillattr(inode, stat);
1319 return 0;
1320 }
1321
empty_dir_setattr(struct dentry * dentry,struct iattr * attr)1322 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1323 {
1324 return -EPERM;
1325 }
1326
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1327 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1328 {
1329 return -EOPNOTSUPP;
1330 }
1331
1332 static const struct inode_operations empty_dir_inode_operations = {
1333 .lookup = empty_dir_lookup,
1334 .permission = generic_permission,
1335 .setattr = empty_dir_setattr,
1336 .getattr = empty_dir_getattr,
1337 .listxattr = empty_dir_listxattr,
1338 };
1339
empty_dir_llseek(struct file * file,loff_t offset,int whence)1340 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1341 {
1342 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1343 return generic_file_llseek_size(file, offset, whence, 2, 2);
1344 }
1345
empty_dir_readdir(struct file * file,struct dir_context * ctx)1346 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1347 {
1348 dir_emit_dots(file, ctx);
1349 return 0;
1350 }
1351
1352 static const struct file_operations empty_dir_operations = {
1353 .llseek = empty_dir_llseek,
1354 .read = generic_read_dir,
1355 .iterate_shared = empty_dir_readdir,
1356 .fsync = noop_fsync,
1357 };
1358
1359
make_empty_dir_inode(struct inode * inode)1360 void make_empty_dir_inode(struct inode *inode)
1361 {
1362 set_nlink(inode, 2);
1363 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1364 inode->i_uid = GLOBAL_ROOT_UID;
1365 inode->i_gid = GLOBAL_ROOT_GID;
1366 inode->i_rdev = 0;
1367 inode->i_size = 0;
1368 inode->i_blkbits = PAGE_SHIFT;
1369 inode->i_blocks = 0;
1370
1371 inode->i_op = &empty_dir_inode_operations;
1372 inode->i_opflags &= ~IOP_XATTR;
1373 inode->i_fop = &empty_dir_operations;
1374 }
1375
is_empty_dir_inode(struct inode * inode)1376 bool is_empty_dir_inode(struct inode *inode)
1377 {
1378 return (inode->i_fop == &empty_dir_operations) &&
1379 (inode->i_op == &empty_dir_inode_operations);
1380 }
1381
1382 #ifdef CONFIG_UNICODE
1383 /*
1384 * Determine if the name of a dentry should be casefolded.
1385 *
1386 * Return: if names will need casefolding
1387 */
needs_casefold(const struct inode * dir)1388 static bool needs_casefold(const struct inode *dir)
1389 {
1390 return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1391 }
1392
1393 /**
1394 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1395 * @dentry: dentry whose name we are checking against
1396 * @len: len of name of dentry
1397 * @str: str pointer to name of dentry
1398 * @name: Name to compare against
1399 *
1400 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1401 */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1402 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1403 const char *str, const struct qstr *name)
1404 {
1405 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1406 const struct inode *dir = READ_ONCE(parent->d_inode);
1407 const struct super_block *sb = dentry->d_sb;
1408 const struct unicode_map *um = sb->s_encoding;
1409 struct qstr qstr = QSTR_INIT(str, len);
1410 char strbuf[DNAME_INLINE_LEN];
1411 int ret;
1412
1413 if (!dir || !needs_casefold(dir))
1414 goto fallback;
1415 /*
1416 * If the dentry name is stored in-line, then it may be concurrently
1417 * modified by a rename. If this happens, the VFS will eventually retry
1418 * the lookup, so it doesn't matter what ->d_compare() returns.
1419 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1420 * string. Therefore, we have to copy the name into a temporary buffer.
1421 */
1422 if (len <= DNAME_INLINE_LEN - 1) {
1423 memcpy(strbuf, str, len);
1424 strbuf[len] = 0;
1425 qstr.name = strbuf;
1426 /* prevent compiler from optimizing out the temporary buffer */
1427 barrier();
1428 }
1429 ret = utf8_strncasecmp(um, name, &qstr);
1430 if (ret >= 0)
1431 return ret;
1432
1433 if (sb_has_strict_encoding(sb))
1434 return -EINVAL;
1435 fallback:
1436 if (len != name->len)
1437 return 1;
1438 return !!memcmp(str, name->name, len);
1439 }
1440
1441 /**
1442 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1443 * @dentry: dentry of the parent directory
1444 * @str: qstr of name whose hash we should fill in
1445 *
1446 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1447 */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1448 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1449 {
1450 const struct inode *dir = READ_ONCE(dentry->d_inode);
1451 struct super_block *sb = dentry->d_sb;
1452 const struct unicode_map *um = sb->s_encoding;
1453 int ret = 0;
1454
1455 if (!dir || !needs_casefold(dir))
1456 return 0;
1457
1458 ret = utf8_casefold_hash(um, dentry, str);
1459 if (ret < 0 && sb_has_strict_encoding(sb))
1460 return -EINVAL;
1461 return 0;
1462 }
1463
1464 static const struct dentry_operations generic_ci_dentry_ops = {
1465 .d_hash = generic_ci_d_hash,
1466 .d_compare = generic_ci_d_compare,
1467 };
1468 #endif
1469
1470 #ifdef CONFIG_FS_ENCRYPTION
1471 static const struct dentry_operations generic_encrypted_dentry_ops = {
1472 .d_revalidate = fscrypt_d_revalidate,
1473 };
1474 #endif
1475
1476 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1477 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1478 .d_hash = generic_ci_d_hash,
1479 .d_compare = generic_ci_d_compare,
1480 .d_revalidate = fscrypt_d_revalidate,
1481 };
1482 #endif
1483
1484 /**
1485 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1486 * @dentry: dentry to set ops on
1487 *
1488 * Casefolded directories need d_hash and d_compare set, so that the dentries
1489 * contained in them are handled case-insensitively. Note that these operations
1490 * are needed on the parent directory rather than on the dentries in it, and
1491 * while the casefolding flag can be toggled on and off on an empty directory,
1492 * dentry_operations can't be changed later. As a result, if the filesystem has
1493 * casefolding support enabled at all, we have to give all dentries the
1494 * casefolding operations even if their inode doesn't have the casefolding flag
1495 * currently (and thus the casefolding ops would be no-ops for now).
1496 *
1497 * Encryption works differently in that the only dentry operation it needs is
1498 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1499 * The no-key flag can't be set "later", so we don't have to worry about that.
1500 *
1501 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1502 * with certain dentry operations) and to avoid taking an unnecessary
1503 * performance hit, we use custom dentry_operations for each possible
1504 * combination rather than always installing all operations.
1505 */
generic_set_encrypted_ci_d_ops(struct dentry * dentry)1506 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1507 {
1508 #ifdef CONFIG_FS_ENCRYPTION
1509 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1510 #endif
1511 #ifdef CONFIG_UNICODE
1512 bool needs_ci_ops = dentry->d_sb->s_encoding;
1513 #endif
1514 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1515 if (needs_encrypt_ops && needs_ci_ops) {
1516 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1517 return;
1518 }
1519 #endif
1520 #ifdef CONFIG_FS_ENCRYPTION
1521 if (needs_encrypt_ops) {
1522 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1523 return;
1524 }
1525 #endif
1526 #ifdef CONFIG_UNICODE
1527 if (needs_ci_ops) {
1528 d_set_d_op(dentry, &generic_ci_dentry_ops);
1529 return;
1530 }
1531 #endif
1532 }
1533 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1534