1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * <linux/usb/gadget.h>
4 *
5 * We call the USB code inside a Linux-based peripheral device a "gadget"
6 * driver, except for the hardware-specific bus glue. One USB host can
7 * talk to many USB gadgets, but the gadgets are only able to communicate
8 * to one host.
9 *
10 *
11 * (C) Copyright 2002-2004 by David Brownell
12 * All Rights Reserved.
13 *
14 * This software is licensed under the GNU GPL version 2.
15 */
16
17 #ifndef __LINUX_USB_GADGET_H
18 #define __LINUX_USB_GADGET_H
19
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/list.h>
24 #include <linux/slab.h>
25 #include <linux/scatterlist.h>
26 #include <linux/types.h>
27 #include <linux/workqueue.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/android_kabi.h>
30
31 #define UDC_TRACE_STR_MAX 512
32
33 struct usb_ep;
34
35 /**
36 * struct usb_request - describes one i/o request
37 * @buf: Buffer used for data. Always provide this; some controllers
38 * only use PIO, or don't use DMA for some endpoints.
39 * @dma: DMA address corresponding to 'buf'. If you don't set this
40 * field, and the usb controller needs one, it is responsible
41 * for mapping and unmapping the buffer.
42 * @sg: a scatterlist for SG-capable controllers.
43 * @num_sgs: number of SG entries
44 * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
45 * @length: Length of that data
46 * @stream_id: The stream id, when USB3.0 bulk streams are being used
47 * @is_last: Indicates if this is the last request of a stream_id before
48 * switching to a different stream (required for DWC3 controllers).
49 * @no_interrupt: If true, hints that no completion irq is needed.
50 * Helpful sometimes with deep request queues that are handled
51 * directly by DMA controllers.
52 * @zero: If true, when writing data, makes the last packet be "short"
53 * by adding a zero length packet as needed;
54 * @short_not_ok: When reading data, makes short packets be
55 * treated as errors (queue stops advancing till cleanup).
56 * @dma_mapped: Indicates if request has been mapped to DMA (internal)
57 * @complete: Function called when request completes, so this request and
58 * its buffer may be re-used. The function will always be called with
59 * interrupts disabled, and it must not sleep.
60 * Reads terminate with a short packet, or when the buffer fills,
61 * whichever comes first. When writes terminate, some data bytes
62 * will usually still be in flight (often in a hardware fifo).
63 * Errors (for reads or writes) stop the queue from advancing
64 * until the completion function returns, so that any transfers
65 * invalidated by the error may first be dequeued.
66 * @context: For use by the completion callback
67 * @list: For use by the gadget driver.
68 * @frame_number: Reports the interval number in (micro)frame in which the
69 * isochronous transfer was transmitted or received.
70 * @status: Reports completion code, zero or a negative errno.
71 * Normally, faults block the transfer queue from advancing until
72 * the completion callback returns.
73 * Code "-ESHUTDOWN" indicates completion caused by device disconnect,
74 * or when the driver disabled the endpoint.
75 * @actual: Reports bytes transferred to/from the buffer. For reads (OUT
76 * transfers) this may be less than the requested length. If the
77 * short_not_ok flag is set, short reads are treated as errors
78 * even when status otherwise indicates successful completion.
79 * Note that for writes (IN transfers) some data bytes may still
80 * reside in a device-side FIFO when the request is reported as
81 * complete.
82 *
83 * These are allocated/freed through the endpoint they're used with. The
84 * hardware's driver can add extra per-request data to the memory it returns,
85 * which often avoids separate memory allocations (potential failures),
86 * later when the request is queued.
87 *
88 * Request flags affect request handling, such as whether a zero length
89 * packet is written (the "zero" flag), whether a short read should be
90 * treated as an error (blocking request queue advance, the "short_not_ok"
91 * flag), or hinting that an interrupt is not required (the "no_interrupt"
92 * flag, for use with deep request queues).
93 *
94 * Bulk endpoints can use any size buffers, and can also be used for interrupt
95 * transfers. interrupt-only endpoints can be much less functional.
96 *
97 * NOTE: this is analogous to 'struct urb' on the host side, except that
98 * it's thinner and promotes more pre-allocation.
99 */
100
101 struct usb_request {
102 void *buf;
103 unsigned length;
104 dma_addr_t dma;
105
106 struct scatterlist *sg;
107 unsigned num_sgs;
108 unsigned num_mapped_sgs;
109
110 unsigned stream_id:16;
111 unsigned is_last:1;
112 unsigned no_interrupt:1;
113 unsigned zero:1;
114 unsigned short_not_ok:1;
115 unsigned dma_mapped:1;
116
117 void (*complete)(struct usb_ep *ep,
118 struct usb_request *req);
119 void *context;
120 struct list_head list;
121
122 unsigned frame_number; /* ISO ONLY */
123
124 int status;
125 unsigned actual;
126
127 ANDROID_KABI_RESERVE(1);
128 };
129
130 /*-------------------------------------------------------------------------*/
131
132 /* endpoint-specific parts of the api to the usb controller hardware.
133 * unlike the urb model, (de)multiplexing layers are not required.
134 * (so this api could slash overhead if used on the host side...)
135 *
136 * note that device side usb controllers commonly differ in how many
137 * endpoints they support, as well as their capabilities.
138 */
139 struct usb_ep_ops {
140 int (*enable) (struct usb_ep *ep,
141 const struct usb_endpoint_descriptor *desc);
142 int (*disable) (struct usb_ep *ep);
143 void (*dispose) (struct usb_ep *ep);
144
145 struct usb_request *(*alloc_request) (struct usb_ep *ep,
146 gfp_t gfp_flags);
147 void (*free_request) (struct usb_ep *ep, struct usb_request *req);
148
149 int (*queue) (struct usb_ep *ep, struct usb_request *req,
150 gfp_t gfp_flags);
151 int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
152
153 int (*set_halt) (struct usb_ep *ep, int value);
154 int (*set_wedge) (struct usb_ep *ep);
155
156 int (*fifo_status) (struct usb_ep *ep);
157 void (*fifo_flush) (struct usb_ep *ep);
158
159 ANDROID_KABI_RESERVE(1);
160 };
161
162 /**
163 * struct usb_ep_caps - endpoint capabilities description
164 * @type_control:Endpoint supports control type (reserved for ep0).
165 * @type_iso:Endpoint supports isochronous transfers.
166 * @type_bulk:Endpoint supports bulk transfers.
167 * @type_int:Endpoint supports interrupt transfers.
168 * @dir_in:Endpoint supports IN direction.
169 * @dir_out:Endpoint supports OUT direction.
170 */
171 struct usb_ep_caps {
172 unsigned type_control:1;
173 unsigned type_iso:1;
174 unsigned type_bulk:1;
175 unsigned type_int:1;
176 unsigned dir_in:1;
177 unsigned dir_out:1;
178 };
179
180 #define USB_EP_CAPS_TYPE_CONTROL 0x01
181 #define USB_EP_CAPS_TYPE_ISO 0x02
182 #define USB_EP_CAPS_TYPE_BULK 0x04
183 #define USB_EP_CAPS_TYPE_INT 0x08
184 #define USB_EP_CAPS_TYPE_ALL \
185 (USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
186 #define USB_EP_CAPS_DIR_IN 0x01
187 #define USB_EP_CAPS_DIR_OUT 0x02
188 #define USB_EP_CAPS_DIR_ALL (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
189
190 #define USB_EP_CAPS(_type, _dir) \
191 { \
192 .type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
193 .type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
194 .type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
195 .type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
196 .dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
197 .dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
198 }
199
200 /**
201 * struct usb_ep - device side representation of USB endpoint
202 * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
203 * @ops: Function pointers used to access hardware-specific operations.
204 * @ep_list:the gadget's ep_list holds all of its endpoints
205 * @caps:The structure describing types and directions supported by endoint.
206 * @enabled: The current endpoint enabled/disabled state.
207 * @claimed: True if this endpoint is claimed by a function.
208 * @maxpacket:The maximum packet size used on this endpoint. The initial
209 * value can sometimes be reduced (hardware allowing), according to
210 * the endpoint descriptor used to configure the endpoint.
211 * @maxpacket_limit:The maximum packet size value which can be handled by this
212 * endpoint. It's set once by UDC driver when endpoint is initialized, and
213 * should not be changed. Should not be confused with maxpacket.
214 * @max_streams: The maximum number of streams supported
215 * by this EP (0 - 16, actual number is 2^n)
216 * @mult: multiplier, 'mult' value for SS Isoc EPs
217 * @maxburst: the maximum number of bursts supported by this EP (for usb3)
218 * @driver_data:for use by the gadget driver.
219 * @address: used to identify the endpoint when finding descriptor that
220 * matches connection speed
221 * @desc: endpoint descriptor. This pointer is set before the endpoint is
222 * enabled and remains valid until the endpoint is disabled.
223 * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
224 * descriptor that is used to configure the endpoint
225 *
226 * the bus controller driver lists all the general purpose endpoints in
227 * gadget->ep_list. the control endpoint (gadget->ep0) is not in that list,
228 * and is accessed only in response to a driver setup() callback.
229 */
230
231 struct usb_ep {
232 void *driver_data;
233
234 const char *name;
235 const struct usb_ep_ops *ops;
236 struct list_head ep_list;
237 struct usb_ep_caps caps;
238 bool claimed;
239 bool enabled;
240 unsigned maxpacket:16;
241 unsigned maxpacket_limit:16;
242 unsigned max_streams:16;
243 unsigned mult:2;
244 unsigned maxburst:5;
245 u8 address;
246 const struct usb_endpoint_descriptor *desc;
247 const struct usb_ss_ep_comp_descriptor *comp_desc;
248
249 ANDROID_KABI_RESERVE(1);
250 };
251
252 /*-------------------------------------------------------------------------*/
253
254 #if IS_ENABLED(CONFIG_USB_GADGET)
255 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
256 int usb_ep_enable(struct usb_ep *ep);
257 int usb_ep_disable(struct usb_ep *ep);
258 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
259 void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
260 int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
261 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
262 int usb_ep_set_halt(struct usb_ep *ep);
263 int usb_ep_clear_halt(struct usb_ep *ep);
264 int usb_ep_set_wedge(struct usb_ep *ep);
265 int usb_ep_fifo_status(struct usb_ep *ep);
266 void usb_ep_fifo_flush(struct usb_ep *ep);
267 #else
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)268 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
269 unsigned maxpacket_limit)
270 { }
usb_ep_enable(struct usb_ep * ep)271 static inline int usb_ep_enable(struct usb_ep *ep)
272 { return 0; }
usb_ep_disable(struct usb_ep * ep)273 static inline int usb_ep_disable(struct usb_ep *ep)
274 { return 0; }
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)275 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
276 gfp_t gfp_flags)
277 { return NULL; }
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)278 static inline void usb_ep_free_request(struct usb_ep *ep,
279 struct usb_request *req)
280 { }
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)281 static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
282 gfp_t gfp_flags)
283 { return 0; }
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)284 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
285 { return 0; }
usb_ep_set_halt(struct usb_ep * ep)286 static inline int usb_ep_set_halt(struct usb_ep *ep)
287 { return 0; }
usb_ep_clear_halt(struct usb_ep * ep)288 static inline int usb_ep_clear_halt(struct usb_ep *ep)
289 { return 0; }
usb_ep_set_wedge(struct usb_ep * ep)290 static inline int usb_ep_set_wedge(struct usb_ep *ep)
291 { return 0; }
usb_ep_fifo_status(struct usb_ep * ep)292 static inline int usb_ep_fifo_status(struct usb_ep *ep)
293 { return 0; }
usb_ep_fifo_flush(struct usb_ep * ep)294 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
295 { }
296 #endif /* USB_GADGET */
297
298 /*-------------------------------------------------------------------------*/
299
300 struct usb_dcd_config_params {
301 __u8 bU1devExitLat; /* U1 Device exit Latency */
302 #define USB_DEFAULT_U1_DEV_EXIT_LAT 0x01 /* Less then 1 microsec */
303 __le16 bU2DevExitLat; /* U2 Device exit Latency */
304 #define USB_DEFAULT_U2_DEV_EXIT_LAT 0x1F4 /* Less then 500 microsec */
305 __u8 besl_baseline; /* Recommended baseline BESL (0-15) */
306 __u8 besl_deep; /* Recommended deep BESL (0-15) */
307 #define USB_DEFAULT_BESL_UNSPECIFIED 0xFF /* No recommended value */
308 };
309
310
311 struct usb_gadget;
312 struct usb_gadget_driver;
313 struct usb_udc;
314
315 /* the rest of the api to the controller hardware: device operations,
316 * which don't involve endpoints (or i/o).
317 */
318 struct usb_gadget_ops {
319 int (*get_frame)(struct usb_gadget *);
320 int (*wakeup)(struct usb_gadget *);
321 int (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
322 int (*vbus_session) (struct usb_gadget *, int is_active);
323 int (*vbus_draw) (struct usb_gadget *, unsigned mA);
324 int (*pullup) (struct usb_gadget *, int is_on);
325 int (*ioctl)(struct usb_gadget *,
326 unsigned code, unsigned long param);
327 void (*get_config_params)(struct usb_gadget *,
328 struct usb_dcd_config_params *);
329 int (*udc_start)(struct usb_gadget *,
330 struct usb_gadget_driver *);
331 int (*udc_stop)(struct usb_gadget *);
332 void (*udc_set_speed)(struct usb_gadget *, enum usb_device_speed);
333 void (*udc_set_ssp_rate)(struct usb_gadget *gadget,
334 enum usb_ssp_rate rate);
335 void (*udc_async_callbacks)(struct usb_gadget *gadget, bool enable);
336 struct usb_ep *(*match_ep)(struct usb_gadget *,
337 struct usb_endpoint_descriptor *,
338 struct usb_ss_ep_comp_descriptor *);
339 int (*check_config)(struct usb_gadget *gadget);
340
341 ANDROID_KABI_RESERVE(1);
342 ANDROID_KABI_RESERVE(2);
343 ANDROID_KABI_RESERVE(3);
344 ANDROID_KABI_RESERVE(4);
345 };
346
347 /**
348 * struct usb_gadget - represents a usb device
349 * @work: (internal use) Workqueue to be used for sysfs_notify()
350 * @udc: struct usb_udc pointer for this gadget
351 * @ops: Function pointers used to access hardware-specific operations.
352 * @ep0: Endpoint zero, used when reading or writing responses to
353 * driver setup() requests
354 * @ep_list: List of other endpoints supported by the device.
355 * @speed: Speed of current connection to USB host.
356 * @max_speed: Maximal speed the UDC can handle. UDC must support this
357 * and all slower speeds.
358 * @ssp_rate: Current connected SuperSpeed Plus signaling rate and lane count.
359 * @max_ssp_rate: Maximum SuperSpeed Plus signaling rate and lane count the UDC
360 * can handle. The UDC must support this and all slower speeds and lower
361 * number of lanes.
362 * @state: the state we are now (attached, suspended, configured, etc)
363 * @name: Identifies the controller hardware type. Used in diagnostics
364 * and sometimes configuration.
365 * @dev: Driver model state for this abstract device.
366 * @isoch_delay: value from Set Isoch Delay request. Only valid on SS/SSP
367 * @out_epnum: last used out ep number
368 * @in_epnum: last used in ep number
369 * @mA: last set mA value
370 * @otg_caps: OTG capabilities of this gadget.
371 * @sg_supported: true if we can handle scatter-gather
372 * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
373 * gadget driver must provide a USB OTG descriptor.
374 * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
375 * is in the Mini-AB jack, and HNP has been used to switch roles
376 * so that the "A" device currently acts as A-Peripheral, not A-Host.
377 * @a_hnp_support: OTG device feature flag, indicating that the A-Host
378 * supports HNP at this port.
379 * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
380 * only supports HNP on a different root port.
381 * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
382 * enabled HNP support.
383 * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
384 * in peripheral mode can support HNP polling.
385 * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
386 * or B-Peripheral wants to take host role.
387 * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
388 * MaxPacketSize.
389 * @quirk_altset_not_supp: UDC controller doesn't support alt settings.
390 * @quirk_stall_not_supp: UDC controller doesn't support stalling.
391 * @quirk_zlp_not_supp: UDC controller doesn't support ZLP.
392 * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in
393 * u_ether.c to improve performance.
394 * @is_selfpowered: if the gadget is self-powered.
395 * @deactivated: True if gadget is deactivated - in deactivated state it cannot
396 * be connected.
397 * @connected: True if gadget is connected.
398 * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag
399 * indicates that it supports LPM as per the LPM ECN & errata.
400 * @irq: the interrupt number for device controller.
401 *
402 * Gadgets have a mostly-portable "gadget driver" implementing device
403 * functions, handling all usb configurations and interfaces. Gadget
404 * drivers talk to hardware-specific code indirectly, through ops vectors.
405 * That insulates the gadget driver from hardware details, and packages
406 * the hardware endpoints through generic i/o queues. The "usb_gadget"
407 * and "usb_ep" interfaces provide that insulation from the hardware.
408 *
409 * Except for the driver data, all fields in this structure are
410 * read-only to the gadget driver. That driver data is part of the
411 * "driver model" infrastructure in 2.6 (and later) kernels, and for
412 * earlier systems is grouped in a similar structure that's not known
413 * to the rest of the kernel.
414 *
415 * Values of the three OTG device feature flags are updated before the
416 * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
417 * driver suspend() calls. They are valid only when is_otg, and when the
418 * device is acting as a B-Peripheral (so is_a_peripheral is false).
419 */
420 struct usb_gadget {
421 struct work_struct work;
422 struct usb_udc *udc;
423 /* readonly to gadget driver */
424 const struct usb_gadget_ops *ops;
425 struct usb_ep *ep0;
426 struct list_head ep_list; /* of usb_ep */
427 enum usb_device_speed speed;
428 enum usb_device_speed max_speed;
429
430 /* USB SuperSpeed Plus only */
431 enum usb_ssp_rate ssp_rate;
432 enum usb_ssp_rate max_ssp_rate;
433
434 enum usb_device_state state;
435 const char *name;
436 struct device dev;
437 unsigned isoch_delay;
438 unsigned out_epnum;
439 unsigned in_epnum;
440 unsigned mA;
441 struct usb_otg_caps *otg_caps;
442
443 unsigned sg_supported:1;
444 unsigned is_otg:1;
445 unsigned is_a_peripheral:1;
446 unsigned b_hnp_enable:1;
447 unsigned a_hnp_support:1;
448 unsigned a_alt_hnp_support:1;
449 unsigned hnp_polling_support:1;
450 unsigned host_request_flag:1;
451 unsigned quirk_ep_out_aligned_size:1;
452 unsigned quirk_altset_not_supp:1;
453 unsigned quirk_stall_not_supp:1;
454 unsigned quirk_zlp_not_supp:1;
455 unsigned quirk_avoids_skb_reserve:1;
456 unsigned is_selfpowered:1;
457 unsigned deactivated:1;
458 unsigned connected:1;
459 unsigned lpm_capable:1;
460 int irq;
461
462 ANDROID_KABI_RESERVE(1);
463 ANDROID_KABI_RESERVE(2);
464 ANDROID_KABI_RESERVE(3);
465 ANDROID_KABI_RESERVE(4);
466 };
467 #define work_to_gadget(w) (container_of((w), struct usb_gadget, work))
468
469 /* Interface to the device model */
set_gadget_data(struct usb_gadget * gadget,void * data)470 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
471 { dev_set_drvdata(&gadget->dev, data); }
get_gadget_data(struct usb_gadget * gadget)472 static inline void *get_gadget_data(struct usb_gadget *gadget)
473 { return dev_get_drvdata(&gadget->dev); }
dev_to_usb_gadget(struct device * dev)474 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
475 {
476 return container_of(dev, struct usb_gadget, dev);
477 }
usb_get_gadget(struct usb_gadget * gadget)478 static inline struct usb_gadget *usb_get_gadget(struct usb_gadget *gadget)
479 {
480 get_device(&gadget->dev);
481 return gadget;
482 }
usb_put_gadget(struct usb_gadget * gadget)483 static inline void usb_put_gadget(struct usb_gadget *gadget)
484 {
485 put_device(&gadget->dev);
486 }
487 extern void usb_initialize_gadget(struct device *parent,
488 struct usb_gadget *gadget, void (*release)(struct device *dev));
489 extern int usb_add_gadget(struct usb_gadget *gadget);
490 extern void usb_del_gadget(struct usb_gadget *gadget);
491
492 /* Legacy device-model interface */
493 extern int usb_add_gadget_udc_release(struct device *parent,
494 struct usb_gadget *gadget, void (*release)(struct device *dev));
495 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
496 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
497 extern char *usb_get_gadget_udc_name(void);
498
499 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
500 #define gadget_for_each_ep(tmp, gadget) \
501 list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
502
503 /**
504 * usb_ep_align - returns @len aligned to ep's maxpacketsize.
505 * @ep: the endpoint whose maxpacketsize is used to align @len
506 * @len: buffer size's length to align to @ep's maxpacketsize
507 *
508 * This helper is used to align buffer's size to an ep's maxpacketsize.
509 */
usb_ep_align(struct usb_ep * ep,size_t len)510 static inline size_t usb_ep_align(struct usb_ep *ep, size_t len)
511 {
512 int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc) & 0x7ff;
513
514 return round_up(len, max_packet_size);
515 }
516
517 /**
518 * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
519 * requires quirk_ep_out_aligned_size, otherwise returns len.
520 * @g: controller to check for quirk
521 * @ep: the endpoint whose maxpacketsize is used to align @len
522 * @len: buffer size's length to align to @ep's maxpacketsize
523 *
524 * This helper is used in case it's required for any reason to check and maybe
525 * align buffer's size to an ep's maxpacketsize.
526 */
527 static inline size_t
usb_ep_align_maybe(struct usb_gadget * g,struct usb_ep * ep,size_t len)528 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
529 {
530 return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len;
531 }
532
533 /**
534 * gadget_is_altset_supported - return true iff the hardware supports
535 * altsettings
536 * @g: controller to check for quirk
537 */
gadget_is_altset_supported(struct usb_gadget * g)538 static inline int gadget_is_altset_supported(struct usb_gadget *g)
539 {
540 return !g->quirk_altset_not_supp;
541 }
542
543 /**
544 * gadget_is_stall_supported - return true iff the hardware supports stalling
545 * @g: controller to check for quirk
546 */
gadget_is_stall_supported(struct usb_gadget * g)547 static inline int gadget_is_stall_supported(struct usb_gadget *g)
548 {
549 return !g->quirk_stall_not_supp;
550 }
551
552 /**
553 * gadget_is_zlp_supported - return true iff the hardware supports zlp
554 * @g: controller to check for quirk
555 */
gadget_is_zlp_supported(struct usb_gadget * g)556 static inline int gadget_is_zlp_supported(struct usb_gadget *g)
557 {
558 return !g->quirk_zlp_not_supp;
559 }
560
561 /**
562 * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid
563 * skb_reserve to improve performance.
564 * @g: controller to check for quirk
565 */
gadget_avoids_skb_reserve(struct usb_gadget * g)566 static inline int gadget_avoids_skb_reserve(struct usb_gadget *g)
567 {
568 return g->quirk_avoids_skb_reserve;
569 }
570
571 /**
572 * gadget_is_dualspeed - return true iff the hardware handles high speed
573 * @g: controller that might support both high and full speeds
574 */
gadget_is_dualspeed(struct usb_gadget * g)575 static inline int gadget_is_dualspeed(struct usb_gadget *g)
576 {
577 return g->max_speed >= USB_SPEED_HIGH;
578 }
579
580 /**
581 * gadget_is_superspeed() - return true if the hardware handles superspeed
582 * @g: controller that might support superspeed
583 */
gadget_is_superspeed(struct usb_gadget * g)584 static inline int gadget_is_superspeed(struct usb_gadget *g)
585 {
586 return g->max_speed >= USB_SPEED_SUPER;
587 }
588
589 /**
590 * gadget_is_superspeed_plus() - return true if the hardware handles
591 * superspeed plus
592 * @g: controller that might support superspeed plus
593 */
gadget_is_superspeed_plus(struct usb_gadget * g)594 static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
595 {
596 return g->max_speed >= USB_SPEED_SUPER_PLUS;
597 }
598
599 /**
600 * gadget_is_otg - return true iff the hardware is OTG-ready
601 * @g: controller that might have a Mini-AB connector
602 *
603 * This is a runtime test, since kernels with a USB-OTG stack sometimes
604 * run on boards which only have a Mini-B (or Mini-A) connector.
605 */
gadget_is_otg(struct usb_gadget * g)606 static inline int gadget_is_otg(struct usb_gadget *g)
607 {
608 #ifdef CONFIG_USB_OTG
609 return g->is_otg;
610 #else
611 return 0;
612 #endif
613 }
614
615 /*-------------------------------------------------------------------------*/
616
617 #if IS_ENABLED(CONFIG_USB_GADGET)
618 int usb_gadget_frame_number(struct usb_gadget *gadget);
619 int usb_gadget_wakeup(struct usb_gadget *gadget);
620 int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
621 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
622 int usb_gadget_vbus_connect(struct usb_gadget *gadget);
623 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
624 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
625 int usb_gadget_connect(struct usb_gadget *gadget);
626 int usb_gadget_disconnect(struct usb_gadget *gadget);
627 int usb_gadget_deactivate(struct usb_gadget *gadget);
628 int usb_gadget_activate(struct usb_gadget *gadget);
629 int usb_gadget_check_config(struct usb_gadget *gadget);
630 #else
usb_gadget_frame_number(struct usb_gadget * gadget)631 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
632 { return 0; }
usb_gadget_wakeup(struct usb_gadget * gadget)633 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
634 { return 0; }
usb_gadget_set_selfpowered(struct usb_gadget * gadget)635 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
636 { return 0; }
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)637 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
638 { return 0; }
usb_gadget_vbus_connect(struct usb_gadget * gadget)639 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
640 { return 0; }
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)641 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
642 { return 0; }
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)643 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
644 { return 0; }
usb_gadget_connect(struct usb_gadget * gadget)645 static inline int usb_gadget_connect(struct usb_gadget *gadget)
646 { return 0; }
usb_gadget_disconnect(struct usb_gadget * gadget)647 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
648 { return 0; }
usb_gadget_deactivate(struct usb_gadget * gadget)649 static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
650 { return 0; }
usb_gadget_activate(struct usb_gadget * gadget)651 static inline int usb_gadget_activate(struct usb_gadget *gadget)
652 { return 0; }
usb_gadget_check_config(struct usb_gadget * gadget)653 static inline int usb_gadget_check_config(struct usb_gadget *gadget)
654 { return 0; }
655 #endif /* CONFIG_USB_GADGET */
656
657 /*-------------------------------------------------------------------------*/
658
659 /**
660 * struct usb_gadget_driver - driver for usb gadget devices
661 * @function: String describing the gadget's function
662 * @max_speed: Highest speed the driver handles.
663 * @setup: Invoked for ep0 control requests that aren't handled by
664 * the hardware level driver. Most calls must be handled by
665 * the gadget driver, including descriptor and configuration
666 * management. The 16 bit members of the setup data are in
667 * USB byte order. Called in_interrupt; this may not sleep. Driver
668 * queues a response to ep0, or returns negative to stall.
669 * @disconnect: Invoked after all transfers have been stopped,
670 * when the host is disconnected. May be called in_interrupt; this
671 * may not sleep. Some devices can't detect disconnect, so this might
672 * not be called except as part of controller shutdown.
673 * @bind: the driver's bind callback
674 * @unbind: Invoked when the driver is unbound from a gadget,
675 * usually from rmmod (after a disconnect is reported).
676 * Called in a context that permits sleeping.
677 * @suspend: Invoked on USB suspend. May be called in_interrupt.
678 * @resume: Invoked on USB resume. May be called in_interrupt.
679 * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
680 * and should be called in_interrupt.
681 * @driver: Driver model state for this driver.
682 * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
683 * this driver will be bound to any available UDC.
684 * @pending: UDC core private data used for deferred probe of this driver.
685 * @match_existing_only: If udc is not found, return an error and don't add this
686 * gadget driver to list of pending driver
687 *
688 * Devices are disabled till a gadget driver successfully bind()s, which
689 * means the driver will handle setup() requests needed to enumerate (and
690 * meet "chapter 9" requirements) then do some useful work.
691 *
692 * If gadget->is_otg is true, the gadget driver must provide an OTG
693 * descriptor during enumeration, or else fail the bind() call. In such
694 * cases, no USB traffic may flow until both bind() returns without
695 * having called usb_gadget_disconnect(), and the USB host stack has
696 * initialized.
697 *
698 * Drivers use hardware-specific knowledge to configure the usb hardware.
699 * endpoint addressing is only one of several hardware characteristics that
700 * are in descriptors the ep0 implementation returns from setup() calls.
701 *
702 * Except for ep0 implementation, most driver code shouldn't need change to
703 * run on top of different usb controllers. It'll use endpoints set up by
704 * that ep0 implementation.
705 *
706 * The usb controller driver handles a few standard usb requests. Those
707 * include set_address, and feature flags for devices, interfaces, and
708 * endpoints (the get_status, set_feature, and clear_feature requests).
709 *
710 * Accordingly, the driver's setup() callback must always implement all
711 * get_descriptor requests, returning at least a device descriptor and
712 * a configuration descriptor. Drivers must make sure the endpoint
713 * descriptors match any hardware constraints. Some hardware also constrains
714 * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
715 *
716 * The driver's setup() callback must also implement set_configuration,
717 * and should also implement set_interface, get_configuration, and
718 * get_interface. Setting a configuration (or interface) is where
719 * endpoints should be activated or (config 0) shut down.
720 *
721 * (Note that only the default control endpoint is supported. Neither
722 * hosts nor devices generally support control traffic except to ep0.)
723 *
724 * Most devices will ignore USB suspend/resume operations, and so will
725 * not provide those callbacks. However, some may need to change modes
726 * when the host is not longer directing those activities. For example,
727 * local controls (buttons, dials, etc) may need to be re-enabled since
728 * the (remote) host can't do that any longer; or an error state might
729 * be cleared, to make the device behave identically whether or not
730 * power is maintained.
731 */
732 struct usb_gadget_driver {
733 char *function;
734 enum usb_device_speed max_speed;
735 int (*bind)(struct usb_gadget *gadget,
736 struct usb_gadget_driver *driver);
737 void (*unbind)(struct usb_gadget *);
738 int (*setup)(struct usb_gadget *,
739 const struct usb_ctrlrequest *);
740 void (*disconnect)(struct usb_gadget *);
741 void (*suspend)(struct usb_gadget *);
742 void (*resume)(struct usb_gadget *);
743 void (*reset)(struct usb_gadget *);
744
745 /* FIXME support safe rmmod */
746 struct device_driver driver;
747
748 char *udc_name;
749 struct list_head pending;
750 unsigned match_existing_only:1;
751 };
752
753
754
755 /*-------------------------------------------------------------------------*/
756
757 /* driver modules register and unregister, as usual.
758 * these calls must be made in a context that can sleep.
759 *
760 * these will usually be implemented directly by the hardware-dependent
761 * usb bus interface driver, which will only support a single driver.
762 */
763
764 /**
765 * usb_gadget_probe_driver - probe a gadget driver
766 * @driver: the driver being registered
767 * Context: can sleep
768 *
769 * Call this in your gadget driver's module initialization function,
770 * to tell the underlying usb controller driver about your driver.
771 * The @bind() function will be called to bind it to a gadget before this
772 * registration call returns. It's expected that the @bind() function will
773 * be in init sections.
774 */
775 int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
776
777 /**
778 * usb_gadget_unregister_driver - unregister a gadget driver
779 * @driver:the driver being unregistered
780 * Context: can sleep
781 *
782 * Call this in your gadget driver's module cleanup function,
783 * to tell the underlying usb controller that your driver is
784 * going away. If the controller is connected to a USB host,
785 * it will first disconnect(). The driver is also requested
786 * to unbind() and clean up any device state, before this procedure
787 * finally returns. It's expected that the unbind() functions
788 * will be in exit sections, so may not be linked in some kernels.
789 */
790 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
791
792 /*-------------------------------------------------------------------------*/
793
794 /* utility to simplify dealing with string descriptors */
795
796 /**
797 * struct usb_string - wraps a C string and its USB id
798 * @id:the (nonzero) ID for this string
799 * @s:the string, in UTF-8 encoding
800 *
801 * If you're using usb_gadget_get_string(), use this to wrap a string
802 * together with its ID.
803 */
804 struct usb_string {
805 u8 id;
806 const char *s;
807 };
808
809 /**
810 * struct usb_gadget_strings - a set of USB strings in a given language
811 * @language:identifies the strings' language (0x0409 for en-us)
812 * @strings:array of strings with their ids
813 *
814 * If you're using usb_gadget_get_string(), use this to wrap all the
815 * strings for a given language.
816 */
817 struct usb_gadget_strings {
818 u16 language; /* 0x0409 for en-us */
819 struct usb_string *strings;
820 };
821
822 struct usb_gadget_string_container {
823 struct list_head list;
824 u8 *stash[];
825 };
826
827 /* put descriptor for string with that id into buf (buflen >= 256) */
828 int usb_gadget_get_string(const struct usb_gadget_strings *table, int id, u8 *buf);
829
830 /* check if the given language identifier is valid */
831 bool usb_validate_langid(u16 langid);
832
833 /*-------------------------------------------------------------------------*/
834
835 /* utility to simplify managing config descriptors */
836
837 /* write vector of descriptors into buffer */
838 int usb_descriptor_fillbuf(void *, unsigned,
839 const struct usb_descriptor_header **);
840
841 /* build config descriptor from single descriptor vector */
842 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
843 void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
844
845 /* copy a NULL-terminated vector of descriptors */
846 struct usb_descriptor_header **usb_copy_descriptors(
847 struct usb_descriptor_header **);
848
849 /**
850 * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
851 * @v: vector of descriptors
852 */
usb_free_descriptors(struct usb_descriptor_header ** v)853 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
854 {
855 kfree(v);
856 }
857
858 struct usb_function;
859 int usb_assign_descriptors(struct usb_function *f,
860 struct usb_descriptor_header **fs,
861 struct usb_descriptor_header **hs,
862 struct usb_descriptor_header **ss,
863 struct usb_descriptor_header **ssp);
864 void usb_free_all_descriptors(struct usb_function *f);
865
866 struct usb_descriptor_header *usb_otg_descriptor_alloc(
867 struct usb_gadget *gadget);
868 int usb_otg_descriptor_init(struct usb_gadget *gadget,
869 struct usb_descriptor_header *otg_desc);
870 /*-------------------------------------------------------------------------*/
871
872 /* utility to simplify map/unmap of usb_requests to/from DMA */
873
874 #ifdef CONFIG_HAS_DMA
875 extern int usb_gadget_map_request_by_dev(struct device *dev,
876 struct usb_request *req, int is_in);
877 extern int usb_gadget_map_request(struct usb_gadget *gadget,
878 struct usb_request *req, int is_in);
879
880 extern void usb_gadget_unmap_request_by_dev(struct device *dev,
881 struct usb_request *req, int is_in);
882 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
883 struct usb_request *req, int is_in);
884 #else /* !CONFIG_HAS_DMA */
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)885 static inline int usb_gadget_map_request_by_dev(struct device *dev,
886 struct usb_request *req, int is_in) { return -ENOSYS; }
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)887 static inline int usb_gadget_map_request(struct usb_gadget *gadget,
888 struct usb_request *req, int is_in) { return -ENOSYS; }
889
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)890 static inline void usb_gadget_unmap_request_by_dev(struct device *dev,
891 struct usb_request *req, int is_in) { }
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)892 static inline void usb_gadget_unmap_request(struct usb_gadget *gadget,
893 struct usb_request *req, int is_in) { }
894 #endif /* !CONFIG_HAS_DMA */
895
896 /*-------------------------------------------------------------------------*/
897
898 /* utility to set gadget state properly */
899
900 extern void usb_gadget_set_state(struct usb_gadget *gadget,
901 enum usb_device_state state);
902
903 /*-------------------------------------------------------------------------*/
904
905 /* utility to tell udc core that the bus reset occurs */
906 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
907 struct usb_gadget_driver *driver);
908
909 /*-------------------------------------------------------------------------*/
910
911 /* utility to give requests back to the gadget layer */
912
913 extern void usb_gadget_giveback_request(struct usb_ep *ep,
914 struct usb_request *req);
915
916 /*-------------------------------------------------------------------------*/
917
918 /* utility to find endpoint by name */
919
920 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
921 const char *name);
922
923 /*-------------------------------------------------------------------------*/
924
925 /* utility to check if endpoint caps match descriptor needs */
926
927 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
928 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
929 struct usb_ss_ep_comp_descriptor *ep_comp);
930
931 /*-------------------------------------------------------------------------*/
932
933 /* utility to update vbus status for udc core, it may be scheduled */
934 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
935
936 /*-------------------------------------------------------------------------*/
937
938 /* utility wrapping a simple endpoint selection policy */
939
940 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
941 struct usb_endpoint_descriptor *);
942
943
944 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
945 struct usb_endpoint_descriptor *,
946 struct usb_ss_ep_comp_descriptor *);
947
948 extern void usb_ep_autoconfig_release(struct usb_ep *);
949
950 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
951
952 #endif /* __LINUX_USB_GADGET_H */
953