1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3 */
4
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7 * spent some effort to ensure the datapath with redirect maps does not use
8 * any locking. This is a quick note on the details.
9 *
10 * We have three possible paths to get into the devmap control plane bpf
11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12 * will invoke an update, delete, or lookup operation. To ensure updates and
13 * deletes appear atomic from the datapath side xchg() is used to modify the
14 * netdev_map array. Then because the datapath does a lookup into the netdev_map
15 * array (read-only) from an RCU critical section we use call_rcu() to wait for
16 * an rcu grace period before free'ing the old data structures. This ensures the
17 * datapath always has a valid copy. However, the datapath does a "flush"
18 * operation that pushes any pending packets in the driver outside the RCU
19 * critical section. Each bpf_dtab_netdev tracks these pending operations using
20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until
21 * this list is empty, indicating outstanding flush operations have completed.
22 *
23 * BPF syscalls may race with BPF program calls on any of the update, delete
24 * or lookup operations. As noted above the xchg() operation also keep the
25 * netdev_map consistent in this case. From the devmap side BPF programs
26 * calling into these operations are the same as multiple user space threads
27 * making system calls.
28 *
29 * Finally, any of the above may race with a netdev_unregister notifier. The
30 * unregister notifier must search for net devices in the map structure that
31 * contain a reference to the net device and remove them. This is a two step
32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33 * check to see if the ifindex is the same as the net_device being removed.
34 * When removing the dev a cmpxchg() is used to ensure the correct dev is
35 * removed, in the case of a concurrent update or delete operation it is
36 * possible that the initially referenced dev is no longer in the map. As the
37 * notifier hook walks the map we know that new dev references can not be
38 * added by the user because core infrastructure ensures dev_get_by_index()
39 * calls will fail at this point.
40 *
41 * The devmap_hash type is a map type which interprets keys as ifindexes and
42 * indexes these using a hashmap. This allows maps that use ifindex as key to be
43 * densely packed instead of having holes in the lookup array for unused
44 * ifindexes. The setup and packet enqueue/send code is shared between the two
45 * types of devmap; only the lookup and insertion is different.
46 */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51
52 #define DEV_CREATE_FLAG_MASK \
53 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54
55 struct xdp_dev_bulk_queue {
56 struct xdp_frame *q[DEV_MAP_BULK_SIZE];
57 struct list_head flush_node;
58 struct net_device *dev;
59 struct net_device *dev_rx;
60 unsigned int count;
61 };
62
63 struct bpf_dtab_netdev {
64 struct net_device *dev; /* must be first member, due to tracepoint */
65 struct hlist_node index_hlist;
66 struct bpf_dtab *dtab;
67 struct bpf_prog *xdp_prog;
68 struct rcu_head rcu;
69 unsigned int idx;
70 struct bpf_devmap_val val;
71 };
72
73 struct bpf_dtab {
74 struct bpf_map map;
75 struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
76 struct list_head list;
77
78 /* these are only used for DEVMAP_HASH type maps */
79 struct hlist_head *dev_index_head;
80 spinlock_t index_lock;
81 unsigned int items;
82 u32 n_buckets;
83 };
84
85 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
86 static DEFINE_SPINLOCK(dev_map_lock);
87 static LIST_HEAD(dev_map_list);
88
dev_map_create_hash(unsigned int entries,int numa_node)89 static struct hlist_head *dev_map_create_hash(unsigned int entries,
90 int numa_node)
91 {
92 int i;
93 struct hlist_head *hash;
94
95 hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node);
96 if (hash != NULL)
97 for (i = 0; i < entries; i++)
98 INIT_HLIST_HEAD(&hash[i]);
99
100 return hash;
101 }
102
dev_map_index_hash(struct bpf_dtab * dtab,int idx)103 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
104 int idx)
105 {
106 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
107 }
108
dev_map_init_map(struct bpf_dtab * dtab,union bpf_attr * attr)109 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
110 {
111 u32 valsize = attr->value_size;
112 u64 cost = 0;
113 int err;
114
115 /* check sanity of attributes. 2 value sizes supported:
116 * 4 bytes: ifindex
117 * 8 bytes: ifindex + prog fd
118 */
119 if (attr->max_entries == 0 || attr->key_size != 4 ||
120 (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
121 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
122 attr->map_flags & ~DEV_CREATE_FLAG_MASK)
123 return -EINVAL;
124
125 /* Lookup returns a pointer straight to dev->ifindex, so make sure the
126 * verifier prevents writes from the BPF side
127 */
128 attr->map_flags |= BPF_F_RDONLY_PROG;
129
130
131 bpf_map_init_from_attr(&dtab->map, attr);
132
133 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
134 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
135
136 if (!dtab->n_buckets) /* Overflow check */
137 return -EINVAL;
138 cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets;
139 } else {
140 cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
141 }
142
143 /* if map size is larger than memlock limit, reject it */
144 err = bpf_map_charge_init(&dtab->map.memory, cost);
145 if (err)
146 return -EINVAL;
147
148 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
149 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
150 dtab->map.numa_node);
151 if (!dtab->dev_index_head)
152 goto free_charge;
153
154 spin_lock_init(&dtab->index_lock);
155 } else {
156 dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries *
157 sizeof(struct bpf_dtab_netdev *),
158 dtab->map.numa_node);
159 if (!dtab->netdev_map)
160 goto free_charge;
161 }
162
163 return 0;
164
165 free_charge:
166 bpf_map_charge_finish(&dtab->map.memory);
167 return -ENOMEM;
168 }
169
dev_map_alloc(union bpf_attr * attr)170 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
171 {
172 struct bpf_dtab *dtab;
173 int err;
174
175 if (!capable(CAP_NET_ADMIN))
176 return ERR_PTR(-EPERM);
177
178 dtab = kzalloc(sizeof(*dtab), GFP_USER);
179 if (!dtab)
180 return ERR_PTR(-ENOMEM);
181
182 err = dev_map_init_map(dtab, attr);
183 if (err) {
184 kfree(dtab);
185 return ERR_PTR(err);
186 }
187
188 spin_lock(&dev_map_lock);
189 list_add_tail_rcu(&dtab->list, &dev_map_list);
190 spin_unlock(&dev_map_lock);
191
192 return &dtab->map;
193 }
194
dev_map_free(struct bpf_map * map)195 static void dev_map_free(struct bpf_map *map)
196 {
197 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
198 int i;
199
200 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
201 * so the programs (can be more than one that used this map) were
202 * disconnected from events. The following synchronize_rcu() guarantees
203 * both rcu read critical sections complete and waits for
204 * preempt-disable regions (NAPI being the relevant context here) so we
205 * are certain there will be no further reads against the netdev_map and
206 * all flush operations are complete. Flush operations can only be done
207 * from NAPI context for this reason.
208 */
209
210 spin_lock(&dev_map_lock);
211 list_del_rcu(&dtab->list);
212 spin_unlock(&dev_map_lock);
213
214 bpf_clear_redirect_map(map);
215 synchronize_rcu();
216
217 /* Make sure prior __dev_map_entry_free() have completed. */
218 rcu_barrier();
219
220 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
221 for (i = 0; i < dtab->n_buckets; i++) {
222 struct bpf_dtab_netdev *dev;
223 struct hlist_head *head;
224 struct hlist_node *next;
225
226 head = dev_map_index_hash(dtab, i);
227
228 hlist_for_each_entry_safe(dev, next, head, index_hlist) {
229 hlist_del_rcu(&dev->index_hlist);
230 if (dev->xdp_prog)
231 bpf_prog_put(dev->xdp_prog);
232 dev_put(dev->dev);
233 kfree(dev);
234 }
235 }
236
237 bpf_map_area_free(dtab->dev_index_head);
238 } else {
239 for (i = 0; i < dtab->map.max_entries; i++) {
240 struct bpf_dtab_netdev *dev;
241
242 dev = dtab->netdev_map[i];
243 if (!dev)
244 continue;
245
246 if (dev->xdp_prog)
247 bpf_prog_put(dev->xdp_prog);
248 dev_put(dev->dev);
249 kfree(dev);
250 }
251
252 bpf_map_area_free(dtab->netdev_map);
253 }
254
255 kfree(dtab);
256 }
257
dev_map_get_next_key(struct bpf_map * map,void * key,void * next_key)258 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
259 {
260 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
261 u32 index = key ? *(u32 *)key : U32_MAX;
262 u32 *next = next_key;
263
264 if (index >= dtab->map.max_entries) {
265 *next = 0;
266 return 0;
267 }
268
269 if (index == dtab->map.max_entries - 1)
270 return -ENOENT;
271 *next = index + 1;
272 return 0;
273 }
274
__dev_map_hash_lookup_elem(struct bpf_map * map,u32 key)275 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
276 {
277 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
278 struct hlist_head *head = dev_map_index_hash(dtab, key);
279 struct bpf_dtab_netdev *dev;
280
281 hlist_for_each_entry_rcu(dev, head, index_hlist,
282 lockdep_is_held(&dtab->index_lock))
283 if (dev->idx == key)
284 return dev;
285
286 return NULL;
287 }
288
dev_map_hash_get_next_key(struct bpf_map * map,void * key,void * next_key)289 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
290 void *next_key)
291 {
292 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
293 u32 idx, *next = next_key;
294 struct bpf_dtab_netdev *dev, *next_dev;
295 struct hlist_head *head;
296 int i = 0;
297
298 if (!key)
299 goto find_first;
300
301 idx = *(u32 *)key;
302
303 dev = __dev_map_hash_lookup_elem(map, idx);
304 if (!dev)
305 goto find_first;
306
307 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
308 struct bpf_dtab_netdev, index_hlist);
309
310 if (next_dev) {
311 *next = next_dev->idx;
312 return 0;
313 }
314
315 i = idx & (dtab->n_buckets - 1);
316 i++;
317
318 find_first:
319 for (; i < dtab->n_buckets; i++) {
320 head = dev_map_index_hash(dtab, i);
321
322 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
323 struct bpf_dtab_netdev,
324 index_hlist);
325 if (next_dev) {
326 *next = next_dev->idx;
327 return 0;
328 }
329 }
330
331 return -ENOENT;
332 }
333
dev_map_can_have_prog(struct bpf_map * map)334 bool dev_map_can_have_prog(struct bpf_map *map)
335 {
336 if ((map->map_type == BPF_MAP_TYPE_DEVMAP ||
337 map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) &&
338 map->value_size != offsetofend(struct bpf_devmap_val, ifindex))
339 return true;
340
341 return false;
342 }
343
bq_xmit_all(struct xdp_dev_bulk_queue * bq,u32 flags)344 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
345 {
346 struct net_device *dev = bq->dev;
347 int sent = 0, drops = 0, err = 0;
348 int i;
349
350 if (unlikely(!bq->count))
351 return;
352
353 for (i = 0; i < bq->count; i++) {
354 struct xdp_frame *xdpf = bq->q[i];
355
356 prefetch(xdpf);
357 }
358
359 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
360 if (sent < 0) {
361 err = sent;
362 sent = 0;
363 goto error;
364 }
365 drops = bq->count - sent;
366 out:
367 bq->count = 0;
368
369 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err);
370 bq->dev_rx = NULL;
371 __list_del_clearprev(&bq->flush_node);
372 return;
373 error:
374 /* If ndo_xdp_xmit fails with an errno, no frames have been
375 * xmit'ed and it's our responsibility to them free all.
376 */
377 for (i = 0; i < bq->count; i++) {
378 struct xdp_frame *xdpf = bq->q[i];
379
380 xdp_return_frame_rx_napi(xdpf);
381 drops++;
382 }
383 goto out;
384 }
385
386 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled
387 * from the driver before returning from its napi->poll() routine. The poll()
388 * routine is called either from busy_poll context or net_rx_action signaled
389 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
390 * net device can be torn down. On devmap tear down we ensure the flush list
391 * is empty before completing to ensure all flush operations have completed.
392 * When drivers update the bpf program they may need to ensure any flush ops
393 * are also complete. Using synchronize_rcu or call_rcu will suffice for this
394 * because both wait for napi context to exit.
395 */
__dev_flush(void)396 void __dev_flush(void)
397 {
398 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
399 struct xdp_dev_bulk_queue *bq, *tmp;
400
401 list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
402 bq_xmit_all(bq, XDP_XMIT_FLUSH);
403 }
404
405 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
406 * update happens in parallel here a dev_put wont happen until after reading the
407 * ifindex.
408 */
__dev_map_lookup_elem(struct bpf_map * map,u32 key)409 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
410 {
411 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
412 struct bpf_dtab_netdev *obj;
413
414 if (key >= map->max_entries)
415 return NULL;
416
417 obj = READ_ONCE(dtab->netdev_map[key]);
418 return obj;
419 }
420
421 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
422 * Thus, safe percpu variable access.
423 */
bq_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx)424 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
425 struct net_device *dev_rx)
426 {
427 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
428 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
429
430 if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
431 bq_xmit_all(bq, 0);
432
433 /* Ingress dev_rx will be the same for all xdp_frame's in
434 * bulk_queue, because bq stored per-CPU and must be flushed
435 * from net_device drivers NAPI func end.
436 */
437 if (!bq->dev_rx)
438 bq->dev_rx = dev_rx;
439
440 bq->q[bq->count++] = xdpf;
441
442 if (!bq->flush_node.prev)
443 list_add(&bq->flush_node, flush_list);
444 }
445
__xdp_enqueue(struct net_device * dev,struct xdp_buff * xdp,struct net_device * dev_rx)446 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
447 struct net_device *dev_rx)
448 {
449 struct xdp_frame *xdpf;
450 int err;
451
452 if (!dev->netdev_ops->ndo_xdp_xmit)
453 return -EOPNOTSUPP;
454
455 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
456 if (unlikely(err))
457 return err;
458
459 xdpf = xdp_convert_buff_to_frame(xdp);
460 if (unlikely(!xdpf))
461 return -EOVERFLOW;
462
463 bq_enqueue(dev, xdpf, dev_rx);
464 return 0;
465 }
466
dev_map_run_prog(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)467 static struct xdp_buff *dev_map_run_prog(struct net_device *dev,
468 struct xdp_buff *xdp,
469 struct bpf_prog *xdp_prog)
470 {
471 struct xdp_txq_info txq = { .dev = dev };
472 u32 act;
473
474 xdp_set_data_meta_invalid(xdp);
475 xdp->txq = &txq;
476
477 act = bpf_prog_run_xdp(xdp_prog, xdp);
478 switch (act) {
479 case XDP_PASS:
480 return xdp;
481 case XDP_DROP:
482 break;
483 default:
484 bpf_warn_invalid_xdp_action(act);
485 fallthrough;
486 case XDP_ABORTED:
487 trace_xdp_exception(dev, xdp_prog, act);
488 break;
489 }
490
491 xdp_return_buff(xdp);
492 return NULL;
493 }
494
dev_xdp_enqueue(struct net_device * dev,struct xdp_buff * xdp,struct net_device * dev_rx)495 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
496 struct net_device *dev_rx)
497 {
498 return __xdp_enqueue(dev, xdp, dev_rx);
499 }
500
dev_map_enqueue(struct bpf_dtab_netdev * dst,struct xdp_buff * xdp,struct net_device * dev_rx)501 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
502 struct net_device *dev_rx)
503 {
504 struct net_device *dev = dst->dev;
505
506 if (dst->xdp_prog) {
507 xdp = dev_map_run_prog(dev, xdp, dst->xdp_prog);
508 if (!xdp)
509 return 0;
510 }
511 return __xdp_enqueue(dev, xdp, dev_rx);
512 }
513
dev_map_generic_redirect(struct bpf_dtab_netdev * dst,struct sk_buff * skb,struct bpf_prog * xdp_prog)514 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
515 struct bpf_prog *xdp_prog)
516 {
517 int err;
518
519 err = xdp_ok_fwd_dev(dst->dev, skb->len);
520 if (unlikely(err))
521 return err;
522 skb->dev = dst->dev;
523 generic_xdp_tx(skb, xdp_prog);
524
525 return 0;
526 }
527
dev_map_lookup_elem(struct bpf_map * map,void * key)528 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
529 {
530 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
531
532 return obj ? &obj->val : NULL;
533 }
534
dev_map_hash_lookup_elem(struct bpf_map * map,void * key)535 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
536 {
537 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
538 *(u32 *)key);
539 return obj ? &obj->val : NULL;
540 }
541
__dev_map_entry_free(struct rcu_head * rcu)542 static void __dev_map_entry_free(struct rcu_head *rcu)
543 {
544 struct bpf_dtab_netdev *dev;
545
546 dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
547 if (dev->xdp_prog)
548 bpf_prog_put(dev->xdp_prog);
549 dev_put(dev->dev);
550 kfree(dev);
551 }
552
dev_map_delete_elem(struct bpf_map * map,void * key)553 static int dev_map_delete_elem(struct bpf_map *map, void *key)
554 {
555 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
556 struct bpf_dtab_netdev *old_dev;
557 int k = *(u32 *)key;
558
559 if (k >= map->max_entries)
560 return -EINVAL;
561
562 /* Use call_rcu() here to ensure any rcu critical sections have
563 * completed as well as any flush operations because call_rcu
564 * will wait for preempt-disable region to complete, NAPI in this
565 * context. And additionally, the driver tear down ensures all
566 * soft irqs are complete before removing the net device in the
567 * case of dev_put equals zero.
568 */
569 old_dev = xchg(&dtab->netdev_map[k], NULL);
570 if (old_dev)
571 call_rcu(&old_dev->rcu, __dev_map_entry_free);
572 return 0;
573 }
574
dev_map_hash_delete_elem(struct bpf_map * map,void * key)575 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
576 {
577 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
578 struct bpf_dtab_netdev *old_dev;
579 int k = *(u32 *)key;
580 unsigned long flags;
581 int ret = -ENOENT;
582
583 spin_lock_irqsave(&dtab->index_lock, flags);
584
585 old_dev = __dev_map_hash_lookup_elem(map, k);
586 if (old_dev) {
587 dtab->items--;
588 hlist_del_init_rcu(&old_dev->index_hlist);
589 call_rcu(&old_dev->rcu, __dev_map_entry_free);
590 ret = 0;
591 }
592 spin_unlock_irqrestore(&dtab->index_lock, flags);
593
594 return ret;
595 }
596
__dev_map_alloc_node(struct net * net,struct bpf_dtab * dtab,struct bpf_devmap_val * val,unsigned int idx)597 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
598 struct bpf_dtab *dtab,
599 struct bpf_devmap_val *val,
600 unsigned int idx)
601 {
602 struct bpf_prog *prog = NULL;
603 struct bpf_dtab_netdev *dev;
604
605 dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
606 dtab->map.numa_node);
607 if (!dev)
608 return ERR_PTR(-ENOMEM);
609
610 dev->dev = dev_get_by_index(net, val->ifindex);
611 if (!dev->dev)
612 goto err_out;
613
614 if (val->bpf_prog.fd > 0) {
615 prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
616 BPF_PROG_TYPE_XDP, false);
617 if (IS_ERR(prog))
618 goto err_put_dev;
619 if (prog->expected_attach_type != BPF_XDP_DEVMAP)
620 goto err_put_prog;
621 }
622
623 dev->idx = idx;
624 dev->dtab = dtab;
625 if (prog) {
626 dev->xdp_prog = prog;
627 dev->val.bpf_prog.id = prog->aux->id;
628 } else {
629 dev->xdp_prog = NULL;
630 dev->val.bpf_prog.id = 0;
631 }
632 dev->val.ifindex = val->ifindex;
633
634 return dev;
635 err_put_prog:
636 bpf_prog_put(prog);
637 err_put_dev:
638 dev_put(dev->dev);
639 err_out:
640 kfree(dev);
641 return ERR_PTR(-EINVAL);
642 }
643
__dev_map_update_elem(struct net * net,struct bpf_map * map,void * key,void * value,u64 map_flags)644 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
645 void *key, void *value, u64 map_flags)
646 {
647 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
648 struct bpf_dtab_netdev *dev, *old_dev;
649 struct bpf_devmap_val val = {};
650 u32 i = *(u32 *)key;
651
652 if (unlikely(map_flags > BPF_EXIST))
653 return -EINVAL;
654 if (unlikely(i >= dtab->map.max_entries))
655 return -E2BIG;
656 if (unlikely(map_flags == BPF_NOEXIST))
657 return -EEXIST;
658
659 /* already verified value_size <= sizeof val */
660 memcpy(&val, value, map->value_size);
661
662 if (!val.ifindex) {
663 dev = NULL;
664 /* can not specify fd if ifindex is 0 */
665 if (val.bpf_prog.fd > 0)
666 return -EINVAL;
667 } else {
668 dev = __dev_map_alloc_node(net, dtab, &val, i);
669 if (IS_ERR(dev))
670 return PTR_ERR(dev);
671 }
672
673 /* Use call_rcu() here to ensure rcu critical sections have completed
674 * Remembering the driver side flush operation will happen before the
675 * net device is removed.
676 */
677 old_dev = xchg(&dtab->netdev_map[i], dev);
678 if (old_dev)
679 call_rcu(&old_dev->rcu, __dev_map_entry_free);
680
681 return 0;
682 }
683
dev_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)684 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
685 u64 map_flags)
686 {
687 return __dev_map_update_elem(current->nsproxy->net_ns,
688 map, key, value, map_flags);
689 }
690
__dev_map_hash_update_elem(struct net * net,struct bpf_map * map,void * key,void * value,u64 map_flags)691 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
692 void *key, void *value, u64 map_flags)
693 {
694 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
695 struct bpf_dtab_netdev *dev, *old_dev;
696 struct bpf_devmap_val val = {};
697 u32 idx = *(u32 *)key;
698 unsigned long flags;
699 int err = -EEXIST;
700
701 /* already verified value_size <= sizeof val */
702 memcpy(&val, value, map->value_size);
703
704 if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
705 return -EINVAL;
706
707 spin_lock_irqsave(&dtab->index_lock, flags);
708
709 old_dev = __dev_map_hash_lookup_elem(map, idx);
710 if (old_dev && (map_flags & BPF_NOEXIST))
711 goto out_err;
712
713 dev = __dev_map_alloc_node(net, dtab, &val, idx);
714 if (IS_ERR(dev)) {
715 err = PTR_ERR(dev);
716 goto out_err;
717 }
718
719 if (old_dev) {
720 hlist_del_rcu(&old_dev->index_hlist);
721 } else {
722 if (dtab->items >= dtab->map.max_entries) {
723 spin_unlock_irqrestore(&dtab->index_lock, flags);
724 call_rcu(&dev->rcu, __dev_map_entry_free);
725 return -E2BIG;
726 }
727 dtab->items++;
728 }
729
730 hlist_add_head_rcu(&dev->index_hlist,
731 dev_map_index_hash(dtab, idx));
732 spin_unlock_irqrestore(&dtab->index_lock, flags);
733
734 if (old_dev)
735 call_rcu(&old_dev->rcu, __dev_map_entry_free);
736
737 return 0;
738
739 out_err:
740 spin_unlock_irqrestore(&dtab->index_lock, flags);
741 return err;
742 }
743
dev_map_hash_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)744 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
745 u64 map_flags)
746 {
747 return __dev_map_hash_update_elem(current->nsproxy->net_ns,
748 map, key, value, map_flags);
749 }
750
751 static int dev_map_btf_id;
752 const struct bpf_map_ops dev_map_ops = {
753 .map_meta_equal = bpf_map_meta_equal,
754 .map_alloc = dev_map_alloc,
755 .map_free = dev_map_free,
756 .map_get_next_key = dev_map_get_next_key,
757 .map_lookup_elem = dev_map_lookup_elem,
758 .map_update_elem = dev_map_update_elem,
759 .map_delete_elem = dev_map_delete_elem,
760 .map_check_btf = map_check_no_btf,
761 .map_btf_name = "bpf_dtab",
762 .map_btf_id = &dev_map_btf_id,
763 };
764
765 static int dev_map_hash_map_btf_id;
766 const struct bpf_map_ops dev_map_hash_ops = {
767 .map_meta_equal = bpf_map_meta_equal,
768 .map_alloc = dev_map_alloc,
769 .map_free = dev_map_free,
770 .map_get_next_key = dev_map_hash_get_next_key,
771 .map_lookup_elem = dev_map_hash_lookup_elem,
772 .map_update_elem = dev_map_hash_update_elem,
773 .map_delete_elem = dev_map_hash_delete_elem,
774 .map_check_btf = map_check_no_btf,
775 .map_btf_name = "bpf_dtab",
776 .map_btf_id = &dev_map_hash_map_btf_id,
777 };
778
dev_map_hash_remove_netdev(struct bpf_dtab * dtab,struct net_device * netdev)779 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
780 struct net_device *netdev)
781 {
782 unsigned long flags;
783 u32 i;
784
785 spin_lock_irqsave(&dtab->index_lock, flags);
786 for (i = 0; i < dtab->n_buckets; i++) {
787 struct bpf_dtab_netdev *dev;
788 struct hlist_head *head;
789 struct hlist_node *next;
790
791 head = dev_map_index_hash(dtab, i);
792
793 hlist_for_each_entry_safe(dev, next, head, index_hlist) {
794 if (netdev != dev->dev)
795 continue;
796
797 dtab->items--;
798 hlist_del_rcu(&dev->index_hlist);
799 call_rcu(&dev->rcu, __dev_map_entry_free);
800 }
801 }
802 spin_unlock_irqrestore(&dtab->index_lock, flags);
803 }
804
dev_map_notification(struct notifier_block * notifier,ulong event,void * ptr)805 static int dev_map_notification(struct notifier_block *notifier,
806 ulong event, void *ptr)
807 {
808 struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
809 struct bpf_dtab *dtab;
810 int i, cpu;
811
812 switch (event) {
813 case NETDEV_REGISTER:
814 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
815 break;
816
817 /* will be freed in free_netdev() */
818 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue);
819 if (!netdev->xdp_bulkq)
820 return NOTIFY_BAD;
821
822 for_each_possible_cpu(cpu)
823 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
824 break;
825 case NETDEV_UNREGISTER:
826 /* This rcu_read_lock/unlock pair is needed because
827 * dev_map_list is an RCU list AND to ensure a delete
828 * operation does not free a netdev_map entry while we
829 * are comparing it against the netdev being unregistered.
830 */
831 rcu_read_lock();
832 list_for_each_entry_rcu(dtab, &dev_map_list, list) {
833 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
834 dev_map_hash_remove_netdev(dtab, netdev);
835 continue;
836 }
837
838 for (i = 0; i < dtab->map.max_entries; i++) {
839 struct bpf_dtab_netdev *dev, *odev;
840
841 dev = READ_ONCE(dtab->netdev_map[i]);
842 if (!dev || netdev != dev->dev)
843 continue;
844 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
845 if (dev == odev)
846 call_rcu(&dev->rcu,
847 __dev_map_entry_free);
848 }
849 }
850 rcu_read_unlock();
851 break;
852 default:
853 break;
854 }
855 return NOTIFY_OK;
856 }
857
858 static struct notifier_block dev_map_notifier = {
859 .notifier_call = dev_map_notification,
860 };
861
dev_map_init(void)862 static int __init dev_map_init(void)
863 {
864 int cpu;
865
866 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
867 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
868 offsetof(struct _bpf_dtab_netdev, dev));
869 register_netdevice_notifier(&dev_map_notifier);
870
871 for_each_possible_cpu(cpu)
872 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
873 return 0;
874 }
875
876 subsys_initcall(dev_map_init);
877