1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains KASAN runtime code that manages shadow memory for
4 * generic and software tag-based KASAN modes.
5 *
6 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8 *
9 * Some code borrowed from https://github.com/xairy/kasan-prototype by
10 * Andrey Konovalov <andreyknvl@gmail.com>
11 */
12
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26
27 #include "kasan.h"
28
__kasan_check_read(const volatile void * p,unsigned int size)29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31 return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34
__kasan_check_write(const volatile void * p,unsigned int size)35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37 return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40
41 #undef memset
memset(void * addr,int c,size_t len)42 void *memset(void *addr, int c, size_t len)
43 {
44 if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
45 return NULL;
46
47 return __memset(addr, c, len);
48 }
49
50 #ifdef __HAVE_ARCH_MEMMOVE
51 #undef memmove
memmove(void * dest,const void * src,size_t len)52 void *memmove(void *dest, const void *src, size_t len)
53 {
54 if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
55 !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
56 return NULL;
57
58 return __memmove(dest, src, len);
59 }
60 #endif
61
62 #undef memcpy
memcpy(void * dest,const void * src,size_t len)63 void *memcpy(void *dest, const void *src, size_t len)
64 {
65 if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
66 !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
67 return NULL;
68
69 return __memcpy(dest, src, len);
70 }
71
kasan_poison(const void * addr,size_t size,u8 value,bool init)72 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
73 {
74 void *shadow_start, *shadow_end;
75
76 /*
77 * Perform shadow offset calculation based on untagged address, as
78 * some of the callers (e.g. kasan_poison_object_data) pass tagged
79 * addresses to this function.
80 */
81 addr = kasan_reset_tag(addr);
82
83 /* Skip KFENCE memory if called explicitly outside of sl*b. */
84 if (is_kfence_address(addr))
85 return;
86
87 if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
88 return;
89 if (WARN_ON(size & KASAN_GRANULE_MASK))
90 return;
91
92 shadow_start = kasan_mem_to_shadow(addr);
93 shadow_end = kasan_mem_to_shadow(addr + size);
94
95 __memset(shadow_start, value, shadow_end - shadow_start);
96 }
97 EXPORT_SYMBOL(kasan_poison);
98
99 #ifdef CONFIG_KASAN_GENERIC
kasan_poison_last_granule(const void * addr,size_t size)100 void kasan_poison_last_granule(const void *addr, size_t size)
101 {
102 if (size & KASAN_GRANULE_MASK) {
103 u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
104 *shadow = size & KASAN_GRANULE_MASK;
105 }
106 }
107 #endif
108
kasan_unpoison(const void * addr,size_t size,bool init)109 void kasan_unpoison(const void *addr, size_t size, bool init)
110 {
111 u8 tag = get_tag(addr);
112
113 /*
114 * Perform shadow offset calculation based on untagged address, as
115 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
116 * addresses to this function.
117 */
118 addr = kasan_reset_tag(addr);
119
120 /*
121 * Skip KFENCE memory if called explicitly outside of sl*b. Also note
122 * that calls to ksize(), where size is not a multiple of machine-word
123 * size, would otherwise poison the invalid portion of the word.
124 */
125 if (is_kfence_address(addr))
126 return;
127
128 if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
129 return;
130
131 /* Unpoison all granules that cover the object. */
132 kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
133
134 /* Partially poison the last granule for the generic mode. */
135 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
136 kasan_poison_last_granule(addr, size);
137 }
138
139 #ifdef CONFIG_MEMORY_HOTPLUG
shadow_mapped(unsigned long addr)140 static bool shadow_mapped(unsigned long addr)
141 {
142 pgd_t *pgd = pgd_offset_k(addr);
143 p4d_t *p4d;
144 pud_t *pud;
145 pmd_t *pmd;
146 pte_t *pte;
147
148 if (pgd_none(*pgd))
149 return false;
150 p4d = p4d_offset(pgd, addr);
151 if (p4d_none(*p4d))
152 return false;
153 pud = pud_offset(p4d, addr);
154 if (pud_none(*pud))
155 return false;
156
157 /*
158 * We can't use pud_large() or pud_huge(), the first one is
159 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
160 * pud_bad(), if pud is bad then it's bad because it's huge.
161 */
162 if (pud_bad(*pud))
163 return true;
164 pmd = pmd_offset(pud, addr);
165 if (pmd_none(*pmd))
166 return false;
167
168 if (pmd_bad(*pmd))
169 return true;
170 pte = pte_offset_kernel(pmd, addr);
171 return !pte_none(*pte);
172 }
173
kasan_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)174 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
175 unsigned long action, void *data)
176 {
177 struct memory_notify *mem_data = data;
178 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
179 unsigned long shadow_end, shadow_size;
180
181 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
182 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
183 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
184 shadow_size = nr_shadow_pages << PAGE_SHIFT;
185 shadow_end = shadow_start + shadow_size;
186
187 if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
188 WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
189 return NOTIFY_BAD;
190
191 switch (action) {
192 case MEM_GOING_ONLINE: {
193 void *ret;
194
195 /*
196 * If shadow is mapped already than it must have been mapped
197 * during the boot. This could happen if we onlining previously
198 * offlined memory.
199 */
200 if (shadow_mapped(shadow_start))
201 return NOTIFY_OK;
202
203 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
204 shadow_end, GFP_KERNEL,
205 PAGE_KERNEL, VM_NO_GUARD,
206 pfn_to_nid(mem_data->start_pfn),
207 __builtin_return_address(0));
208 if (!ret)
209 return NOTIFY_BAD;
210
211 kmemleak_ignore(ret);
212 return NOTIFY_OK;
213 }
214 case MEM_CANCEL_ONLINE:
215 case MEM_OFFLINE: {
216 struct vm_struct *vm;
217
218 /*
219 * shadow_start was either mapped during boot by kasan_init()
220 * or during memory online by __vmalloc_node_range().
221 * In the latter case we can use vfree() to free shadow.
222 * Non-NULL result of the find_vm_area() will tell us if
223 * that was the second case.
224 *
225 * Currently it's not possible to free shadow mapped
226 * during boot by kasan_init(). It's because the code
227 * to do that hasn't been written yet. So we'll just
228 * leak the memory.
229 */
230 vm = find_vm_area((void *)shadow_start);
231 if (vm)
232 vfree((void *)shadow_start);
233 }
234 }
235
236 return NOTIFY_OK;
237 }
238
kasan_memhotplug_init(void)239 static int __init kasan_memhotplug_init(void)
240 {
241 hotplug_memory_notifier(kasan_mem_notifier, 0);
242
243 return 0;
244 }
245
246 core_initcall(kasan_memhotplug_init);
247 #endif
248
249 #ifdef CONFIG_KASAN_VMALLOC
250
kasan_populate_vmalloc_pte(pte_t * ptep,unsigned long addr,void * unused)251 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
252 void *unused)
253 {
254 unsigned long page;
255 pte_t pte;
256
257 if (likely(!pte_none(*ptep)))
258 return 0;
259
260 page = __get_free_page(GFP_KERNEL);
261 if (!page)
262 return -ENOMEM;
263
264 memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
265 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
266
267 spin_lock(&init_mm.page_table_lock);
268 if (likely(pte_none(*ptep))) {
269 set_pte_at(&init_mm, addr, ptep, pte);
270 page = 0;
271 }
272 spin_unlock(&init_mm.page_table_lock);
273 if (page)
274 free_page(page);
275 return 0;
276 }
277
kasan_populate_vmalloc(unsigned long addr,unsigned long size)278 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
279 {
280 unsigned long shadow_start, shadow_end;
281 int ret;
282
283 if (!is_vmalloc_or_module_addr((void *)addr))
284 return 0;
285
286 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
287 shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
288 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
289 shadow_end = ALIGN(shadow_end, PAGE_SIZE);
290
291 ret = apply_to_page_range(&init_mm, shadow_start,
292 shadow_end - shadow_start,
293 kasan_populate_vmalloc_pte, NULL);
294 if (ret)
295 return ret;
296
297 flush_cache_vmap(shadow_start, shadow_end);
298
299 /*
300 * We need to be careful about inter-cpu effects here. Consider:
301 *
302 * CPU#0 CPU#1
303 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
304 * p[99] = 1;
305 *
306 * With compiler instrumentation, that ends up looking like this:
307 *
308 * CPU#0 CPU#1
309 * // vmalloc() allocates memory
310 * // let a = area->addr
311 * // we reach kasan_populate_vmalloc
312 * // and call kasan_unpoison:
313 * STORE shadow(a), unpoison_val
314 * ...
315 * STORE shadow(a+99), unpoison_val x = LOAD p
316 * // rest of vmalloc process <data dependency>
317 * STORE p, a LOAD shadow(x+99)
318 *
319 * If there is no barrier between the end of unpoisioning the shadow
320 * and the store of the result to p, the stores could be committed
321 * in a different order by CPU#0, and CPU#1 could erroneously observe
322 * poison in the shadow.
323 *
324 * We need some sort of barrier between the stores.
325 *
326 * In the vmalloc() case, this is provided by a smp_wmb() in
327 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
328 * get_vm_area() and friends, the caller gets shadow allocated but
329 * doesn't have any pages mapped into the virtual address space that
330 * has been reserved. Mapping those pages in will involve taking and
331 * releasing a page-table lock, which will provide the barrier.
332 */
333
334 return 0;
335 }
336
337 /*
338 * Poison the shadow for a vmalloc region. Called as part of the
339 * freeing process at the time the region is freed.
340 */
kasan_poison_vmalloc(const void * start,unsigned long size)341 void kasan_poison_vmalloc(const void *start, unsigned long size)
342 {
343 if (!is_vmalloc_or_module_addr(start))
344 return;
345
346 size = round_up(size, KASAN_GRANULE_SIZE);
347 kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
348 }
349
kasan_unpoison_vmalloc(const void * start,unsigned long size)350 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
351 {
352 if (!is_vmalloc_or_module_addr(start))
353 return;
354
355 kasan_unpoison(start, size, false);
356 }
357
kasan_depopulate_vmalloc_pte(pte_t * ptep,unsigned long addr,void * unused)358 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
359 void *unused)
360 {
361 unsigned long page;
362
363 page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
364
365 spin_lock(&init_mm.page_table_lock);
366
367 if (likely(!pte_none(*ptep))) {
368 pte_clear(&init_mm, addr, ptep);
369 free_page(page);
370 }
371 spin_unlock(&init_mm.page_table_lock);
372
373 return 0;
374 }
375
376 /*
377 * Release the backing for the vmalloc region [start, end), which
378 * lies within the free region [free_region_start, free_region_end).
379 *
380 * This can be run lazily, long after the region was freed. It runs
381 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
382 * infrastructure.
383 *
384 * How does this work?
385 * -------------------
386 *
387 * We have a region that is page aligned, labelled as A.
388 * That might not map onto the shadow in a way that is page-aligned:
389 *
390 * start end
391 * v v
392 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
393 * -------- -------- -------- -------- --------
394 * | | | | |
395 * | | | /-------/ |
396 * \-------\|/------/ |/---------------/
397 * ||| ||
398 * |??AAAAAA|AAAAAAAA|AA??????| < shadow
399 * (1) (2) (3)
400 *
401 * First we align the start upwards and the end downwards, so that the
402 * shadow of the region aligns with shadow page boundaries. In the
403 * example, this gives us the shadow page (2). This is the shadow entirely
404 * covered by this allocation.
405 *
406 * Then we have the tricky bits. We want to know if we can free the
407 * partially covered shadow pages - (1) and (3) in the example. For this,
408 * we are given the start and end of the free region that contains this
409 * allocation. Extending our previous example, we could have:
410 *
411 * free_region_start free_region_end
412 * | start end |
413 * v v v v
414 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
415 * -------- -------- -------- -------- --------
416 * | | | | |
417 * | | | /-------/ |
418 * \-------\|/------/ |/---------------/
419 * ||| ||
420 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
421 * (1) (2) (3)
422 *
423 * Once again, we align the start of the free region up, and the end of
424 * the free region down so that the shadow is page aligned. So we can free
425 * page (1) - we know no allocation currently uses anything in that page,
426 * because all of it is in the vmalloc free region. But we cannot free
427 * page (3), because we can't be sure that the rest of it is unused.
428 *
429 * We only consider pages that contain part of the original region for
430 * freeing: we don't try to free other pages from the free region or we'd
431 * end up trying to free huge chunks of virtual address space.
432 *
433 * Concurrency
434 * -----------
435 *
436 * How do we know that we're not freeing a page that is simultaneously
437 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
438 *
439 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
440 * at the same time. While we run under free_vmap_area_lock, the population
441 * code does not.
442 *
443 * free_vmap_area_lock instead operates to ensure that the larger range
444 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
445 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
446 * no space identified as free will become used while we are running. This
447 * means that so long as we are careful with alignment and only free shadow
448 * pages entirely covered by the free region, we will not run in to any
449 * trouble - any simultaneous allocations will be for disjoint regions.
450 */
kasan_release_vmalloc(unsigned long start,unsigned long end,unsigned long free_region_start,unsigned long free_region_end)451 void kasan_release_vmalloc(unsigned long start, unsigned long end,
452 unsigned long free_region_start,
453 unsigned long free_region_end)
454 {
455 void *shadow_start, *shadow_end;
456 unsigned long region_start, region_end;
457 unsigned long size;
458
459 region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
460 region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
461
462 free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
463
464 if (start != region_start &&
465 free_region_start < region_start)
466 region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
467
468 free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
469
470 if (end != region_end &&
471 free_region_end > region_end)
472 region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
473
474 shadow_start = kasan_mem_to_shadow((void *)region_start);
475 shadow_end = kasan_mem_to_shadow((void *)region_end);
476
477 if (shadow_end > shadow_start) {
478 size = shadow_end - shadow_start;
479 apply_to_existing_page_range(&init_mm,
480 (unsigned long)shadow_start,
481 size, kasan_depopulate_vmalloc_pte,
482 NULL);
483 flush_tlb_kernel_range((unsigned long)shadow_start,
484 (unsigned long)shadow_end);
485 }
486 }
487
488 #else /* CONFIG_KASAN_VMALLOC */
489
kasan_module_alloc(void * addr,size_t size)490 int kasan_module_alloc(void *addr, size_t size)
491 {
492 void *ret;
493 size_t scaled_size;
494 size_t shadow_size;
495 unsigned long shadow_start;
496
497 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
498 scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
499 KASAN_SHADOW_SCALE_SHIFT;
500 shadow_size = round_up(scaled_size, PAGE_SIZE);
501
502 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
503 return -EINVAL;
504
505 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
506 shadow_start + shadow_size,
507 GFP_KERNEL,
508 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
509 __builtin_return_address(0));
510
511 if (ret) {
512 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
513 find_vm_area(addr)->flags |= VM_KASAN;
514 kmemleak_ignore(ret);
515 return 0;
516 }
517
518 return -ENOMEM;
519 }
520
kasan_free_shadow(const struct vm_struct * vm)521 void kasan_free_shadow(const struct vm_struct *vm)
522 {
523 if (vm->flags & VM_KASAN)
524 vfree(kasan_mem_to_shadow(vm->addr));
525 }
526
527 #endif
528