1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #ifndef __ARM64_KVM_MMU_H__
8 #define __ARM64_KVM_MMU_H__
9
10 #include <asm/page.h>
11 #include <asm/memory.h>
12 #include <asm/mmu.h>
13 #include <asm/cpufeature.h>
14
15 /*
16 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
17 * "negative" addresses. This makes it impossible to directly share
18 * mappings with the kernel.
19 *
20 * Instead, give the HYP mode its own VA region at a fixed offset from
21 * the kernel by just masking the top bits (which are all ones for a
22 * kernel address). We need to find out how many bits to mask.
23 *
24 * We want to build a set of page tables that cover both parts of the
25 * idmap (the trampoline page used to initialize EL2), and our normal
26 * runtime VA space, at the same time.
27 *
28 * Given that the kernel uses VA_BITS for its entire address space,
29 * and that half of that space (VA_BITS - 1) is used for the linear
30 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
31 *
32 * The main question is "Within the VA_BITS space, does EL2 use the
33 * top or the bottom half of that space to shadow the kernel's linear
34 * mapping?". As we need to idmap the trampoline page, this is
35 * determined by the range in which this page lives.
36 *
37 * If the page is in the bottom half, we have to use the top half. If
38 * the page is in the top half, we have to use the bottom half:
39 *
40 * T = __pa_symbol(__hyp_idmap_text_start)
41 * if (T & BIT(VA_BITS - 1))
42 * HYP_VA_MIN = 0 //idmap in upper half
43 * else
44 * HYP_VA_MIN = 1 << (VA_BITS - 1)
45 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
46 *
47 * When using VHE, there are no separate hyp mappings and all KVM
48 * functionality is already mapped as part of the main kernel
49 * mappings, and none of this applies in that case.
50 */
51
52 #ifdef __ASSEMBLY__
53
54 #include <asm/alternative.h>
55
56 /*
57 * Convert a kernel VA into a HYP VA.
58 * reg: VA to be converted.
59 *
60 * The actual code generation takes place in kvm_update_va_mask, and
61 * the instructions below are only there to reserve the space and
62 * perform the register allocation (kvm_update_va_mask uses the
63 * specific registers encoded in the instructions).
64 */
65 .macro kern_hyp_va reg
66 alternative_cb kvm_update_va_mask
67 and \reg, \reg, #1 /* mask with va_mask */
68 ror \reg, \reg, #1 /* rotate to the first tag bit */
69 add \reg, \reg, #0 /* insert the low 12 bits of the tag */
70 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */
71 ror \reg, \reg, #63 /* rotate back */
72 alternative_cb_end
73 .endm
74
75 /*
76 * Convert a hypervisor VA to a PA
77 * reg: hypervisor address to be converted in place
78 * tmp: temporary register
79 */
80 .macro hyp_pa reg, tmp
81 ldr_l \tmp, hyp_physvirt_offset
82 add \reg, \reg, \tmp
83 .endm
84
85 /*
86 * Convert a hypervisor VA to a kernel image address
87 * reg: hypervisor address to be converted in place
88 * tmp: temporary register
89 *
90 * The actual code generation takes place in kvm_get_kimage_voffset, and
91 * the instructions below are only there to reserve the space and
92 * perform the register allocation (kvm_get_kimage_voffset uses the
93 * specific registers encoded in the instructions).
94 */
95 .macro hyp_kimg_va reg, tmp
96 /* Convert hyp VA -> PA. */
97 hyp_pa \reg, \tmp
98
99 /* Load kimage_voffset. */
100 alternative_cb kvm_get_kimage_voffset
101 movz \tmp, #0
102 movk \tmp, #0, lsl #16
103 movk \tmp, #0, lsl #32
104 movk \tmp, #0, lsl #48
105 alternative_cb_end
106
107 /* Convert PA -> kimg VA. */
108 add \reg, \reg, \tmp
109 .endm
110
111 #else
112
113 #include <linux/pgtable.h>
114 #include <asm/pgalloc.h>
115 #include <asm/cache.h>
116 #include <asm/cacheflush.h>
117 #include <asm/mmu_context.h>
118
119 void kvm_update_va_mask(struct alt_instr *alt,
120 __le32 *origptr, __le32 *updptr, int nr_inst);
121 void kvm_compute_layout(void);
122 void kvm_apply_hyp_relocations(void);
123
__kern_hyp_va(unsigned long v)124 static __always_inline unsigned long __kern_hyp_va(unsigned long v)
125 {
126 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
127 "ror %0, %0, #1\n"
128 "add %0, %0, #0\n"
129 "add %0, %0, #0, lsl 12\n"
130 "ror %0, %0, #63\n",
131 kvm_update_va_mask)
132 : "+r" (v));
133 return v;
134 }
135
136 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
137
138 /*
139 * We currently support using a VM-specified IPA size. For backward
140 * compatibility, the default IPA size is fixed to 40bits.
141 */
142 #define KVM_PHYS_SHIFT (40)
143
144 #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr)
145 #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm))
146 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL))
147
148 #include <asm/kvm_pgtable.h>
149 #include <asm/stage2_pgtable.h>
150
151 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
152 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
153 void __iomem **kaddr,
154 void __iomem **haddr);
155 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
156 void **haddr);
157 void free_hyp_pgds(void);
158
159 void stage2_unmap_vm(struct kvm *kvm);
160 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
161 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
162 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
163 phys_addr_t pa, unsigned long size, bool writable);
164
165 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
166
167 phys_addr_t kvm_mmu_get_httbr(void);
168 phys_addr_t kvm_get_idmap_vector(void);
169 int kvm_mmu_init(u32 *hyp_va_bits);
170
__kvm_vector_slot2addr(void * base,enum arm64_hyp_spectre_vector slot)171 static inline void *__kvm_vector_slot2addr(void *base,
172 enum arm64_hyp_spectre_vector slot)
173 {
174 int idx = slot - (slot != HYP_VECTOR_DIRECT);
175
176 return base + (idx * SZ_2K);
177 }
178
179 struct kvm;
180
181 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
182
vcpu_has_cache_enabled(struct kvm_vcpu * vcpu)183 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
184 {
185 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
186 }
187
__clean_dcache_guest_page(kvm_pfn_t pfn,unsigned long size)188 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
189 {
190 void *va = page_address(pfn_to_page(pfn));
191
192 /*
193 * With FWB, we ensure that the guest always accesses memory using
194 * cacheable attributes, and we don't have to clean to PoC when
195 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
196 * PoU is not required either in this case.
197 */
198 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
199 return;
200
201 kvm_flush_dcache_to_poc(va, size);
202 }
203
__invalidate_icache_guest_page(kvm_pfn_t pfn,unsigned long size)204 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
205 unsigned long size)
206 {
207 if (icache_is_aliasing()) {
208 /* any kind of VIPT cache */
209 __flush_icache_all();
210 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
211 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
212 void *va = page_address(pfn_to_page(pfn));
213
214 invalidate_icache_range((unsigned long)va,
215 (unsigned long)va + size);
216 }
217 }
218
219 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
220 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
221
kvm_get_vmid_bits(void)222 static inline unsigned int kvm_get_vmid_bits(void)
223 {
224 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
225
226 return get_vmid_bits(reg);
227 }
228
229 /*
230 * We are not in the kvm->srcu critical section most of the time, so we take
231 * the SRCU read lock here. Since we copy the data from the user page, we
232 * can immediately drop the lock again.
233 */
kvm_read_guest_lock(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)234 static inline int kvm_read_guest_lock(struct kvm *kvm,
235 gpa_t gpa, void *data, unsigned long len)
236 {
237 int srcu_idx = srcu_read_lock(&kvm->srcu);
238 int ret = kvm_read_guest(kvm, gpa, data, len);
239
240 srcu_read_unlock(&kvm->srcu, srcu_idx);
241
242 return ret;
243 }
244
kvm_write_guest_lock(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)245 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
246 const void *data, unsigned long len)
247 {
248 int srcu_idx = srcu_read_lock(&kvm->srcu);
249 int ret = kvm_write_guest(kvm, gpa, data, len);
250
251 srcu_read_unlock(&kvm->srcu, srcu_idx);
252
253 return ret;
254 }
255
256 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
257
kvm_get_vttbr(struct kvm_s2_mmu * mmu)258 static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
259 {
260 struct kvm_vmid *vmid = &mmu->vmid;
261 u64 vmid_field, baddr;
262 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
263
264 baddr = mmu->pgd_phys;
265 vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
266 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
267 }
268
269 /*
270 * Must be called from hyp code running at EL2 with an updated VTTBR
271 * and interrupts disabled.
272 */
__load_stage2(struct kvm_s2_mmu * mmu,unsigned long vtcr)273 static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu, unsigned long vtcr)
274 {
275 write_sysreg(vtcr, vtcr_el2);
276 write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
277
278 /*
279 * ARM errata 1165522 and 1530923 require the actual execution of the
280 * above before we can switch to the EL1/EL0 translation regime used by
281 * the guest.
282 */
283 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
284 }
285
__load_guest_stage2(struct kvm_s2_mmu * mmu)286 static __always_inline void __load_guest_stage2(struct kvm_s2_mmu *mmu)
287 {
288 __load_stage2(mmu, kern_hyp_va(mmu->arch)->vtcr);
289 }
290
kvm_s2_mmu_to_kvm(struct kvm_s2_mmu * mmu)291 static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu)
292 {
293 return container_of(mmu->arch, struct kvm, arch);
294 }
295 #endif /* __ASSEMBLY__ */
296 #endif /* __ARM64_KVM_MMU_H__ */
297