• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32 #include "kfd_smi_events.h"
33 
34 #define MQD_SIZE_ALIGNED 768
35 
36 /*
37  * kfd_locked is used to lock the kfd driver during suspend or reset
38  * once locked, kfd driver will stop any further GPU execution.
39  * create process (open) will return -EAGAIN.
40  */
41 static atomic_t kfd_locked = ATOMIC_INIT(0);
42 
43 #ifdef CONFIG_DRM_AMDGPU_CIK
44 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
45 #endif
46 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
47 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
48 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
49 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
50 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
51 
52 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
53 #ifdef KFD_SUPPORT_IOMMU_V2
54 #ifdef CONFIG_DRM_AMDGPU_CIK
55 	[CHIP_KAVERI] = &gfx_v7_kfd2kgd,
56 #endif
57 	[CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
58 	[CHIP_RAVEN] = &gfx_v9_kfd2kgd,
59 #endif
60 #ifdef CONFIG_DRM_AMDGPU_CIK
61 	[CHIP_HAWAII] = &gfx_v7_kfd2kgd,
62 #endif
63 	[CHIP_TONGA] = &gfx_v8_kfd2kgd,
64 	[CHIP_FIJI] = &gfx_v8_kfd2kgd,
65 	[CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
66 	[CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
67 	[CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
68 	[CHIP_VEGAM] = &gfx_v8_kfd2kgd,
69 	[CHIP_VEGA10] = &gfx_v9_kfd2kgd,
70 	[CHIP_VEGA12] = &gfx_v9_kfd2kgd,
71 	[CHIP_VEGA20] = &gfx_v9_kfd2kgd,
72 	[CHIP_RENOIR] = &gfx_v9_kfd2kgd,
73 	[CHIP_ARCTURUS] = &arcturus_kfd2kgd,
74 	[CHIP_NAVI10] = &gfx_v10_kfd2kgd,
75 	[CHIP_NAVI12] = &gfx_v10_kfd2kgd,
76 	[CHIP_NAVI14] = &gfx_v10_kfd2kgd,
77 	[CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
78 	[CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
79 };
80 
81 #ifdef KFD_SUPPORT_IOMMU_V2
82 static const struct kfd_device_info kaveri_device_info = {
83 	.asic_family = CHIP_KAVERI,
84 	.asic_name = "kaveri",
85 	.max_pasid_bits = 16,
86 	/* max num of queues for KV.TODO should be a dynamic value */
87 	.max_no_of_hqd	= 24,
88 	.doorbell_size  = 4,
89 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
90 	.event_interrupt_class = &event_interrupt_class_cik,
91 	.num_of_watch_points = 4,
92 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
93 	.supports_cwsr = false,
94 	.needs_iommu_device = true,
95 	.needs_pci_atomics = false,
96 	.num_sdma_engines = 2,
97 	.num_xgmi_sdma_engines = 0,
98 	.num_sdma_queues_per_engine = 2,
99 };
100 
101 static const struct kfd_device_info carrizo_device_info = {
102 	.asic_family = CHIP_CARRIZO,
103 	.asic_name = "carrizo",
104 	.max_pasid_bits = 16,
105 	/* max num of queues for CZ.TODO should be a dynamic value */
106 	.max_no_of_hqd	= 24,
107 	.doorbell_size  = 4,
108 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
109 	.event_interrupt_class = &event_interrupt_class_cik,
110 	.num_of_watch_points = 4,
111 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
112 	.supports_cwsr = true,
113 	.needs_iommu_device = true,
114 	.needs_pci_atomics = false,
115 	.num_sdma_engines = 2,
116 	.num_xgmi_sdma_engines = 0,
117 	.num_sdma_queues_per_engine = 2,
118 };
119 #endif
120 
121 static const struct kfd_device_info raven_device_info = {
122 	.asic_family = CHIP_RAVEN,
123 	.asic_name = "raven",
124 	.max_pasid_bits = 16,
125 	.max_no_of_hqd  = 24,
126 	.doorbell_size  = 8,
127 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
128 	.event_interrupt_class = &event_interrupt_class_v9,
129 	.num_of_watch_points = 4,
130 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
131 	.supports_cwsr = true,
132 	.needs_iommu_device = true,
133 	.needs_pci_atomics = true,
134 	.num_sdma_engines = 1,
135 	.num_xgmi_sdma_engines = 0,
136 	.num_sdma_queues_per_engine = 2,
137 };
138 
139 static const struct kfd_device_info hawaii_device_info = {
140 	.asic_family = CHIP_HAWAII,
141 	.asic_name = "hawaii",
142 	.max_pasid_bits = 16,
143 	/* max num of queues for KV.TODO should be a dynamic value */
144 	.max_no_of_hqd	= 24,
145 	.doorbell_size  = 4,
146 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
147 	.event_interrupt_class = &event_interrupt_class_cik,
148 	.num_of_watch_points = 4,
149 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
150 	.supports_cwsr = false,
151 	.needs_iommu_device = false,
152 	.needs_pci_atomics = false,
153 	.num_sdma_engines = 2,
154 	.num_xgmi_sdma_engines = 0,
155 	.num_sdma_queues_per_engine = 2,
156 };
157 
158 static const struct kfd_device_info tonga_device_info = {
159 	.asic_family = CHIP_TONGA,
160 	.asic_name = "tonga",
161 	.max_pasid_bits = 16,
162 	.max_no_of_hqd  = 24,
163 	.doorbell_size  = 4,
164 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
165 	.event_interrupt_class = &event_interrupt_class_cik,
166 	.num_of_watch_points = 4,
167 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
168 	.supports_cwsr = false,
169 	.needs_iommu_device = false,
170 	.needs_pci_atomics = true,
171 	.num_sdma_engines = 2,
172 	.num_xgmi_sdma_engines = 0,
173 	.num_sdma_queues_per_engine = 2,
174 };
175 
176 static const struct kfd_device_info fiji_device_info = {
177 	.asic_family = CHIP_FIJI,
178 	.asic_name = "fiji",
179 	.max_pasid_bits = 16,
180 	.max_no_of_hqd  = 24,
181 	.doorbell_size  = 4,
182 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
183 	.event_interrupt_class = &event_interrupt_class_cik,
184 	.num_of_watch_points = 4,
185 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
186 	.supports_cwsr = true,
187 	.needs_iommu_device = false,
188 	.needs_pci_atomics = true,
189 	.num_sdma_engines = 2,
190 	.num_xgmi_sdma_engines = 0,
191 	.num_sdma_queues_per_engine = 2,
192 };
193 
194 static const struct kfd_device_info fiji_vf_device_info = {
195 	.asic_family = CHIP_FIJI,
196 	.asic_name = "fiji",
197 	.max_pasid_bits = 16,
198 	.max_no_of_hqd  = 24,
199 	.doorbell_size  = 4,
200 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
201 	.event_interrupt_class = &event_interrupt_class_cik,
202 	.num_of_watch_points = 4,
203 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
204 	.supports_cwsr = true,
205 	.needs_iommu_device = false,
206 	.needs_pci_atomics = false,
207 	.num_sdma_engines = 2,
208 	.num_xgmi_sdma_engines = 0,
209 	.num_sdma_queues_per_engine = 2,
210 };
211 
212 
213 static const struct kfd_device_info polaris10_device_info = {
214 	.asic_family = CHIP_POLARIS10,
215 	.asic_name = "polaris10",
216 	.max_pasid_bits = 16,
217 	.max_no_of_hqd  = 24,
218 	.doorbell_size  = 4,
219 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
220 	.event_interrupt_class = &event_interrupt_class_cik,
221 	.num_of_watch_points = 4,
222 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
223 	.supports_cwsr = true,
224 	.needs_iommu_device = false,
225 	.needs_pci_atomics = true,
226 	.num_sdma_engines = 2,
227 	.num_xgmi_sdma_engines = 0,
228 	.num_sdma_queues_per_engine = 2,
229 };
230 
231 static const struct kfd_device_info polaris10_vf_device_info = {
232 	.asic_family = CHIP_POLARIS10,
233 	.asic_name = "polaris10",
234 	.max_pasid_bits = 16,
235 	.max_no_of_hqd  = 24,
236 	.doorbell_size  = 4,
237 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
238 	.event_interrupt_class = &event_interrupt_class_cik,
239 	.num_of_watch_points = 4,
240 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
241 	.supports_cwsr = true,
242 	.needs_iommu_device = false,
243 	.needs_pci_atomics = false,
244 	.num_sdma_engines = 2,
245 	.num_xgmi_sdma_engines = 0,
246 	.num_sdma_queues_per_engine = 2,
247 };
248 
249 static const struct kfd_device_info polaris11_device_info = {
250 	.asic_family = CHIP_POLARIS11,
251 	.asic_name = "polaris11",
252 	.max_pasid_bits = 16,
253 	.max_no_of_hqd  = 24,
254 	.doorbell_size  = 4,
255 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
256 	.event_interrupt_class = &event_interrupt_class_cik,
257 	.num_of_watch_points = 4,
258 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
259 	.supports_cwsr = true,
260 	.needs_iommu_device = false,
261 	.needs_pci_atomics = true,
262 	.num_sdma_engines = 2,
263 	.num_xgmi_sdma_engines = 0,
264 	.num_sdma_queues_per_engine = 2,
265 };
266 
267 static const struct kfd_device_info polaris12_device_info = {
268 	.asic_family = CHIP_POLARIS12,
269 	.asic_name = "polaris12",
270 	.max_pasid_bits = 16,
271 	.max_no_of_hqd  = 24,
272 	.doorbell_size  = 4,
273 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
274 	.event_interrupt_class = &event_interrupt_class_cik,
275 	.num_of_watch_points = 4,
276 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
277 	.supports_cwsr = true,
278 	.needs_iommu_device = false,
279 	.needs_pci_atomics = true,
280 	.num_sdma_engines = 2,
281 	.num_xgmi_sdma_engines = 0,
282 	.num_sdma_queues_per_engine = 2,
283 };
284 
285 static const struct kfd_device_info vegam_device_info = {
286 	.asic_family = CHIP_VEGAM,
287 	.asic_name = "vegam",
288 	.max_pasid_bits = 16,
289 	.max_no_of_hqd  = 24,
290 	.doorbell_size  = 4,
291 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
292 	.event_interrupt_class = &event_interrupt_class_cik,
293 	.num_of_watch_points = 4,
294 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
295 	.supports_cwsr = true,
296 	.needs_iommu_device = false,
297 	.needs_pci_atomics = true,
298 	.num_sdma_engines = 2,
299 	.num_xgmi_sdma_engines = 0,
300 	.num_sdma_queues_per_engine = 2,
301 };
302 
303 static const struct kfd_device_info vega10_device_info = {
304 	.asic_family = CHIP_VEGA10,
305 	.asic_name = "vega10",
306 	.max_pasid_bits = 16,
307 	.max_no_of_hqd  = 24,
308 	.doorbell_size  = 8,
309 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
310 	.event_interrupt_class = &event_interrupt_class_v9,
311 	.num_of_watch_points = 4,
312 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
313 	.supports_cwsr = true,
314 	.needs_iommu_device = false,
315 	.needs_pci_atomics = false,
316 	.num_sdma_engines = 2,
317 	.num_xgmi_sdma_engines = 0,
318 	.num_sdma_queues_per_engine = 2,
319 };
320 
321 static const struct kfd_device_info vega10_vf_device_info = {
322 	.asic_family = CHIP_VEGA10,
323 	.asic_name = "vega10",
324 	.max_pasid_bits = 16,
325 	.max_no_of_hqd  = 24,
326 	.doorbell_size  = 8,
327 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
328 	.event_interrupt_class = &event_interrupt_class_v9,
329 	.num_of_watch_points = 4,
330 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
331 	.supports_cwsr = true,
332 	.needs_iommu_device = false,
333 	.needs_pci_atomics = false,
334 	.num_sdma_engines = 2,
335 	.num_xgmi_sdma_engines = 0,
336 	.num_sdma_queues_per_engine = 2,
337 };
338 
339 static const struct kfd_device_info vega12_device_info = {
340 	.asic_family = CHIP_VEGA12,
341 	.asic_name = "vega12",
342 	.max_pasid_bits = 16,
343 	.max_no_of_hqd  = 24,
344 	.doorbell_size  = 8,
345 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
346 	.event_interrupt_class = &event_interrupt_class_v9,
347 	.num_of_watch_points = 4,
348 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
349 	.supports_cwsr = true,
350 	.needs_iommu_device = false,
351 	.needs_pci_atomics = false,
352 	.num_sdma_engines = 2,
353 	.num_xgmi_sdma_engines = 0,
354 	.num_sdma_queues_per_engine = 2,
355 };
356 
357 static const struct kfd_device_info vega20_device_info = {
358 	.asic_family = CHIP_VEGA20,
359 	.asic_name = "vega20",
360 	.max_pasid_bits = 16,
361 	.max_no_of_hqd	= 24,
362 	.doorbell_size	= 8,
363 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
364 	.event_interrupt_class = &event_interrupt_class_v9,
365 	.num_of_watch_points = 4,
366 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
367 	.supports_cwsr = true,
368 	.needs_iommu_device = false,
369 	.needs_pci_atomics = false,
370 	.num_sdma_engines = 2,
371 	.num_xgmi_sdma_engines = 0,
372 	.num_sdma_queues_per_engine = 8,
373 };
374 
375 static const struct kfd_device_info arcturus_device_info = {
376 	.asic_family = CHIP_ARCTURUS,
377 	.asic_name = "arcturus",
378 	.max_pasid_bits = 16,
379 	.max_no_of_hqd	= 24,
380 	.doorbell_size	= 8,
381 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
382 	.event_interrupt_class = &event_interrupt_class_v9,
383 	.num_of_watch_points = 4,
384 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
385 	.supports_cwsr = true,
386 	.needs_iommu_device = false,
387 	.needs_pci_atomics = false,
388 	.num_sdma_engines = 2,
389 	.num_xgmi_sdma_engines = 6,
390 	.num_sdma_queues_per_engine = 8,
391 };
392 
393 static const struct kfd_device_info renoir_device_info = {
394 	.asic_family = CHIP_RENOIR,
395 	.asic_name = "renoir",
396 	.max_pasid_bits = 16,
397 	.max_no_of_hqd  = 24,
398 	.doorbell_size  = 8,
399 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
400 	.event_interrupt_class = &event_interrupt_class_v9,
401 	.num_of_watch_points = 4,
402 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
403 	.supports_cwsr = true,
404 	.needs_iommu_device = false,
405 	.needs_pci_atomics = false,
406 	.num_sdma_engines = 1,
407 	.num_xgmi_sdma_engines = 0,
408 	.num_sdma_queues_per_engine = 2,
409 };
410 
411 static const struct kfd_device_info navi10_device_info = {
412 	.asic_family = CHIP_NAVI10,
413 	.asic_name = "navi10",
414 	.max_pasid_bits = 16,
415 	.max_no_of_hqd  = 24,
416 	.doorbell_size  = 8,
417 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
418 	.event_interrupt_class = &event_interrupt_class_v9,
419 	.num_of_watch_points = 4,
420 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
421 	.needs_iommu_device = false,
422 	.supports_cwsr = true,
423 	.needs_pci_atomics = false,
424 	.num_sdma_engines = 2,
425 	.num_xgmi_sdma_engines = 0,
426 	.num_sdma_queues_per_engine = 8,
427 };
428 
429 static const struct kfd_device_info navi12_device_info = {
430 	.asic_family = CHIP_NAVI12,
431 	.asic_name = "navi12",
432 	.max_pasid_bits = 16,
433 	.max_no_of_hqd  = 24,
434 	.doorbell_size  = 8,
435 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
436 	.event_interrupt_class = &event_interrupt_class_v9,
437 	.num_of_watch_points = 4,
438 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
439 	.needs_iommu_device = false,
440 	.supports_cwsr = true,
441 	.needs_pci_atomics = false,
442 	.num_sdma_engines = 2,
443 	.num_xgmi_sdma_engines = 0,
444 	.num_sdma_queues_per_engine = 8,
445 };
446 
447 static const struct kfd_device_info navi14_device_info = {
448 	.asic_family = CHIP_NAVI14,
449 	.asic_name = "navi14",
450 	.max_pasid_bits = 16,
451 	.max_no_of_hqd  = 24,
452 	.doorbell_size  = 8,
453 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
454 	.event_interrupt_class = &event_interrupt_class_v9,
455 	.num_of_watch_points = 4,
456 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
457 	.needs_iommu_device = false,
458 	.supports_cwsr = true,
459 	.needs_pci_atomics = false,
460 	.num_sdma_engines = 2,
461 	.num_xgmi_sdma_engines = 0,
462 	.num_sdma_queues_per_engine = 8,
463 };
464 
465 static const struct kfd_device_info sienna_cichlid_device_info = {
466 	.asic_family = CHIP_SIENNA_CICHLID,
467 	.asic_name = "sienna_cichlid",
468 	.max_pasid_bits = 16,
469 	.max_no_of_hqd  = 24,
470 	.doorbell_size  = 8,
471 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
472 	.event_interrupt_class = &event_interrupt_class_v9,
473 	.num_of_watch_points = 4,
474 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
475 	.needs_iommu_device = false,
476 	.supports_cwsr = true,
477 	.needs_pci_atomics = false,
478 	.num_sdma_engines = 4,
479 	.num_xgmi_sdma_engines = 0,
480 	.num_sdma_queues_per_engine = 8,
481 };
482 
483 static const struct kfd_device_info navy_flounder_device_info = {
484 	.asic_family = CHIP_NAVY_FLOUNDER,
485 	.asic_name = "navy_flounder",
486 	.max_pasid_bits = 16,
487 	.max_no_of_hqd  = 24,
488 	.doorbell_size  = 8,
489 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
490 	.event_interrupt_class = &event_interrupt_class_v9,
491 	.num_of_watch_points = 4,
492 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
493 	.needs_iommu_device = false,
494 	.supports_cwsr = true,
495 	.needs_pci_atomics = false,
496 	.num_sdma_engines = 2,
497 	.num_xgmi_sdma_engines = 0,
498 	.num_sdma_queues_per_engine = 8,
499 };
500 
501 /* For each entry, [0] is regular and [1] is virtualisation device. */
502 static const struct kfd_device_info *kfd_supported_devices[][2] = {
503 #ifdef KFD_SUPPORT_IOMMU_V2
504 	[CHIP_KAVERI] = {&kaveri_device_info, NULL},
505 	[CHIP_CARRIZO] = {&carrizo_device_info, NULL},
506 #endif
507 	[CHIP_RAVEN] = {&raven_device_info, NULL},
508 	[CHIP_HAWAII] = {&hawaii_device_info, NULL},
509 	[CHIP_TONGA] = {&tonga_device_info, NULL},
510 	[CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
511 	[CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
512 	[CHIP_POLARIS11] = {&polaris11_device_info, NULL},
513 	[CHIP_POLARIS12] = {&polaris12_device_info, NULL},
514 	[CHIP_VEGAM] = {&vegam_device_info, NULL},
515 	[CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
516 	[CHIP_VEGA12] = {&vega12_device_info, NULL},
517 	[CHIP_VEGA20] = {&vega20_device_info, NULL},
518 	[CHIP_RENOIR] = {&renoir_device_info, NULL},
519 	[CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
520 	[CHIP_NAVI10] = {&navi10_device_info, NULL},
521 	[CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
522 	[CHIP_NAVI14] = {&navi14_device_info, NULL},
523 	[CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
524 	[CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
525 };
526 
527 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
528 				unsigned int chunk_size);
529 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
530 
531 static int kfd_resume(struct kfd_dev *kfd);
532 
kgd2kfd_probe(struct kgd_dev * kgd,struct pci_dev * pdev,unsigned int asic_type,bool vf)533 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
534 	struct pci_dev *pdev, unsigned int asic_type, bool vf)
535 {
536 	struct kfd_dev *kfd;
537 	const struct kfd_device_info *device_info;
538 	const struct kfd2kgd_calls *f2g;
539 
540 	if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
541 		|| asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
542 		dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
543 		return NULL; /* asic_type out of range */
544 	}
545 
546 	device_info = kfd_supported_devices[asic_type][vf];
547 	f2g = kfd2kgd_funcs[asic_type];
548 
549 	if (!device_info || !f2g) {
550 		dev_err(kfd_device, "%s %s not supported in kfd\n",
551 			amdgpu_asic_name[asic_type], vf ? "VF" : "");
552 		return NULL;
553 	}
554 
555 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
556 	if (!kfd)
557 		return NULL;
558 
559 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
560 	 * 32 and 64-bit requests are possible and must be
561 	 * supported.
562 	 */
563 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
564 	if (device_info->needs_pci_atomics &&
565 	    !kfd->pci_atomic_requested) {
566 		dev_info(kfd_device,
567 			 "skipped device %x:%x, PCI rejects atomics\n",
568 			 pdev->vendor, pdev->device);
569 		kfree(kfd);
570 		return NULL;
571 	}
572 
573 	kfd->kgd = kgd;
574 	kfd->device_info = device_info;
575 	kfd->pdev = pdev;
576 	kfd->init_complete = false;
577 	kfd->kfd2kgd = f2g;
578 	atomic_set(&kfd->compute_profile, 0);
579 
580 	mutex_init(&kfd->doorbell_mutex);
581 	memset(&kfd->doorbell_available_index, 0,
582 		sizeof(kfd->doorbell_available_index));
583 
584 	atomic_set(&kfd->sram_ecc_flag, 0);
585 
586 	ida_init(&kfd->doorbell_ida);
587 
588 	return kfd;
589 }
590 
kfd_cwsr_init(struct kfd_dev * kfd)591 static void kfd_cwsr_init(struct kfd_dev *kfd)
592 {
593 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
594 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
595 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
596 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
597 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
598 		} else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
599 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
600 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
601 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
602 		} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
603 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
604 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
605 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
606 		} else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
607 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
608 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
609 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
610 		} else {
611 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
612 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
613 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
614 		}
615 
616 		kfd->cwsr_enabled = true;
617 	}
618 }
619 
kfd_gws_init(struct kfd_dev * kfd)620 static int kfd_gws_init(struct kfd_dev *kfd)
621 {
622 	int ret = 0;
623 
624 	if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
625 		return 0;
626 
627 	if (hws_gws_support
628 		|| (kfd->device_info->asic_family == CHIP_VEGA10
629 			&& kfd->mec2_fw_version >= 0x81b3)
630 		|| (kfd->device_info->asic_family >= CHIP_VEGA12
631 			&& kfd->device_info->asic_family <= CHIP_RAVEN
632 			&& kfd->mec2_fw_version >= 0x1b3)
633 		|| (kfd->device_info->asic_family == CHIP_ARCTURUS
634 			&& kfd->mec2_fw_version >= 0x30))
635 		ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
636 				amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
637 
638 	return ret;
639 }
640 
kfd_smi_init(struct kfd_dev * dev)641 static void kfd_smi_init(struct kfd_dev *dev) {
642 	INIT_LIST_HEAD(&dev->smi_clients);
643 	spin_lock_init(&dev->smi_lock);
644 }
645 
kgd2kfd_device_init(struct kfd_dev * kfd,struct drm_device * ddev,const struct kgd2kfd_shared_resources * gpu_resources)646 bool kgd2kfd_device_init(struct kfd_dev *kfd,
647 			 struct drm_device *ddev,
648 			 const struct kgd2kfd_shared_resources *gpu_resources)
649 {
650 	unsigned int size;
651 
652 	kfd->ddev = ddev;
653 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
654 			KGD_ENGINE_MEC1);
655 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
656 			KGD_ENGINE_MEC2);
657 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
658 			KGD_ENGINE_SDMA1);
659 	kfd->shared_resources = *gpu_resources;
660 
661 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
662 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
663 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
664 			- kfd->vm_info.first_vmid_kfd + 1;
665 
666 	/* Verify module parameters regarding mapped process number*/
667 	if (hws_max_conc_proc >= 0)
668 		kfd->max_proc_per_quantum = min((u32)hws_max_conc_proc, kfd->vm_info.vmid_num_kfd);
669 	else
670 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
671 
672 	/* calculate max size of mqds needed for queues */
673 	size = max_num_of_queues_per_device *
674 			kfd->device_info->mqd_size_aligned;
675 
676 	/*
677 	 * calculate max size of runlist packet.
678 	 * There can be only 2 packets at once
679 	 */
680 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
681 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
682 		+ sizeof(struct pm4_mes_runlist)) * 2;
683 
684 	/* Add size of HIQ & DIQ */
685 	size += KFD_KERNEL_QUEUE_SIZE * 2;
686 
687 	/* add another 512KB for all other allocations on gart (HPD, fences) */
688 	size += 512 * 1024;
689 
690 	if (amdgpu_amdkfd_alloc_gtt_mem(
691 			kfd->kgd, size, &kfd->gtt_mem,
692 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
693 			false)) {
694 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
695 		goto alloc_gtt_mem_failure;
696 	}
697 
698 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
699 
700 	/* Initialize GTT sa with 512 byte chunk size */
701 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
702 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
703 		goto kfd_gtt_sa_init_error;
704 	}
705 
706 	if (kfd_doorbell_init(kfd)) {
707 		dev_err(kfd_device,
708 			"Error initializing doorbell aperture\n");
709 		goto kfd_doorbell_error;
710 	}
711 
712 	kfd->hive_id = amdgpu_amdkfd_get_hive_id(kfd->kgd);
713 
714 	kfd->unique_id = amdgpu_amdkfd_get_unique_id(kfd->kgd);
715 
716 	kfd->noretry = amdgpu_amdkfd_get_noretry(kfd->kgd);
717 
718 	if (kfd_interrupt_init(kfd)) {
719 		dev_err(kfd_device, "Error initializing interrupts\n");
720 		goto kfd_interrupt_error;
721 	}
722 
723 	kfd->dqm = device_queue_manager_init(kfd);
724 	if (!kfd->dqm) {
725 		dev_err(kfd_device, "Error initializing queue manager\n");
726 		goto device_queue_manager_error;
727 	}
728 
729 	/* If supported on this device, allocate global GWS that is shared
730 	 * by all KFD processes
731 	 */
732 	if (kfd_gws_init(kfd)) {
733 		dev_err(kfd_device, "Could not allocate %d gws\n",
734 			amdgpu_amdkfd_get_num_gws(kfd->kgd));
735 		goto gws_error;
736 	}
737 
738 	/* If CRAT is broken, won't set iommu enabled */
739 	kfd_double_confirm_iommu_support(kfd);
740 
741 	if (kfd_iommu_device_init(kfd)) {
742 		kfd->use_iommu_v2 = false;
743 		dev_err(kfd_device, "Error initializing iommuv2\n");
744 		goto device_iommu_error;
745 	}
746 
747 	kfd_cwsr_init(kfd);
748 
749 	if(kgd2kfd_resume_iommu(kfd))
750 		goto device_iommu_error;
751 
752 	if (kfd_resume(kfd))
753 		goto kfd_resume_error;
754 
755 	kfd->dbgmgr = NULL;
756 
757 	if (kfd_topology_add_device(kfd)) {
758 		dev_err(kfd_device, "Error adding device to topology\n");
759 		goto kfd_topology_add_device_error;
760 	}
761 
762 	kfd_smi_init(kfd);
763 
764 	kfd->init_complete = true;
765 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
766 		 kfd->pdev->device);
767 
768 	pr_debug("Starting kfd with the following scheduling policy %d\n",
769 		kfd->dqm->sched_policy);
770 
771 	goto out;
772 
773 kfd_topology_add_device_error:
774 kfd_resume_error:
775 device_iommu_error:
776 gws_error:
777 	device_queue_manager_uninit(kfd->dqm);
778 device_queue_manager_error:
779 	kfd_interrupt_exit(kfd);
780 kfd_interrupt_error:
781 	kfd_doorbell_fini(kfd);
782 kfd_doorbell_error:
783 	kfd_gtt_sa_fini(kfd);
784 kfd_gtt_sa_init_error:
785 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
786 alloc_gtt_mem_failure:
787 	if (kfd->gws)
788 		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
789 	dev_err(kfd_device,
790 		"device %x:%x NOT added due to errors\n",
791 		kfd->pdev->vendor, kfd->pdev->device);
792 out:
793 	return kfd->init_complete;
794 }
795 
kgd2kfd_device_exit(struct kfd_dev * kfd)796 void kgd2kfd_device_exit(struct kfd_dev *kfd)
797 {
798 	if (kfd->init_complete) {
799 		kgd2kfd_suspend(kfd, false);
800 		device_queue_manager_uninit(kfd->dqm);
801 		kfd_interrupt_exit(kfd);
802 		kfd_topology_remove_device(kfd);
803 		kfd_doorbell_fini(kfd);
804 		ida_destroy(&kfd->doorbell_ida);
805 		kfd_gtt_sa_fini(kfd);
806 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
807 		if (kfd->gws)
808 			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
809 	}
810 
811 	kfree(kfd);
812 }
813 
kgd2kfd_pre_reset(struct kfd_dev * kfd)814 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
815 {
816 	if (!kfd->init_complete)
817 		return 0;
818 
819 	kfd_smi_event_update_gpu_reset(kfd, false);
820 
821 	kfd->dqm->ops.pre_reset(kfd->dqm);
822 
823 	kgd2kfd_suspend(kfd, false);
824 
825 	kfd_signal_reset_event(kfd);
826 	return 0;
827 }
828 
829 /*
830  * Fix me. KFD won't be able to resume existing process for now.
831  * We will keep all existing process in a evicted state and
832  * wait the process to be terminated.
833  */
834 
kgd2kfd_post_reset(struct kfd_dev * kfd)835 int kgd2kfd_post_reset(struct kfd_dev *kfd)
836 {
837 	int ret;
838 
839 	if (!kfd->init_complete)
840 		return 0;
841 
842 	ret = kfd_resume(kfd);
843 	if (ret)
844 		return ret;
845 	atomic_dec(&kfd_locked);
846 
847 	atomic_set(&kfd->sram_ecc_flag, 0);
848 
849 	kfd_smi_event_update_gpu_reset(kfd, true);
850 
851 	return 0;
852 }
853 
kfd_is_locked(void)854 bool kfd_is_locked(void)
855 {
856 	return  (atomic_read(&kfd_locked) > 0);
857 }
858 
kgd2kfd_suspend(struct kfd_dev * kfd,bool run_pm)859 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
860 {
861 	if (!kfd->init_complete)
862 		return;
863 
864 	/* for runtime suspend, skip locking kfd */
865 	if (!run_pm) {
866 		/* For first KFD device suspend all the KFD processes */
867 		if (atomic_inc_return(&kfd_locked) == 1)
868 			kfd_suspend_all_processes();
869 	}
870 
871 	kfd->dqm->ops.stop(kfd->dqm);
872 	kfd_iommu_suspend(kfd);
873 }
874 
kgd2kfd_resume(struct kfd_dev * kfd,bool run_pm)875 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
876 {
877 	int ret, count;
878 
879 	if (!kfd->init_complete)
880 		return 0;
881 
882 	ret = kfd_resume(kfd);
883 	if (ret)
884 		return ret;
885 
886 	/* for runtime resume, skip unlocking kfd */
887 	if (!run_pm) {
888 		count = atomic_dec_return(&kfd_locked);
889 		WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
890 		if (count == 0)
891 			ret = kfd_resume_all_processes();
892 	}
893 
894 	return ret;
895 }
896 
kgd2kfd_resume_iommu(struct kfd_dev * kfd)897 int kgd2kfd_resume_iommu(struct kfd_dev *kfd)
898 {
899 	int err = 0;
900 
901 	err = kfd_iommu_resume(kfd);
902 	if (err)
903 		dev_err(kfd_device,
904 			"Failed to resume IOMMU for device %x:%x\n",
905 			kfd->pdev->vendor, kfd->pdev->device);
906 	return err;
907 }
908 
kfd_resume(struct kfd_dev * kfd)909 static int kfd_resume(struct kfd_dev *kfd)
910 {
911 	int err = 0;
912 
913 	err = kfd->dqm->ops.start(kfd->dqm);
914 	if (err) {
915 		dev_err(kfd_device,
916 			"Error starting queue manager for device %x:%x\n",
917 			kfd->pdev->vendor, kfd->pdev->device);
918 		goto dqm_start_error;
919 	}
920 
921 	return err;
922 
923 dqm_start_error:
924 	kfd_iommu_suspend(kfd);
925 	return err;
926 }
927 
kfd_queue_work(struct workqueue_struct * wq,struct work_struct * work)928 static inline void kfd_queue_work(struct workqueue_struct *wq,
929 				  struct work_struct *work)
930 {
931 	int cpu, new_cpu;
932 
933 	cpu = new_cpu = smp_processor_id();
934 	do {
935 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
936 		if (cpu_to_node(new_cpu) == numa_node_id())
937 			break;
938 	} while (cpu != new_cpu);
939 
940 	queue_work_on(new_cpu, wq, work);
941 }
942 
943 /* This is called directly from KGD at ISR. */
kgd2kfd_interrupt(struct kfd_dev * kfd,const void * ih_ring_entry)944 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
945 {
946 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
947 	bool is_patched = false;
948 	unsigned long flags;
949 
950 	if (!kfd->init_complete)
951 		return;
952 
953 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
954 		dev_err_once(kfd_device, "Ring entry too small\n");
955 		return;
956 	}
957 
958 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
959 
960 	if (kfd->interrupts_active
961 	    && interrupt_is_wanted(kfd, ih_ring_entry,
962 				   patched_ihre, &is_patched)
963 	    && enqueue_ih_ring_entry(kfd,
964 				     is_patched ? patched_ihre : ih_ring_entry))
965 		kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
966 
967 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
968 }
969 
kgd2kfd_quiesce_mm(struct mm_struct * mm)970 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
971 {
972 	struct kfd_process *p;
973 	int r;
974 
975 	/* Because we are called from arbitrary context (workqueue) as opposed
976 	 * to process context, kfd_process could attempt to exit while we are
977 	 * running so the lookup function increments the process ref count.
978 	 */
979 	p = kfd_lookup_process_by_mm(mm);
980 	if (!p)
981 		return -ESRCH;
982 
983 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
984 	r = kfd_process_evict_queues(p);
985 
986 	kfd_unref_process(p);
987 	return r;
988 }
989 
kgd2kfd_resume_mm(struct mm_struct * mm)990 int kgd2kfd_resume_mm(struct mm_struct *mm)
991 {
992 	struct kfd_process *p;
993 	int r;
994 
995 	/* Because we are called from arbitrary context (workqueue) as opposed
996 	 * to process context, kfd_process could attempt to exit while we are
997 	 * running so the lookup function increments the process ref count.
998 	 */
999 	p = kfd_lookup_process_by_mm(mm);
1000 	if (!p)
1001 		return -ESRCH;
1002 
1003 	r = kfd_process_restore_queues(p);
1004 
1005 	kfd_unref_process(p);
1006 	return r;
1007 }
1008 
1009 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1010  *   prepare for safe eviction of KFD BOs that belong to the specified
1011  *   process.
1012  *
1013  * @mm: mm_struct that identifies the specified KFD process
1014  * @fence: eviction fence attached to KFD process BOs
1015  *
1016  */
kgd2kfd_schedule_evict_and_restore_process(struct mm_struct * mm,struct dma_fence * fence)1017 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1018 					       struct dma_fence *fence)
1019 {
1020 	struct kfd_process *p;
1021 	unsigned long active_time;
1022 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1023 
1024 	if (!fence)
1025 		return -EINVAL;
1026 
1027 	if (dma_fence_is_signaled(fence))
1028 		return 0;
1029 
1030 	p = kfd_lookup_process_by_mm(mm);
1031 	if (!p)
1032 		return -ENODEV;
1033 
1034 	if (fence->seqno == p->last_eviction_seqno)
1035 		goto out;
1036 
1037 	p->last_eviction_seqno = fence->seqno;
1038 
1039 	/* Avoid KFD process starvation. Wait for at least
1040 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1041 	 */
1042 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1043 	if (delay_jiffies > active_time)
1044 		delay_jiffies -= active_time;
1045 	else
1046 		delay_jiffies = 0;
1047 
1048 	/* During process initialization eviction_work.dwork is initialized
1049 	 * to kfd_evict_bo_worker
1050 	 */
1051 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1052 	     p->lead_thread->pid, delay_jiffies);
1053 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1054 out:
1055 	kfd_unref_process(p);
1056 	return 0;
1057 }
1058 
kfd_gtt_sa_init(struct kfd_dev * kfd,unsigned int buf_size,unsigned int chunk_size)1059 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1060 				unsigned int chunk_size)
1061 {
1062 	unsigned int num_of_longs;
1063 
1064 	if (WARN_ON(buf_size < chunk_size))
1065 		return -EINVAL;
1066 	if (WARN_ON(buf_size == 0))
1067 		return -EINVAL;
1068 	if (WARN_ON(chunk_size == 0))
1069 		return -EINVAL;
1070 
1071 	kfd->gtt_sa_chunk_size = chunk_size;
1072 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1073 
1074 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1075 		BITS_PER_LONG;
1076 
1077 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1078 
1079 	if (!kfd->gtt_sa_bitmap)
1080 		return -ENOMEM;
1081 
1082 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1083 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1084 
1085 	mutex_init(&kfd->gtt_sa_lock);
1086 
1087 	return 0;
1088 
1089 }
1090 
kfd_gtt_sa_fini(struct kfd_dev * kfd)1091 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1092 {
1093 	mutex_destroy(&kfd->gtt_sa_lock);
1094 	kfree(kfd->gtt_sa_bitmap);
1095 }
1096 
kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,unsigned int bit_num,unsigned int chunk_size)1097 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1098 						unsigned int bit_num,
1099 						unsigned int chunk_size)
1100 {
1101 	return start_addr + bit_num * chunk_size;
1102 }
1103 
kfd_gtt_sa_calc_cpu_addr(void * start_addr,unsigned int bit_num,unsigned int chunk_size)1104 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1105 						unsigned int bit_num,
1106 						unsigned int chunk_size)
1107 {
1108 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1109 }
1110 
kfd_gtt_sa_allocate(struct kfd_dev * kfd,unsigned int size,struct kfd_mem_obj ** mem_obj)1111 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1112 			struct kfd_mem_obj **mem_obj)
1113 {
1114 	unsigned int found, start_search, cur_size;
1115 
1116 	if (size == 0)
1117 		return -EINVAL;
1118 
1119 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1120 		return -ENOMEM;
1121 
1122 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1123 	if (!(*mem_obj))
1124 		return -ENOMEM;
1125 
1126 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1127 
1128 	start_search = 0;
1129 
1130 	mutex_lock(&kfd->gtt_sa_lock);
1131 
1132 kfd_gtt_restart_search:
1133 	/* Find the first chunk that is free */
1134 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1135 					kfd->gtt_sa_num_of_chunks,
1136 					start_search);
1137 
1138 	pr_debug("Found = %d\n", found);
1139 
1140 	/* If there wasn't any free chunk, bail out */
1141 	if (found == kfd->gtt_sa_num_of_chunks)
1142 		goto kfd_gtt_no_free_chunk;
1143 
1144 	/* Update fields of mem_obj */
1145 	(*mem_obj)->range_start = found;
1146 	(*mem_obj)->range_end = found;
1147 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1148 					kfd->gtt_start_gpu_addr,
1149 					found,
1150 					kfd->gtt_sa_chunk_size);
1151 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1152 					kfd->gtt_start_cpu_ptr,
1153 					found,
1154 					kfd->gtt_sa_chunk_size);
1155 
1156 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1157 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1158 
1159 	/* If we need only one chunk, mark it as allocated and get out */
1160 	if (size <= kfd->gtt_sa_chunk_size) {
1161 		pr_debug("Single bit\n");
1162 		set_bit(found, kfd->gtt_sa_bitmap);
1163 		goto kfd_gtt_out;
1164 	}
1165 
1166 	/* Otherwise, try to see if we have enough contiguous chunks */
1167 	cur_size = size - kfd->gtt_sa_chunk_size;
1168 	do {
1169 		(*mem_obj)->range_end =
1170 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1171 					kfd->gtt_sa_num_of_chunks, ++found);
1172 		/*
1173 		 * If next free chunk is not contiguous than we need to
1174 		 * restart our search from the last free chunk we found (which
1175 		 * wasn't contiguous to the previous ones
1176 		 */
1177 		if ((*mem_obj)->range_end != found) {
1178 			start_search = found;
1179 			goto kfd_gtt_restart_search;
1180 		}
1181 
1182 		/*
1183 		 * If we reached end of buffer, bail out with error
1184 		 */
1185 		if (found == kfd->gtt_sa_num_of_chunks)
1186 			goto kfd_gtt_no_free_chunk;
1187 
1188 		/* Check if we don't need another chunk */
1189 		if (cur_size <= kfd->gtt_sa_chunk_size)
1190 			cur_size = 0;
1191 		else
1192 			cur_size -= kfd->gtt_sa_chunk_size;
1193 
1194 	} while (cur_size > 0);
1195 
1196 	pr_debug("range_start = %d, range_end = %d\n",
1197 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1198 
1199 	/* Mark the chunks as allocated */
1200 	for (found = (*mem_obj)->range_start;
1201 		found <= (*mem_obj)->range_end;
1202 		found++)
1203 		set_bit(found, kfd->gtt_sa_bitmap);
1204 
1205 kfd_gtt_out:
1206 	mutex_unlock(&kfd->gtt_sa_lock);
1207 	return 0;
1208 
1209 kfd_gtt_no_free_chunk:
1210 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1211 	mutex_unlock(&kfd->gtt_sa_lock);
1212 	kfree(*mem_obj);
1213 	return -ENOMEM;
1214 }
1215 
kfd_gtt_sa_free(struct kfd_dev * kfd,struct kfd_mem_obj * mem_obj)1216 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1217 {
1218 	unsigned int bit;
1219 
1220 	/* Act like kfree when trying to free a NULL object */
1221 	if (!mem_obj)
1222 		return 0;
1223 
1224 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1225 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1226 
1227 	mutex_lock(&kfd->gtt_sa_lock);
1228 
1229 	/* Mark the chunks as free */
1230 	for (bit = mem_obj->range_start;
1231 		bit <= mem_obj->range_end;
1232 		bit++)
1233 		clear_bit(bit, kfd->gtt_sa_bitmap);
1234 
1235 	mutex_unlock(&kfd->gtt_sa_lock);
1236 
1237 	kfree(mem_obj);
1238 	return 0;
1239 }
1240 
kgd2kfd_set_sram_ecc_flag(struct kfd_dev * kfd)1241 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1242 {
1243 	if (kfd)
1244 		atomic_inc(&kfd->sram_ecc_flag);
1245 }
1246 
kfd_inc_compute_active(struct kfd_dev * kfd)1247 void kfd_inc_compute_active(struct kfd_dev *kfd)
1248 {
1249 	if (atomic_inc_return(&kfd->compute_profile) == 1)
1250 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1251 }
1252 
kfd_dec_compute_active(struct kfd_dev * kfd)1253 void kfd_dec_compute_active(struct kfd_dev *kfd)
1254 {
1255 	int count = atomic_dec_return(&kfd->compute_profile);
1256 
1257 	if (count == 0)
1258 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1259 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1260 }
1261 
kgd2kfd_smi_event_throttle(struct kfd_dev * kfd,uint32_t throttle_bitmask)1262 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint32_t throttle_bitmask)
1263 {
1264 	if (kfd)
1265 		kfd_smi_event_update_thermal_throttling(kfd, throttle_bitmask);
1266 }
1267 
1268 #if defined(CONFIG_DEBUG_FS)
1269 
1270 /* This function will send a package to HIQ to hang the HWS
1271  * which will trigger a GPU reset and bring the HWS back to normal state
1272  */
kfd_debugfs_hang_hws(struct kfd_dev * dev)1273 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1274 {
1275 	int r = 0;
1276 
1277 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1278 		pr_err("HWS is not enabled");
1279 		return -EINVAL;
1280 	}
1281 
1282 	r = pm_debugfs_hang_hws(&dev->dqm->packets);
1283 	if (!r)
1284 		r = dqm_debugfs_execute_queues(dev->dqm);
1285 
1286 	return r;
1287 }
1288 
1289 #endif
1290