• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 #undef CREATE_TRACE_POINTS
67 #include <trace/hooks/vmscan.h>
68 
69 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_direct_reclaim_begin);
70 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_direct_reclaim_end);
71 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_kswapd_wake);
72 
73 struct scan_control {
74 	/* How many pages shrink_list() should reclaim */
75 	unsigned long nr_to_reclaim;
76 
77 	/*
78 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
79 	 * are scanned.
80 	 */
81 	nodemask_t	*nodemask;
82 
83 	/*
84 	 * The memory cgroup that hit its limit and as a result is the
85 	 * primary target of this reclaim invocation.
86 	 */
87 	struct mem_cgroup *target_mem_cgroup;
88 
89 	/*
90 	 * Scan pressure balancing between anon and file LRUs
91 	 */
92 	unsigned long	anon_cost;
93 	unsigned long	file_cost;
94 
95 	/* Can active pages be deactivated as part of reclaim? */
96 #define DEACTIVATE_ANON 1
97 #define DEACTIVATE_FILE 2
98 	unsigned int may_deactivate:2;
99 	unsigned int force_deactivate:1;
100 	unsigned int skipped_deactivate:1;
101 
102 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
103 	unsigned int may_writepage:1;
104 
105 	/* Can mapped pages be reclaimed? */
106 	unsigned int may_unmap:1;
107 
108 	/* Can pages be swapped as part of reclaim? */
109 	unsigned int may_swap:1;
110 
111 	/*
112 	 * Cgroup memory below memory.low is protected as long as we
113 	 * don't threaten to OOM. If any cgroup is reclaimed at
114 	 * reduced force or passed over entirely due to its memory.low
115 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
116 	 * result, then go back for one more cycle that reclaims the protected
117 	 * memory (memcg_low_reclaim) to avert OOM.
118 	 */
119 	unsigned int memcg_low_reclaim:1;
120 	unsigned int memcg_low_skipped:1;
121 
122 	unsigned int hibernation_mode:1;
123 
124 	/* One of the zones is ready for compaction */
125 	unsigned int compaction_ready:1;
126 
127 	/* There is easily reclaimable cold cache in the current node */
128 	unsigned int cache_trim_mode:1;
129 
130 	/* The file pages on the current node are dangerously low */
131 	unsigned int file_is_tiny:1;
132 
133 	/* Allocation order */
134 	s8 order;
135 
136 	/* Scan (total_size >> priority) pages at once */
137 	s8 priority;
138 
139 	/* The highest zone to isolate pages for reclaim from */
140 	s8 reclaim_idx;
141 
142 	/* This context's GFP mask */
143 	gfp_t gfp_mask;
144 
145 	/* Incremented by the number of inactive pages that were scanned */
146 	unsigned long nr_scanned;
147 
148 	/* Number of pages freed so far during a call to shrink_zones() */
149 	unsigned long nr_reclaimed;
150 
151 	struct {
152 		unsigned int dirty;
153 		unsigned int unqueued_dirty;
154 		unsigned int congested;
155 		unsigned int writeback;
156 		unsigned int immediate;
157 		unsigned int file_taken;
158 		unsigned int taken;
159 	} nr;
160 
161 	/* for recording the reclaimed slab by now */
162 	struct reclaim_state reclaim_state;
163 };
164 
165 #ifdef ARCH_HAS_PREFETCHW
166 #define prefetchw_prev_lru_page(_page, _base, _field)			\
167 	do {								\
168 		if ((_page)->lru.prev != _base) {			\
169 			struct page *prev;				\
170 									\
171 			prev = lru_to_page(&(_page->lru));		\
172 			prefetchw(&prev->_field);			\
173 		}							\
174 	} while (0)
175 #else
176 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
177 #endif
178 
179 /*
180  * From 0 .. 200.  Higher means more swappy.
181  */
182 int vm_swappiness = 60;
183 
184 #define DEF_KSWAPD_THREADS_PER_NODE 1
185 static int kswapd_threads = DEF_KSWAPD_THREADS_PER_NODE;
kswapd_per_node_setup(char * str)186 static int __init kswapd_per_node_setup(char *str)
187 {
188 	int tmp;
189 
190 	if (kstrtoint(str, 0, &tmp) < 0)
191 		return 0;
192 
193 	if (tmp > MAX_KSWAPD_THREADS || tmp <= 0)
194 		return 0;
195 
196 	kswapd_threads = tmp;
197 	return 1;
198 }
199 __setup("kswapd_per_node=", kswapd_per_node_setup);
200 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)201 static void set_task_reclaim_state(struct task_struct *task,
202 				   struct reclaim_state *rs)
203 {
204 	/* Check for an overwrite */
205 	WARN_ON_ONCE(rs && task->reclaim_state);
206 
207 	/* Check for the nulling of an already-nulled member */
208 	WARN_ON_ONCE(!rs && !task->reclaim_state);
209 
210 	task->reclaim_state = rs;
211 }
212 
213 static LIST_HEAD(shrinker_list);
214 static DECLARE_RWSEM(shrinker_rwsem);
215 
216 #ifdef CONFIG_MEMCG
217 /*
218  * We allow subsystems to populate their shrinker-related
219  * LRU lists before register_shrinker_prepared() is called
220  * for the shrinker, since we don't want to impose
221  * restrictions on their internal registration order.
222  * In this case shrink_slab_memcg() may find corresponding
223  * bit is set in the shrinkers map.
224  *
225  * This value is used by the function to detect registering
226  * shrinkers and to skip do_shrink_slab() calls for them.
227  */
228 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
229 
230 static DEFINE_IDR(shrinker_idr);
231 static int shrinker_nr_max;
232 
prealloc_memcg_shrinker(struct shrinker * shrinker)233 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
234 {
235 	int id, ret = -ENOMEM;
236 
237 	down_write(&shrinker_rwsem);
238 	/* This may call shrinker, so it must use down_read_trylock() */
239 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
240 	if (id < 0)
241 		goto unlock;
242 
243 	if (id >= shrinker_nr_max) {
244 		if (memcg_expand_shrinker_maps(id)) {
245 			idr_remove(&shrinker_idr, id);
246 			goto unlock;
247 		}
248 
249 		shrinker_nr_max = id + 1;
250 	}
251 	shrinker->id = id;
252 	ret = 0;
253 unlock:
254 	up_write(&shrinker_rwsem);
255 	return ret;
256 }
257 
unregister_memcg_shrinker(struct shrinker * shrinker)258 static void unregister_memcg_shrinker(struct shrinker *shrinker)
259 {
260 	int id = shrinker->id;
261 
262 	BUG_ON(id < 0);
263 
264 	down_write(&shrinker_rwsem);
265 	idr_remove(&shrinker_idr, id);
266 	up_write(&shrinker_rwsem);
267 }
268 
cgroup_reclaim(struct scan_control * sc)269 static bool cgroup_reclaim(struct scan_control *sc)
270 {
271 	return sc->target_mem_cgroup;
272 }
273 
274 /**
275  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
276  * @sc: scan_control in question
277  *
278  * The normal page dirty throttling mechanism in balance_dirty_pages() is
279  * completely broken with the legacy memcg and direct stalling in
280  * shrink_page_list() is used for throttling instead, which lacks all the
281  * niceties such as fairness, adaptive pausing, bandwidth proportional
282  * allocation and configurability.
283  *
284  * This function tests whether the vmscan currently in progress can assume
285  * that the normal dirty throttling mechanism is operational.
286  */
writeback_throttling_sane(struct scan_control * sc)287 static bool writeback_throttling_sane(struct scan_control *sc)
288 {
289 	if (!cgroup_reclaim(sc))
290 		return true;
291 #ifdef CONFIG_CGROUP_WRITEBACK
292 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
293 		return true;
294 #endif
295 	return false;
296 }
297 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)298 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
299 {
300 	return 0;
301 }
302 
unregister_memcg_shrinker(struct shrinker * shrinker)303 static void unregister_memcg_shrinker(struct shrinker *shrinker)
304 {
305 }
306 
cgroup_reclaim(struct scan_control * sc)307 static bool cgroup_reclaim(struct scan_control *sc)
308 {
309 	return false;
310 }
311 
writeback_throttling_sane(struct scan_control * sc)312 static bool writeback_throttling_sane(struct scan_control *sc)
313 {
314 	return true;
315 }
316 #endif
317 
318 /*
319  * This misses isolated pages which are not accounted for to save counters.
320  * As the data only determines if reclaim or compaction continues, it is
321  * not expected that isolated pages will be a dominating factor.
322  */
zone_reclaimable_pages(struct zone * zone)323 unsigned long zone_reclaimable_pages(struct zone *zone)
324 {
325 	unsigned long nr;
326 
327 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
328 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
329 	if (get_nr_swap_pages() > 0)
330 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
331 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
332 
333 	return nr;
334 }
335 
336 /**
337  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
338  * @lruvec: lru vector
339  * @lru: lru to use
340  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
341  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)342 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
343 {
344 	unsigned long size = 0;
345 	int zid;
346 
347 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
348 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
349 
350 		if (!managed_zone(zone))
351 			continue;
352 
353 		if (!mem_cgroup_disabled())
354 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
355 		else
356 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
357 	}
358 	return size;
359 }
360 
361 /*
362  * Add a shrinker callback to be called from the vm.
363  */
prealloc_shrinker(struct shrinker * shrinker)364 int prealloc_shrinker(struct shrinker *shrinker)
365 {
366 	unsigned int size = sizeof(*shrinker->nr_deferred);
367 
368 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
369 		size *= nr_node_ids;
370 
371 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
372 	if (!shrinker->nr_deferred)
373 		return -ENOMEM;
374 
375 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
376 		if (prealloc_memcg_shrinker(shrinker))
377 			goto free_deferred;
378 	}
379 
380 	return 0;
381 
382 free_deferred:
383 	kfree(shrinker->nr_deferred);
384 	shrinker->nr_deferred = NULL;
385 	return -ENOMEM;
386 }
387 
free_prealloced_shrinker(struct shrinker * shrinker)388 void free_prealloced_shrinker(struct shrinker *shrinker)
389 {
390 	if (!shrinker->nr_deferred)
391 		return;
392 
393 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
394 		unregister_memcg_shrinker(shrinker);
395 
396 	kfree(shrinker->nr_deferred);
397 	shrinker->nr_deferred = NULL;
398 }
399 
register_shrinker_prepared(struct shrinker * shrinker)400 void register_shrinker_prepared(struct shrinker *shrinker)
401 {
402 	down_write(&shrinker_rwsem);
403 	list_add_tail(&shrinker->list, &shrinker_list);
404 #ifdef CONFIG_MEMCG
405 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
406 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
407 #endif
408 	up_write(&shrinker_rwsem);
409 }
410 
register_shrinker(struct shrinker * shrinker)411 int register_shrinker(struct shrinker *shrinker)
412 {
413 	int err = prealloc_shrinker(shrinker);
414 
415 	if (err)
416 		return err;
417 	register_shrinker_prepared(shrinker);
418 	return 0;
419 }
420 EXPORT_SYMBOL(register_shrinker);
421 
422 /*
423  * Remove one
424  */
unregister_shrinker(struct shrinker * shrinker)425 void unregister_shrinker(struct shrinker *shrinker)
426 {
427 	if (!shrinker->nr_deferred)
428 		return;
429 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
430 		unregister_memcg_shrinker(shrinker);
431 	down_write(&shrinker_rwsem);
432 	list_del(&shrinker->list);
433 	up_write(&shrinker_rwsem);
434 	kfree(shrinker->nr_deferred);
435 	shrinker->nr_deferred = NULL;
436 }
437 EXPORT_SYMBOL(unregister_shrinker);
438 
439 #define SHRINK_BATCH 128
440 
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)441 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
442 				    struct shrinker *shrinker, int priority)
443 {
444 	unsigned long freed = 0;
445 	unsigned long long delta;
446 	long total_scan;
447 	long freeable;
448 	long nr;
449 	long new_nr;
450 	int nid = shrinkctl->nid;
451 	long batch_size = shrinker->batch ? shrinker->batch
452 					  : SHRINK_BATCH;
453 	long scanned = 0, next_deferred;
454 
455 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
456 		nid = 0;
457 
458 	freeable = shrinker->count_objects(shrinker, shrinkctl);
459 	if (freeable == 0 || freeable == SHRINK_EMPTY)
460 		return freeable;
461 
462 	/*
463 	 * copy the current shrinker scan count into a local variable
464 	 * and zero it so that other concurrent shrinker invocations
465 	 * don't also do this scanning work.
466 	 */
467 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
468 
469 	total_scan = nr;
470 	if (shrinker->seeks) {
471 		delta = freeable >> priority;
472 		delta *= 4;
473 		do_div(delta, shrinker->seeks);
474 	} else {
475 		/*
476 		 * These objects don't require any IO to create. Trim
477 		 * them aggressively under memory pressure to keep
478 		 * them from causing refetches in the IO caches.
479 		 */
480 		delta = freeable / 2;
481 	}
482 
483 	total_scan += delta;
484 	if (total_scan < 0) {
485 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
486 		       shrinker->scan_objects, total_scan);
487 		total_scan = freeable;
488 		next_deferred = nr;
489 	} else
490 		next_deferred = total_scan;
491 
492 	/*
493 	 * We need to avoid excessive windup on filesystem shrinkers
494 	 * due to large numbers of GFP_NOFS allocations causing the
495 	 * shrinkers to return -1 all the time. This results in a large
496 	 * nr being built up so when a shrink that can do some work
497 	 * comes along it empties the entire cache due to nr >>>
498 	 * freeable. This is bad for sustaining a working set in
499 	 * memory.
500 	 *
501 	 * Hence only allow the shrinker to scan the entire cache when
502 	 * a large delta change is calculated directly.
503 	 */
504 	if (delta < freeable / 4)
505 		total_scan = min(total_scan, freeable / 2);
506 
507 	/*
508 	 * Avoid risking looping forever due to too large nr value:
509 	 * never try to free more than twice the estimate number of
510 	 * freeable entries.
511 	 */
512 	if (total_scan > freeable * 2)
513 		total_scan = freeable * 2;
514 
515 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
516 				   freeable, delta, total_scan, priority);
517 
518 	/*
519 	 * Normally, we should not scan less than batch_size objects in one
520 	 * pass to avoid too frequent shrinker calls, but if the slab has less
521 	 * than batch_size objects in total and we are really tight on memory,
522 	 * we will try to reclaim all available objects, otherwise we can end
523 	 * up failing allocations although there are plenty of reclaimable
524 	 * objects spread over several slabs with usage less than the
525 	 * batch_size.
526 	 *
527 	 * We detect the "tight on memory" situations by looking at the total
528 	 * number of objects we want to scan (total_scan). If it is greater
529 	 * than the total number of objects on slab (freeable), we must be
530 	 * scanning at high prio and therefore should try to reclaim as much as
531 	 * possible.
532 	 */
533 	while (total_scan >= batch_size ||
534 	       total_scan >= freeable) {
535 		unsigned long ret;
536 		unsigned long nr_to_scan = min(batch_size, total_scan);
537 
538 		shrinkctl->nr_to_scan = nr_to_scan;
539 		shrinkctl->nr_scanned = nr_to_scan;
540 		ret = shrinker->scan_objects(shrinker, shrinkctl);
541 		if (ret == SHRINK_STOP)
542 			break;
543 		freed += ret;
544 
545 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
546 		total_scan -= shrinkctl->nr_scanned;
547 		scanned += shrinkctl->nr_scanned;
548 
549 		cond_resched();
550 	}
551 
552 	if (next_deferred >= scanned)
553 		next_deferred -= scanned;
554 	else
555 		next_deferred = 0;
556 	/*
557 	 * move the unused scan count back into the shrinker in a
558 	 * manner that handles concurrent updates. If we exhausted the
559 	 * scan, there is no need to do an update.
560 	 */
561 	if (next_deferred > 0)
562 		new_nr = atomic_long_add_return(next_deferred,
563 						&shrinker->nr_deferred[nid]);
564 	else
565 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
566 
567 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
568 	return freed;
569 }
570 
571 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)572 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
573 			struct mem_cgroup *memcg, int priority)
574 {
575 	struct memcg_shrinker_map *map;
576 	unsigned long ret, freed = 0;
577 	int i;
578 
579 	if (!mem_cgroup_online(memcg))
580 		return 0;
581 
582 	if (!down_read_trylock(&shrinker_rwsem))
583 		return 0;
584 
585 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
586 					true);
587 	if (unlikely(!map))
588 		goto unlock;
589 
590 	for_each_set_bit(i, map->map, shrinker_nr_max) {
591 		struct shrink_control sc = {
592 			.gfp_mask = gfp_mask,
593 			.nid = nid,
594 			.memcg = memcg,
595 		};
596 		struct shrinker *shrinker;
597 
598 		shrinker = idr_find(&shrinker_idr, i);
599 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
600 			if (!shrinker)
601 				clear_bit(i, map->map);
602 			continue;
603 		}
604 
605 		/* Call non-slab shrinkers even though kmem is disabled */
606 		if (!memcg_kmem_enabled() &&
607 		    !(shrinker->flags & SHRINKER_NONSLAB))
608 			continue;
609 
610 		ret = do_shrink_slab(&sc, shrinker, priority);
611 		if (ret == SHRINK_EMPTY) {
612 			clear_bit(i, map->map);
613 			/*
614 			 * After the shrinker reported that it had no objects to
615 			 * free, but before we cleared the corresponding bit in
616 			 * the memcg shrinker map, a new object might have been
617 			 * added. To make sure, we have the bit set in this
618 			 * case, we invoke the shrinker one more time and reset
619 			 * the bit if it reports that it is not empty anymore.
620 			 * The memory barrier here pairs with the barrier in
621 			 * memcg_set_shrinker_bit():
622 			 *
623 			 * list_lru_add()     shrink_slab_memcg()
624 			 *   list_add_tail()    clear_bit()
625 			 *   <MB>               <MB>
626 			 *   set_bit()          do_shrink_slab()
627 			 */
628 			smp_mb__after_atomic();
629 			ret = do_shrink_slab(&sc, shrinker, priority);
630 			if (ret == SHRINK_EMPTY)
631 				ret = 0;
632 			else
633 				memcg_set_shrinker_bit(memcg, nid, i);
634 		}
635 		freed += ret;
636 
637 		if (rwsem_is_contended(&shrinker_rwsem)) {
638 			freed = freed ? : 1;
639 			break;
640 		}
641 	}
642 unlock:
643 	up_read(&shrinker_rwsem);
644 	return freed;
645 }
646 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)647 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
648 			struct mem_cgroup *memcg, int priority)
649 {
650 	return 0;
651 }
652 #endif /* CONFIG_MEMCG */
653 
654 /**
655  * shrink_slab - shrink slab caches
656  * @gfp_mask: allocation context
657  * @nid: node whose slab caches to target
658  * @memcg: memory cgroup whose slab caches to target
659  * @priority: the reclaim priority
660  *
661  * Call the shrink functions to age shrinkable caches.
662  *
663  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
664  * unaware shrinkers will receive a node id of 0 instead.
665  *
666  * @memcg specifies the memory cgroup to target. Unaware shrinkers
667  * are called only if it is the root cgroup.
668  *
669  * @priority is sc->priority, we take the number of objects and >> by priority
670  * in order to get the scan target.
671  *
672  * Returns the number of reclaimed slab objects.
673  */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)674 unsigned long shrink_slab(gfp_t gfp_mask, int nid,
675 				 struct mem_cgroup *memcg,
676 				 int priority)
677 {
678 	unsigned long ret, freed = 0;
679 	struct shrinker *shrinker;
680 	bool bypass = false;
681 
682 	trace_android_vh_shrink_slab_bypass(gfp_mask, nid, memcg, priority, &bypass);
683 	if (bypass)
684 		return 0;
685 
686 	/*
687 	 * The root memcg might be allocated even though memcg is disabled
688 	 * via "cgroup_disable=memory" boot parameter.  This could make
689 	 * mem_cgroup_is_root() return false, then just run memcg slab
690 	 * shrink, but skip global shrink.  This may result in premature
691 	 * oom.
692 	 */
693 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
694 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
695 
696 	if (!down_read_trylock(&shrinker_rwsem))
697 		goto out;
698 
699 	list_for_each_entry(shrinker, &shrinker_list, list) {
700 		struct shrink_control sc = {
701 			.gfp_mask = gfp_mask,
702 			.nid = nid,
703 			.memcg = memcg,
704 		};
705 
706 		ret = do_shrink_slab(&sc, shrinker, priority);
707 		if (ret == SHRINK_EMPTY)
708 			ret = 0;
709 		freed += ret;
710 		/*
711 		 * Bail out if someone want to register a new shrinker to
712 		 * prevent the registration from being stalled for long periods
713 		 * by parallel ongoing shrinking.
714 		 */
715 		if (rwsem_is_contended(&shrinker_rwsem)) {
716 			freed = freed ? : 1;
717 			break;
718 		}
719 	}
720 
721 	up_read(&shrinker_rwsem);
722 out:
723 	cond_resched();
724 	return freed;
725 }
726 EXPORT_SYMBOL_GPL(shrink_slab);
727 
drop_slab_node(int nid)728 void drop_slab_node(int nid)
729 {
730 	unsigned long freed;
731 
732 	do {
733 		struct mem_cgroup *memcg = NULL;
734 
735 		if (fatal_signal_pending(current))
736 			return;
737 
738 		freed = 0;
739 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
740 		do {
741 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
742 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
743 	} while (freed > 10);
744 }
745 
drop_slab(void)746 void drop_slab(void)
747 {
748 	int nid;
749 
750 	for_each_online_node(nid)
751 		drop_slab_node(nid);
752 }
753 
is_page_cache_freeable(struct page * page)754 static inline int is_page_cache_freeable(struct page *page)
755 {
756 	/*
757 	 * A freeable page cache page is referenced only by the caller
758 	 * that isolated the page, the page cache and optional buffer
759 	 * heads at page->private.
760 	 */
761 	int page_cache_pins = thp_nr_pages(page);
762 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
763 }
764 
may_write_to_inode(struct inode * inode)765 static int may_write_to_inode(struct inode *inode)
766 {
767 	if (current->flags & PF_SWAPWRITE)
768 		return 1;
769 	if (!inode_write_congested(inode))
770 		return 1;
771 	if (inode_to_bdi(inode) == current->backing_dev_info)
772 		return 1;
773 	return 0;
774 }
775 
776 /*
777  * We detected a synchronous write error writing a page out.  Probably
778  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
779  * fsync(), msync() or close().
780  *
781  * The tricky part is that after writepage we cannot touch the mapping: nothing
782  * prevents it from being freed up.  But we have a ref on the page and once
783  * that page is locked, the mapping is pinned.
784  *
785  * We're allowed to run sleeping lock_page() here because we know the caller has
786  * __GFP_FS.
787  */
handle_write_error(struct address_space * mapping,struct page * page,int error)788 static void handle_write_error(struct address_space *mapping,
789 				struct page *page, int error)
790 {
791 	lock_page(page);
792 	if (page_mapping(page) == mapping)
793 		mapping_set_error(mapping, error);
794 	unlock_page(page);
795 }
796 
797 /* possible outcome of pageout() */
798 typedef enum {
799 	/* failed to write page out, page is locked */
800 	PAGE_KEEP,
801 	/* move page to the active list, page is locked */
802 	PAGE_ACTIVATE,
803 	/* page has been sent to the disk successfully, page is unlocked */
804 	PAGE_SUCCESS,
805 	/* page is clean and locked */
806 	PAGE_CLEAN,
807 } pageout_t;
808 
809 /*
810  * pageout is called by shrink_page_list() for each dirty page.
811  * Calls ->writepage().
812  */
pageout(struct page * page,struct address_space * mapping)813 static pageout_t pageout(struct page *page, struct address_space *mapping)
814 {
815 	/*
816 	 * If the page is dirty, only perform writeback if that write
817 	 * will be non-blocking.  To prevent this allocation from being
818 	 * stalled by pagecache activity.  But note that there may be
819 	 * stalls if we need to run get_block().  We could test
820 	 * PagePrivate for that.
821 	 *
822 	 * If this process is currently in __generic_file_write_iter() against
823 	 * this page's queue, we can perform writeback even if that
824 	 * will block.
825 	 *
826 	 * If the page is swapcache, write it back even if that would
827 	 * block, for some throttling. This happens by accident, because
828 	 * swap_backing_dev_info is bust: it doesn't reflect the
829 	 * congestion state of the swapdevs.  Easy to fix, if needed.
830 	 */
831 	if (!is_page_cache_freeable(page))
832 		return PAGE_KEEP;
833 	if (!mapping) {
834 		/*
835 		 * Some data journaling orphaned pages can have
836 		 * page->mapping == NULL while being dirty with clean buffers.
837 		 */
838 		if (page_has_private(page)) {
839 			if (try_to_free_buffers(page)) {
840 				ClearPageDirty(page);
841 				pr_info("%s: orphaned page\n", __func__);
842 				return PAGE_CLEAN;
843 			}
844 		}
845 		return PAGE_KEEP;
846 	}
847 	if (mapping->a_ops->writepage == NULL)
848 		return PAGE_ACTIVATE;
849 	if (!may_write_to_inode(mapping->host))
850 		return PAGE_KEEP;
851 
852 	if (clear_page_dirty_for_io(page)) {
853 		int res;
854 		struct writeback_control wbc = {
855 			.sync_mode = WB_SYNC_NONE,
856 			.nr_to_write = SWAP_CLUSTER_MAX,
857 			.range_start = 0,
858 			.range_end = LLONG_MAX,
859 			.for_reclaim = 1,
860 		};
861 
862 		SetPageReclaim(page);
863 		res = mapping->a_ops->writepage(page, &wbc);
864 		if (res < 0)
865 			handle_write_error(mapping, page, res);
866 		if (res == AOP_WRITEPAGE_ACTIVATE) {
867 			ClearPageReclaim(page);
868 			return PAGE_ACTIVATE;
869 		}
870 
871 		if (!PageWriteback(page)) {
872 			/* synchronous write or broken a_ops? */
873 			ClearPageReclaim(page);
874 		}
875 		trace_mm_vmscan_writepage(page);
876 		inc_node_page_state(page, NR_VMSCAN_WRITE);
877 		return PAGE_SUCCESS;
878 	}
879 
880 	return PAGE_CLEAN;
881 }
882 
883 /*
884  * Same as remove_mapping, but if the page is removed from the mapping, it
885  * gets returned with a refcount of 0.
886  */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed,struct mem_cgroup * target_memcg)887 static int __remove_mapping(struct address_space *mapping, struct page *page,
888 			    bool reclaimed, struct mem_cgroup *target_memcg)
889 {
890 	unsigned long flags;
891 	int refcount;
892 	void *shadow = NULL;
893 
894 	BUG_ON(!PageLocked(page));
895 	BUG_ON(mapping != page_mapping(page));
896 
897 	xa_lock_irqsave(&mapping->i_pages, flags);
898 	/*
899 	 * The non racy check for a busy page.
900 	 *
901 	 * Must be careful with the order of the tests. When someone has
902 	 * a ref to the page, it may be possible that they dirty it then
903 	 * drop the reference. So if PageDirty is tested before page_count
904 	 * here, then the following race may occur:
905 	 *
906 	 * get_user_pages(&page);
907 	 * [user mapping goes away]
908 	 * write_to(page);
909 	 *				!PageDirty(page)    [good]
910 	 * SetPageDirty(page);
911 	 * put_page(page);
912 	 *				!page_count(page)   [good, discard it]
913 	 *
914 	 * [oops, our write_to data is lost]
915 	 *
916 	 * Reversing the order of the tests ensures such a situation cannot
917 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
918 	 * load is not satisfied before that of page->_refcount.
919 	 *
920 	 * Note that if SetPageDirty is always performed via set_page_dirty,
921 	 * and thus under the i_pages lock, then this ordering is not required.
922 	 */
923 	refcount = 1 + compound_nr(page);
924 	if (!page_ref_freeze(page, refcount))
925 		goto cannot_free;
926 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
927 	if (unlikely(PageDirty(page))) {
928 		page_ref_unfreeze(page, refcount);
929 		goto cannot_free;
930 	}
931 
932 	if (PageSwapCache(page)) {
933 		swp_entry_t swap = { .val = page_private(page) };
934 		mem_cgroup_swapout(page, swap);
935 		if (reclaimed && !mapping_exiting(mapping))
936 			shadow = workingset_eviction(page, target_memcg);
937 		__delete_from_swap_cache(page, swap, shadow);
938 		xa_unlock_irqrestore(&mapping->i_pages, flags);
939 		put_swap_page(page, swap);
940 	} else {
941 		void (*freepage)(struct page *);
942 
943 		freepage = mapping->a_ops->freepage;
944 		/*
945 		 * Remember a shadow entry for reclaimed file cache in
946 		 * order to detect refaults, thus thrashing, later on.
947 		 *
948 		 * But don't store shadows in an address space that is
949 		 * already exiting.  This is not just an optimization,
950 		 * inode reclaim needs to empty out the radix tree or
951 		 * the nodes are lost.  Don't plant shadows behind its
952 		 * back.
953 		 *
954 		 * We also don't store shadows for DAX mappings because the
955 		 * only page cache pages found in these are zero pages
956 		 * covering holes, and because we don't want to mix DAX
957 		 * exceptional entries and shadow exceptional entries in the
958 		 * same address_space.
959 		 */
960 		if (reclaimed && page_is_file_lru(page) &&
961 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
962 			shadow = workingset_eviction(page, target_memcg);
963 		__delete_from_page_cache(page, shadow);
964 		xa_unlock_irqrestore(&mapping->i_pages, flags);
965 
966 		if (freepage != NULL)
967 			freepage(page);
968 	}
969 
970 	return 1;
971 
972 cannot_free:
973 	xa_unlock_irqrestore(&mapping->i_pages, flags);
974 	return 0;
975 }
976 
977 /*
978  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
979  * someone else has a ref on the page, abort and return 0.  If it was
980  * successfully detached, return 1.  Assumes the caller has a single ref on
981  * this page.
982  */
remove_mapping(struct address_space * mapping,struct page * page)983 int remove_mapping(struct address_space *mapping, struct page *page)
984 {
985 	if (__remove_mapping(mapping, page, false, NULL)) {
986 		/*
987 		 * Unfreezing the refcount with 1 rather than 2 effectively
988 		 * drops the pagecache ref for us without requiring another
989 		 * atomic operation.
990 		 */
991 		page_ref_unfreeze(page, 1);
992 		return 1;
993 	}
994 	return 0;
995 }
996 
997 /**
998  * putback_lru_page - put previously isolated page onto appropriate LRU list
999  * @page: page to be put back to appropriate lru list
1000  *
1001  * Add previously isolated @page to appropriate LRU list.
1002  * Page may still be unevictable for other reasons.
1003  *
1004  * lru_lock must not be held, interrupts must be enabled.
1005  */
putback_lru_page(struct page * page)1006 void putback_lru_page(struct page *page)
1007 {
1008 	lru_cache_add(page);
1009 	put_page(page);		/* drop ref from isolate */
1010 }
1011 
1012 enum page_references {
1013 	PAGEREF_RECLAIM,
1014 	PAGEREF_RECLAIM_CLEAN,
1015 	PAGEREF_KEEP,
1016 	PAGEREF_ACTIVATE,
1017 };
1018 
page_check_references(struct page * page,struct scan_control * sc)1019 static enum page_references page_check_references(struct page *page,
1020 						  struct scan_control *sc)
1021 {
1022 	int referenced_ptes, referenced_page;
1023 	unsigned long vm_flags;
1024 	bool should_protect = false;
1025 	bool trylock_fail = false;
1026 	int ret = 0;
1027 
1028 	trace_android_vh_page_should_be_protected(page, &should_protect);
1029 	if (unlikely(should_protect))
1030 		return PAGEREF_ACTIVATE;
1031 
1032 	trace_android_vh_page_trylock_set(page);
1033 	trace_android_vh_check_page_look_around_ref(page, &ret);
1034 	if (ret)
1035 		return ret;
1036 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1037 					  &vm_flags);
1038 	referenced_page = TestClearPageReferenced(page);
1039 	trace_android_vh_page_trylock_get_result(page, &trylock_fail);
1040 	if (trylock_fail)
1041 		return PAGEREF_KEEP;
1042 	/*
1043 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1044 	 * move the page to the unevictable list.
1045 	 */
1046 	if (vm_flags & VM_LOCKED)
1047 		return PAGEREF_RECLAIM;
1048 
1049 	/* rmap lock contention: rotate */
1050 	if (referenced_ptes == -1)
1051 		return PAGEREF_KEEP;
1052 
1053 	if (referenced_ptes) {
1054 		/*
1055 		 * All mapped pages start out with page table
1056 		 * references from the instantiating fault, so we need
1057 		 * to look twice if a mapped file page is used more
1058 		 * than once.
1059 		 *
1060 		 * Mark it and spare it for another trip around the
1061 		 * inactive list.  Another page table reference will
1062 		 * lead to its activation.
1063 		 *
1064 		 * Note: the mark is set for activated pages as well
1065 		 * so that recently deactivated but used pages are
1066 		 * quickly recovered.
1067 		 */
1068 		SetPageReferenced(page);
1069 
1070 		if (referenced_page || referenced_ptes > 1)
1071 			return PAGEREF_ACTIVATE;
1072 
1073 		/*
1074 		 * Activate file-backed executable pages after first usage.
1075 		 */
1076 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1077 			return PAGEREF_ACTIVATE;
1078 
1079 		return PAGEREF_KEEP;
1080 	}
1081 
1082 	/* Reclaim if clean, defer dirty pages to writeback */
1083 	if (referenced_page && !PageSwapBacked(page))
1084 		return PAGEREF_RECLAIM_CLEAN;
1085 
1086 	return PAGEREF_RECLAIM;
1087 }
1088 
1089 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)1090 static void page_check_dirty_writeback(struct page *page,
1091 				       bool *dirty, bool *writeback)
1092 {
1093 	struct address_space *mapping;
1094 
1095 	/*
1096 	 * Anonymous pages are not handled by flushers and must be written
1097 	 * from reclaim context. Do not stall reclaim based on them
1098 	 */
1099 	if (!page_is_file_lru(page) ||
1100 	    (PageAnon(page) && !PageSwapBacked(page))) {
1101 		*dirty = false;
1102 		*writeback = false;
1103 		return;
1104 	}
1105 
1106 	/* By default assume that the page flags are accurate */
1107 	*dirty = PageDirty(page);
1108 	*writeback = PageWriteback(page);
1109 
1110 	/* Verify dirty/writeback state if the filesystem supports it */
1111 	if (!page_has_private(page))
1112 		return;
1113 
1114 	mapping = page_mapping(page);
1115 	if (mapping && mapping->a_ops->is_dirty_writeback)
1116 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1117 }
1118 
1119 /*
1120  * shrink_page_list() returns the number of reclaimed pages
1121  */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1122 static unsigned int shrink_page_list(struct list_head *page_list,
1123 				     struct pglist_data *pgdat,
1124 				     struct scan_control *sc,
1125 				     struct reclaim_stat *stat,
1126 				     bool ignore_references)
1127 {
1128 	LIST_HEAD(ret_pages);
1129 	LIST_HEAD(free_pages);
1130 	unsigned int nr_reclaimed = 0;
1131 	unsigned int pgactivate = 0;
1132 	bool page_trylock_result;
1133 
1134 	memset(stat, 0, sizeof(*stat));
1135 	cond_resched();
1136 
1137 	while (!list_empty(page_list)) {
1138 		struct address_space *mapping;
1139 		struct page *page;
1140 		enum page_references references = PAGEREF_RECLAIM;
1141 		bool dirty, writeback, may_enter_fs;
1142 		unsigned int nr_pages;
1143 
1144 		cond_resched();
1145 
1146 		page = lru_to_page(page_list);
1147 		list_del(&page->lru);
1148 
1149 		if (!trylock_page(page))
1150 			goto keep;
1151 
1152 		VM_BUG_ON_PAGE(PageActive(page), page);
1153 
1154 		nr_pages = compound_nr(page);
1155 
1156 		/* Account the number of base pages even though THP */
1157 		sc->nr_scanned += nr_pages;
1158 
1159 		if (unlikely(!page_evictable(page)))
1160 			goto activate_locked;
1161 
1162 		if (!sc->may_unmap && page_mapped(page))
1163 			goto keep_locked;
1164 
1165 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1166 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1167 
1168 		/*
1169 		 * The number of dirty pages determines if a node is marked
1170 		 * reclaim_congested which affects wait_iff_congested. kswapd
1171 		 * will stall and start writing pages if the tail of the LRU
1172 		 * is all dirty unqueued pages.
1173 		 */
1174 		page_check_dirty_writeback(page, &dirty, &writeback);
1175 		if (dirty || writeback)
1176 			stat->nr_dirty++;
1177 
1178 		if (dirty && !writeback)
1179 			stat->nr_unqueued_dirty++;
1180 
1181 		/*
1182 		 * Treat this page as congested if the underlying BDI is or if
1183 		 * pages are cycling through the LRU so quickly that the
1184 		 * pages marked for immediate reclaim are making it to the
1185 		 * end of the LRU a second time.
1186 		 */
1187 		mapping = page_mapping(page);
1188 		if (((dirty || writeback) && mapping &&
1189 		     inode_write_congested(mapping->host)) ||
1190 		    (writeback && PageReclaim(page)))
1191 			stat->nr_congested++;
1192 
1193 		/*
1194 		 * If a page at the tail of the LRU is under writeback, there
1195 		 * are three cases to consider.
1196 		 *
1197 		 * 1) If reclaim is encountering an excessive number of pages
1198 		 *    under writeback and this page is both under writeback and
1199 		 *    PageReclaim then it indicates that pages are being queued
1200 		 *    for IO but are being recycled through the LRU before the
1201 		 *    IO can complete. Waiting on the page itself risks an
1202 		 *    indefinite stall if it is impossible to writeback the
1203 		 *    page due to IO error or disconnected storage so instead
1204 		 *    note that the LRU is being scanned too quickly and the
1205 		 *    caller can stall after page list has been processed.
1206 		 *
1207 		 * 2) Global or new memcg reclaim encounters a page that is
1208 		 *    not marked for immediate reclaim, or the caller does not
1209 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1210 		 *    not to fs). In this case mark the page for immediate
1211 		 *    reclaim and continue scanning.
1212 		 *
1213 		 *    Require may_enter_fs because we would wait on fs, which
1214 		 *    may not have submitted IO yet. And the loop driver might
1215 		 *    enter reclaim, and deadlock if it waits on a page for
1216 		 *    which it is needed to do the write (loop masks off
1217 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1218 		 *    would probably show more reasons.
1219 		 *
1220 		 * 3) Legacy memcg encounters a page that is already marked
1221 		 *    PageReclaim. memcg does not have any dirty pages
1222 		 *    throttling so we could easily OOM just because too many
1223 		 *    pages are in writeback and there is nothing else to
1224 		 *    reclaim. Wait for the writeback to complete.
1225 		 *
1226 		 * In cases 1) and 2) we activate the pages to get them out of
1227 		 * the way while we continue scanning for clean pages on the
1228 		 * inactive list and refilling from the active list. The
1229 		 * observation here is that waiting for disk writes is more
1230 		 * expensive than potentially causing reloads down the line.
1231 		 * Since they're marked for immediate reclaim, they won't put
1232 		 * memory pressure on the cache working set any longer than it
1233 		 * takes to write them to disk.
1234 		 */
1235 		if (PageWriteback(page)) {
1236 			/* Case 1 above */
1237 			if (current_is_kswapd() &&
1238 			    PageReclaim(page) &&
1239 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1240 				stat->nr_immediate++;
1241 				goto activate_locked;
1242 
1243 			/* Case 2 above */
1244 			} else if (writeback_throttling_sane(sc) ||
1245 			    !PageReclaim(page) || !may_enter_fs) {
1246 				/*
1247 				 * This is slightly racy - end_page_writeback()
1248 				 * might have just cleared PageReclaim, then
1249 				 * setting PageReclaim here end up interpreted
1250 				 * as PageReadahead - but that does not matter
1251 				 * enough to care.  What we do want is for this
1252 				 * page to have PageReclaim set next time memcg
1253 				 * reclaim reaches the tests above, so it will
1254 				 * then wait_on_page_writeback() to avoid OOM;
1255 				 * and it's also appropriate in global reclaim.
1256 				 */
1257 				SetPageReclaim(page);
1258 				stat->nr_writeback++;
1259 				goto activate_locked;
1260 
1261 			/* Case 3 above */
1262 			} else {
1263 				unlock_page(page);
1264 				wait_on_page_writeback(page);
1265 				/* then go back and try same page again */
1266 				list_add_tail(&page->lru, page_list);
1267 				continue;
1268 			}
1269 		}
1270 
1271 		if (!ignore_references)
1272 			references = page_check_references(page, sc);
1273 
1274 		switch (references) {
1275 		case PAGEREF_ACTIVATE:
1276 			goto activate_locked;
1277 		case PAGEREF_KEEP:
1278 			stat->nr_ref_keep += nr_pages;
1279 			goto keep_locked;
1280 		case PAGEREF_RECLAIM:
1281 		case PAGEREF_RECLAIM_CLEAN:
1282 			; /* try to reclaim the page below */
1283 		}
1284 
1285 		/*
1286 		 * Anonymous process memory has backing store?
1287 		 * Try to allocate it some swap space here.
1288 		 * Lazyfree page could be freed directly
1289 		 */
1290 		if (PageAnon(page) && PageSwapBacked(page)) {
1291 			if (!PageSwapCache(page)) {
1292 				if (!(sc->gfp_mask & __GFP_IO))
1293 					goto keep_locked;
1294 				if (page_maybe_dma_pinned(page))
1295 					goto keep_locked;
1296 				if (PageTransHuge(page)) {
1297 					/* cannot split THP, skip it */
1298 					if (!can_split_huge_page(page, NULL))
1299 						goto activate_locked;
1300 					/*
1301 					 * Split pages without a PMD map right
1302 					 * away. Chances are some or all of the
1303 					 * tail pages can be freed without IO.
1304 					 */
1305 					if (!compound_mapcount(page) &&
1306 					    split_huge_page_to_list(page,
1307 								    page_list))
1308 						goto activate_locked;
1309 				}
1310 				if (!add_to_swap(page)) {
1311 					if (!PageTransHuge(page))
1312 						goto activate_locked_split;
1313 					/* Fallback to swap normal pages */
1314 					if (split_huge_page_to_list(page,
1315 								    page_list))
1316 						goto activate_locked;
1317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1318 					count_vm_event(THP_SWPOUT_FALLBACK);
1319 #endif
1320 					if (!add_to_swap(page))
1321 						goto activate_locked_split;
1322 				}
1323 
1324 				may_enter_fs = true;
1325 
1326 				/* Adding to swap updated mapping */
1327 				mapping = page_mapping(page);
1328 			}
1329 		} else if (unlikely(PageTransHuge(page))) {
1330 			/* Split file THP */
1331 			if (split_huge_page_to_list(page, page_list))
1332 				goto keep_locked;
1333 		}
1334 
1335 		/*
1336 		 * THP may get split above, need minus tail pages and update
1337 		 * nr_pages to avoid accounting tail pages twice.
1338 		 *
1339 		 * The tail pages that are added into swap cache successfully
1340 		 * reach here.
1341 		 */
1342 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1343 			sc->nr_scanned -= (nr_pages - 1);
1344 			nr_pages = 1;
1345 		}
1346 
1347 		/*
1348 		 * The page is mapped into the page tables of one or more
1349 		 * processes. Try to unmap it here.
1350 		 */
1351 		if (page_mapped(page)) {
1352 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1353 			bool was_swapbacked = PageSwapBacked(page);
1354 
1355 			if (unlikely(PageTransHuge(page)))
1356 				flags |= TTU_SPLIT_HUGE_PMD;
1357 			if (!ignore_references)
1358 				trace_android_vh_page_trylock_set(page);
1359 			if (!try_to_unmap(page, flags)) {
1360 				stat->nr_unmap_fail += nr_pages;
1361 				if (!was_swapbacked && PageSwapBacked(page))
1362 					stat->nr_lazyfree_fail += nr_pages;
1363 				goto activate_locked;
1364 			}
1365 		}
1366 
1367 		if (PageDirty(page)) {
1368 			/*
1369 			 * Only kswapd can writeback filesystem pages
1370 			 * to avoid risk of stack overflow. But avoid
1371 			 * injecting inefficient single-page IO into
1372 			 * flusher writeback as much as possible: only
1373 			 * write pages when we've encountered many
1374 			 * dirty pages, and when we've already scanned
1375 			 * the rest of the LRU for clean pages and see
1376 			 * the same dirty pages again (PageReclaim).
1377 			 */
1378 			if (page_is_file_lru(page) &&
1379 			    (!current_is_kswapd() || !PageReclaim(page) ||
1380 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1381 				/*
1382 				 * Immediately reclaim when written back.
1383 				 * Similar in principal to deactivate_page()
1384 				 * except we already have the page isolated
1385 				 * and know it's dirty
1386 				 */
1387 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1388 				SetPageReclaim(page);
1389 
1390 				goto activate_locked;
1391 			}
1392 
1393 			if (references == PAGEREF_RECLAIM_CLEAN)
1394 				goto keep_locked;
1395 			if (!may_enter_fs)
1396 				goto keep_locked;
1397 			if (!sc->may_writepage)
1398 				goto keep_locked;
1399 
1400 			/*
1401 			 * Page is dirty. Flush the TLB if a writable entry
1402 			 * potentially exists to avoid CPU writes after IO
1403 			 * starts and then write it out here.
1404 			 */
1405 			try_to_unmap_flush_dirty();
1406 			switch (pageout(page, mapping)) {
1407 			case PAGE_KEEP:
1408 				goto keep_locked;
1409 			case PAGE_ACTIVATE:
1410 				goto activate_locked;
1411 			case PAGE_SUCCESS:
1412 				stat->nr_pageout += thp_nr_pages(page);
1413 
1414 				if (PageWriteback(page))
1415 					goto keep;
1416 				if (PageDirty(page))
1417 					goto keep;
1418 
1419 				/*
1420 				 * A synchronous write - probably a ramdisk.  Go
1421 				 * ahead and try to reclaim the page.
1422 				 */
1423 				if (!trylock_page(page))
1424 					goto keep;
1425 				if (PageDirty(page) || PageWriteback(page))
1426 					goto keep_locked;
1427 				mapping = page_mapping(page);
1428 			case PAGE_CLEAN:
1429 				; /* try to free the page below */
1430 			}
1431 		}
1432 
1433 		/*
1434 		 * If the page has buffers, try to free the buffer mappings
1435 		 * associated with this page. If we succeed we try to free
1436 		 * the page as well.
1437 		 *
1438 		 * We do this even if the page is PageDirty().
1439 		 * try_to_release_page() does not perform I/O, but it is
1440 		 * possible for a page to have PageDirty set, but it is actually
1441 		 * clean (all its buffers are clean).  This happens if the
1442 		 * buffers were written out directly, with submit_bh(). ext3
1443 		 * will do this, as well as the blockdev mapping.
1444 		 * try_to_release_page() will discover that cleanness and will
1445 		 * drop the buffers and mark the page clean - it can be freed.
1446 		 *
1447 		 * Rarely, pages can have buffers and no ->mapping.  These are
1448 		 * the pages which were not successfully invalidated in
1449 		 * truncate_complete_page().  We try to drop those buffers here
1450 		 * and if that worked, and the page is no longer mapped into
1451 		 * process address space (page_count == 1) it can be freed.
1452 		 * Otherwise, leave the page on the LRU so it is swappable.
1453 		 */
1454 		if (page_has_private(page)) {
1455 			if (!try_to_release_page(page, sc->gfp_mask))
1456 				goto activate_locked;
1457 			if (!mapping && page_count(page) == 1) {
1458 				unlock_page(page);
1459 				if (put_page_testzero(page))
1460 					goto free_it;
1461 				else {
1462 					/*
1463 					 * rare race with speculative reference.
1464 					 * the speculative reference will free
1465 					 * this page shortly, so we may
1466 					 * increment nr_reclaimed here (and
1467 					 * leave it off the LRU).
1468 					 */
1469 					trace_android_vh_page_trylock_clear(page);
1470 					nr_reclaimed++;
1471 					continue;
1472 				}
1473 			}
1474 		}
1475 
1476 		if (PageAnon(page) && !PageSwapBacked(page)) {
1477 			/* follow __remove_mapping for reference */
1478 			if (!page_ref_freeze(page, 1))
1479 				goto keep_locked;
1480 			if (PageDirty(page)) {
1481 				page_ref_unfreeze(page, 1);
1482 				goto keep_locked;
1483 			}
1484 
1485 			count_vm_event(PGLAZYFREED);
1486 			count_memcg_page_event(page, PGLAZYFREED);
1487 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1488 							 sc->target_mem_cgroup))
1489 			goto keep_locked;
1490 
1491 		unlock_page(page);
1492 free_it:
1493 		/*
1494 		 * THP may get swapped out in a whole, need account
1495 		 * all base pages.
1496 		 */
1497 		nr_reclaimed += nr_pages;
1498 
1499 		/*
1500 		 * Is there need to periodically free_page_list? It would
1501 		 * appear not as the counts should be low
1502 		 */
1503 		trace_android_vh_page_trylock_clear(page);
1504 		if (unlikely(PageTransHuge(page)))
1505 			destroy_compound_page(page);
1506 		else
1507 			list_add(&page->lru, &free_pages);
1508 		continue;
1509 
1510 activate_locked_split:
1511 		/*
1512 		 * The tail pages that are failed to add into swap cache
1513 		 * reach here.  Fixup nr_scanned and nr_pages.
1514 		 */
1515 		if (nr_pages > 1) {
1516 			sc->nr_scanned -= (nr_pages - 1);
1517 			nr_pages = 1;
1518 		}
1519 activate_locked:
1520 		/* Not a candidate for swapping, so reclaim swap space. */
1521 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1522 						PageMlocked(page)))
1523 			try_to_free_swap(page);
1524 		VM_BUG_ON_PAGE(PageActive(page), page);
1525 		if (!PageMlocked(page)) {
1526 			int type = page_is_file_lru(page);
1527 			SetPageActive(page);
1528 			stat->nr_activate[type] += nr_pages;
1529 			count_memcg_page_event(page, PGACTIVATE);
1530 		}
1531 keep_locked:
1532 		/*
1533 		 * The page with trylock-bit will be added ret_pages and
1534 		 * handled in trace_android_vh_handle_failed_page_trylock.
1535 		 * In the progress[unlock_page, handled], the page carried
1536 		 * with trylock-bit will cause some error-issues in other
1537 		 * scene, so clear trylock-bit here.
1538 		 * trace_android_vh_page_trylock_get_result will clear
1539 		 * trylock-bit and return if page tyrlock failed in
1540 		 * reclaim-process. Here we just want to clear trylock-bit
1541 		 * so that ignore page_trylock_result.
1542 		 */
1543 		trace_android_vh_page_trylock_get_result(page, &page_trylock_result);
1544 		unlock_page(page);
1545 keep:
1546 		list_add(&page->lru, &ret_pages);
1547 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1548 	}
1549 
1550 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1551 
1552 	mem_cgroup_uncharge_list(&free_pages);
1553 	try_to_unmap_flush();
1554 	free_unref_page_list(&free_pages);
1555 
1556 	list_splice(&ret_pages, page_list);
1557 	count_vm_events(PGACTIVATE, pgactivate);
1558 
1559 	return nr_reclaimed;
1560 }
1561 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1562 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1563 					    struct list_head *page_list)
1564 {
1565 	struct scan_control sc = {
1566 		.gfp_mask = GFP_KERNEL,
1567 		.priority = DEF_PRIORITY,
1568 		.may_unmap = 1,
1569 	};
1570 	struct reclaim_stat stat;
1571 	unsigned int nr_reclaimed;
1572 	struct page *page, *next;
1573 	LIST_HEAD(clean_pages);
1574 
1575 	list_for_each_entry_safe(page, next, page_list, lru) {
1576 		if (page_is_file_lru(page) && !PageDirty(page) &&
1577 		    !__PageMovable(page) && !PageUnevictable(page)) {
1578 			ClearPageActive(page);
1579 			list_move(&page->lru, &clean_pages);
1580 		}
1581 	}
1582 
1583 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1584 					&stat, true);
1585 	list_splice(&clean_pages, page_list);
1586 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1587 			    -(long)nr_reclaimed);
1588 	/*
1589 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1590 	 * they will rotate back to anonymous LRU in the end if it failed to
1591 	 * discard so isolated count will be mismatched.
1592 	 * Compensate the isolated count for both LRU lists.
1593 	 */
1594 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1595 			    stat.nr_lazyfree_fail);
1596 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1597 			    -(long)stat.nr_lazyfree_fail);
1598 	return nr_reclaimed;
1599 }
1600 
1601 /*
1602  * Attempt to remove the specified page from its LRU.  Only take this page
1603  * if it is of the appropriate PageActive status.  Pages which are being
1604  * freed elsewhere are also ignored.
1605  *
1606  * page:	page to consider
1607  * mode:	one of the LRU isolation modes defined above
1608  *
1609  * returns 0 on success, -ve errno on failure.
1610  */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1611 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1612 {
1613 	int ret = -EINVAL;
1614 
1615 	/* Only take pages on the LRU. */
1616 	if (!PageLRU(page))
1617 		return ret;
1618 
1619 	/* Compaction should not handle unevictable pages but CMA can do so */
1620 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1621 		return ret;
1622 
1623 	ret = -EBUSY;
1624 
1625 	/*
1626 	 * To minimise LRU disruption, the caller can indicate that it only
1627 	 * wants to isolate pages it will be able to operate on without
1628 	 * blocking - clean pages for the most part.
1629 	 *
1630 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1631 	 * that it is possible to migrate without blocking
1632 	 */
1633 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1634 		/* All the caller can do on PageWriteback is block */
1635 		if (PageWriteback(page))
1636 			return ret;
1637 
1638 		if (PageDirty(page)) {
1639 			struct address_space *mapping;
1640 			bool migrate_dirty;
1641 
1642 			/*
1643 			 * Only pages without mappings or that have a
1644 			 * ->migratepage callback are possible to migrate
1645 			 * without blocking. However, we can be racing with
1646 			 * truncation so it's necessary to lock the page
1647 			 * to stabilise the mapping as truncation holds
1648 			 * the page lock until after the page is removed
1649 			 * from the page cache.
1650 			 */
1651 			if (!trylock_page(page))
1652 				return ret;
1653 
1654 			mapping = page_mapping(page);
1655 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1656 			unlock_page(page);
1657 			if (!migrate_dirty)
1658 				return ret;
1659 		}
1660 	}
1661 
1662 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1663 		return ret;
1664 
1665 	if (likely(get_page_unless_zero(page))) {
1666 		/*
1667 		 * Be careful not to clear PageLRU until after we're
1668 		 * sure the page is not being freed elsewhere -- the
1669 		 * page release code relies on it.
1670 		 */
1671 		ClearPageLRU(page);
1672 		ret = 0;
1673 	}
1674 
1675 	return ret;
1676 }
1677 
1678 
1679 /*
1680  * Update LRU sizes after isolating pages. The LRU size updates must
1681  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1682  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1683 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1684 			enum lru_list lru, unsigned long *nr_zone_taken)
1685 {
1686 	int zid;
1687 
1688 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1689 		if (!nr_zone_taken[zid])
1690 			continue;
1691 
1692 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1693 	}
1694 
1695 }
1696 
1697 /**
1698  * pgdat->lru_lock is heavily contended.  Some of the functions that
1699  * shrink the lists perform better by taking out a batch of pages
1700  * and working on them outside the LRU lock.
1701  *
1702  * For pagecache intensive workloads, this function is the hottest
1703  * spot in the kernel (apart from copy_*_user functions).
1704  *
1705  * Appropriate locks must be held before calling this function.
1706  *
1707  * @nr_to_scan:	The number of eligible pages to look through on the list.
1708  * @lruvec:	The LRU vector to pull pages from.
1709  * @dst:	The temp list to put pages on to.
1710  * @nr_scanned:	The number of pages that were scanned.
1711  * @sc:		The scan_control struct for this reclaim session
1712  * @lru:	LRU list id for isolating
1713  *
1714  * returns how many pages were moved onto *@dst.
1715  */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1716 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1717 		struct lruvec *lruvec, struct list_head *dst,
1718 		unsigned long *nr_scanned, struct scan_control *sc,
1719 		enum lru_list lru)
1720 {
1721 	struct list_head *src = &lruvec->lists[lru];
1722 	unsigned long nr_taken = 0;
1723 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1724 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1725 	unsigned long skipped = 0;
1726 	unsigned long scan, total_scan, nr_pages;
1727 	LIST_HEAD(pages_skipped);
1728 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1729 
1730 	total_scan = 0;
1731 	scan = 0;
1732 	while (scan < nr_to_scan && !list_empty(src)) {
1733 		struct page *page;
1734 
1735 		page = lru_to_page(src);
1736 		prefetchw_prev_lru_page(page, src, flags);
1737 
1738 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1739 
1740 		nr_pages = compound_nr(page);
1741 		total_scan += nr_pages;
1742 
1743 		if (page_zonenum(page) > sc->reclaim_idx) {
1744 			list_move(&page->lru, &pages_skipped);
1745 			nr_skipped[page_zonenum(page)] += nr_pages;
1746 			continue;
1747 		}
1748 
1749 		/*
1750 		 * Do not count skipped pages because that makes the function
1751 		 * return with no isolated pages if the LRU mostly contains
1752 		 * ineligible pages.  This causes the VM to not reclaim any
1753 		 * pages, triggering a premature OOM.
1754 		 *
1755 		 * Account all tail pages of THP.  This would not cause
1756 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1757 		 * only when the page is being freed somewhere else.
1758 		 */
1759 		scan += nr_pages;
1760 		switch (__isolate_lru_page(page, mode)) {
1761 		case 0:
1762 			nr_taken += nr_pages;
1763 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1764 			trace_android_vh_del_page_from_lrulist(page, false, lru);
1765 			list_move(&page->lru, dst);
1766 			break;
1767 
1768 		case -EBUSY:
1769 			/* else it is being freed elsewhere */
1770 			list_move(&page->lru, src);
1771 			continue;
1772 
1773 		default:
1774 			BUG();
1775 		}
1776 	}
1777 
1778 	/*
1779 	 * Splice any skipped pages to the start of the LRU list. Note that
1780 	 * this disrupts the LRU order when reclaiming for lower zones but
1781 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1782 	 * scanning would soon rescan the same pages to skip and put the
1783 	 * system at risk of premature OOM.
1784 	 */
1785 	if (!list_empty(&pages_skipped)) {
1786 		int zid;
1787 
1788 		list_splice(&pages_skipped, src);
1789 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1790 			if (!nr_skipped[zid])
1791 				continue;
1792 
1793 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1794 			skipped += nr_skipped[zid];
1795 		}
1796 	}
1797 	*nr_scanned = total_scan;
1798 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1799 				    total_scan, skipped, nr_taken, mode, lru);
1800 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1801 	return nr_taken;
1802 }
1803 
1804 /**
1805  * isolate_lru_page - tries to isolate a page from its LRU list
1806  * @page: page to isolate from its LRU list
1807  *
1808  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1809  * vmstat statistic corresponding to whatever LRU list the page was on.
1810  *
1811  * Returns 0 if the page was removed from an LRU list.
1812  * Returns -EBUSY if the page was not on an LRU list.
1813  *
1814  * The returned page will have PageLRU() cleared.  If it was found on
1815  * the active list, it will have PageActive set.  If it was found on
1816  * the unevictable list, it will have the PageUnevictable bit set. That flag
1817  * may need to be cleared by the caller before letting the page go.
1818  *
1819  * The vmstat statistic corresponding to the list on which the page was
1820  * found will be decremented.
1821  *
1822  * Restrictions:
1823  *
1824  * (1) Must be called with an elevated refcount on the page. This is a
1825  *     fundamental difference from isolate_lru_pages (which is called
1826  *     without a stable reference).
1827  * (2) the lru_lock must not be held.
1828  * (3) interrupts must be enabled.
1829  */
isolate_lru_page(struct page * page)1830 int isolate_lru_page(struct page *page)
1831 {
1832 	int ret = -EBUSY;
1833 
1834 	VM_BUG_ON_PAGE(!page_count(page), page);
1835 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1836 
1837 	if (PageLRU(page)) {
1838 		pg_data_t *pgdat = page_pgdat(page);
1839 		struct lruvec *lruvec;
1840 
1841 		spin_lock_irq(&pgdat->lru_lock);
1842 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1843 		if (PageLRU(page)) {
1844 			int lru = page_lru(page);
1845 			get_page(page);
1846 			ClearPageLRU(page);
1847 			del_page_from_lru_list(page, lruvec, lru);
1848 			ret = 0;
1849 		}
1850 		spin_unlock_irq(&pgdat->lru_lock);
1851 	}
1852 	return ret;
1853 }
1854 
1855 /*
1856  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1857  * then get rescheduled. When there are massive number of tasks doing page
1858  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1859  * the LRU list will go small and be scanned faster than necessary, leading to
1860  * unnecessary swapping, thrashing and OOM.
1861  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1862 static int too_many_isolated(struct pglist_data *pgdat, int file,
1863 		struct scan_control *sc)
1864 {
1865 	unsigned long inactive, isolated;
1866 
1867 	if (current_is_kswapd())
1868 		return 0;
1869 
1870 	if (!writeback_throttling_sane(sc))
1871 		return 0;
1872 
1873 	if (file) {
1874 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1875 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1876 	} else {
1877 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1878 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1879 	}
1880 
1881 	/*
1882 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1883 	 * won't get blocked by normal direct-reclaimers, forming a circular
1884 	 * deadlock.
1885 	 */
1886 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1887 		inactive >>= 3;
1888 
1889 	return isolated > inactive;
1890 }
1891 
1892 /*
1893  * This moves pages from @list to corresponding LRU list.
1894  *
1895  * We move them the other way if the page is referenced by one or more
1896  * processes, from rmap.
1897  *
1898  * If the pages are mostly unmapped, the processing is fast and it is
1899  * appropriate to hold zone_lru_lock across the whole operation.  But if
1900  * the pages are mapped, the processing is slow (page_referenced()) so we
1901  * should drop zone_lru_lock around each page.  It's impossible to balance
1902  * this, so instead we remove the pages from the LRU while processing them.
1903  * It is safe to rely on PG_active against the non-LRU pages in here because
1904  * nobody will play with that bit on a non-LRU page.
1905  *
1906  * The downside is that we have to touch page->_refcount against each page.
1907  * But we had to alter page->flags anyway.
1908  *
1909  * Returns the number of pages moved to the given lruvec.
1910  */
1911 
move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)1912 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1913 						     struct list_head *list)
1914 {
1915 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1916 	int nr_pages, nr_moved = 0;
1917 	LIST_HEAD(pages_to_free);
1918 	struct page *page;
1919 	enum lru_list lru;
1920 
1921 	while (!list_empty(list)) {
1922 		page = lru_to_page(list);
1923 		VM_BUG_ON_PAGE(PageLRU(page), page);
1924 		if (unlikely(!page_evictable(page))) {
1925 			list_del(&page->lru);
1926 			spin_unlock_irq(&pgdat->lru_lock);
1927 			putback_lru_page(page);
1928 			spin_lock_irq(&pgdat->lru_lock);
1929 			continue;
1930 		}
1931 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1932 
1933 		SetPageLRU(page);
1934 		lru = page_lru(page);
1935 
1936 		nr_pages = thp_nr_pages(page);
1937 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1938 		list_move(&page->lru, &lruvec->lists[lru]);
1939 		trace_android_vh_add_page_to_lrulist(page, false, lru);
1940 
1941 		if (put_page_testzero(page)) {
1942 			__ClearPageLRU(page);
1943 			__ClearPageActive(page);
1944 			del_page_from_lru_list(page, lruvec, lru);
1945 
1946 			if (unlikely(PageCompound(page))) {
1947 				spin_unlock_irq(&pgdat->lru_lock);
1948 				destroy_compound_page(page);
1949 				spin_lock_irq(&pgdat->lru_lock);
1950 			} else
1951 				list_add(&page->lru, &pages_to_free);
1952 		} else {
1953 			nr_moved += nr_pages;
1954 			if (PageActive(page))
1955 				workingset_age_nonresident(lruvec, nr_pages);
1956 		}
1957 	}
1958 
1959 	/*
1960 	 * To save our caller's stack, now use input list for pages to free.
1961 	 */
1962 	list_splice(&pages_to_free, list);
1963 
1964 	return nr_moved;
1965 }
1966 
1967 /*
1968  * If a kernel thread (such as nfsd for loop-back mounts) services
1969  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1970  * In that case we should only throttle if the backing device it is
1971  * writing to is congested.  In other cases it is safe to throttle.
1972  */
current_may_throttle(void)1973 static int current_may_throttle(void)
1974 {
1975 	return !(current->flags & PF_LOCAL_THROTTLE) ||
1976 		current->backing_dev_info == NULL ||
1977 		bdi_write_congested(current->backing_dev_info);
1978 }
1979 
1980 /*
1981  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1982  * of reclaimed pages
1983  */
1984 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1985 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1986 		     struct scan_control *sc, enum lru_list lru)
1987 {
1988 	LIST_HEAD(page_list);
1989 	unsigned long nr_scanned;
1990 	unsigned int nr_reclaimed = 0;
1991 	unsigned long nr_taken;
1992 	struct reclaim_stat stat;
1993 	bool file = is_file_lru(lru);
1994 	enum vm_event_item item;
1995 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1996 	bool stalled = false;
1997 
1998 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1999 		if (stalled)
2000 			return 0;
2001 
2002 		/* wait a bit for the reclaimer. */
2003 		msleep(100);
2004 		stalled = true;
2005 
2006 		/* We are about to die and free our memory. Return now. */
2007 		if (fatal_signal_pending(current))
2008 			return SWAP_CLUSTER_MAX;
2009 	}
2010 
2011 	lru_add_drain();
2012 
2013 	spin_lock_irq(&pgdat->lru_lock);
2014 
2015 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2016 				     &nr_scanned, sc, lru);
2017 
2018 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2019 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2020 	if (!cgroup_reclaim(sc))
2021 		__count_vm_events(item, nr_scanned);
2022 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2023 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2024 
2025 	spin_unlock_irq(&pgdat->lru_lock);
2026 
2027 	if (nr_taken == 0)
2028 		return 0;
2029 
2030 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2031 	trace_android_vh_handle_failed_page_trylock(&page_list);
2032 
2033 	spin_lock_irq(&pgdat->lru_lock);
2034 
2035 	move_pages_to_lru(lruvec, &page_list);
2036 
2037 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2038 	lru_note_cost(lruvec, file, stat.nr_pageout);
2039 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2040 	if (!cgroup_reclaim(sc))
2041 		__count_vm_events(item, nr_reclaimed);
2042 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2043 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2044 	spin_unlock_irq(&pgdat->lru_lock);
2045 
2046 	mem_cgroup_uncharge_list(&page_list);
2047 	free_unref_page_list(&page_list);
2048 
2049 	/*
2050 	 * If dirty pages are scanned that are not queued for IO, it
2051 	 * implies that flushers are not doing their job. This can
2052 	 * happen when memory pressure pushes dirty pages to the end of
2053 	 * the LRU before the dirty limits are breached and the dirty
2054 	 * data has expired. It can also happen when the proportion of
2055 	 * dirty pages grows not through writes but through memory
2056 	 * pressure reclaiming all the clean cache. And in some cases,
2057 	 * the flushers simply cannot keep up with the allocation
2058 	 * rate. Nudge the flusher threads in case they are asleep.
2059 	 */
2060 	if (stat.nr_unqueued_dirty == nr_taken)
2061 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2062 
2063 	sc->nr.dirty += stat.nr_dirty;
2064 	sc->nr.congested += stat.nr_congested;
2065 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2066 	sc->nr.writeback += stat.nr_writeback;
2067 	sc->nr.immediate += stat.nr_immediate;
2068 	sc->nr.taken += nr_taken;
2069 	if (file)
2070 		sc->nr.file_taken += nr_taken;
2071 
2072 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2073 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2074 	return nr_reclaimed;
2075 }
2076 
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2077 static void shrink_active_list(unsigned long nr_to_scan,
2078 			       struct lruvec *lruvec,
2079 			       struct scan_control *sc,
2080 			       enum lru_list lru)
2081 {
2082 	unsigned long nr_taken;
2083 	unsigned long nr_scanned;
2084 	unsigned long vm_flags;
2085 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2086 	LIST_HEAD(l_active);
2087 	LIST_HEAD(l_inactive);
2088 	struct page *page;
2089 	unsigned nr_deactivate, nr_activate;
2090 	unsigned nr_rotated = 0;
2091 	int file = is_file_lru(lru);
2092 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2093 	bool bypass = false;
2094 	bool should_protect = false;
2095 
2096 	lru_add_drain();
2097 
2098 	spin_lock_irq(&pgdat->lru_lock);
2099 
2100 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2101 				     &nr_scanned, sc, lru);
2102 
2103 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2104 
2105 	if (!cgroup_reclaim(sc))
2106 		__count_vm_events(PGREFILL, nr_scanned);
2107 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2108 
2109 	spin_unlock_irq(&pgdat->lru_lock);
2110 
2111 	while (!list_empty(&l_hold)) {
2112 		cond_resched();
2113 		page = lru_to_page(&l_hold);
2114 		list_del(&page->lru);
2115 
2116 		if (unlikely(!page_evictable(page))) {
2117 			putback_lru_page(page);
2118 			continue;
2119 		}
2120 
2121 		if (unlikely(buffer_heads_over_limit)) {
2122 			if (page_has_private(page) && trylock_page(page)) {
2123 				if (page_has_private(page))
2124 					try_to_release_page(page, 0);
2125 				unlock_page(page);
2126 			}
2127 		}
2128 
2129 		trace_android_vh_page_should_be_protected(page, &should_protect);
2130 		if (unlikely(should_protect)) {
2131 			nr_rotated += thp_nr_pages(page);
2132 			list_add(&page->lru, &l_active);
2133 			continue;
2134 		}
2135 
2136 		trace_android_vh_page_referenced_check_bypass(page, nr_to_scan, lru, &bypass);
2137 		if (bypass)
2138 			goto skip_page_referenced;
2139 		trace_android_vh_page_trylock_set(page);
2140 		/* Referenced or rmap lock contention: rotate */
2141 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2142 				     &vm_flags) != 0) {
2143 			/*
2144 			 * Identify referenced, file-backed active pages and
2145 			 * give them one more trip around the active list. So
2146 			 * that executable code get better chances to stay in
2147 			 * memory under moderate memory pressure.  Anon pages
2148 			 * are not likely to be evicted by use-once streaming
2149 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2150 			 * so we ignore them here.
2151 			 */
2152 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2153 				trace_android_vh_page_trylock_clear(page);
2154 				nr_rotated += thp_nr_pages(page);
2155 				list_add(&page->lru, &l_active);
2156 				continue;
2157 			}
2158 		}
2159 		trace_android_vh_page_trylock_clear(page);
2160 skip_page_referenced:
2161 		ClearPageActive(page);	/* we are de-activating */
2162 		SetPageWorkingset(page);
2163 		list_add(&page->lru, &l_inactive);
2164 	}
2165 
2166 	/*
2167 	 * Move pages back to the lru list.
2168 	 */
2169 	spin_lock_irq(&pgdat->lru_lock);
2170 
2171 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2172 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2173 	/* Keep all free pages in l_active list */
2174 	list_splice(&l_inactive, &l_active);
2175 
2176 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2177 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2178 
2179 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2180 	spin_unlock_irq(&pgdat->lru_lock);
2181 
2182 	mem_cgroup_uncharge_list(&l_active);
2183 	free_unref_page_list(&l_active);
2184 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2185 			nr_deactivate, nr_rotated, sc->priority, file);
2186 }
2187 
reclaim_pages(struct list_head * page_list)2188 unsigned long reclaim_pages(struct list_head *page_list)
2189 {
2190 	int nid = NUMA_NO_NODE;
2191 	unsigned int nr_reclaimed = 0;
2192 	LIST_HEAD(node_page_list);
2193 	struct reclaim_stat dummy_stat;
2194 	struct page *page;
2195 	struct scan_control sc = {
2196 		.gfp_mask = GFP_KERNEL,
2197 		.priority = DEF_PRIORITY,
2198 		.may_writepage = 1,
2199 		.may_unmap = 1,
2200 		.may_swap = 1,
2201 	};
2202 
2203 	while (!list_empty(page_list)) {
2204 		page = lru_to_page(page_list);
2205 		if (nid == NUMA_NO_NODE) {
2206 			nid = page_to_nid(page);
2207 			INIT_LIST_HEAD(&node_page_list);
2208 		}
2209 
2210 		if (nid == page_to_nid(page)) {
2211 			ClearPageActive(page);
2212 			list_move(&page->lru, &node_page_list);
2213 			continue;
2214 		}
2215 
2216 		nr_reclaimed += shrink_page_list(&node_page_list,
2217 						NODE_DATA(nid),
2218 						&sc, &dummy_stat, false);
2219 		while (!list_empty(&node_page_list)) {
2220 			page = lru_to_page(&node_page_list);
2221 			list_del(&page->lru);
2222 			putback_lru_page(page);
2223 		}
2224 
2225 		nid = NUMA_NO_NODE;
2226 	}
2227 
2228 	if (!list_empty(&node_page_list)) {
2229 		nr_reclaimed += shrink_page_list(&node_page_list,
2230 						NODE_DATA(nid),
2231 						&sc, &dummy_stat, false);
2232 		while (!list_empty(&node_page_list)) {
2233 			page = lru_to_page(&node_page_list);
2234 			list_del(&page->lru);
2235 			putback_lru_page(page);
2236 		}
2237 	}
2238 
2239 	return nr_reclaimed;
2240 }
2241 EXPORT_SYMBOL_GPL(reclaim_pages);
2242 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2243 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2244 				 struct lruvec *lruvec, struct scan_control *sc)
2245 {
2246 	if (is_active_lru(lru)) {
2247 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2248 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2249 		else
2250 			sc->skipped_deactivate = 1;
2251 		return 0;
2252 	}
2253 
2254 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2255 }
2256 
2257 /*
2258  * The inactive anon list should be small enough that the VM never has
2259  * to do too much work.
2260  *
2261  * The inactive file list should be small enough to leave most memory
2262  * to the established workingset on the scan-resistant active list,
2263  * but large enough to avoid thrashing the aggregate readahead window.
2264  *
2265  * Both inactive lists should also be large enough that each inactive
2266  * page has a chance to be referenced again before it is reclaimed.
2267  *
2268  * If that fails and refaulting is observed, the inactive list grows.
2269  *
2270  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2271  * on this LRU, maintained by the pageout code. An inactive_ratio
2272  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2273  *
2274  * total     target    max
2275  * memory    ratio     inactive
2276  * -------------------------------------
2277  *   10MB       1         5MB
2278  *  100MB       1        50MB
2279  *    1GB       3       250MB
2280  *   10GB      10       0.9GB
2281  *  100GB      31         3GB
2282  *    1TB     101        10GB
2283  *   10TB     320        32GB
2284  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2285 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2286 {
2287 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2288 	unsigned long inactive, active;
2289 	unsigned long inactive_ratio;
2290 	unsigned long gb;
2291 	bool skip = false;
2292 
2293 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2294 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2295 
2296 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2297 	trace_android_vh_inactive_is_low(gb, &inactive_ratio, inactive_lru, &skip);
2298 	if (skip)
2299 		goto out;
2300 
2301 	if (gb)
2302 		inactive_ratio = int_sqrt(10 * gb);
2303 	else
2304 		inactive_ratio = 1;
2305 
2306 	trace_android_vh_tune_inactive_ratio(&inactive_ratio, is_file_lru(inactive_lru));
2307 
2308 out:
2309 	return inactive * inactive_ratio < active;
2310 }
2311 
2312 enum scan_balance {
2313 	SCAN_EQUAL,
2314 	SCAN_FRACT,
2315 	SCAN_ANON,
2316 	SCAN_FILE,
2317 };
2318 
2319 /*
2320  * Determine how aggressively the anon and file LRU lists should be
2321  * scanned.  The relative value of each set of LRU lists is determined
2322  * by looking at the fraction of the pages scanned we did rotate back
2323  * onto the active list instead of evict.
2324  *
2325  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2326  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2327  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2328 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2329 			   unsigned long *nr)
2330 {
2331 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2332 	unsigned long anon_cost, file_cost, total_cost;
2333 	int swappiness = mem_cgroup_swappiness(memcg);
2334 	u64 fraction[ANON_AND_FILE];
2335 	u64 denominator = 0;	/* gcc */
2336 	enum scan_balance scan_balance;
2337 	unsigned long ap, fp;
2338 	enum lru_list lru;
2339 	bool balance_anon_file_reclaim = false;
2340 
2341 	/* If we have no swap space, do not bother scanning anon pages. */
2342 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2343 		scan_balance = SCAN_FILE;
2344 		goto out;
2345 	}
2346 
2347 	trace_android_vh_tune_swappiness(&swappiness);
2348 	/*
2349 	 * Global reclaim will swap to prevent OOM even with no
2350 	 * swappiness, but memcg users want to use this knob to
2351 	 * disable swapping for individual groups completely when
2352 	 * using the memory controller's swap limit feature would be
2353 	 * too expensive.
2354 	 */
2355 	if (cgroup_reclaim(sc) && !swappiness) {
2356 		scan_balance = SCAN_FILE;
2357 		goto out;
2358 	}
2359 
2360 	/*
2361 	 * Do not apply any pressure balancing cleverness when the
2362 	 * system is close to OOM, scan both anon and file equally
2363 	 * (unless the swappiness setting disagrees with swapping).
2364 	 */
2365 	if (!sc->priority && swappiness) {
2366 		scan_balance = SCAN_EQUAL;
2367 		goto out;
2368 	}
2369 
2370 	/*
2371 	 * If the system is almost out of file pages, force-scan anon.
2372 	 */
2373 	if (sc->file_is_tiny) {
2374 		scan_balance = SCAN_ANON;
2375 		goto out;
2376 	}
2377 
2378 	trace_android_rvh_set_balance_anon_file_reclaim(&balance_anon_file_reclaim);
2379 
2380 	/*
2381 	 * If there is enough inactive page cache, we do not reclaim
2382 	 * anything from the anonymous working right now. But when balancing
2383 	 * anon and page cache files for reclaim, allow swapping of anon pages
2384 	 * even if there are a number of inactive file cache pages.
2385 	 */
2386 	if (!balance_anon_file_reclaim && sc->cache_trim_mode) {
2387 		scan_balance = SCAN_FILE;
2388 		goto out;
2389 	}
2390 
2391 	scan_balance = SCAN_FRACT;
2392 	/*
2393 	 * Calculate the pressure balance between anon and file pages.
2394 	 *
2395 	 * The amount of pressure we put on each LRU is inversely
2396 	 * proportional to the cost of reclaiming each list, as
2397 	 * determined by the share of pages that are refaulting, times
2398 	 * the relative IO cost of bringing back a swapped out
2399 	 * anonymous page vs reloading a filesystem page (swappiness).
2400 	 *
2401 	 * Although we limit that influence to ensure no list gets
2402 	 * left behind completely: at least a third of the pressure is
2403 	 * applied, before swappiness.
2404 	 *
2405 	 * With swappiness at 100, anon and file have equal IO cost.
2406 	 */
2407 	total_cost = sc->anon_cost + sc->file_cost;
2408 	anon_cost = total_cost + sc->anon_cost;
2409 	file_cost = total_cost + sc->file_cost;
2410 	total_cost = anon_cost + file_cost;
2411 
2412 	ap = swappiness * (total_cost + 1);
2413 	ap /= anon_cost + 1;
2414 
2415 	fp = (200 - swappiness) * (total_cost + 1);
2416 	fp /= file_cost + 1;
2417 
2418 	fraction[0] = ap;
2419 	fraction[1] = fp;
2420 	denominator = ap + fp;
2421 out:
2422 	trace_android_vh_tune_scan_type((char *)(&scan_balance));
2423 	for_each_evictable_lru(lru) {
2424 		int file = is_file_lru(lru);
2425 		unsigned long lruvec_size;
2426 		unsigned long low, min;
2427 		unsigned long scan;
2428 
2429 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2430 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2431 				      &min, &low);
2432 
2433 		if (min || low) {
2434 			/*
2435 			 * Scale a cgroup's reclaim pressure by proportioning
2436 			 * its current usage to its memory.low or memory.min
2437 			 * setting.
2438 			 *
2439 			 * This is important, as otherwise scanning aggression
2440 			 * becomes extremely binary -- from nothing as we
2441 			 * approach the memory protection threshold, to totally
2442 			 * nominal as we exceed it.  This results in requiring
2443 			 * setting extremely liberal protection thresholds. It
2444 			 * also means we simply get no protection at all if we
2445 			 * set it too low, which is not ideal.
2446 			 *
2447 			 * If there is any protection in place, we reduce scan
2448 			 * pressure by how much of the total memory used is
2449 			 * within protection thresholds.
2450 			 *
2451 			 * There is one special case: in the first reclaim pass,
2452 			 * we skip over all groups that are within their low
2453 			 * protection. If that fails to reclaim enough pages to
2454 			 * satisfy the reclaim goal, we come back and override
2455 			 * the best-effort low protection. However, we still
2456 			 * ideally want to honor how well-behaved groups are in
2457 			 * that case instead of simply punishing them all
2458 			 * equally. As such, we reclaim them based on how much
2459 			 * memory they are using, reducing the scan pressure
2460 			 * again by how much of the total memory used is under
2461 			 * hard protection.
2462 			 */
2463 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2464 			unsigned long protection;
2465 
2466 			/* memory.low scaling, make sure we retry before OOM */
2467 			if (!sc->memcg_low_reclaim && low > min) {
2468 				protection = low;
2469 				sc->memcg_low_skipped = 1;
2470 			} else {
2471 				protection = min;
2472 			}
2473 
2474 			/* Avoid TOCTOU with earlier protection check */
2475 			cgroup_size = max(cgroup_size, protection);
2476 
2477 			scan = lruvec_size - lruvec_size * protection /
2478 				(cgroup_size + 1);
2479 
2480 			/*
2481 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2482 			 * reclaim moving forwards, avoiding decrementing
2483 			 * sc->priority further than desirable.
2484 			 */
2485 			scan = max(scan, SWAP_CLUSTER_MAX);
2486 		} else {
2487 			scan = lruvec_size;
2488 		}
2489 
2490 		scan >>= sc->priority;
2491 
2492 		/*
2493 		 * If the cgroup's already been deleted, make sure to
2494 		 * scrape out the remaining cache.
2495 		 */
2496 		if (!scan && !mem_cgroup_online(memcg))
2497 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2498 
2499 		switch (scan_balance) {
2500 		case SCAN_EQUAL:
2501 			/* Scan lists relative to size */
2502 			break;
2503 		case SCAN_FRACT:
2504 			/*
2505 			 * Scan types proportional to swappiness and
2506 			 * their relative recent reclaim efficiency.
2507 			 * Make sure we don't miss the last page on
2508 			 * the offlined memory cgroups because of a
2509 			 * round-off error.
2510 			 */
2511 			scan = mem_cgroup_online(memcg) ?
2512 			       div64_u64(scan * fraction[file], denominator) :
2513 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2514 						  denominator);
2515 			break;
2516 		case SCAN_FILE:
2517 		case SCAN_ANON:
2518 			/* Scan one type exclusively */
2519 			if ((scan_balance == SCAN_FILE) != file)
2520 				scan = 0;
2521 			break;
2522 		default:
2523 			/* Look ma, no brain */
2524 			BUG();
2525 		}
2526 
2527 		nr[lru] = scan;
2528 	}
2529 }
2530 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)2531 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2532 {
2533 	unsigned long nr[NR_LRU_LISTS];
2534 	unsigned long targets[NR_LRU_LISTS];
2535 	unsigned long nr_to_scan;
2536 	enum lru_list lru;
2537 	unsigned long nr_reclaimed = 0;
2538 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2539 	bool proportional_reclaim;
2540 	struct blk_plug plug;
2541 
2542 	get_scan_count(lruvec, sc, nr);
2543 
2544 	/* Record the original scan target for proportional adjustments later */
2545 	memcpy(targets, nr, sizeof(nr));
2546 
2547 	/*
2548 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2549 	 * event that can occur when there is little memory pressure e.g.
2550 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2551 	 * when the requested number of pages are reclaimed when scanning at
2552 	 * DEF_PRIORITY on the assumption that the fact we are direct
2553 	 * reclaiming implies that kswapd is not keeping up and it is best to
2554 	 * do a batch of work at once. For memcg reclaim one check is made to
2555 	 * abort proportional reclaim if either the file or anon lru has already
2556 	 * dropped to zero at the first pass.
2557 	 */
2558 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2559 				sc->priority == DEF_PRIORITY);
2560 
2561 	blk_start_plug(&plug);
2562 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2563 					nr[LRU_INACTIVE_FILE]) {
2564 		unsigned long nr_anon, nr_file, percentage;
2565 		unsigned long nr_scanned;
2566 
2567 		for_each_evictable_lru(lru) {
2568 			if (nr[lru]) {
2569 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2570 				nr[lru] -= nr_to_scan;
2571 
2572 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2573 							    lruvec, sc);
2574 			}
2575 		}
2576 
2577 		cond_resched();
2578 
2579 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
2580 			continue;
2581 
2582 		/*
2583 		 * For kswapd and memcg, reclaim at least the number of pages
2584 		 * requested. Ensure that the anon and file LRUs are scanned
2585 		 * proportionally what was requested by get_scan_count(). We
2586 		 * stop reclaiming one LRU and reduce the amount scanning
2587 		 * proportional to the original scan target.
2588 		 */
2589 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2590 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2591 
2592 		/*
2593 		 * It's just vindictive to attack the larger once the smaller
2594 		 * has gone to zero.  And given the way we stop scanning the
2595 		 * smaller below, this makes sure that we only make one nudge
2596 		 * towards proportionality once we've got nr_to_reclaim.
2597 		 */
2598 		if (!nr_file || !nr_anon)
2599 			break;
2600 
2601 		if (nr_file > nr_anon) {
2602 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2603 						targets[LRU_ACTIVE_ANON] + 1;
2604 			lru = LRU_BASE;
2605 			percentage = nr_anon * 100 / scan_target;
2606 		} else {
2607 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2608 						targets[LRU_ACTIVE_FILE] + 1;
2609 			lru = LRU_FILE;
2610 			percentage = nr_file * 100 / scan_target;
2611 		}
2612 
2613 		/* Stop scanning the smaller of the LRU */
2614 		nr[lru] = 0;
2615 		nr[lru + LRU_ACTIVE] = 0;
2616 
2617 		/*
2618 		 * Recalculate the other LRU scan count based on its original
2619 		 * scan target and the percentage scanning already complete
2620 		 */
2621 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2622 		nr_scanned = targets[lru] - nr[lru];
2623 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2624 		nr[lru] -= min(nr[lru], nr_scanned);
2625 
2626 		lru += LRU_ACTIVE;
2627 		nr_scanned = targets[lru] - nr[lru];
2628 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2629 		nr[lru] -= min(nr[lru], nr_scanned);
2630 	}
2631 	blk_finish_plug(&plug);
2632 	sc->nr_reclaimed += nr_reclaimed;
2633 
2634 	/*
2635 	 * Even if we did not try to evict anon pages at all, we want to
2636 	 * rebalance the anon lru active/inactive ratio.
2637 	 */
2638 	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2639 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2640 				   sc, LRU_ACTIVE_ANON);
2641 }
2642 
2643 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2644 static bool in_reclaim_compaction(struct scan_control *sc)
2645 {
2646 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2647 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2648 			 sc->priority < DEF_PRIORITY - 2))
2649 		return true;
2650 
2651 	return false;
2652 }
2653 
2654 /*
2655  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2656  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2657  * true if more pages should be reclaimed such that when the page allocator
2658  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2659  * It will give up earlier than that if there is difficulty reclaiming pages.
2660  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)2661 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2662 					unsigned long nr_reclaimed,
2663 					struct scan_control *sc)
2664 {
2665 	unsigned long pages_for_compaction;
2666 	unsigned long inactive_lru_pages;
2667 	int z;
2668 
2669 	/* If not in reclaim/compaction mode, stop */
2670 	if (!in_reclaim_compaction(sc))
2671 		return false;
2672 
2673 	/*
2674 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2675 	 * number of pages that were scanned. This will return to the caller
2676 	 * with the risk reclaim/compaction and the resulting allocation attempt
2677 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2678 	 * allocations through requiring that the full LRU list has been scanned
2679 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2680 	 * scan, but that approximation was wrong, and there were corner cases
2681 	 * where always a non-zero amount of pages were scanned.
2682 	 */
2683 	if (!nr_reclaimed)
2684 		return false;
2685 
2686 	/* If compaction would go ahead or the allocation would succeed, stop */
2687 	for (z = 0; z <= sc->reclaim_idx; z++) {
2688 		struct zone *zone = &pgdat->node_zones[z];
2689 		if (!managed_zone(zone))
2690 			continue;
2691 
2692 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2693 		case COMPACT_SUCCESS:
2694 		case COMPACT_CONTINUE:
2695 			return false;
2696 		default:
2697 			/* check next zone */
2698 			;
2699 		}
2700 	}
2701 
2702 	/*
2703 	 * If we have not reclaimed enough pages for compaction and the
2704 	 * inactive lists are large enough, continue reclaiming
2705 	 */
2706 	pages_for_compaction = compact_gap(sc->order);
2707 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2708 	if (get_nr_swap_pages() > 0)
2709 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2710 
2711 	return inactive_lru_pages > pages_for_compaction;
2712 }
2713 
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)2714 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2715 {
2716 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2717 	struct mem_cgroup *memcg;
2718 
2719 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2720 	do {
2721 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2722 		unsigned long reclaimed;
2723 		unsigned long scanned;
2724 		bool skip = false;
2725 
2726 		/*
2727 		 * This loop can become CPU-bound when target memcgs
2728 		 * aren't eligible for reclaim - either because they
2729 		 * don't have any reclaimable pages, or because their
2730 		 * memory is explicitly protected. Avoid soft lockups.
2731 		 */
2732 		cond_resched();
2733 
2734 		trace_android_vh_shrink_node_memcgs(memcg, &skip);
2735 		if (skip)
2736 			continue;
2737 
2738 		mem_cgroup_calculate_protection(target_memcg, memcg);
2739 
2740 		if (mem_cgroup_below_min(memcg)) {
2741 			/*
2742 			 * Hard protection.
2743 			 * If there is no reclaimable memory, OOM.
2744 			 */
2745 			continue;
2746 		} else if (mem_cgroup_below_low(memcg)) {
2747 			/*
2748 			 * Soft protection.
2749 			 * Respect the protection only as long as
2750 			 * there is an unprotected supply
2751 			 * of reclaimable memory from other cgroups.
2752 			 */
2753 			if (!sc->memcg_low_reclaim) {
2754 				sc->memcg_low_skipped = 1;
2755 				continue;
2756 			}
2757 			memcg_memory_event(memcg, MEMCG_LOW);
2758 		}
2759 
2760 		reclaimed = sc->nr_reclaimed;
2761 		scanned = sc->nr_scanned;
2762 
2763 		shrink_lruvec(lruvec, sc);
2764 
2765 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2766 			    sc->priority);
2767 
2768 		/* Record the group's reclaim efficiency */
2769 		vmpressure(sc->gfp_mask, memcg, false,
2770 			   sc->nr_scanned - scanned,
2771 			   sc->nr_reclaimed - reclaimed);
2772 
2773 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2774 }
2775 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2776 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2777 {
2778 	struct reclaim_state *reclaim_state = current->reclaim_state;
2779 	unsigned long nr_reclaimed, nr_scanned;
2780 	struct lruvec *target_lruvec;
2781 	bool reclaimable = false;
2782 	unsigned long file;
2783 
2784 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2785 
2786 again:
2787 	memset(&sc->nr, 0, sizeof(sc->nr));
2788 
2789 	nr_reclaimed = sc->nr_reclaimed;
2790 	nr_scanned = sc->nr_scanned;
2791 
2792 	/*
2793 	 * Determine the scan balance between anon and file LRUs.
2794 	 */
2795 	spin_lock_irq(&pgdat->lru_lock);
2796 	sc->anon_cost = target_lruvec->anon_cost;
2797 	sc->file_cost = target_lruvec->file_cost;
2798 	spin_unlock_irq(&pgdat->lru_lock);
2799 
2800 	/*
2801 	 * Target desirable inactive:active list ratios for the anon
2802 	 * and file LRU lists.
2803 	 */
2804 	if (!sc->force_deactivate) {
2805 		unsigned long refaults;
2806 
2807 		refaults = lruvec_page_state(target_lruvec,
2808 				WORKINGSET_ACTIVATE_ANON);
2809 		if (refaults != target_lruvec->refaults[0] ||
2810 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2811 			sc->may_deactivate |= DEACTIVATE_ANON;
2812 		else
2813 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2814 
2815 		/*
2816 		 * When refaults are being observed, it means a new
2817 		 * workingset is being established. Deactivate to get
2818 		 * rid of any stale active pages quickly.
2819 		 */
2820 		refaults = lruvec_page_state(target_lruvec,
2821 				WORKINGSET_ACTIVATE_FILE);
2822 		if (refaults != target_lruvec->refaults[1] ||
2823 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2824 			sc->may_deactivate |= DEACTIVATE_FILE;
2825 		else
2826 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2827 	} else
2828 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2829 
2830 	/*
2831 	 * If we have plenty of inactive file pages that aren't
2832 	 * thrashing, try to reclaim those first before touching
2833 	 * anonymous pages.
2834 	 */
2835 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2836 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2837 		sc->cache_trim_mode = 1;
2838 	else
2839 		sc->cache_trim_mode = 0;
2840 
2841 	/*
2842 	 * Prevent the reclaimer from falling into the cache trap: as
2843 	 * cache pages start out inactive, every cache fault will tip
2844 	 * the scan balance towards the file LRU.  And as the file LRU
2845 	 * shrinks, so does the window for rotation from references.
2846 	 * This means we have a runaway feedback loop where a tiny
2847 	 * thrashing file LRU becomes infinitely more attractive than
2848 	 * anon pages.  Try to detect this based on file LRU size.
2849 	 */
2850 	if (!cgroup_reclaim(sc)) {
2851 		unsigned long total_high_wmark = 0;
2852 		unsigned long free, anon;
2853 		int z;
2854 
2855 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2856 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2857 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2858 
2859 		for (z = 0; z < MAX_NR_ZONES; z++) {
2860 			struct zone *zone = &pgdat->node_zones[z];
2861 			if (!managed_zone(zone))
2862 				continue;
2863 
2864 			total_high_wmark += high_wmark_pages(zone);
2865 		}
2866 
2867 		/*
2868 		 * Consider anon: if that's low too, this isn't a
2869 		 * runaway file reclaim problem, but rather just
2870 		 * extreme pressure. Reclaim as per usual then.
2871 		 */
2872 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2873 
2874 		sc->file_is_tiny =
2875 			file + free <= total_high_wmark &&
2876 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2877 			anon >> sc->priority;
2878 	}
2879 
2880 	shrink_node_memcgs(pgdat, sc);
2881 
2882 	if (reclaim_state) {
2883 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2884 		reclaim_state->reclaimed_slab = 0;
2885 	}
2886 
2887 	/* Record the subtree's reclaim efficiency */
2888 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2889 		   sc->nr_scanned - nr_scanned,
2890 		   sc->nr_reclaimed - nr_reclaimed);
2891 
2892 	if (sc->nr_reclaimed - nr_reclaimed)
2893 		reclaimable = true;
2894 
2895 	if (current_is_kswapd()) {
2896 		/*
2897 		 * If reclaim is isolating dirty pages under writeback,
2898 		 * it implies that the long-lived page allocation rate
2899 		 * is exceeding the page laundering rate. Either the
2900 		 * global limits are not being effective at throttling
2901 		 * processes due to the page distribution throughout
2902 		 * zones or there is heavy usage of a slow backing
2903 		 * device. The only option is to throttle from reclaim
2904 		 * context which is not ideal as there is no guarantee
2905 		 * the dirtying process is throttled in the same way
2906 		 * balance_dirty_pages() manages.
2907 		 *
2908 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2909 		 * count the number of pages under pages flagged for
2910 		 * immediate reclaim and stall if any are encountered
2911 		 * in the nr_immediate check below.
2912 		 */
2913 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2914 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2915 
2916 		/* Allow kswapd to start writing pages during reclaim.*/
2917 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2918 			set_bit(PGDAT_DIRTY, &pgdat->flags);
2919 
2920 		/*
2921 		 * If kswapd scans pages marked for immediate
2922 		 * reclaim and under writeback (nr_immediate), it
2923 		 * implies that pages are cycling through the LRU
2924 		 * faster than they are written so also forcibly stall.
2925 		 */
2926 		if (sc->nr.immediate)
2927 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2928 	}
2929 
2930 	/*
2931 	 * Tag a node/memcg as congested if all the dirty pages
2932 	 * scanned were backed by a congested BDI and
2933 	 * wait_iff_congested will stall.
2934 	 *
2935 	 * Legacy memcg will stall in page writeback so avoid forcibly
2936 	 * stalling in wait_iff_congested().
2937 	 */
2938 	if ((current_is_kswapd() ||
2939 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2940 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2941 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2942 
2943 	/*
2944 	 * Stall direct reclaim for IO completions if underlying BDIs
2945 	 * and node is congested. Allow kswapd to continue until it
2946 	 * starts encountering unqueued dirty pages or cycling through
2947 	 * the LRU too quickly.
2948 	 */
2949 	if (!current_is_kswapd() && current_may_throttle() &&
2950 	    !sc->hibernation_mode &&
2951 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2952 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2953 
2954 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2955 				    sc))
2956 		goto again;
2957 
2958 	/*
2959 	 * Kswapd gives up on balancing particular nodes after too
2960 	 * many failures to reclaim anything from them and goes to
2961 	 * sleep. On reclaim progress, reset the failure counter. A
2962 	 * successful direct reclaim run will revive a dormant kswapd.
2963 	 */
2964 	if (reclaimable)
2965 		pgdat->kswapd_failures = 0;
2966 }
2967 
2968 /*
2969  * Returns true if compaction should go ahead for a costly-order request, or
2970  * the allocation would already succeed without compaction. Return false if we
2971  * should reclaim first.
2972  */
compaction_ready(struct zone * zone,struct scan_control * sc)2973 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2974 {
2975 	unsigned long watermark;
2976 	enum compact_result suitable;
2977 
2978 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2979 	if (suitable == COMPACT_SUCCESS)
2980 		/* Allocation should succeed already. Don't reclaim. */
2981 		return true;
2982 	if (suitable == COMPACT_SKIPPED)
2983 		/* Compaction cannot yet proceed. Do reclaim. */
2984 		return false;
2985 
2986 	/*
2987 	 * Compaction is already possible, but it takes time to run and there
2988 	 * are potentially other callers using the pages just freed. So proceed
2989 	 * with reclaim to make a buffer of free pages available to give
2990 	 * compaction a reasonable chance of completing and allocating the page.
2991 	 * Note that we won't actually reclaim the whole buffer in one attempt
2992 	 * as the target watermark in should_continue_reclaim() is lower. But if
2993 	 * we are already above the high+gap watermark, don't reclaim at all.
2994 	 */
2995 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2996 
2997 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2998 }
2999 
3000 /*
3001  * This is the direct reclaim path, for page-allocating processes.  We only
3002  * try to reclaim pages from zones which will satisfy the caller's allocation
3003  * request.
3004  *
3005  * If a zone is deemed to be full of pinned pages then just give it a light
3006  * scan then give up on it.
3007  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)3008 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3009 {
3010 	struct zoneref *z;
3011 	struct zone *zone;
3012 	unsigned long nr_soft_reclaimed;
3013 	unsigned long nr_soft_scanned;
3014 	gfp_t orig_mask;
3015 	pg_data_t *last_pgdat = NULL;
3016 
3017 	/*
3018 	 * If the number of buffer_heads in the machine exceeds the maximum
3019 	 * allowed level, force direct reclaim to scan the highmem zone as
3020 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3021 	 */
3022 	orig_mask = sc->gfp_mask;
3023 	if (buffer_heads_over_limit) {
3024 		sc->gfp_mask |= __GFP_HIGHMEM;
3025 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3026 	}
3027 
3028 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3029 					sc->reclaim_idx, sc->nodemask) {
3030 		/*
3031 		 * Take care memory controller reclaiming has small influence
3032 		 * to global LRU.
3033 		 */
3034 		if (!cgroup_reclaim(sc)) {
3035 			if (!cpuset_zone_allowed(zone,
3036 						 GFP_KERNEL | __GFP_HARDWALL))
3037 				continue;
3038 
3039 			/*
3040 			 * If we already have plenty of memory free for
3041 			 * compaction in this zone, don't free any more.
3042 			 * Even though compaction is invoked for any
3043 			 * non-zero order, only frequent costly order
3044 			 * reclamation is disruptive enough to become a
3045 			 * noticeable problem, like transparent huge
3046 			 * page allocations.
3047 			 */
3048 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3049 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3050 			    compaction_ready(zone, sc)) {
3051 				sc->compaction_ready = true;
3052 				continue;
3053 			}
3054 
3055 			/*
3056 			 * Shrink each node in the zonelist once. If the
3057 			 * zonelist is ordered by zone (not the default) then a
3058 			 * node may be shrunk multiple times but in that case
3059 			 * the user prefers lower zones being preserved.
3060 			 */
3061 			if (zone->zone_pgdat == last_pgdat)
3062 				continue;
3063 
3064 			/*
3065 			 * This steals pages from memory cgroups over softlimit
3066 			 * and returns the number of reclaimed pages and
3067 			 * scanned pages. This works for global memory pressure
3068 			 * and balancing, not for a memcg's limit.
3069 			 */
3070 			nr_soft_scanned = 0;
3071 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3072 						sc->order, sc->gfp_mask,
3073 						&nr_soft_scanned);
3074 			sc->nr_reclaimed += nr_soft_reclaimed;
3075 			sc->nr_scanned += nr_soft_scanned;
3076 			/* need some check for avoid more shrink_zone() */
3077 		}
3078 
3079 		/* See comment about same check for global reclaim above */
3080 		if (zone->zone_pgdat == last_pgdat)
3081 			continue;
3082 		last_pgdat = zone->zone_pgdat;
3083 		shrink_node(zone->zone_pgdat, sc);
3084 	}
3085 
3086 	/*
3087 	 * Restore to original mask to avoid the impact on the caller if we
3088 	 * promoted it to __GFP_HIGHMEM.
3089 	 */
3090 	sc->gfp_mask = orig_mask;
3091 }
3092 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)3093 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3094 {
3095 	struct lruvec *target_lruvec;
3096 	unsigned long refaults;
3097 
3098 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3099 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3100 	target_lruvec->refaults[0] = refaults;
3101 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3102 	target_lruvec->refaults[1] = refaults;
3103 	trace_android_vh_snapshot_refaults(target_lruvec);
3104 }
3105 
3106 /*
3107  * This is the main entry point to direct page reclaim.
3108  *
3109  * If a full scan of the inactive list fails to free enough memory then we
3110  * are "out of memory" and something needs to be killed.
3111  *
3112  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3113  * high - the zone may be full of dirty or under-writeback pages, which this
3114  * caller can't do much about.  We kick the writeback threads and take explicit
3115  * naps in the hope that some of these pages can be written.  But if the
3116  * allocating task holds filesystem locks which prevent writeout this might not
3117  * work, and the allocation attempt will fail.
3118  *
3119  * returns:	0, if no pages reclaimed
3120  * 		else, the number of pages reclaimed
3121  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)3122 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3123 					  struct scan_control *sc)
3124 {
3125 	int initial_priority = sc->priority;
3126 	pg_data_t *last_pgdat;
3127 	struct zoneref *z;
3128 	struct zone *zone;
3129 retry:
3130 	delayacct_freepages_start();
3131 
3132 	if (!cgroup_reclaim(sc))
3133 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3134 
3135 	do {
3136 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3137 				sc->priority);
3138 		sc->nr_scanned = 0;
3139 		shrink_zones(zonelist, sc);
3140 
3141 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3142 			break;
3143 
3144 		if (sc->compaction_ready)
3145 			break;
3146 
3147 		/*
3148 		 * If we're getting trouble reclaiming, start doing
3149 		 * writepage even in laptop mode.
3150 		 */
3151 		if (sc->priority < DEF_PRIORITY - 2)
3152 			sc->may_writepage = 1;
3153 	} while (--sc->priority >= 0);
3154 
3155 	last_pgdat = NULL;
3156 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3157 					sc->nodemask) {
3158 		if (zone->zone_pgdat == last_pgdat)
3159 			continue;
3160 		last_pgdat = zone->zone_pgdat;
3161 
3162 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3163 
3164 		if (cgroup_reclaim(sc)) {
3165 			struct lruvec *lruvec;
3166 
3167 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3168 						   zone->zone_pgdat);
3169 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3170 		}
3171 	}
3172 
3173 	delayacct_freepages_end();
3174 
3175 	if (sc->nr_reclaimed)
3176 		return sc->nr_reclaimed;
3177 
3178 	/* Aborted reclaim to try compaction? don't OOM, then */
3179 	if (sc->compaction_ready)
3180 		return 1;
3181 
3182 	/*
3183 	 * We make inactive:active ratio decisions based on the node's
3184 	 * composition of memory, but a restrictive reclaim_idx or a
3185 	 * memory.low cgroup setting can exempt large amounts of
3186 	 * memory from reclaim. Neither of which are very common, so
3187 	 * instead of doing costly eligibility calculations of the
3188 	 * entire cgroup subtree up front, we assume the estimates are
3189 	 * good, and retry with forcible deactivation if that fails.
3190 	 */
3191 	if (sc->skipped_deactivate) {
3192 		sc->priority = initial_priority;
3193 		sc->force_deactivate = 1;
3194 		sc->skipped_deactivate = 0;
3195 		goto retry;
3196 	}
3197 
3198 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3199 	if (sc->memcg_low_skipped) {
3200 		sc->priority = initial_priority;
3201 		sc->force_deactivate = 0;
3202 		sc->memcg_low_reclaim = 1;
3203 		sc->memcg_low_skipped = 0;
3204 		goto retry;
3205 	}
3206 
3207 	return 0;
3208 }
3209 
allow_direct_reclaim(pg_data_t * pgdat)3210 static bool allow_direct_reclaim(pg_data_t *pgdat)
3211 {
3212 	struct zone *zone;
3213 	unsigned long pfmemalloc_reserve = 0;
3214 	unsigned long free_pages = 0;
3215 	int i;
3216 	bool wmark_ok;
3217 
3218 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3219 		return true;
3220 
3221 	for (i = 0; i <= ZONE_NORMAL; i++) {
3222 		zone = &pgdat->node_zones[i];
3223 		if (!managed_zone(zone))
3224 			continue;
3225 
3226 		if (!zone_reclaimable_pages(zone))
3227 			continue;
3228 
3229 		pfmemalloc_reserve += min_wmark_pages(zone);
3230 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3231 	}
3232 
3233 	/* If there are no reserves (unexpected config) then do not throttle */
3234 	if (!pfmemalloc_reserve)
3235 		return true;
3236 
3237 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3238 
3239 	/* kswapd must be awake if processes are being throttled */
3240 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3241 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3242 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3243 
3244 		wake_up_interruptible(&pgdat->kswapd_wait);
3245 	}
3246 
3247 	return wmark_ok;
3248 }
3249 
3250 /*
3251  * Throttle direct reclaimers if backing storage is backed by the network
3252  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3253  * depleted. kswapd will continue to make progress and wake the processes
3254  * when the low watermark is reached.
3255  *
3256  * Returns true if a fatal signal was delivered during throttling. If this
3257  * happens, the page allocator should not consider triggering the OOM killer.
3258  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3259 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3260 					nodemask_t *nodemask)
3261 {
3262 	struct zoneref *z;
3263 	struct zone *zone;
3264 	pg_data_t *pgdat = NULL;
3265 
3266 	/*
3267 	 * Kernel threads should not be throttled as they may be indirectly
3268 	 * responsible for cleaning pages necessary for reclaim to make forward
3269 	 * progress. kjournald for example may enter direct reclaim while
3270 	 * committing a transaction where throttling it could forcing other
3271 	 * processes to block on log_wait_commit().
3272 	 */
3273 	if (current->flags & PF_KTHREAD)
3274 		goto out;
3275 
3276 	/*
3277 	 * If a fatal signal is pending, this process should not throttle.
3278 	 * It should return quickly so it can exit and free its memory
3279 	 */
3280 	if (fatal_signal_pending(current))
3281 		goto out;
3282 
3283 	/*
3284 	 * Check if the pfmemalloc reserves are ok by finding the first node
3285 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3286 	 * GFP_KERNEL will be required for allocating network buffers when
3287 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3288 	 *
3289 	 * Throttling is based on the first usable node and throttled processes
3290 	 * wait on a queue until kswapd makes progress and wakes them. There
3291 	 * is an affinity then between processes waking up and where reclaim
3292 	 * progress has been made assuming the process wakes on the same node.
3293 	 * More importantly, processes running on remote nodes will not compete
3294 	 * for remote pfmemalloc reserves and processes on different nodes
3295 	 * should make reasonable progress.
3296 	 */
3297 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3298 					gfp_zone(gfp_mask), nodemask) {
3299 		if (zone_idx(zone) > ZONE_NORMAL)
3300 			continue;
3301 
3302 		/* Throttle based on the first usable node */
3303 		pgdat = zone->zone_pgdat;
3304 		if (allow_direct_reclaim(pgdat))
3305 			goto out;
3306 		break;
3307 	}
3308 
3309 	/* If no zone was usable by the allocation flags then do not throttle */
3310 	if (!pgdat)
3311 		goto out;
3312 
3313 	/* Account for the throttling */
3314 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3315 
3316 	/*
3317 	 * If the caller cannot enter the filesystem, it's possible that it
3318 	 * is due to the caller holding an FS lock or performing a journal
3319 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3320 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3321 	 * blocked waiting on the same lock. Instead, throttle for up to a
3322 	 * second before continuing.
3323 	 */
3324 	if (!(gfp_mask & __GFP_FS)) {
3325 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3326 			allow_direct_reclaim(pgdat), HZ);
3327 
3328 		goto check_pending;
3329 	}
3330 
3331 	/* Throttle until kswapd wakes the process */
3332 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3333 		allow_direct_reclaim(pgdat));
3334 
3335 check_pending:
3336 	if (fatal_signal_pending(current))
3337 		return true;
3338 
3339 out:
3340 	return false;
3341 }
3342 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3343 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3344 				gfp_t gfp_mask, nodemask_t *nodemask)
3345 {
3346 	unsigned long nr_reclaimed;
3347 	struct scan_control sc = {
3348 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3349 		.gfp_mask = current_gfp_context(gfp_mask),
3350 		.reclaim_idx = gfp_zone(gfp_mask),
3351 		.order = order,
3352 		.nodemask = nodemask,
3353 		.priority = DEF_PRIORITY,
3354 		.may_writepage = !laptop_mode,
3355 		.may_unmap = 1,
3356 		.may_swap = 1,
3357 	};
3358 
3359 	/*
3360 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3361 	 * Confirm they are large enough for max values.
3362 	 */
3363 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3364 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3365 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3366 
3367 	/*
3368 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3369 	 * 1 is returned so that the page allocator does not OOM kill at this
3370 	 * point.
3371 	 */
3372 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3373 		return 1;
3374 
3375 	set_task_reclaim_state(current, &sc.reclaim_state);
3376 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3377 
3378 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3379 
3380 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3381 	set_task_reclaim_state(current, NULL);
3382 
3383 	return nr_reclaimed;
3384 }
3385 
3386 #ifdef CONFIG_MEMCG
3387 
3388 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3389 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3390 						gfp_t gfp_mask, bool noswap,
3391 						pg_data_t *pgdat,
3392 						unsigned long *nr_scanned)
3393 {
3394 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3395 	struct scan_control sc = {
3396 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3397 		.target_mem_cgroup = memcg,
3398 		.may_writepage = !laptop_mode,
3399 		.may_unmap = 1,
3400 		.reclaim_idx = MAX_NR_ZONES - 1,
3401 		.may_swap = !noswap,
3402 	};
3403 
3404 	WARN_ON_ONCE(!current->reclaim_state);
3405 
3406 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3407 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3408 
3409 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3410 						      sc.gfp_mask);
3411 
3412 	/*
3413 	 * NOTE: Although we can get the priority field, using it
3414 	 * here is not a good idea, since it limits the pages we can scan.
3415 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3416 	 * will pick up pages from other mem cgroup's as well. We hack
3417 	 * the priority and make it zero.
3418 	 */
3419 	shrink_lruvec(lruvec, &sc);
3420 
3421 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3422 
3423 	*nr_scanned = sc.nr_scanned;
3424 
3425 	return sc.nr_reclaimed;
3426 }
3427 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3428 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3429 					   unsigned long nr_pages,
3430 					   gfp_t gfp_mask,
3431 					   bool may_swap)
3432 {
3433 	unsigned long nr_reclaimed;
3434 	unsigned int noreclaim_flag;
3435 	struct scan_control sc = {
3436 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3437 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3438 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3439 		.reclaim_idx = MAX_NR_ZONES - 1,
3440 		.target_mem_cgroup = memcg,
3441 		.priority = DEF_PRIORITY,
3442 		.may_writepage = !laptop_mode,
3443 		.may_unmap = 1,
3444 		.may_swap = may_swap,
3445 	};
3446 	/*
3447 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3448 	 * equal pressure on all the nodes. This is based on the assumption that
3449 	 * the reclaim does not bail out early.
3450 	 */
3451 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3452 
3453 	set_task_reclaim_state(current, &sc.reclaim_state);
3454 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3455 	noreclaim_flag = memalloc_noreclaim_save();
3456 
3457 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3458 
3459 	memalloc_noreclaim_restore(noreclaim_flag);
3460 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3461 	set_task_reclaim_state(current, NULL);
3462 
3463 	return nr_reclaimed;
3464 }
3465 EXPORT_SYMBOL_GPL(try_to_free_mem_cgroup_pages);
3466 #endif
3467 
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3468 static void age_active_anon(struct pglist_data *pgdat,
3469 				struct scan_control *sc)
3470 {
3471 	struct mem_cgroup *memcg;
3472 	struct lruvec *lruvec;
3473 
3474 	if (!total_swap_pages)
3475 		return;
3476 
3477 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3478 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3479 		return;
3480 
3481 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3482 	do {
3483 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3484 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3485 				   sc, LRU_ACTIVE_ANON);
3486 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3487 	} while (memcg);
3488 }
3489 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)3490 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3491 {
3492 	int i;
3493 	struct zone *zone;
3494 
3495 	/*
3496 	 * Check for watermark boosts top-down as the higher zones
3497 	 * are more likely to be boosted. Both watermarks and boosts
3498 	 * should not be checked at the same time as reclaim would
3499 	 * start prematurely when there is no boosting and a lower
3500 	 * zone is balanced.
3501 	 */
3502 	for (i = highest_zoneidx; i >= 0; i--) {
3503 		zone = pgdat->node_zones + i;
3504 		if (!managed_zone(zone))
3505 			continue;
3506 
3507 		if (zone->watermark_boost)
3508 			return true;
3509 	}
3510 
3511 	return false;
3512 }
3513 
3514 /*
3515  * Returns true if there is an eligible zone balanced for the request order
3516  * and highest_zoneidx
3517  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)3518 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3519 {
3520 	int i;
3521 	unsigned long mark = -1;
3522 	struct zone *zone;
3523 
3524 	/*
3525 	 * Check watermarks bottom-up as lower zones are more likely to
3526 	 * meet watermarks.
3527 	 */
3528 	for (i = 0; i <= highest_zoneidx; i++) {
3529 		zone = pgdat->node_zones + i;
3530 
3531 		if (!managed_zone(zone))
3532 			continue;
3533 
3534 		mark = high_wmark_pages(zone);
3535 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3536 			return true;
3537 	}
3538 
3539 	/*
3540 	 * If a node has no populated zone within highest_zoneidx, it does not
3541 	 * need balancing by definition. This can happen if a zone-restricted
3542 	 * allocation tries to wake a remote kswapd.
3543 	 */
3544 	if (mark == -1)
3545 		return true;
3546 
3547 	return false;
3548 }
3549 
3550 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3551 static void clear_pgdat_congested(pg_data_t *pgdat)
3552 {
3553 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3554 
3555 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3556 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3557 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3558 }
3559 
3560 /*
3561  * Prepare kswapd for sleeping. This verifies that there are no processes
3562  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3563  *
3564  * Returns true if kswapd is ready to sleep
3565  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)3566 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3567 				int highest_zoneidx)
3568 {
3569 	/*
3570 	 * The throttled processes are normally woken up in balance_pgdat() as
3571 	 * soon as allow_direct_reclaim() is true. But there is a potential
3572 	 * race between when kswapd checks the watermarks and a process gets
3573 	 * throttled. There is also a potential race if processes get
3574 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3575 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3576 	 * the wake up checks. If kswapd is going to sleep, no process should
3577 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3578 	 * the wake up is premature, processes will wake kswapd and get
3579 	 * throttled again. The difference from wake ups in balance_pgdat() is
3580 	 * that here we are under prepare_to_wait().
3581 	 */
3582 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3583 		wake_up_all(&pgdat->pfmemalloc_wait);
3584 
3585 	/* Hopeless node, leave it to direct reclaim */
3586 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3587 		return true;
3588 
3589 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3590 		clear_pgdat_congested(pgdat);
3591 		return true;
3592 	}
3593 
3594 	return false;
3595 }
3596 
3597 /*
3598  * kswapd shrinks a node of pages that are at or below the highest usable
3599  * zone that is currently unbalanced.
3600  *
3601  * Returns true if kswapd scanned at least the requested number of pages to
3602  * reclaim or if the lack of progress was due to pages under writeback.
3603  * This is used to determine if the scanning priority needs to be raised.
3604  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3605 static bool kswapd_shrink_node(pg_data_t *pgdat,
3606 			       struct scan_control *sc)
3607 {
3608 	struct zone *zone;
3609 	int z;
3610 
3611 	/* Reclaim a number of pages proportional to the number of zones */
3612 	sc->nr_to_reclaim = 0;
3613 	for (z = 0; z <= sc->reclaim_idx; z++) {
3614 		zone = pgdat->node_zones + z;
3615 		if (!managed_zone(zone))
3616 			continue;
3617 
3618 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3619 	}
3620 
3621 	/*
3622 	 * Historically care was taken to put equal pressure on all zones but
3623 	 * now pressure is applied based on node LRU order.
3624 	 */
3625 	shrink_node(pgdat, sc);
3626 
3627 	/*
3628 	 * Fragmentation may mean that the system cannot be rebalanced for
3629 	 * high-order allocations. If twice the allocation size has been
3630 	 * reclaimed then recheck watermarks only at order-0 to prevent
3631 	 * excessive reclaim. Assume that a process requested a high-order
3632 	 * can direct reclaim/compact.
3633 	 */
3634 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3635 		sc->order = 0;
3636 
3637 	return sc->nr_scanned >= sc->nr_to_reclaim;
3638 }
3639 
3640 /*
3641  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3642  * that are eligible for use by the caller until at least one zone is
3643  * balanced.
3644  *
3645  * Returns the order kswapd finished reclaiming at.
3646  *
3647  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3648  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3649  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3650  * or lower is eligible for reclaim until at least one usable zone is
3651  * balanced.
3652  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)3653 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3654 {
3655 	int i;
3656 	unsigned long nr_soft_reclaimed;
3657 	unsigned long nr_soft_scanned;
3658 	unsigned long pflags;
3659 	unsigned long nr_boost_reclaim;
3660 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3661 	bool boosted;
3662 	struct zone *zone;
3663 	struct scan_control sc = {
3664 		.gfp_mask = GFP_KERNEL,
3665 		.order = order,
3666 		.may_unmap = 1,
3667 	};
3668 
3669 	set_task_reclaim_state(current, &sc.reclaim_state);
3670 	psi_memstall_enter(&pflags);
3671 	__fs_reclaim_acquire();
3672 
3673 	count_vm_event(PAGEOUTRUN);
3674 
3675 	/*
3676 	 * Account for the reclaim boost. Note that the zone boost is left in
3677 	 * place so that parallel allocations that are near the watermark will
3678 	 * stall or direct reclaim until kswapd is finished.
3679 	 */
3680 	nr_boost_reclaim = 0;
3681 	for (i = 0; i <= highest_zoneidx; i++) {
3682 		zone = pgdat->node_zones + i;
3683 		if (!managed_zone(zone))
3684 			continue;
3685 
3686 		nr_boost_reclaim += zone->watermark_boost;
3687 		zone_boosts[i] = zone->watermark_boost;
3688 	}
3689 	boosted = nr_boost_reclaim;
3690 
3691 restart:
3692 	sc.priority = DEF_PRIORITY;
3693 	do {
3694 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3695 		bool raise_priority = true;
3696 		bool balanced;
3697 		bool ret;
3698 
3699 		sc.reclaim_idx = highest_zoneidx;
3700 
3701 		/*
3702 		 * If the number of buffer_heads exceeds the maximum allowed
3703 		 * then consider reclaiming from all zones. This has a dual
3704 		 * purpose -- on 64-bit systems it is expected that
3705 		 * buffer_heads are stripped during active rotation. On 32-bit
3706 		 * systems, highmem pages can pin lowmem memory and shrinking
3707 		 * buffers can relieve lowmem pressure. Reclaim may still not
3708 		 * go ahead if all eligible zones for the original allocation
3709 		 * request are balanced to avoid excessive reclaim from kswapd.
3710 		 */
3711 		if (buffer_heads_over_limit) {
3712 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3713 				zone = pgdat->node_zones + i;
3714 				if (!managed_zone(zone))
3715 					continue;
3716 
3717 				sc.reclaim_idx = i;
3718 				break;
3719 			}
3720 		}
3721 
3722 		/*
3723 		 * If the pgdat is imbalanced then ignore boosting and preserve
3724 		 * the watermarks for a later time and restart. Note that the
3725 		 * zone watermarks will be still reset at the end of balancing
3726 		 * on the grounds that the normal reclaim should be enough to
3727 		 * re-evaluate if boosting is required when kswapd next wakes.
3728 		 */
3729 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3730 		if (!balanced && nr_boost_reclaim) {
3731 			nr_boost_reclaim = 0;
3732 			goto restart;
3733 		}
3734 
3735 		/*
3736 		 * If boosting is not active then only reclaim if there are no
3737 		 * eligible zones. Note that sc.reclaim_idx is not used as
3738 		 * buffer_heads_over_limit may have adjusted it.
3739 		 */
3740 		if (!nr_boost_reclaim && balanced)
3741 			goto out;
3742 
3743 		/* Limit the priority of boosting to avoid reclaim writeback */
3744 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3745 			raise_priority = false;
3746 
3747 		/*
3748 		 * Do not writeback or swap pages for boosted reclaim. The
3749 		 * intent is to relieve pressure not issue sub-optimal IO
3750 		 * from reclaim context. If no pages are reclaimed, the
3751 		 * reclaim will be aborted.
3752 		 */
3753 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3754 		sc.may_swap = !nr_boost_reclaim;
3755 
3756 		/*
3757 		 * Do some background aging of the anon list, to give
3758 		 * pages a chance to be referenced before reclaiming. All
3759 		 * pages are rotated regardless of classzone as this is
3760 		 * about consistent aging.
3761 		 */
3762 		age_active_anon(pgdat, &sc);
3763 
3764 		/*
3765 		 * If we're getting trouble reclaiming, start doing writepage
3766 		 * even in laptop mode.
3767 		 */
3768 		if (sc.priority < DEF_PRIORITY - 2)
3769 			sc.may_writepage = 1;
3770 
3771 		/* Call soft limit reclaim before calling shrink_node. */
3772 		sc.nr_scanned = 0;
3773 		nr_soft_scanned = 0;
3774 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3775 						sc.gfp_mask, &nr_soft_scanned);
3776 		sc.nr_reclaimed += nr_soft_reclaimed;
3777 
3778 		/*
3779 		 * There should be no need to raise the scanning priority if
3780 		 * enough pages are already being scanned that that high
3781 		 * watermark would be met at 100% efficiency.
3782 		 */
3783 		if (kswapd_shrink_node(pgdat, &sc))
3784 			raise_priority = false;
3785 
3786 		/*
3787 		 * If the low watermark is met there is no need for processes
3788 		 * to be throttled on pfmemalloc_wait as they should not be
3789 		 * able to safely make forward progress. Wake them
3790 		 */
3791 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3792 				allow_direct_reclaim(pgdat))
3793 			wake_up_all(&pgdat->pfmemalloc_wait);
3794 
3795 		/* Check if kswapd should be suspending */
3796 		__fs_reclaim_release();
3797 		ret = try_to_freeze();
3798 		__fs_reclaim_acquire();
3799 		if (ret || kthread_should_stop())
3800 			break;
3801 
3802 		/*
3803 		 * Raise priority if scanning rate is too low or there was no
3804 		 * progress in reclaiming pages
3805 		 */
3806 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3807 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3808 
3809 		/*
3810 		 * If reclaim made no progress for a boost, stop reclaim as
3811 		 * IO cannot be queued and it could be an infinite loop in
3812 		 * extreme circumstances.
3813 		 */
3814 		if (nr_boost_reclaim && !nr_reclaimed)
3815 			break;
3816 
3817 		if (raise_priority || !nr_reclaimed)
3818 			sc.priority--;
3819 	} while (sc.priority >= 1);
3820 
3821 	if (!sc.nr_reclaimed)
3822 		pgdat->kswapd_failures++;
3823 
3824 out:
3825 	/* If reclaim was boosted, account for the reclaim done in this pass */
3826 	if (boosted) {
3827 		unsigned long flags;
3828 
3829 		for (i = 0; i <= highest_zoneidx; i++) {
3830 			if (!zone_boosts[i])
3831 				continue;
3832 
3833 			/* Increments are under the zone lock */
3834 			zone = pgdat->node_zones + i;
3835 			spin_lock_irqsave(&zone->lock, flags);
3836 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3837 			spin_unlock_irqrestore(&zone->lock, flags);
3838 		}
3839 
3840 		/*
3841 		 * As there is now likely space, wakeup kcompact to defragment
3842 		 * pageblocks.
3843 		 */
3844 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3845 	}
3846 
3847 	snapshot_refaults(NULL, pgdat);
3848 	__fs_reclaim_release();
3849 	psi_memstall_leave(&pflags);
3850 	set_task_reclaim_state(current, NULL);
3851 
3852 	/*
3853 	 * Return the order kswapd stopped reclaiming at as
3854 	 * prepare_kswapd_sleep() takes it into account. If another caller
3855 	 * entered the allocator slow path while kswapd was awake, order will
3856 	 * remain at the higher level.
3857 	 */
3858 	return sc.order;
3859 }
3860 
3861 /*
3862  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3863  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3864  * not a valid index then either kswapd runs for first time or kswapd couldn't
3865  * sleep after previous reclaim attempt (node is still unbalanced). In that
3866  * case return the zone index of the previous kswapd reclaim cycle.
3867  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)3868 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3869 					   enum zone_type prev_highest_zoneidx)
3870 {
3871 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3872 
3873 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3874 }
3875 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)3876 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3877 				unsigned int highest_zoneidx)
3878 {
3879 	long remaining = 0;
3880 	DEFINE_WAIT(wait);
3881 
3882 	if (freezing(current) || kthread_should_stop())
3883 		return;
3884 
3885 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3886 
3887 	/*
3888 	 * Try to sleep for a short interval. Note that kcompactd will only be
3889 	 * woken if it is possible to sleep for a short interval. This is
3890 	 * deliberate on the assumption that if reclaim cannot keep an
3891 	 * eligible zone balanced that it's also unlikely that compaction will
3892 	 * succeed.
3893 	 */
3894 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3895 		/*
3896 		 * Compaction records what page blocks it recently failed to
3897 		 * isolate pages from and skips them in the future scanning.
3898 		 * When kswapd is going to sleep, it is reasonable to assume
3899 		 * that pages and compaction may succeed so reset the cache.
3900 		 */
3901 		reset_isolation_suitable(pgdat);
3902 
3903 		/*
3904 		 * We have freed the memory, now we should compact it to make
3905 		 * allocation of the requested order possible.
3906 		 */
3907 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3908 
3909 		remaining = schedule_timeout(HZ/10);
3910 
3911 		/*
3912 		 * If woken prematurely then reset kswapd_highest_zoneidx and
3913 		 * order. The values will either be from a wakeup request or
3914 		 * the previous request that slept prematurely.
3915 		 */
3916 		if (remaining) {
3917 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3918 					kswapd_highest_zoneidx(pgdat,
3919 							highest_zoneidx));
3920 
3921 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3922 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3923 		}
3924 
3925 		finish_wait(&pgdat->kswapd_wait, &wait);
3926 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3927 	}
3928 
3929 	/*
3930 	 * After a short sleep, check if it was a premature sleep. If not, then
3931 	 * go fully to sleep until explicitly woken up.
3932 	 */
3933 	if (!remaining &&
3934 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3935 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3936 
3937 		/*
3938 		 * vmstat counters are not perfectly accurate and the estimated
3939 		 * value for counters such as NR_FREE_PAGES can deviate from the
3940 		 * true value by nr_online_cpus * threshold. To avoid the zone
3941 		 * watermarks being breached while under pressure, we reduce the
3942 		 * per-cpu vmstat threshold while kswapd is awake and restore
3943 		 * them before going back to sleep.
3944 		 */
3945 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3946 
3947 		if (!kthread_should_stop())
3948 			schedule();
3949 
3950 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3951 	} else {
3952 		if (remaining)
3953 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3954 		else
3955 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3956 	}
3957 	finish_wait(&pgdat->kswapd_wait, &wait);
3958 }
3959 
3960 /*
3961  * The background pageout daemon, started as a kernel thread
3962  * from the init process.
3963  *
3964  * This basically trickles out pages so that we have _some_
3965  * free memory available even if there is no other activity
3966  * that frees anything up. This is needed for things like routing
3967  * etc, where we otherwise might have all activity going on in
3968  * asynchronous contexts that cannot page things out.
3969  *
3970  * If there are applications that are active memory-allocators
3971  * (most normal use), this basically shouldn't matter.
3972  */
kswapd(void * p)3973 static int kswapd(void *p)
3974 {
3975 	unsigned int alloc_order, reclaim_order;
3976 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3977 	pg_data_t *pgdat = (pg_data_t*)p;
3978 	struct task_struct *tsk = current;
3979 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3980 
3981 	if (!cpumask_empty(cpumask))
3982 		set_cpus_allowed_ptr(tsk, cpumask);
3983 
3984 	/*
3985 	 * Tell the memory management that we're a "memory allocator",
3986 	 * and that if we need more memory we should get access to it
3987 	 * regardless (see "__alloc_pages()"). "kswapd" should
3988 	 * never get caught in the normal page freeing logic.
3989 	 *
3990 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3991 	 * you need a small amount of memory in order to be able to
3992 	 * page out something else, and this flag essentially protects
3993 	 * us from recursively trying to free more memory as we're
3994 	 * trying to free the first piece of memory in the first place).
3995 	 */
3996 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3997 	set_freezable();
3998 
3999 	WRITE_ONCE(pgdat->kswapd_order, 0);
4000 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4001 	for ( ; ; ) {
4002 		bool ret;
4003 
4004 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4005 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4006 							highest_zoneidx);
4007 
4008 kswapd_try_sleep:
4009 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4010 					highest_zoneidx);
4011 
4012 		/* Read the new order and highest_zoneidx */
4013 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4014 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4015 							highest_zoneidx);
4016 		WRITE_ONCE(pgdat->kswapd_order, 0);
4017 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4018 
4019 		ret = try_to_freeze();
4020 		if (kthread_should_stop())
4021 			break;
4022 
4023 		/*
4024 		 * We can speed up thawing tasks if we don't call balance_pgdat
4025 		 * after returning from the refrigerator
4026 		 */
4027 		if (ret)
4028 			continue;
4029 
4030 		/*
4031 		 * Reclaim begins at the requested order but if a high-order
4032 		 * reclaim fails then kswapd falls back to reclaiming for
4033 		 * order-0. If that happens, kswapd will consider sleeping
4034 		 * for the order it finished reclaiming at (reclaim_order)
4035 		 * but kcompactd is woken to compact for the original
4036 		 * request (alloc_order).
4037 		 */
4038 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4039 						alloc_order);
4040 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4041 						highest_zoneidx);
4042 		trace_android_vh_vmscan_kswapd_done(pgdat->node_id, highest_zoneidx,
4043 						alloc_order, reclaim_order);
4044 		if (reclaim_order < alloc_order)
4045 			goto kswapd_try_sleep;
4046 	}
4047 
4048 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4049 
4050 	return 0;
4051 }
4052 
kswapd_per_node_run(int nid)4053 static int kswapd_per_node_run(int nid)
4054 {
4055 	pg_data_t *pgdat = NODE_DATA(nid);
4056 	int hid;
4057 	int ret = 0;
4058 
4059 	for (hid = 0; hid < kswapd_threads; ++hid) {
4060 		pgdat->mkswapd[hid] = kthread_run(kswapd, pgdat, "kswapd%d:%d",
4061 								nid, hid);
4062 		if (IS_ERR(pgdat->mkswapd[hid])) {
4063 			/* failure at boot is fatal */
4064 			WARN_ON(system_state < SYSTEM_RUNNING);
4065 			pr_err("Failed to start kswapd%d on node %d\n",
4066 				hid, nid);
4067 			ret = PTR_ERR(pgdat->mkswapd[hid]);
4068 			pgdat->mkswapd[hid] = NULL;
4069 			continue;
4070 		}
4071 		if (!pgdat->kswapd)
4072 			pgdat->kswapd = pgdat->mkswapd[hid];
4073 	}
4074 
4075 	return ret;
4076 }
4077 
kswapd_per_node_stop(int nid)4078 static void kswapd_per_node_stop(int nid)
4079 {
4080 	int hid = 0;
4081 	struct task_struct *kswapd;
4082 
4083 	for (hid = 0; hid < kswapd_threads; hid++) {
4084 		kswapd = NODE_DATA(nid)->mkswapd[hid];
4085 		if (kswapd) {
4086 			kthread_stop(kswapd);
4087 			NODE_DATA(nid)->mkswapd[hid] = NULL;
4088 		}
4089 	}
4090 	NODE_DATA(nid)->kswapd = NULL;
4091 }
4092 
4093 /*
4094  * A zone is low on free memory or too fragmented for high-order memory.  If
4095  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4096  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4097  * has failed or is not needed, still wake up kcompactd if only compaction is
4098  * needed.
4099  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)4100 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4101 		   enum zone_type highest_zoneidx)
4102 {
4103 	pg_data_t *pgdat;
4104 	enum zone_type curr_idx;
4105 
4106 	if (!managed_zone(zone))
4107 		return;
4108 
4109 	if (!cpuset_zone_allowed(zone, gfp_flags))
4110 		return;
4111 
4112 	pgdat = zone->zone_pgdat;
4113 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4114 
4115 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4116 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4117 
4118 	if (READ_ONCE(pgdat->kswapd_order) < order)
4119 		WRITE_ONCE(pgdat->kswapd_order, order);
4120 
4121 	if (!waitqueue_active(&pgdat->kswapd_wait))
4122 		return;
4123 
4124 	/* Hopeless node, leave it to direct reclaim if possible */
4125 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4126 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4127 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4128 		/*
4129 		 * There may be plenty of free memory available, but it's too
4130 		 * fragmented for high-order allocations.  Wake up kcompactd
4131 		 * and rely on compaction_suitable() to determine if it's
4132 		 * needed.  If it fails, it will defer subsequent attempts to
4133 		 * ratelimit its work.
4134 		 */
4135 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4136 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4137 		return;
4138 	}
4139 
4140 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4141 				      gfp_flags);
4142 	wake_up_interruptible(&pgdat->kswapd_wait);
4143 }
4144 
4145 #ifdef CONFIG_HIBERNATION
4146 /*
4147  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4148  * freed pages.
4149  *
4150  * Rather than trying to age LRUs the aim is to preserve the overall
4151  * LRU order by reclaiming preferentially
4152  * inactive > active > active referenced > active mapped
4153  */
shrink_all_memory(unsigned long nr_to_reclaim)4154 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4155 {
4156 	struct scan_control sc = {
4157 		.nr_to_reclaim = nr_to_reclaim,
4158 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4159 		.reclaim_idx = MAX_NR_ZONES - 1,
4160 		.priority = DEF_PRIORITY,
4161 		.may_writepage = 1,
4162 		.may_unmap = 1,
4163 		.may_swap = 1,
4164 		.hibernation_mode = 1,
4165 	};
4166 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4167 	unsigned long nr_reclaimed;
4168 	unsigned int noreclaim_flag;
4169 
4170 	fs_reclaim_acquire(sc.gfp_mask);
4171 	noreclaim_flag = memalloc_noreclaim_save();
4172 	set_task_reclaim_state(current, &sc.reclaim_state);
4173 
4174 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4175 
4176 	set_task_reclaim_state(current, NULL);
4177 	memalloc_noreclaim_restore(noreclaim_flag);
4178 	fs_reclaim_release(sc.gfp_mask);
4179 
4180 	return nr_reclaimed;
4181 }
4182 #endif /* CONFIG_HIBERNATION */
4183 
4184 /*
4185  * This kswapd start function will be called by init and node-hot-add.
4186  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4187  */
kswapd_run(int nid)4188 int kswapd_run(int nid)
4189 {
4190 	pg_data_t *pgdat = NODE_DATA(nid);
4191 	int ret = 0;
4192 
4193 	if (pgdat->kswapd)
4194 		return 0;
4195 
4196 	if (kswapd_threads > 1)
4197 		return kswapd_per_node_run(nid);
4198 
4199 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4200 	if (IS_ERR(pgdat->kswapd)) {
4201 		/* failure at boot is fatal */
4202 		BUG_ON(system_state < SYSTEM_RUNNING);
4203 		pr_err("Failed to start kswapd on node %d\n", nid);
4204 		ret = PTR_ERR(pgdat->kswapd);
4205 		pgdat->kswapd = NULL;
4206 	}
4207 	return ret;
4208 }
4209 
4210 /*
4211  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4212  * hold mem_hotplug_begin/end().
4213  */
kswapd_stop(int nid)4214 void kswapd_stop(int nid)
4215 {
4216 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4217 
4218 	if (kswapd_threads > 1) {
4219 		kswapd_per_node_stop(nid);
4220 		return;
4221 	}
4222 
4223 	if (kswapd) {
4224 		kthread_stop(kswapd);
4225 		NODE_DATA(nid)->kswapd = NULL;
4226 	}
4227 }
4228 
kswapd_init(void)4229 static int __init kswapd_init(void)
4230 {
4231 	int nid;
4232 
4233 	swap_setup();
4234 	for_each_node_state(nid, N_MEMORY)
4235  		kswapd_run(nid);
4236 	return 0;
4237 }
4238 
4239 module_init(kswapd_init)
4240 
4241 #ifdef CONFIG_NUMA
4242 /*
4243  * Node reclaim mode
4244  *
4245  * If non-zero call node_reclaim when the number of free pages falls below
4246  * the watermarks.
4247  */
4248 int node_reclaim_mode __read_mostly;
4249 
4250 /*
4251  * These bit locations are exposed in the vm.zone_reclaim_mode sysctl
4252  * ABI.  New bits are OK, but existing bits can never change.
4253  */
4254 #define RECLAIM_ZONE  (1<<0)   /* Run shrink_inactive_list on the zone */
4255 #define RECLAIM_WRITE (1<<1)   /* Writeout pages during reclaim */
4256 #define RECLAIM_UNMAP (1<<2)   /* Unmap pages during reclaim */
4257 
4258 /*
4259  * Priority for NODE_RECLAIM. This determines the fraction of pages
4260  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4261  * a zone.
4262  */
4263 #define NODE_RECLAIM_PRIORITY 4
4264 
4265 /*
4266  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4267  * occur.
4268  */
4269 int sysctl_min_unmapped_ratio = 1;
4270 
4271 /*
4272  * If the number of slab pages in a zone grows beyond this percentage then
4273  * slab reclaim needs to occur.
4274  */
4275 int sysctl_min_slab_ratio = 5;
4276 
node_unmapped_file_pages(struct pglist_data * pgdat)4277 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4278 {
4279 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4280 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4281 		node_page_state(pgdat, NR_ACTIVE_FILE);
4282 
4283 	/*
4284 	 * It's possible for there to be more file mapped pages than
4285 	 * accounted for by the pages on the file LRU lists because
4286 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4287 	 */
4288 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4289 }
4290 
4291 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)4292 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4293 {
4294 	unsigned long nr_pagecache_reclaimable;
4295 	unsigned long delta = 0;
4296 
4297 	/*
4298 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4299 	 * potentially reclaimable. Otherwise, we have to worry about
4300 	 * pages like swapcache and node_unmapped_file_pages() provides
4301 	 * a better estimate
4302 	 */
4303 	if (node_reclaim_mode & RECLAIM_UNMAP)
4304 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4305 	else
4306 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4307 
4308 	/* If we can't clean pages, remove dirty pages from consideration */
4309 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4310 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4311 
4312 	/* Watch for any possible underflows due to delta */
4313 	if (unlikely(delta > nr_pagecache_reclaimable))
4314 		delta = nr_pagecache_reclaimable;
4315 
4316 	return nr_pagecache_reclaimable - delta;
4317 }
4318 
4319 /*
4320  * Try to free up some pages from this node through reclaim.
4321  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4322 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4323 {
4324 	/* Minimum pages needed in order to stay on node */
4325 	const unsigned long nr_pages = 1 << order;
4326 	struct task_struct *p = current;
4327 	unsigned int noreclaim_flag;
4328 	struct scan_control sc = {
4329 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4330 		.gfp_mask = current_gfp_context(gfp_mask),
4331 		.order = order,
4332 		.priority = NODE_RECLAIM_PRIORITY,
4333 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4334 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4335 		.may_swap = 1,
4336 		.reclaim_idx = gfp_zone(gfp_mask),
4337 	};
4338 
4339 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4340 					   sc.gfp_mask);
4341 
4342 	cond_resched();
4343 	fs_reclaim_acquire(sc.gfp_mask);
4344 	/*
4345 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4346 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4347 	 * and RECLAIM_UNMAP.
4348 	 */
4349 	noreclaim_flag = memalloc_noreclaim_save();
4350 	p->flags |= PF_SWAPWRITE;
4351 	set_task_reclaim_state(p, &sc.reclaim_state);
4352 
4353 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4354 		/*
4355 		 * Free memory by calling shrink node with increasing
4356 		 * priorities until we have enough memory freed.
4357 		 */
4358 		do {
4359 			shrink_node(pgdat, &sc);
4360 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4361 	}
4362 
4363 	set_task_reclaim_state(p, NULL);
4364 	current->flags &= ~PF_SWAPWRITE;
4365 	memalloc_noreclaim_restore(noreclaim_flag);
4366 	fs_reclaim_release(sc.gfp_mask);
4367 
4368 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4369 
4370 	return sc.nr_reclaimed >= nr_pages;
4371 }
4372 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4373 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4374 {
4375 	int ret;
4376 
4377 	/*
4378 	 * Node reclaim reclaims unmapped file backed pages and
4379 	 * slab pages if we are over the defined limits.
4380 	 *
4381 	 * A small portion of unmapped file backed pages is needed for
4382 	 * file I/O otherwise pages read by file I/O will be immediately
4383 	 * thrown out if the node is overallocated. So we do not reclaim
4384 	 * if less than a specified percentage of the node is used by
4385 	 * unmapped file backed pages.
4386 	 */
4387 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4388 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4389 	    pgdat->min_slab_pages)
4390 		return NODE_RECLAIM_FULL;
4391 
4392 	/*
4393 	 * Do not scan if the allocation should not be delayed.
4394 	 */
4395 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4396 		return NODE_RECLAIM_NOSCAN;
4397 
4398 	/*
4399 	 * Only run node reclaim on the local node or on nodes that do not
4400 	 * have associated processors. This will favor the local processor
4401 	 * over remote processors and spread off node memory allocations
4402 	 * as wide as possible.
4403 	 */
4404 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4405 		return NODE_RECLAIM_NOSCAN;
4406 
4407 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4408 		return NODE_RECLAIM_NOSCAN;
4409 
4410 	ret = __node_reclaim(pgdat, gfp_mask, order);
4411 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4412 
4413 	if (!ret)
4414 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4415 
4416 	return ret;
4417 }
4418 #endif
4419 
4420 /**
4421  * check_move_unevictable_pages - check pages for evictability and move to
4422  * appropriate zone lru list
4423  * @pvec: pagevec with lru pages to check
4424  *
4425  * Checks pages for evictability, if an evictable page is in the unevictable
4426  * lru list, moves it to the appropriate evictable lru list. This function
4427  * should be only used for lru pages.
4428  */
check_move_unevictable_pages(struct pagevec * pvec)4429 void check_move_unevictable_pages(struct pagevec *pvec)
4430 {
4431 	struct lruvec *lruvec;
4432 	struct pglist_data *pgdat = NULL;
4433 	int pgscanned = 0;
4434 	int pgrescued = 0;
4435 	int i;
4436 
4437 	for (i = 0; i < pvec->nr; i++) {
4438 		struct page *page = pvec->pages[i];
4439 		struct pglist_data *pagepgdat = page_pgdat(page);
4440 		int nr_pages;
4441 
4442 		if (PageTransTail(page))
4443 			continue;
4444 
4445 		nr_pages = thp_nr_pages(page);
4446 		pgscanned += nr_pages;
4447 
4448 		if (pagepgdat != pgdat) {
4449 			if (pgdat)
4450 				spin_unlock_irq(&pgdat->lru_lock);
4451 			pgdat = pagepgdat;
4452 			spin_lock_irq(&pgdat->lru_lock);
4453 		}
4454 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4455 
4456 		if (!PageLRU(page) || !PageUnevictable(page))
4457 			continue;
4458 
4459 		if (page_evictable(page)) {
4460 			enum lru_list lru = page_lru_base_type(page);
4461 
4462 			VM_BUG_ON_PAGE(PageActive(page), page);
4463 			ClearPageUnevictable(page);
4464 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4465 			add_page_to_lru_list(page, lruvec, lru);
4466 			pgrescued += nr_pages;
4467 		}
4468 	}
4469 
4470 	if (pgdat) {
4471 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4472 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4473 		spin_unlock_irq(&pgdat->lru_lock);
4474 	}
4475 }
4476 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4477