• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/compiler.h>
25 #include <linux/audit.h>
26 #include <linux/random.h>
27 
28 #include "tick-internal.h"
29 #include "ntp_internal.h"
30 #include "timekeeping_internal.h"
31 
32 #define TK_CLEAR_NTP		(1 << 0)
33 #define TK_MIRROR		(1 << 1)
34 #define TK_CLOCK_WAS_SET	(1 << 2)
35 
36 enum timekeeping_adv_mode {
37 	/* Update timekeeper when a tick has passed */
38 	TK_ADV_TICK,
39 
40 	/* Update timekeeper on a direct frequency change */
41 	TK_ADV_FREQ
42 };
43 
44 DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 
46 /*
47  * The most important data for readout fits into a single 64 byte
48  * cache line.
49  */
50 static struct {
51 	seqcount_raw_spinlock_t	seq;
52 	struct timekeeper	timekeeper;
53 } tk_core ____cacheline_aligned = {
54 	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
55 };
56 
57 static struct timekeeper shadow_timekeeper;
58 
59 /* flag for if timekeeping is suspended */
60 int __read_mostly timekeeping_suspended;
61 
62 /**
63  * struct tk_fast - NMI safe timekeeper
64  * @seq:	Sequence counter for protecting updates. The lowest bit
65  *		is the index for the tk_read_base array
66  * @base:	tk_read_base array. Access is indexed by the lowest bit of
67  *		@seq.
68  *
69  * See @update_fast_timekeeper() below.
70  */
71 struct tk_fast {
72 	seqcount_latch_t	seq;
73 	struct tk_read_base	base[2];
74 };
75 
76 /* Suspend-time cycles value for halted fast timekeeper. */
77 static u64 cycles_at_suspend;
78 
dummy_clock_read(struct clocksource * cs)79 static u64 dummy_clock_read(struct clocksource *cs)
80 {
81 	if (timekeeping_suspended)
82 		return cycles_at_suspend;
83 	return local_clock();
84 }
85 
86 static struct clocksource dummy_clock = {
87 	.read = dummy_clock_read,
88 };
89 
90 /*
91  * Boot time initialization which allows local_clock() to be utilized
92  * during early boot when clocksources are not available. local_clock()
93  * returns nanoseconds already so no conversion is required, hence mult=1
94  * and shift=0. When the first proper clocksource is installed then
95  * the fast time keepers are updated with the correct values.
96  */
97 #define FAST_TK_INIT						\
98 	{							\
99 		.clock		= &dummy_clock,			\
100 		.mask		= CLOCKSOURCE_MASK(64),		\
101 		.mult		= 1,				\
102 		.shift		= 0,				\
103 	}
104 
105 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
106 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
107 	.base[0] = FAST_TK_INIT,
108 	.base[1] = FAST_TK_INIT,
109 };
110 
111 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
112 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
113 	.base[0] = FAST_TK_INIT,
114 	.base[1] = FAST_TK_INIT,
115 };
116 
tk_normalize_xtime(struct timekeeper * tk)117 static inline void tk_normalize_xtime(struct timekeeper *tk)
118 {
119 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
120 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
121 		tk->xtime_sec++;
122 	}
123 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
124 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
125 		tk->raw_sec++;
126 	}
127 }
128 
tk_xtime(const struct timekeeper * tk)129 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
130 {
131 	struct timespec64 ts;
132 
133 	ts.tv_sec = tk->xtime_sec;
134 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
135 	return ts;
136 }
137 
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)138 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
139 {
140 	tk->xtime_sec = ts->tv_sec;
141 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
142 }
143 
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)144 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
145 {
146 	tk->xtime_sec += ts->tv_sec;
147 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
148 	tk_normalize_xtime(tk);
149 }
150 
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)151 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
152 {
153 	struct timespec64 tmp;
154 
155 	/*
156 	 * Verify consistency of: offset_real = -wall_to_monotonic
157 	 * before modifying anything
158 	 */
159 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
160 					-tk->wall_to_monotonic.tv_nsec);
161 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
162 	tk->wall_to_monotonic = wtm;
163 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
164 	tk->offs_real = timespec64_to_ktime(tmp);
165 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
166 }
167 
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)168 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
169 {
170 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
171 	/*
172 	 * Timespec representation for VDSO update to avoid 64bit division
173 	 * on every update.
174 	 */
175 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
176 }
177 
178 /*
179  * tk_clock_read - atomic clocksource read() helper
180  *
181  * This helper is necessary to use in the read paths because, while the
182  * seqcount ensures we don't return a bad value while structures are updated,
183  * it doesn't protect from potential crashes. There is the possibility that
184  * the tkr's clocksource may change between the read reference, and the
185  * clock reference passed to the read function.  This can cause crashes if
186  * the wrong clocksource is passed to the wrong read function.
187  * This isn't necessary to use when holding the timekeeper_lock or doing
188  * a read of the fast-timekeeper tkrs (which is protected by its own locking
189  * and update logic).
190  */
tk_clock_read(const struct tk_read_base * tkr)191 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
192 {
193 	struct clocksource *clock = READ_ONCE(tkr->clock);
194 
195 	return clock->read(clock);
196 }
197 
198 #ifdef CONFIG_DEBUG_TIMEKEEPING
199 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
200 
timekeeping_check_update(struct timekeeper * tk,u64 offset)201 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
202 {
203 
204 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
205 	const char *name = tk->tkr_mono.clock->name;
206 
207 	if (offset > max_cycles) {
208 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
209 				offset, name, max_cycles);
210 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
211 	} else {
212 		if (offset > (max_cycles >> 1)) {
213 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
214 					offset, name, max_cycles >> 1);
215 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
216 		}
217 	}
218 
219 	if (tk->underflow_seen) {
220 		if (jiffies - tk->last_warning > WARNING_FREQ) {
221 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
222 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
223 			printk_deferred("         Your kernel is probably still fine.\n");
224 			tk->last_warning = jiffies;
225 		}
226 		tk->underflow_seen = 0;
227 	}
228 
229 	if (tk->overflow_seen) {
230 		if (jiffies - tk->last_warning > WARNING_FREQ) {
231 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
232 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
233 			printk_deferred("         Your kernel is probably still fine.\n");
234 			tk->last_warning = jiffies;
235 		}
236 		tk->overflow_seen = 0;
237 	}
238 }
239 
timekeeping_get_delta(const struct tk_read_base * tkr)240 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
241 {
242 	struct timekeeper *tk = &tk_core.timekeeper;
243 	u64 now, last, mask, max, delta;
244 	unsigned int seq;
245 
246 	/*
247 	 * Since we're called holding a seqcount, the data may shift
248 	 * under us while we're doing the calculation. This can cause
249 	 * false positives, since we'd note a problem but throw the
250 	 * results away. So nest another seqcount here to atomically
251 	 * grab the points we are checking with.
252 	 */
253 	do {
254 		seq = read_seqcount_begin(&tk_core.seq);
255 		now = tk_clock_read(tkr);
256 		last = tkr->cycle_last;
257 		mask = tkr->mask;
258 		max = tkr->clock->max_cycles;
259 	} while (read_seqcount_retry(&tk_core.seq, seq));
260 
261 	delta = clocksource_delta(now, last, mask);
262 
263 	/*
264 	 * Try to catch underflows by checking if we are seeing small
265 	 * mask-relative negative values.
266 	 */
267 	if (unlikely((~delta & mask) < (mask >> 3))) {
268 		tk->underflow_seen = 1;
269 		delta = 0;
270 	}
271 
272 	/* Cap delta value to the max_cycles values to avoid mult overflows */
273 	if (unlikely(delta > max)) {
274 		tk->overflow_seen = 1;
275 		delta = tkr->clock->max_cycles;
276 	}
277 
278 	return delta;
279 }
280 #else
timekeeping_check_update(struct timekeeper * tk,u64 offset)281 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
282 {
283 }
timekeeping_get_delta(const struct tk_read_base * tkr)284 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
285 {
286 	u64 cycle_now, delta;
287 
288 	/* read clocksource */
289 	cycle_now = tk_clock_read(tkr);
290 
291 	/* calculate the delta since the last update_wall_time */
292 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
293 
294 	return delta;
295 }
296 #endif
297 
298 /**
299  * tk_setup_internals - Set up internals to use clocksource clock.
300  *
301  * @tk:		The target timekeeper to setup.
302  * @clock:		Pointer to clocksource.
303  *
304  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
305  * pair and interval request.
306  *
307  * Unless you're the timekeeping code, you should not be using this!
308  */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)309 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
310 {
311 	u64 interval;
312 	u64 tmp, ntpinterval;
313 	struct clocksource *old_clock;
314 
315 	++tk->cs_was_changed_seq;
316 	old_clock = tk->tkr_mono.clock;
317 	tk->tkr_mono.clock = clock;
318 	tk->tkr_mono.mask = clock->mask;
319 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
320 
321 	tk->tkr_raw.clock = clock;
322 	tk->tkr_raw.mask = clock->mask;
323 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
324 
325 	/* Do the ns -> cycle conversion first, using original mult */
326 	tmp = NTP_INTERVAL_LENGTH;
327 	tmp <<= clock->shift;
328 	ntpinterval = tmp;
329 	tmp += clock->mult/2;
330 	do_div(tmp, clock->mult);
331 	if (tmp == 0)
332 		tmp = 1;
333 
334 	interval = (u64) tmp;
335 	tk->cycle_interval = interval;
336 
337 	/* Go back from cycles -> shifted ns */
338 	tk->xtime_interval = interval * clock->mult;
339 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
340 	tk->raw_interval = interval * clock->mult;
341 
342 	 /* if changing clocks, convert xtime_nsec shift units */
343 	if (old_clock) {
344 		int shift_change = clock->shift - old_clock->shift;
345 		if (shift_change < 0) {
346 			tk->tkr_mono.xtime_nsec >>= -shift_change;
347 			tk->tkr_raw.xtime_nsec >>= -shift_change;
348 		} else {
349 			tk->tkr_mono.xtime_nsec <<= shift_change;
350 			tk->tkr_raw.xtime_nsec <<= shift_change;
351 		}
352 	}
353 
354 	tk->tkr_mono.shift = clock->shift;
355 	tk->tkr_raw.shift = clock->shift;
356 
357 	tk->ntp_error = 0;
358 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
359 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
360 
361 	/*
362 	 * The timekeeper keeps its own mult values for the currently
363 	 * active clocksource. These value will be adjusted via NTP
364 	 * to counteract clock drifting.
365 	 */
366 	tk->tkr_mono.mult = clock->mult;
367 	tk->tkr_raw.mult = clock->mult;
368 	tk->ntp_err_mult = 0;
369 	tk->skip_second_overflow = 0;
370 }
371 
372 /* Timekeeper helper functions. */
373 
374 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
default_arch_gettimeoffset(void)375 static u32 default_arch_gettimeoffset(void) { return 0; }
376 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
377 #else
arch_gettimeoffset(void)378 static inline u32 arch_gettimeoffset(void) { return 0; }
379 #endif
380 
timekeeping_delta_to_ns(const struct tk_read_base * tkr,u64 delta)381 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
382 {
383 	u64 nsec;
384 
385 	nsec = delta * tkr->mult + tkr->xtime_nsec;
386 	nsec >>= tkr->shift;
387 
388 	/* If arch requires, add in get_arch_timeoffset() */
389 	return nsec + arch_gettimeoffset();
390 }
391 
timekeeping_get_ns(const struct tk_read_base * tkr)392 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
393 {
394 	u64 delta;
395 
396 	delta = timekeeping_get_delta(tkr);
397 	return timekeeping_delta_to_ns(tkr, delta);
398 }
399 
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)400 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
401 {
402 	u64 delta;
403 
404 	/* calculate the delta since the last update_wall_time */
405 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
406 	return timekeeping_delta_to_ns(tkr, delta);
407 }
408 
409 /**
410  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
411  * @tkr: Timekeeping readout base from which we take the update
412  *
413  * We want to use this from any context including NMI and tracing /
414  * instrumenting the timekeeping code itself.
415  *
416  * Employ the latch technique; see @raw_write_seqcount_latch.
417  *
418  * So if a NMI hits the update of base[0] then it will use base[1]
419  * which is still consistent. In the worst case this can result is a
420  * slightly wrong timestamp (a few nanoseconds). See
421  * @ktime_get_mono_fast_ns.
422  */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)423 static void update_fast_timekeeper(const struct tk_read_base *tkr,
424 				   struct tk_fast *tkf)
425 {
426 	struct tk_read_base *base = tkf->base;
427 
428 	/* Force readers off to base[1] */
429 	raw_write_seqcount_latch(&tkf->seq);
430 
431 	/* Update base[0] */
432 	memcpy(base, tkr, sizeof(*base));
433 
434 	/* Force readers back to base[0] */
435 	raw_write_seqcount_latch(&tkf->seq);
436 
437 	/* Update base[1] */
438 	memcpy(base + 1, base, sizeof(*base));
439 }
440 
441 /**
442  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
443  *
444  * This timestamp is not guaranteed to be monotonic across an update.
445  * The timestamp is calculated by:
446  *
447  *	now = base_mono + clock_delta * slope
448  *
449  * So if the update lowers the slope, readers who are forced to the
450  * not yet updated second array are still using the old steeper slope.
451  *
452  * tmono
453  * ^
454  * |    o  n
455  * |   o n
456  * |  u
457  * | o
458  * |o
459  * |12345678---> reader order
460  *
461  * o = old slope
462  * u = update
463  * n = new slope
464  *
465  * So reader 6 will observe time going backwards versus reader 5.
466  *
467  * While other CPUs are likely to be able observe that, the only way
468  * for a CPU local observation is when an NMI hits in the middle of
469  * the update. Timestamps taken from that NMI context might be ahead
470  * of the following timestamps. Callers need to be aware of that and
471  * deal with it.
472  */
__ktime_get_fast_ns(struct tk_fast * tkf)473 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
474 {
475 	struct tk_read_base *tkr;
476 	unsigned int seq;
477 	u64 now;
478 
479 	do {
480 		seq = raw_read_seqcount_latch(&tkf->seq);
481 		tkr = tkf->base + (seq & 0x01);
482 		now = ktime_to_ns(tkr->base);
483 
484 		now += timekeeping_delta_to_ns(tkr,
485 				clocksource_delta(
486 					tk_clock_read(tkr),
487 					tkr->cycle_last,
488 					tkr->mask));
489 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
490 
491 	return now;
492 }
493 
ktime_get_mono_fast_ns(void)494 u64 ktime_get_mono_fast_ns(void)
495 {
496 	return __ktime_get_fast_ns(&tk_fast_mono);
497 }
498 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
499 
ktime_get_raw_fast_ns(void)500 u64 ktime_get_raw_fast_ns(void)
501 {
502 	return __ktime_get_fast_ns(&tk_fast_raw);
503 }
504 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
505 
506 /**
507  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
508  *
509  * To keep it NMI safe since we're accessing from tracing, we're not using a
510  * separate timekeeper with updates to monotonic clock and boot offset
511  * protected with seqcounts. This has the following minor side effects:
512  *
513  * (1) Its possible that a timestamp be taken after the boot offset is updated
514  * but before the timekeeper is updated. If this happens, the new boot offset
515  * is added to the old timekeeping making the clock appear to update slightly
516  * earlier:
517  *    CPU 0                                        CPU 1
518  *    timekeeping_inject_sleeptime64()
519  *    __timekeeping_inject_sleeptime(tk, delta);
520  *                                                 timestamp();
521  *    timekeeping_update(tk, TK_CLEAR_NTP...);
522  *
523  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
524  * partially updated.  Since the tk->offs_boot update is a rare event, this
525  * should be a rare occurrence which postprocessing should be able to handle.
526  */
ktime_get_boot_fast_ns(void)527 u64 notrace ktime_get_boot_fast_ns(void)
528 {
529 	struct timekeeper *tk = &tk_core.timekeeper;
530 
531 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
532 }
533 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
534 
535 /*
536  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
537  */
__ktime_get_real_fast(struct tk_fast * tkf,u64 * mono)538 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
539 {
540 	struct tk_read_base *tkr;
541 	u64 basem, baser, delta;
542 	unsigned int seq;
543 
544 	do {
545 		seq = raw_read_seqcount_latch(&tkf->seq);
546 		tkr = tkf->base + (seq & 0x01);
547 		basem = ktime_to_ns(tkr->base);
548 		baser = ktime_to_ns(tkr->base_real);
549 
550 		delta = timekeeping_delta_to_ns(tkr,
551 				clocksource_delta(tk_clock_read(tkr),
552 				tkr->cycle_last, tkr->mask));
553 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
554 
555 	if (mono)
556 		*mono = basem + delta;
557 	return baser + delta;
558 }
559 
560 /**
561  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
562  */
ktime_get_real_fast_ns(void)563 u64 ktime_get_real_fast_ns(void)
564 {
565 	return __ktime_get_real_fast(&tk_fast_mono, NULL);
566 }
567 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
568 
569 /**
570  * ktime_get_fast_timestamps: - NMI safe timestamps
571  * @snapshot:	Pointer to timestamp storage
572  *
573  * Stores clock monotonic, boottime and realtime timestamps.
574  *
575  * Boot time is a racy access on 32bit systems if the sleep time injection
576  * happens late during resume and not in timekeeping_resume(). That could
577  * be avoided by expanding struct tk_read_base with boot offset for 32bit
578  * and adding more overhead to the update. As this is a hard to observe
579  * once per resume event which can be filtered with reasonable effort using
580  * the accurate mono/real timestamps, it's probably not worth the trouble.
581  *
582  * Aside of that it might be possible on 32 and 64 bit to observe the
583  * following when the sleep time injection happens late:
584  *
585  * CPU 0				CPU 1
586  * timekeeping_resume()
587  * ktime_get_fast_timestamps()
588  *	mono, real = __ktime_get_real_fast()
589  *					inject_sleep_time()
590  *					   update boot offset
591  *	boot = mono + bootoffset;
592  *
593  * That means that boot time already has the sleep time adjustment, but
594  * real time does not. On the next readout both are in sync again.
595  *
596  * Preventing this for 64bit is not really feasible without destroying the
597  * careful cache layout of the timekeeper because the sequence count and
598  * struct tk_read_base would then need two cache lines instead of one.
599  *
600  * Access to the time keeper clock source is disabled accross the innermost
601  * steps of suspend/resume. The accessors still work, but the timestamps
602  * are frozen until time keeping is resumed which happens very early.
603  *
604  * For regular suspend/resume there is no observable difference vs. sched
605  * clock, but it might affect some of the nasty low level debug printks.
606  *
607  * OTOH, access to sched clock is not guaranteed accross suspend/resume on
608  * all systems either so it depends on the hardware in use.
609  *
610  * If that turns out to be a real problem then this could be mitigated by
611  * using sched clock in a similar way as during early boot. But it's not as
612  * trivial as on early boot because it needs some careful protection
613  * against the clock monotonic timestamp jumping backwards on resume.
614  */
ktime_get_fast_timestamps(struct ktime_timestamps * snapshot)615 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
616 {
617 	struct timekeeper *tk = &tk_core.timekeeper;
618 
619 	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
620 	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
621 }
622 
623 /**
624  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
625  * @tk: Timekeeper to snapshot.
626  *
627  * It generally is unsafe to access the clocksource after timekeeping has been
628  * suspended, so take a snapshot of the readout base of @tk and use it as the
629  * fast timekeeper's readout base while suspended.  It will return the same
630  * number of cycles every time until timekeeping is resumed at which time the
631  * proper readout base for the fast timekeeper will be restored automatically.
632  */
halt_fast_timekeeper(const struct timekeeper * tk)633 static void halt_fast_timekeeper(const struct timekeeper *tk)
634 {
635 	static struct tk_read_base tkr_dummy;
636 	const struct tk_read_base *tkr = &tk->tkr_mono;
637 
638 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
639 	cycles_at_suspend = tk_clock_read(tkr);
640 	tkr_dummy.clock = &dummy_clock;
641 	tkr_dummy.base_real = tkr->base + tk->offs_real;
642 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
643 
644 	tkr = &tk->tkr_raw;
645 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
646 	tkr_dummy.clock = &dummy_clock;
647 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
648 }
649 
650 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
651 
update_pvclock_gtod(struct timekeeper * tk,bool was_set)652 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
653 {
654 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
655 }
656 
657 /**
658  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
659  */
pvclock_gtod_register_notifier(struct notifier_block * nb)660 int pvclock_gtod_register_notifier(struct notifier_block *nb)
661 {
662 	struct timekeeper *tk = &tk_core.timekeeper;
663 	unsigned long flags;
664 	int ret;
665 
666 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
667 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
668 	update_pvclock_gtod(tk, true);
669 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
670 
671 	return ret;
672 }
673 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
674 
675 /**
676  * pvclock_gtod_unregister_notifier - unregister a pvclock
677  * timedata update listener
678  */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)679 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
680 {
681 	unsigned long flags;
682 	int ret;
683 
684 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
685 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
686 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
687 
688 	return ret;
689 }
690 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
691 
692 /*
693  * tk_update_leap_state - helper to update the next_leap_ktime
694  */
tk_update_leap_state(struct timekeeper * tk)695 static inline void tk_update_leap_state(struct timekeeper *tk)
696 {
697 	tk->next_leap_ktime = ntp_get_next_leap();
698 	if (tk->next_leap_ktime != KTIME_MAX)
699 		/* Convert to monotonic time */
700 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
701 }
702 
703 /*
704  * Update the ktime_t based scalar nsec members of the timekeeper
705  */
tk_update_ktime_data(struct timekeeper * tk)706 static inline void tk_update_ktime_data(struct timekeeper *tk)
707 {
708 	u64 seconds;
709 	u32 nsec;
710 
711 	/*
712 	 * The xtime based monotonic readout is:
713 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
714 	 * The ktime based monotonic readout is:
715 	 *	nsec = base_mono + now();
716 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
717 	 */
718 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
719 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
720 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
721 
722 	/*
723 	 * The sum of the nanoseconds portions of xtime and
724 	 * wall_to_monotonic can be greater/equal one second. Take
725 	 * this into account before updating tk->ktime_sec.
726 	 */
727 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
728 	if (nsec >= NSEC_PER_SEC)
729 		seconds++;
730 	tk->ktime_sec = seconds;
731 
732 	/* Update the monotonic raw base */
733 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
734 }
735 
736 /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)737 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
738 {
739 	if (action & TK_CLEAR_NTP) {
740 		tk->ntp_error = 0;
741 		ntp_clear();
742 	}
743 
744 	tk_update_leap_state(tk);
745 	tk_update_ktime_data(tk);
746 
747 	update_vsyscall(tk);
748 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
749 
750 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
751 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
752 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
753 
754 	if (action & TK_CLOCK_WAS_SET)
755 		tk->clock_was_set_seq++;
756 	/*
757 	 * The mirroring of the data to the shadow-timekeeper needs
758 	 * to happen last here to ensure we don't over-write the
759 	 * timekeeper structure on the next update with stale data
760 	 */
761 	if (action & TK_MIRROR)
762 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
763 		       sizeof(tk_core.timekeeper));
764 }
765 
766 /**
767  * timekeeping_forward_now - update clock to the current time
768  *
769  * Forward the current clock to update its state since the last call to
770  * update_wall_time(). This is useful before significant clock changes,
771  * as it avoids having to deal with this time offset explicitly.
772  */
timekeeping_forward_now(struct timekeeper * tk)773 static void timekeeping_forward_now(struct timekeeper *tk)
774 {
775 	u64 cycle_now, delta;
776 
777 	cycle_now = tk_clock_read(&tk->tkr_mono);
778 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
779 	tk->tkr_mono.cycle_last = cycle_now;
780 	tk->tkr_raw.cycle_last  = cycle_now;
781 
782 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
783 
784 	/* If arch requires, add in get_arch_timeoffset() */
785 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
786 
787 
788 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
789 
790 	/* If arch requires, add in get_arch_timeoffset() */
791 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
792 
793 	tk_normalize_xtime(tk);
794 }
795 
796 /**
797  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
798  * @ts:		pointer to the timespec to be set
799  *
800  * Returns the time of day in a timespec64 (WARN if suspended).
801  */
ktime_get_real_ts64(struct timespec64 * ts)802 void ktime_get_real_ts64(struct timespec64 *ts)
803 {
804 	struct timekeeper *tk = &tk_core.timekeeper;
805 	unsigned int seq;
806 	u64 nsecs;
807 
808 	WARN_ON(timekeeping_suspended);
809 
810 	do {
811 		seq = read_seqcount_begin(&tk_core.seq);
812 
813 		ts->tv_sec = tk->xtime_sec;
814 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
815 
816 	} while (read_seqcount_retry(&tk_core.seq, seq));
817 
818 	ts->tv_nsec = 0;
819 	timespec64_add_ns(ts, nsecs);
820 }
821 EXPORT_SYMBOL(ktime_get_real_ts64);
822 
ktime_get(void)823 ktime_t ktime_get(void)
824 {
825 	struct timekeeper *tk = &tk_core.timekeeper;
826 	unsigned int seq;
827 	ktime_t base;
828 	u64 nsecs;
829 
830 	WARN_ON(timekeeping_suspended);
831 
832 	do {
833 		seq = read_seqcount_begin(&tk_core.seq);
834 		base = tk->tkr_mono.base;
835 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
836 
837 	} while (read_seqcount_retry(&tk_core.seq, seq));
838 
839 	return ktime_add_ns(base, nsecs);
840 }
841 EXPORT_SYMBOL_GPL(ktime_get);
842 
ktime_get_resolution_ns(void)843 u32 ktime_get_resolution_ns(void)
844 {
845 	struct timekeeper *tk = &tk_core.timekeeper;
846 	unsigned int seq;
847 	u32 nsecs;
848 
849 	WARN_ON(timekeeping_suspended);
850 
851 	do {
852 		seq = read_seqcount_begin(&tk_core.seq);
853 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
854 	} while (read_seqcount_retry(&tk_core.seq, seq));
855 
856 	return nsecs;
857 }
858 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
859 
860 static ktime_t *offsets[TK_OFFS_MAX] = {
861 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
862 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
863 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
864 };
865 
ktime_get_with_offset(enum tk_offsets offs)866 ktime_t ktime_get_with_offset(enum tk_offsets offs)
867 {
868 	struct timekeeper *tk = &tk_core.timekeeper;
869 	unsigned int seq;
870 	ktime_t base, *offset = offsets[offs];
871 	u64 nsecs;
872 
873 	WARN_ON(timekeeping_suspended);
874 
875 	do {
876 		seq = read_seqcount_begin(&tk_core.seq);
877 		base = ktime_add(tk->tkr_mono.base, *offset);
878 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
879 
880 	} while (read_seqcount_retry(&tk_core.seq, seq));
881 
882 	return ktime_add_ns(base, nsecs);
883 
884 }
885 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
886 
ktime_get_coarse_with_offset(enum tk_offsets offs)887 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
888 {
889 	struct timekeeper *tk = &tk_core.timekeeper;
890 	unsigned int seq;
891 	ktime_t base, *offset = offsets[offs];
892 	u64 nsecs;
893 
894 	WARN_ON(timekeeping_suspended);
895 
896 	do {
897 		seq = read_seqcount_begin(&tk_core.seq);
898 		base = ktime_add(tk->tkr_mono.base, *offset);
899 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
900 
901 	} while (read_seqcount_retry(&tk_core.seq, seq));
902 
903 	return ktime_add_ns(base, nsecs);
904 }
905 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
906 
907 /**
908  * ktime_mono_to_any() - convert mononotic time to any other time
909  * @tmono:	time to convert.
910  * @offs:	which offset to use
911  */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)912 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
913 {
914 	ktime_t *offset = offsets[offs];
915 	unsigned int seq;
916 	ktime_t tconv;
917 
918 	do {
919 		seq = read_seqcount_begin(&tk_core.seq);
920 		tconv = ktime_add(tmono, *offset);
921 	} while (read_seqcount_retry(&tk_core.seq, seq));
922 
923 	return tconv;
924 }
925 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
926 
927 /**
928  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
929  */
ktime_get_raw(void)930 ktime_t ktime_get_raw(void)
931 {
932 	struct timekeeper *tk = &tk_core.timekeeper;
933 	unsigned int seq;
934 	ktime_t base;
935 	u64 nsecs;
936 
937 	do {
938 		seq = read_seqcount_begin(&tk_core.seq);
939 		base = tk->tkr_raw.base;
940 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
941 
942 	} while (read_seqcount_retry(&tk_core.seq, seq));
943 
944 	return ktime_add_ns(base, nsecs);
945 }
946 EXPORT_SYMBOL_GPL(ktime_get_raw);
947 
948 /**
949  * ktime_get_ts64 - get the monotonic clock in timespec64 format
950  * @ts:		pointer to timespec variable
951  *
952  * The function calculates the monotonic clock from the realtime
953  * clock and the wall_to_monotonic offset and stores the result
954  * in normalized timespec64 format in the variable pointed to by @ts.
955  */
ktime_get_ts64(struct timespec64 * ts)956 void ktime_get_ts64(struct timespec64 *ts)
957 {
958 	struct timekeeper *tk = &tk_core.timekeeper;
959 	struct timespec64 tomono;
960 	unsigned int seq;
961 	u64 nsec;
962 
963 	WARN_ON(timekeeping_suspended);
964 
965 	do {
966 		seq = read_seqcount_begin(&tk_core.seq);
967 		ts->tv_sec = tk->xtime_sec;
968 		nsec = timekeeping_get_ns(&tk->tkr_mono);
969 		tomono = tk->wall_to_monotonic;
970 
971 	} while (read_seqcount_retry(&tk_core.seq, seq));
972 
973 	ts->tv_sec += tomono.tv_sec;
974 	ts->tv_nsec = 0;
975 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
976 }
977 EXPORT_SYMBOL_GPL(ktime_get_ts64);
978 
979 /**
980  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
981  *
982  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
983  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
984  * works on both 32 and 64 bit systems. On 32 bit systems the readout
985  * covers ~136 years of uptime which should be enough to prevent
986  * premature wrap arounds.
987  */
ktime_get_seconds(void)988 time64_t ktime_get_seconds(void)
989 {
990 	struct timekeeper *tk = &tk_core.timekeeper;
991 
992 	WARN_ON(timekeeping_suspended);
993 	return tk->ktime_sec;
994 }
995 EXPORT_SYMBOL_GPL(ktime_get_seconds);
996 
997 /**
998  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
999  *
1000  * Returns the wall clock seconds since 1970. This replaces the
1001  * get_seconds() interface which is not y2038 safe on 32bit systems.
1002  *
1003  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1004  * 32bit systems the access must be protected with the sequence
1005  * counter to provide "atomic" access to the 64bit tk->xtime_sec
1006  * value.
1007  */
ktime_get_real_seconds(void)1008 time64_t ktime_get_real_seconds(void)
1009 {
1010 	struct timekeeper *tk = &tk_core.timekeeper;
1011 	time64_t seconds;
1012 	unsigned int seq;
1013 
1014 	if (IS_ENABLED(CONFIG_64BIT))
1015 		return tk->xtime_sec;
1016 
1017 	do {
1018 		seq = read_seqcount_begin(&tk_core.seq);
1019 		seconds = tk->xtime_sec;
1020 
1021 	} while (read_seqcount_retry(&tk_core.seq, seq));
1022 
1023 	return seconds;
1024 }
1025 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1026 
1027 /**
1028  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1029  * but without the sequence counter protect. This internal function
1030  * is called just when timekeeping lock is already held.
1031  */
__ktime_get_real_seconds(void)1032 noinstr time64_t __ktime_get_real_seconds(void)
1033 {
1034 	struct timekeeper *tk = &tk_core.timekeeper;
1035 
1036 	return tk->xtime_sec;
1037 }
1038 
1039 /**
1040  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1041  * @systime_snapshot:	pointer to struct receiving the system time snapshot
1042  */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)1043 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1044 {
1045 	struct timekeeper *tk = &tk_core.timekeeper;
1046 	unsigned int seq;
1047 	ktime_t base_raw;
1048 	ktime_t base_real;
1049 	u64 nsec_raw;
1050 	u64 nsec_real;
1051 	u64 now;
1052 
1053 	WARN_ON_ONCE(timekeeping_suspended);
1054 
1055 	do {
1056 		seq = read_seqcount_begin(&tk_core.seq);
1057 		now = tk_clock_read(&tk->tkr_mono);
1058 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1059 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1060 		base_real = ktime_add(tk->tkr_mono.base,
1061 				      tk_core.timekeeper.offs_real);
1062 		base_raw = tk->tkr_raw.base;
1063 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1064 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1065 	} while (read_seqcount_retry(&tk_core.seq, seq));
1066 
1067 	systime_snapshot->cycles = now;
1068 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1069 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1070 }
1071 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1072 
1073 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)1074 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1075 {
1076 	u64 tmp, rem;
1077 
1078 	tmp = div64_u64_rem(*base, div, &rem);
1079 
1080 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1081 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1082 		return -EOVERFLOW;
1083 	tmp *= mult;
1084 
1085 	rem = div64_u64(rem * mult, div);
1086 	*base = tmp + rem;
1087 	return 0;
1088 }
1089 
1090 /**
1091  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1092  * @history:			Snapshot representing start of history
1093  * @partial_history_cycles:	Cycle offset into history (fractional part)
1094  * @total_history_cycles:	Total history length in cycles
1095  * @discontinuity:		True indicates clock was set on history period
1096  * @ts:				Cross timestamp that should be adjusted using
1097  *	partial/total ratio
1098  *
1099  * Helper function used by get_device_system_crosststamp() to correct the
1100  * crosstimestamp corresponding to the start of the current interval to the
1101  * system counter value (timestamp point) provided by the driver. The
1102  * total_history_* quantities are the total history starting at the provided
1103  * reference point and ending at the start of the current interval. The cycle
1104  * count between the driver timestamp point and the start of the current
1105  * interval is partial_history_cycles.
1106  */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1107 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1108 					 u64 partial_history_cycles,
1109 					 u64 total_history_cycles,
1110 					 bool discontinuity,
1111 					 struct system_device_crosststamp *ts)
1112 {
1113 	struct timekeeper *tk = &tk_core.timekeeper;
1114 	u64 corr_raw, corr_real;
1115 	bool interp_forward;
1116 	int ret;
1117 
1118 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1119 		return 0;
1120 
1121 	/* Interpolate shortest distance from beginning or end of history */
1122 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1123 	partial_history_cycles = interp_forward ?
1124 		total_history_cycles - partial_history_cycles :
1125 		partial_history_cycles;
1126 
1127 	/*
1128 	 * Scale the monotonic raw time delta by:
1129 	 *	partial_history_cycles / total_history_cycles
1130 	 */
1131 	corr_raw = (u64)ktime_to_ns(
1132 		ktime_sub(ts->sys_monoraw, history->raw));
1133 	ret = scale64_check_overflow(partial_history_cycles,
1134 				     total_history_cycles, &corr_raw);
1135 	if (ret)
1136 		return ret;
1137 
1138 	/*
1139 	 * If there is a discontinuity in the history, scale monotonic raw
1140 	 *	correction by:
1141 	 *	mult(real)/mult(raw) yielding the realtime correction
1142 	 * Otherwise, calculate the realtime correction similar to monotonic
1143 	 *	raw calculation
1144 	 */
1145 	if (discontinuity) {
1146 		corr_real = mul_u64_u32_div
1147 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1148 	} else {
1149 		corr_real = (u64)ktime_to_ns(
1150 			ktime_sub(ts->sys_realtime, history->real));
1151 		ret = scale64_check_overflow(partial_history_cycles,
1152 					     total_history_cycles, &corr_real);
1153 		if (ret)
1154 			return ret;
1155 	}
1156 
1157 	/* Fixup monotonic raw and real time time values */
1158 	if (interp_forward) {
1159 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1160 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1161 	} else {
1162 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1163 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 /*
1170  * cycle_between - true if test occurs chronologically between before and after
1171  */
cycle_between(u64 before,u64 test,u64 after)1172 static bool cycle_between(u64 before, u64 test, u64 after)
1173 {
1174 	if (test > before && test < after)
1175 		return true;
1176 	if (test < before && before > after)
1177 		return true;
1178 	return false;
1179 }
1180 
1181 /**
1182  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1183  * @get_time_fn:	Callback to get simultaneous device time and
1184  *	system counter from the device driver
1185  * @ctx:		Context passed to get_time_fn()
1186  * @history_begin:	Historical reference point used to interpolate system
1187  *	time when counter provided by the driver is before the current interval
1188  * @xtstamp:		Receives simultaneously captured system and device time
1189  *
1190  * Reads a timestamp from a device and correlates it to system time
1191  */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1192 int get_device_system_crosststamp(int (*get_time_fn)
1193 				  (ktime_t *device_time,
1194 				   struct system_counterval_t *sys_counterval,
1195 				   void *ctx),
1196 				  void *ctx,
1197 				  struct system_time_snapshot *history_begin,
1198 				  struct system_device_crosststamp *xtstamp)
1199 {
1200 	struct system_counterval_t system_counterval;
1201 	struct timekeeper *tk = &tk_core.timekeeper;
1202 	u64 cycles, now, interval_start;
1203 	unsigned int clock_was_set_seq = 0;
1204 	ktime_t base_real, base_raw;
1205 	u64 nsec_real, nsec_raw;
1206 	u8 cs_was_changed_seq;
1207 	unsigned int seq;
1208 	bool do_interp;
1209 	int ret;
1210 
1211 	do {
1212 		seq = read_seqcount_begin(&tk_core.seq);
1213 		/*
1214 		 * Try to synchronously capture device time and a system
1215 		 * counter value calling back into the device driver
1216 		 */
1217 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1218 		if (ret)
1219 			return ret;
1220 
1221 		/*
1222 		 * Verify that the clocksource associated with the captured
1223 		 * system counter value is the same as the currently installed
1224 		 * timekeeper clocksource
1225 		 */
1226 		if (tk->tkr_mono.clock != system_counterval.cs)
1227 			return -ENODEV;
1228 		cycles = system_counterval.cycles;
1229 
1230 		/*
1231 		 * Check whether the system counter value provided by the
1232 		 * device driver is on the current timekeeping interval.
1233 		 */
1234 		now = tk_clock_read(&tk->tkr_mono);
1235 		interval_start = tk->tkr_mono.cycle_last;
1236 		if (!cycle_between(interval_start, cycles, now)) {
1237 			clock_was_set_seq = tk->clock_was_set_seq;
1238 			cs_was_changed_seq = tk->cs_was_changed_seq;
1239 			cycles = interval_start;
1240 			do_interp = true;
1241 		} else {
1242 			do_interp = false;
1243 		}
1244 
1245 		base_real = ktime_add(tk->tkr_mono.base,
1246 				      tk_core.timekeeper.offs_real);
1247 		base_raw = tk->tkr_raw.base;
1248 
1249 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1250 						     system_counterval.cycles);
1251 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1252 						    system_counterval.cycles);
1253 	} while (read_seqcount_retry(&tk_core.seq, seq));
1254 
1255 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1256 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1257 
1258 	/*
1259 	 * Interpolate if necessary, adjusting back from the start of the
1260 	 * current interval
1261 	 */
1262 	if (do_interp) {
1263 		u64 partial_history_cycles, total_history_cycles;
1264 		bool discontinuity;
1265 
1266 		/*
1267 		 * Check that the counter value occurs after the provided
1268 		 * history reference and that the history doesn't cross a
1269 		 * clocksource change
1270 		 */
1271 		if (!history_begin ||
1272 		    !cycle_between(history_begin->cycles,
1273 				   system_counterval.cycles, cycles) ||
1274 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1275 			return -EINVAL;
1276 		partial_history_cycles = cycles - system_counterval.cycles;
1277 		total_history_cycles = cycles - history_begin->cycles;
1278 		discontinuity =
1279 			history_begin->clock_was_set_seq != clock_was_set_seq;
1280 
1281 		ret = adjust_historical_crosststamp(history_begin,
1282 						    partial_history_cycles,
1283 						    total_history_cycles,
1284 						    discontinuity, xtstamp);
1285 		if (ret)
1286 			return ret;
1287 	}
1288 
1289 	return 0;
1290 }
1291 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1292 
1293 /**
1294  * do_settimeofday64 - Sets the time of day.
1295  * @ts:     pointer to the timespec64 variable containing the new time
1296  *
1297  * Sets the time of day to the new time and update NTP and notify hrtimers
1298  */
do_settimeofday64(const struct timespec64 * ts)1299 int do_settimeofday64(const struct timespec64 *ts)
1300 {
1301 	struct timekeeper *tk = &tk_core.timekeeper;
1302 	struct timespec64 ts_delta, xt;
1303 	unsigned long flags;
1304 	int ret = 0;
1305 
1306 	if (!timespec64_valid_settod(ts))
1307 		return -EINVAL;
1308 
1309 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1310 	write_seqcount_begin(&tk_core.seq);
1311 
1312 	timekeeping_forward_now(tk);
1313 
1314 	xt = tk_xtime(tk);
1315 	ts_delta = timespec64_sub(*ts, xt);
1316 
1317 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1318 		ret = -EINVAL;
1319 		goto out;
1320 	}
1321 
1322 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1323 
1324 	tk_set_xtime(tk, ts);
1325 out:
1326 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1327 
1328 	write_seqcount_end(&tk_core.seq);
1329 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1330 
1331 	/* signal hrtimers about time change */
1332 	clock_was_set();
1333 
1334 	if (!ret) {
1335 		audit_tk_injoffset(ts_delta);
1336 		add_device_randomness(ts, sizeof(*ts));
1337 	}
1338 
1339 	return ret;
1340 }
1341 EXPORT_SYMBOL(do_settimeofday64);
1342 
1343 /**
1344  * timekeeping_inject_offset - Adds or subtracts from the current time.
1345  * @tv:		pointer to the timespec variable containing the offset
1346  *
1347  * Adds or subtracts an offset value from the current time.
1348  */
timekeeping_inject_offset(const struct timespec64 * ts)1349 static int timekeeping_inject_offset(const struct timespec64 *ts)
1350 {
1351 	struct timekeeper *tk = &tk_core.timekeeper;
1352 	unsigned long flags;
1353 	struct timespec64 tmp;
1354 	int ret = 0;
1355 
1356 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1357 		return -EINVAL;
1358 
1359 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1360 	write_seqcount_begin(&tk_core.seq);
1361 
1362 	timekeeping_forward_now(tk);
1363 
1364 	/* Make sure the proposed value is valid */
1365 	tmp = timespec64_add(tk_xtime(tk), *ts);
1366 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1367 	    !timespec64_valid_settod(&tmp)) {
1368 		ret = -EINVAL;
1369 		goto error;
1370 	}
1371 
1372 	tk_xtime_add(tk, ts);
1373 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1374 
1375 error: /* even if we error out, we forwarded the time, so call update */
1376 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1377 
1378 	write_seqcount_end(&tk_core.seq);
1379 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1380 
1381 	/* signal hrtimers about time change */
1382 	clock_was_set();
1383 
1384 	return ret;
1385 }
1386 
1387 /*
1388  * Indicates if there is an offset between the system clock and the hardware
1389  * clock/persistent clock/rtc.
1390  */
1391 int persistent_clock_is_local;
1392 
1393 /*
1394  * Adjust the time obtained from the CMOS to be UTC time instead of
1395  * local time.
1396  *
1397  * This is ugly, but preferable to the alternatives.  Otherwise we
1398  * would either need to write a program to do it in /etc/rc (and risk
1399  * confusion if the program gets run more than once; it would also be
1400  * hard to make the program warp the clock precisely n hours)  or
1401  * compile in the timezone information into the kernel.  Bad, bad....
1402  *
1403  *						- TYT, 1992-01-01
1404  *
1405  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1406  * as real UNIX machines always do it. This avoids all headaches about
1407  * daylight saving times and warping kernel clocks.
1408  */
timekeeping_warp_clock(void)1409 void timekeeping_warp_clock(void)
1410 {
1411 	if (sys_tz.tz_minuteswest != 0) {
1412 		struct timespec64 adjust;
1413 
1414 		persistent_clock_is_local = 1;
1415 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1416 		adjust.tv_nsec = 0;
1417 		timekeeping_inject_offset(&adjust);
1418 	}
1419 }
1420 
1421 /**
1422  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1423  *
1424  */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1425 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1426 {
1427 	tk->tai_offset = tai_offset;
1428 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1429 }
1430 
1431 /**
1432  * change_clocksource - Swaps clocksources if a new one is available
1433  *
1434  * Accumulates current time interval and initializes new clocksource
1435  */
change_clocksource(void * data)1436 static int change_clocksource(void *data)
1437 {
1438 	struct timekeeper *tk = &tk_core.timekeeper;
1439 	struct clocksource *new, *old;
1440 	unsigned long flags;
1441 
1442 	new = (struct clocksource *) data;
1443 
1444 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1445 	write_seqcount_begin(&tk_core.seq);
1446 
1447 	timekeeping_forward_now(tk);
1448 	/*
1449 	 * If the cs is in module, get a module reference. Succeeds
1450 	 * for built-in code (owner == NULL) as well.
1451 	 */
1452 	if (try_module_get(new->owner)) {
1453 		if (!new->enable || new->enable(new) == 0) {
1454 			old = tk->tkr_mono.clock;
1455 			tk_setup_internals(tk, new);
1456 			if (old->disable)
1457 				old->disable(old);
1458 			module_put(old->owner);
1459 		} else {
1460 			module_put(new->owner);
1461 		}
1462 	}
1463 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1464 
1465 	write_seqcount_end(&tk_core.seq);
1466 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1467 
1468 	return 0;
1469 }
1470 
1471 /**
1472  * timekeeping_notify - Install a new clock source
1473  * @clock:		pointer to the clock source
1474  *
1475  * This function is called from clocksource.c after a new, better clock
1476  * source has been registered. The caller holds the clocksource_mutex.
1477  */
timekeeping_notify(struct clocksource * clock)1478 int timekeeping_notify(struct clocksource *clock)
1479 {
1480 	struct timekeeper *tk = &tk_core.timekeeper;
1481 
1482 	if (tk->tkr_mono.clock == clock)
1483 		return 0;
1484 	stop_machine(change_clocksource, clock, NULL);
1485 	tick_clock_notify();
1486 	return tk->tkr_mono.clock == clock ? 0 : -1;
1487 }
1488 
1489 /**
1490  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1491  * @ts:		pointer to the timespec64 to be set
1492  *
1493  * Returns the raw monotonic time (completely un-modified by ntp)
1494  */
ktime_get_raw_ts64(struct timespec64 * ts)1495 void ktime_get_raw_ts64(struct timespec64 *ts)
1496 {
1497 	struct timekeeper *tk = &tk_core.timekeeper;
1498 	unsigned int seq;
1499 	u64 nsecs;
1500 
1501 	do {
1502 		seq = read_seqcount_begin(&tk_core.seq);
1503 		ts->tv_sec = tk->raw_sec;
1504 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1505 
1506 	} while (read_seqcount_retry(&tk_core.seq, seq));
1507 
1508 	ts->tv_nsec = 0;
1509 	timespec64_add_ns(ts, nsecs);
1510 }
1511 EXPORT_SYMBOL(ktime_get_raw_ts64);
1512 
1513 
1514 /**
1515  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1516  */
timekeeping_valid_for_hres(void)1517 int timekeeping_valid_for_hres(void)
1518 {
1519 	struct timekeeper *tk = &tk_core.timekeeper;
1520 	unsigned int seq;
1521 	int ret;
1522 
1523 	do {
1524 		seq = read_seqcount_begin(&tk_core.seq);
1525 
1526 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1527 
1528 	} while (read_seqcount_retry(&tk_core.seq, seq));
1529 
1530 	return ret;
1531 }
1532 
1533 /**
1534  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1535  */
timekeeping_max_deferment(void)1536 u64 timekeeping_max_deferment(void)
1537 {
1538 	struct timekeeper *tk = &tk_core.timekeeper;
1539 	unsigned int seq;
1540 	u64 ret;
1541 
1542 	do {
1543 		seq = read_seqcount_begin(&tk_core.seq);
1544 
1545 		ret = tk->tkr_mono.clock->max_idle_ns;
1546 
1547 	} while (read_seqcount_retry(&tk_core.seq, seq));
1548 
1549 	return ret;
1550 }
1551 
1552 /**
1553  * read_persistent_clock64 -  Return time from the persistent clock.
1554  *
1555  * Weak dummy function for arches that do not yet support it.
1556  * Reads the time from the battery backed persistent clock.
1557  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1558  *
1559  *  XXX - Do be sure to remove it once all arches implement it.
1560  */
read_persistent_clock64(struct timespec64 * ts)1561 void __weak read_persistent_clock64(struct timespec64 *ts)
1562 {
1563 	ts->tv_sec = 0;
1564 	ts->tv_nsec = 0;
1565 }
1566 
1567 /**
1568  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1569  *                                        from the boot.
1570  *
1571  * Weak dummy function for arches that do not yet support it.
1572  * wall_time	- current time as returned by persistent clock
1573  * boot_offset	- offset that is defined as wall_time - boot_time
1574  * The default function calculates offset based on the current value of
1575  * local_clock(). This way architectures that support sched_clock() but don't
1576  * support dedicated boot time clock will provide the best estimate of the
1577  * boot time.
1578  */
1579 void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1580 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1581 				     struct timespec64 *boot_offset)
1582 {
1583 	read_persistent_clock64(wall_time);
1584 	*boot_offset = ns_to_timespec64(local_clock());
1585 }
1586 
1587 /*
1588  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1589  *
1590  * The flag starts of false and is only set when a suspend reaches
1591  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1592  * timekeeper clocksource is not stopping across suspend and has been
1593  * used to update sleep time. If the timekeeper clocksource has stopped
1594  * then the flag stays true and is used by the RTC resume code to decide
1595  * whether sleeptime must be injected and if so the flag gets false then.
1596  *
1597  * If a suspend fails before reaching timekeeping_resume() then the flag
1598  * stays false and prevents erroneous sleeptime injection.
1599  */
1600 static bool suspend_timing_needed;
1601 
1602 /* Flag for if there is a persistent clock on this platform */
1603 static bool persistent_clock_exists;
1604 
1605 /*
1606  * timekeeping_init - Initializes the clocksource and common timekeeping values
1607  */
timekeeping_init(void)1608 void __init timekeeping_init(void)
1609 {
1610 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1611 	struct timekeeper *tk = &tk_core.timekeeper;
1612 	struct clocksource *clock;
1613 	unsigned long flags;
1614 
1615 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1616 	if (timespec64_valid_settod(&wall_time) &&
1617 	    timespec64_to_ns(&wall_time) > 0) {
1618 		persistent_clock_exists = true;
1619 	} else if (timespec64_to_ns(&wall_time) != 0) {
1620 		pr_warn("Persistent clock returned invalid value");
1621 		wall_time = (struct timespec64){0};
1622 	}
1623 
1624 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1625 		boot_offset = (struct timespec64){0};
1626 
1627 	/*
1628 	 * We want set wall_to_mono, so the following is true:
1629 	 * wall time + wall_to_mono = boot time
1630 	 */
1631 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1632 
1633 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1634 	write_seqcount_begin(&tk_core.seq);
1635 	ntp_init();
1636 
1637 	clock = clocksource_default_clock();
1638 	if (clock->enable)
1639 		clock->enable(clock);
1640 	tk_setup_internals(tk, clock);
1641 
1642 	tk_set_xtime(tk, &wall_time);
1643 	tk->raw_sec = 0;
1644 
1645 	tk_set_wall_to_mono(tk, wall_to_mono);
1646 
1647 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1648 
1649 	write_seqcount_end(&tk_core.seq);
1650 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1651 }
1652 
1653 /* time in seconds when suspend began for persistent clock */
1654 static struct timespec64 timekeeping_suspend_time;
1655 
1656 /**
1657  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1658  * @delta: pointer to a timespec delta value
1659  *
1660  * Takes a timespec offset measuring a suspend interval and properly
1661  * adds the sleep offset to the timekeeping variables.
1662  */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1663 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1664 					   const struct timespec64 *delta)
1665 {
1666 	if (!timespec64_valid_strict(delta)) {
1667 		printk_deferred(KERN_WARNING
1668 				"__timekeeping_inject_sleeptime: Invalid "
1669 				"sleep delta value!\n");
1670 		return;
1671 	}
1672 	tk_xtime_add(tk, delta);
1673 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1674 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1675 	tk_debug_account_sleep_time(delta);
1676 }
1677 
1678 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1679 /**
1680  * We have three kinds of time sources to use for sleep time
1681  * injection, the preference order is:
1682  * 1) non-stop clocksource
1683  * 2) persistent clock (ie: RTC accessible when irqs are off)
1684  * 3) RTC
1685  *
1686  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1687  * If system has neither 1) nor 2), 3) will be used finally.
1688  *
1689  *
1690  * If timekeeping has injected sleeptime via either 1) or 2),
1691  * 3) becomes needless, so in this case we don't need to call
1692  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1693  * means.
1694  */
timekeeping_rtc_skipresume(void)1695 bool timekeeping_rtc_skipresume(void)
1696 {
1697 	return !suspend_timing_needed;
1698 }
1699 
1700 /**
1701  * 1) can be determined whether to use or not only when doing
1702  * timekeeping_resume() which is invoked after rtc_suspend(),
1703  * so we can't skip rtc_suspend() surely if system has 1).
1704  *
1705  * But if system has 2), 2) will definitely be used, so in this
1706  * case we don't need to call rtc_suspend(), and this is what
1707  * timekeeping_rtc_skipsuspend() means.
1708  */
timekeeping_rtc_skipsuspend(void)1709 bool timekeeping_rtc_skipsuspend(void)
1710 {
1711 	return persistent_clock_exists;
1712 }
1713 
1714 /**
1715  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1716  * @delta: pointer to a timespec64 delta value
1717  *
1718  * This hook is for architectures that cannot support read_persistent_clock64
1719  * because their RTC/persistent clock is only accessible when irqs are enabled.
1720  * and also don't have an effective nonstop clocksource.
1721  *
1722  * This function should only be called by rtc_resume(), and allows
1723  * a suspend offset to be injected into the timekeeping values.
1724  */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1725 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1726 {
1727 	struct timekeeper *tk = &tk_core.timekeeper;
1728 	unsigned long flags;
1729 
1730 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1731 	write_seqcount_begin(&tk_core.seq);
1732 
1733 	suspend_timing_needed = false;
1734 
1735 	timekeeping_forward_now(tk);
1736 
1737 	__timekeeping_inject_sleeptime(tk, delta);
1738 
1739 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1740 
1741 	write_seqcount_end(&tk_core.seq);
1742 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1743 
1744 	/* signal hrtimers about time change */
1745 	clock_was_set();
1746 }
1747 #endif
1748 
1749 /**
1750  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1751  */
timekeeping_resume(void)1752 void timekeeping_resume(void)
1753 {
1754 	struct timekeeper *tk = &tk_core.timekeeper;
1755 	struct clocksource *clock = tk->tkr_mono.clock;
1756 	unsigned long flags;
1757 	struct timespec64 ts_new, ts_delta;
1758 	u64 cycle_now, nsec;
1759 	bool inject_sleeptime = false;
1760 
1761 	read_persistent_clock64(&ts_new);
1762 
1763 	clockevents_resume();
1764 	clocksource_resume();
1765 
1766 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1767 	write_seqcount_begin(&tk_core.seq);
1768 
1769 	/*
1770 	 * After system resumes, we need to calculate the suspended time and
1771 	 * compensate it for the OS time. There are 3 sources that could be
1772 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1773 	 * device.
1774 	 *
1775 	 * One specific platform may have 1 or 2 or all of them, and the
1776 	 * preference will be:
1777 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1778 	 * The less preferred source will only be tried if there is no better
1779 	 * usable source. The rtc part is handled separately in rtc core code.
1780 	 */
1781 	cycle_now = tk_clock_read(&tk->tkr_mono);
1782 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1783 	if (nsec > 0) {
1784 		ts_delta = ns_to_timespec64(nsec);
1785 		inject_sleeptime = true;
1786 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1787 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1788 		inject_sleeptime = true;
1789 	}
1790 
1791 	if (inject_sleeptime) {
1792 		suspend_timing_needed = false;
1793 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1794 	}
1795 
1796 	/* Re-base the last cycle value */
1797 	tk->tkr_mono.cycle_last = cycle_now;
1798 	tk->tkr_raw.cycle_last  = cycle_now;
1799 
1800 	tk->ntp_error = 0;
1801 	timekeeping_suspended = 0;
1802 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1803 	write_seqcount_end(&tk_core.seq);
1804 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1805 
1806 	touch_softlockup_watchdog();
1807 
1808 	tick_resume();
1809 	hrtimers_resume();
1810 }
1811 
timekeeping_suspend(void)1812 int timekeeping_suspend(void)
1813 {
1814 	struct timekeeper *tk = &tk_core.timekeeper;
1815 	unsigned long flags;
1816 	struct timespec64		delta, delta_delta;
1817 	static struct timespec64	old_delta;
1818 	struct clocksource *curr_clock;
1819 	u64 cycle_now;
1820 
1821 	read_persistent_clock64(&timekeeping_suspend_time);
1822 
1823 	/*
1824 	 * On some systems the persistent_clock can not be detected at
1825 	 * timekeeping_init by its return value, so if we see a valid
1826 	 * value returned, update the persistent_clock_exists flag.
1827 	 */
1828 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1829 		persistent_clock_exists = true;
1830 
1831 	suspend_timing_needed = true;
1832 
1833 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1834 	write_seqcount_begin(&tk_core.seq);
1835 	timekeeping_forward_now(tk);
1836 	timekeeping_suspended = 1;
1837 
1838 	/*
1839 	 * Since we've called forward_now, cycle_last stores the value
1840 	 * just read from the current clocksource. Save this to potentially
1841 	 * use in suspend timing.
1842 	 */
1843 	curr_clock = tk->tkr_mono.clock;
1844 	cycle_now = tk->tkr_mono.cycle_last;
1845 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1846 
1847 	if (persistent_clock_exists) {
1848 		/*
1849 		 * To avoid drift caused by repeated suspend/resumes,
1850 		 * which each can add ~1 second drift error,
1851 		 * try to compensate so the difference in system time
1852 		 * and persistent_clock time stays close to constant.
1853 		 */
1854 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1855 		delta_delta = timespec64_sub(delta, old_delta);
1856 		if (abs(delta_delta.tv_sec) >= 2) {
1857 			/*
1858 			 * if delta_delta is too large, assume time correction
1859 			 * has occurred and set old_delta to the current delta.
1860 			 */
1861 			old_delta = delta;
1862 		} else {
1863 			/* Otherwise try to adjust old_system to compensate */
1864 			timekeeping_suspend_time =
1865 				timespec64_add(timekeeping_suspend_time, delta_delta);
1866 		}
1867 	}
1868 
1869 	timekeeping_update(tk, TK_MIRROR);
1870 	halt_fast_timekeeper(tk);
1871 	write_seqcount_end(&tk_core.seq);
1872 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1873 
1874 	tick_suspend();
1875 	clocksource_suspend();
1876 	clockevents_suspend();
1877 
1878 	return 0;
1879 }
1880 
1881 /* sysfs resume/suspend bits for timekeeping */
1882 static struct syscore_ops timekeeping_syscore_ops = {
1883 	.resume		= timekeeping_resume,
1884 	.suspend	= timekeeping_suspend,
1885 };
1886 
timekeeping_init_ops(void)1887 static int __init timekeeping_init_ops(void)
1888 {
1889 	register_syscore_ops(&timekeeping_syscore_ops);
1890 	return 0;
1891 }
1892 device_initcall(timekeeping_init_ops);
1893 
1894 /*
1895  * Apply a multiplier adjustment to the timekeeper
1896  */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)1897 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1898 							 s64 offset,
1899 							 s32 mult_adj)
1900 {
1901 	s64 interval = tk->cycle_interval;
1902 
1903 	if (mult_adj == 0) {
1904 		return;
1905 	} else if (mult_adj == -1) {
1906 		interval = -interval;
1907 		offset = -offset;
1908 	} else if (mult_adj != 1) {
1909 		interval *= mult_adj;
1910 		offset *= mult_adj;
1911 	}
1912 
1913 	/*
1914 	 * So the following can be confusing.
1915 	 *
1916 	 * To keep things simple, lets assume mult_adj == 1 for now.
1917 	 *
1918 	 * When mult_adj != 1, remember that the interval and offset values
1919 	 * have been appropriately scaled so the math is the same.
1920 	 *
1921 	 * The basic idea here is that we're increasing the multiplier
1922 	 * by one, this causes the xtime_interval to be incremented by
1923 	 * one cycle_interval. This is because:
1924 	 *	xtime_interval = cycle_interval * mult
1925 	 * So if mult is being incremented by one:
1926 	 *	xtime_interval = cycle_interval * (mult + 1)
1927 	 * Its the same as:
1928 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1929 	 * Which can be shortened to:
1930 	 *	xtime_interval += cycle_interval
1931 	 *
1932 	 * So offset stores the non-accumulated cycles. Thus the current
1933 	 * time (in shifted nanoseconds) is:
1934 	 *	now = (offset * adj) + xtime_nsec
1935 	 * Now, even though we're adjusting the clock frequency, we have
1936 	 * to keep time consistent. In other words, we can't jump back
1937 	 * in time, and we also want to avoid jumping forward in time.
1938 	 *
1939 	 * So given the same offset value, we need the time to be the same
1940 	 * both before and after the freq adjustment.
1941 	 *	now = (offset * adj_1) + xtime_nsec_1
1942 	 *	now = (offset * adj_2) + xtime_nsec_2
1943 	 * So:
1944 	 *	(offset * adj_1) + xtime_nsec_1 =
1945 	 *		(offset * adj_2) + xtime_nsec_2
1946 	 * And we know:
1947 	 *	adj_2 = adj_1 + 1
1948 	 * So:
1949 	 *	(offset * adj_1) + xtime_nsec_1 =
1950 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1951 	 *	(offset * adj_1) + xtime_nsec_1 =
1952 	 *		(offset * adj_1) + offset + xtime_nsec_2
1953 	 * Canceling the sides:
1954 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1955 	 * Which gives us:
1956 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1957 	 * Which simplfies to:
1958 	 *	xtime_nsec -= offset
1959 	 */
1960 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1961 		/* NTP adjustment caused clocksource mult overflow */
1962 		WARN_ON_ONCE(1);
1963 		return;
1964 	}
1965 
1966 	tk->tkr_mono.mult += mult_adj;
1967 	tk->xtime_interval += interval;
1968 	tk->tkr_mono.xtime_nsec -= offset;
1969 }
1970 
1971 /*
1972  * Adjust the timekeeper's multiplier to the correct frequency
1973  * and also to reduce the accumulated error value.
1974  */
timekeeping_adjust(struct timekeeper * tk,s64 offset)1975 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1976 {
1977 	u32 mult;
1978 
1979 	/*
1980 	 * Determine the multiplier from the current NTP tick length.
1981 	 * Avoid expensive division when the tick length doesn't change.
1982 	 */
1983 	if (likely(tk->ntp_tick == ntp_tick_length())) {
1984 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1985 	} else {
1986 		tk->ntp_tick = ntp_tick_length();
1987 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1988 				 tk->xtime_remainder, tk->cycle_interval);
1989 	}
1990 
1991 	/*
1992 	 * If the clock is behind the NTP time, increase the multiplier by 1
1993 	 * to catch up with it. If it's ahead and there was a remainder in the
1994 	 * tick division, the clock will slow down. Otherwise it will stay
1995 	 * ahead until the tick length changes to a non-divisible value.
1996 	 */
1997 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1998 	mult += tk->ntp_err_mult;
1999 
2000 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2001 
2002 	if (unlikely(tk->tkr_mono.clock->maxadj &&
2003 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2004 			> tk->tkr_mono.clock->maxadj))) {
2005 		printk_once(KERN_WARNING
2006 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2007 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2008 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2009 	}
2010 
2011 	/*
2012 	 * It may be possible that when we entered this function, xtime_nsec
2013 	 * was very small.  Further, if we're slightly speeding the clocksource
2014 	 * in the code above, its possible the required corrective factor to
2015 	 * xtime_nsec could cause it to underflow.
2016 	 *
2017 	 * Now, since we have already accumulated the second and the NTP
2018 	 * subsystem has been notified via second_overflow(), we need to skip
2019 	 * the next update.
2020 	 */
2021 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2022 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2023 							tk->tkr_mono.shift;
2024 		tk->xtime_sec--;
2025 		tk->skip_second_overflow = 1;
2026 	}
2027 }
2028 
2029 /**
2030  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2031  *
2032  * Helper function that accumulates the nsecs greater than a second
2033  * from the xtime_nsec field to the xtime_secs field.
2034  * It also calls into the NTP code to handle leapsecond processing.
2035  *
2036  */
accumulate_nsecs_to_secs(struct timekeeper * tk)2037 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2038 {
2039 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2040 	unsigned int clock_set = 0;
2041 
2042 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2043 		int leap;
2044 
2045 		tk->tkr_mono.xtime_nsec -= nsecps;
2046 		tk->xtime_sec++;
2047 
2048 		/*
2049 		 * Skip NTP update if this second was accumulated before,
2050 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2051 		 */
2052 		if (unlikely(tk->skip_second_overflow)) {
2053 			tk->skip_second_overflow = 0;
2054 			continue;
2055 		}
2056 
2057 		/* Figure out if its a leap sec and apply if needed */
2058 		leap = second_overflow(tk->xtime_sec);
2059 		if (unlikely(leap)) {
2060 			struct timespec64 ts;
2061 
2062 			tk->xtime_sec += leap;
2063 
2064 			ts.tv_sec = leap;
2065 			ts.tv_nsec = 0;
2066 			tk_set_wall_to_mono(tk,
2067 				timespec64_sub(tk->wall_to_monotonic, ts));
2068 
2069 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2070 
2071 			clock_set = TK_CLOCK_WAS_SET;
2072 		}
2073 	}
2074 	return clock_set;
2075 }
2076 
2077 /**
2078  * logarithmic_accumulation - shifted accumulation of cycles
2079  *
2080  * This functions accumulates a shifted interval of cycles into
2081  * a shifted interval nanoseconds. Allows for O(log) accumulation
2082  * loop.
2083  *
2084  * Returns the unconsumed cycles.
2085  */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2086 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2087 				    u32 shift, unsigned int *clock_set)
2088 {
2089 	u64 interval = tk->cycle_interval << shift;
2090 	u64 snsec_per_sec;
2091 
2092 	/* If the offset is smaller than a shifted interval, do nothing */
2093 	if (offset < interval)
2094 		return offset;
2095 
2096 	/* Accumulate one shifted interval */
2097 	offset -= interval;
2098 	tk->tkr_mono.cycle_last += interval;
2099 	tk->tkr_raw.cycle_last  += interval;
2100 
2101 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2102 	*clock_set |= accumulate_nsecs_to_secs(tk);
2103 
2104 	/* Accumulate raw time */
2105 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2106 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2107 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2108 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2109 		tk->raw_sec++;
2110 	}
2111 
2112 	/* Accumulate error between NTP and clock interval */
2113 	tk->ntp_error += tk->ntp_tick << shift;
2114 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2115 						(tk->ntp_error_shift + shift);
2116 
2117 	return offset;
2118 }
2119 
2120 /*
2121  * timekeeping_advance - Updates the timekeeper to the current time and
2122  * current NTP tick length
2123  */
timekeeping_advance(enum timekeeping_adv_mode mode)2124 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2125 {
2126 	struct timekeeper *real_tk = &tk_core.timekeeper;
2127 	struct timekeeper *tk = &shadow_timekeeper;
2128 	u64 offset;
2129 	int shift = 0, maxshift;
2130 	unsigned int clock_set = 0;
2131 	unsigned long flags;
2132 
2133 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2134 
2135 	/* Make sure we're fully resumed: */
2136 	if (unlikely(timekeeping_suspended))
2137 		goto out;
2138 
2139 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2140 	offset = real_tk->cycle_interval;
2141 
2142 	if (mode != TK_ADV_TICK)
2143 		goto out;
2144 #else
2145 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2146 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2147 
2148 	/* Check if there's really nothing to do */
2149 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2150 		goto out;
2151 #endif
2152 
2153 	/* Do some additional sanity checking */
2154 	timekeeping_check_update(tk, offset);
2155 
2156 	/*
2157 	 * With NO_HZ we may have to accumulate many cycle_intervals
2158 	 * (think "ticks") worth of time at once. To do this efficiently,
2159 	 * we calculate the largest doubling multiple of cycle_intervals
2160 	 * that is smaller than the offset.  We then accumulate that
2161 	 * chunk in one go, and then try to consume the next smaller
2162 	 * doubled multiple.
2163 	 */
2164 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2165 	shift = max(0, shift);
2166 	/* Bound shift to one less than what overflows tick_length */
2167 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2168 	shift = min(shift, maxshift);
2169 	while (offset >= tk->cycle_interval) {
2170 		offset = logarithmic_accumulation(tk, offset, shift,
2171 							&clock_set);
2172 		if (offset < tk->cycle_interval<<shift)
2173 			shift--;
2174 	}
2175 
2176 	/* Adjust the multiplier to correct NTP error */
2177 	timekeeping_adjust(tk, offset);
2178 
2179 	/*
2180 	 * Finally, make sure that after the rounding
2181 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2182 	 */
2183 	clock_set |= accumulate_nsecs_to_secs(tk);
2184 
2185 	write_seqcount_begin(&tk_core.seq);
2186 	/*
2187 	 * Update the real timekeeper.
2188 	 *
2189 	 * We could avoid this memcpy by switching pointers, but that
2190 	 * requires changes to all other timekeeper usage sites as
2191 	 * well, i.e. move the timekeeper pointer getter into the
2192 	 * spinlocked/seqcount protected sections. And we trade this
2193 	 * memcpy under the tk_core.seq against one before we start
2194 	 * updating.
2195 	 */
2196 	timekeeping_update(tk, clock_set);
2197 	memcpy(real_tk, tk, sizeof(*tk));
2198 	/* The memcpy must come last. Do not put anything here! */
2199 	write_seqcount_end(&tk_core.seq);
2200 out:
2201 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2202 	if (clock_set)
2203 		/* Have to call _delayed version, since in irq context*/
2204 		clock_was_set_delayed();
2205 }
2206 
2207 /**
2208  * update_wall_time - Uses the current clocksource to increment the wall time
2209  *
2210  */
update_wall_time(void)2211 void update_wall_time(void)
2212 {
2213 	timekeeping_advance(TK_ADV_TICK);
2214 }
2215 
2216 /**
2217  * getboottime64 - Return the real time of system boot.
2218  * @ts:		pointer to the timespec64 to be set
2219  *
2220  * Returns the wall-time of boot in a timespec64.
2221  *
2222  * This is based on the wall_to_monotonic offset and the total suspend
2223  * time. Calls to settimeofday will affect the value returned (which
2224  * basically means that however wrong your real time clock is at boot time,
2225  * you get the right time here).
2226  */
getboottime64(struct timespec64 * ts)2227 void getboottime64(struct timespec64 *ts)
2228 {
2229 	struct timekeeper *tk = &tk_core.timekeeper;
2230 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2231 
2232 	*ts = ktime_to_timespec64(t);
2233 }
2234 EXPORT_SYMBOL_GPL(getboottime64);
2235 
ktime_get_coarse_real_ts64(struct timespec64 * ts)2236 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2237 {
2238 	struct timekeeper *tk = &tk_core.timekeeper;
2239 	unsigned int seq;
2240 
2241 	do {
2242 		seq = read_seqcount_begin(&tk_core.seq);
2243 
2244 		*ts = tk_xtime(tk);
2245 	} while (read_seqcount_retry(&tk_core.seq, seq));
2246 }
2247 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2248 
ktime_get_coarse_ts64(struct timespec64 * ts)2249 void ktime_get_coarse_ts64(struct timespec64 *ts)
2250 {
2251 	struct timekeeper *tk = &tk_core.timekeeper;
2252 	struct timespec64 now, mono;
2253 	unsigned int seq;
2254 
2255 	do {
2256 		seq = read_seqcount_begin(&tk_core.seq);
2257 
2258 		now = tk_xtime(tk);
2259 		mono = tk->wall_to_monotonic;
2260 	} while (read_seqcount_retry(&tk_core.seq, seq));
2261 
2262 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2263 				now.tv_nsec + mono.tv_nsec);
2264 }
2265 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2266 
2267 /*
2268  * Must hold jiffies_lock
2269  */
do_timer(unsigned long ticks)2270 void do_timer(unsigned long ticks)
2271 {
2272 	jiffies_64 += ticks;
2273 	calc_global_load();
2274 }
2275 
2276 /**
2277  * ktime_get_update_offsets_now - hrtimer helper
2278  * @cwsseq:	pointer to check and store the clock was set sequence number
2279  * @offs_real:	pointer to storage for monotonic -> realtime offset
2280  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2281  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2282  *
2283  * Returns current monotonic time and updates the offsets if the
2284  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2285  * different.
2286  *
2287  * Called from hrtimer_interrupt() or retrigger_next_event()
2288  */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2289 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2290 				     ktime_t *offs_boot, ktime_t *offs_tai)
2291 {
2292 	struct timekeeper *tk = &tk_core.timekeeper;
2293 	unsigned int seq;
2294 	ktime_t base;
2295 	u64 nsecs;
2296 
2297 	do {
2298 		seq = read_seqcount_begin(&tk_core.seq);
2299 
2300 		base = tk->tkr_mono.base;
2301 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2302 		base = ktime_add_ns(base, nsecs);
2303 
2304 		if (*cwsseq != tk->clock_was_set_seq) {
2305 			*cwsseq = tk->clock_was_set_seq;
2306 			*offs_real = tk->offs_real;
2307 			*offs_boot = tk->offs_boot;
2308 			*offs_tai = tk->offs_tai;
2309 		}
2310 
2311 		/* Handle leapsecond insertion adjustments */
2312 		if (unlikely(base >= tk->next_leap_ktime))
2313 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2314 
2315 	} while (read_seqcount_retry(&tk_core.seq, seq));
2316 
2317 	return base;
2318 }
2319 
2320 /**
2321  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2322  */
timekeeping_validate_timex(const struct __kernel_timex * txc)2323 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2324 {
2325 	if (txc->modes & ADJ_ADJTIME) {
2326 		/* singleshot must not be used with any other mode bits */
2327 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2328 			return -EINVAL;
2329 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2330 		    !capable(CAP_SYS_TIME))
2331 			return -EPERM;
2332 	} else {
2333 		/* In order to modify anything, you gotta be super-user! */
2334 		if (txc->modes && !capable(CAP_SYS_TIME))
2335 			return -EPERM;
2336 		/*
2337 		 * if the quartz is off by more than 10% then
2338 		 * something is VERY wrong!
2339 		 */
2340 		if (txc->modes & ADJ_TICK &&
2341 		    (txc->tick <  900000/USER_HZ ||
2342 		     txc->tick > 1100000/USER_HZ))
2343 			return -EINVAL;
2344 	}
2345 
2346 	if (txc->modes & ADJ_SETOFFSET) {
2347 		/* In order to inject time, you gotta be super-user! */
2348 		if (!capable(CAP_SYS_TIME))
2349 			return -EPERM;
2350 
2351 		/*
2352 		 * Validate if a timespec/timeval used to inject a time
2353 		 * offset is valid.  Offsets can be postive or negative, so
2354 		 * we don't check tv_sec. The value of the timeval/timespec
2355 		 * is the sum of its fields,but *NOTE*:
2356 		 * The field tv_usec/tv_nsec must always be non-negative and
2357 		 * we can't have more nanoseconds/microseconds than a second.
2358 		 */
2359 		if (txc->time.tv_usec < 0)
2360 			return -EINVAL;
2361 
2362 		if (txc->modes & ADJ_NANO) {
2363 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2364 				return -EINVAL;
2365 		} else {
2366 			if (txc->time.tv_usec >= USEC_PER_SEC)
2367 				return -EINVAL;
2368 		}
2369 	}
2370 
2371 	/*
2372 	 * Check for potential multiplication overflows that can
2373 	 * only happen on 64-bit systems:
2374 	 */
2375 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2376 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2377 			return -EINVAL;
2378 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2379 			return -EINVAL;
2380 	}
2381 
2382 	return 0;
2383 }
2384 
2385 /**
2386  * random_get_entropy_fallback - Returns the raw clock source value,
2387  * used by random.c for platforms with no valid random_get_entropy().
2388  */
random_get_entropy_fallback(void)2389 unsigned long random_get_entropy_fallback(void)
2390 {
2391 	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2392 	struct clocksource *clock = READ_ONCE(tkr->clock);
2393 
2394 	if (unlikely(timekeeping_suspended || !clock))
2395 		return 0;
2396 	return clock->read(clock);
2397 }
2398 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2399 
2400 /**
2401  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2402  */
do_adjtimex(struct __kernel_timex * txc)2403 int do_adjtimex(struct __kernel_timex *txc)
2404 {
2405 	struct timekeeper *tk = &tk_core.timekeeper;
2406 	struct audit_ntp_data ad;
2407 	unsigned long flags;
2408 	struct timespec64 ts;
2409 	s32 orig_tai, tai;
2410 	int ret;
2411 
2412 	/* Validate the data before disabling interrupts */
2413 	ret = timekeeping_validate_timex(txc);
2414 	if (ret)
2415 		return ret;
2416 	add_device_randomness(txc, sizeof(*txc));
2417 
2418 	if (txc->modes & ADJ_SETOFFSET) {
2419 		struct timespec64 delta;
2420 		delta.tv_sec  = txc->time.tv_sec;
2421 		delta.tv_nsec = txc->time.tv_usec;
2422 		if (!(txc->modes & ADJ_NANO))
2423 			delta.tv_nsec *= 1000;
2424 		ret = timekeeping_inject_offset(&delta);
2425 		if (ret)
2426 			return ret;
2427 
2428 		audit_tk_injoffset(delta);
2429 	}
2430 
2431 	audit_ntp_init(&ad);
2432 
2433 	ktime_get_real_ts64(&ts);
2434 	add_device_randomness(&ts, sizeof(ts));
2435 
2436 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2437 	write_seqcount_begin(&tk_core.seq);
2438 
2439 	orig_tai = tai = tk->tai_offset;
2440 	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2441 
2442 	if (tai != orig_tai) {
2443 		__timekeeping_set_tai_offset(tk, tai);
2444 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2445 	}
2446 	tk_update_leap_state(tk);
2447 
2448 	write_seqcount_end(&tk_core.seq);
2449 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2450 
2451 	audit_ntp_log(&ad);
2452 
2453 	/* Update the multiplier immediately if frequency was set directly */
2454 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2455 		timekeeping_advance(TK_ADV_FREQ);
2456 
2457 	if (tai != orig_tai)
2458 		clock_was_set();
2459 
2460 	ntp_notify_cmos_timer();
2461 
2462 	return ret;
2463 }
2464 
2465 #ifdef CONFIG_NTP_PPS
2466 /**
2467  * hardpps() - Accessor function to NTP __hardpps function
2468  */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2469 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2470 {
2471 	unsigned long flags;
2472 
2473 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2474 	write_seqcount_begin(&tk_core.seq);
2475 
2476 	__hardpps(phase_ts, raw_ts);
2477 
2478 	write_seqcount_end(&tk_core.seq);
2479 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2480 }
2481 EXPORT_SYMBOL(hardpps);
2482 #endif /* CONFIG_NTP_PPS */
2483 
2484 /**
2485  * xtime_update() - advances the timekeeping infrastructure
2486  * @ticks:	number of ticks, that have elapsed since the last call.
2487  *
2488  * Must be called with interrupts disabled.
2489  */
xtime_update(unsigned long ticks)2490 void xtime_update(unsigned long ticks)
2491 {
2492 	raw_spin_lock(&jiffies_lock);
2493 	write_seqcount_begin(&jiffies_seq);
2494 	do_timer(ticks);
2495 	write_seqcount_end(&jiffies_seq);
2496 	raw_spin_unlock(&jiffies_lock);
2497 	update_wall_time();
2498 }
2499