• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 
61 #include <trace/events/kvm.h>
62 
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78 
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81 
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86 
87 #define emul_to_vcpu(ctxt) \
88 	((struct kvm_vcpu *)(ctxt)->vcpu)
89 
90 /* EFER defaults:
91  * - enable syscall per default because its emulated by KVM
92  * - enable LME and LMA per default on 64 bit KVM
93  */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100 
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102 
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105 
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void process_smi(struct kvm_vcpu *vcpu);
109 static void enter_smm(struct kvm_vcpu *vcpu);
110 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
111 static void store_regs(struct kvm_vcpu *vcpu);
112 static int sync_regs(struct kvm_vcpu *vcpu);
113 
114 struct kvm_x86_ops kvm_x86_ops __read_mostly;
115 EXPORT_SYMBOL_GPL(kvm_x86_ops);
116 
117 static bool __read_mostly ignore_msrs = 0;
118 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly report_ignored_msrs = true;
121 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
122 
123 unsigned int min_timer_period_us = 200;
124 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly kvmclock_periodic_sync = true;
127 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
128 
129 bool __read_mostly kvm_has_tsc_control;
130 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
131 u32  __read_mostly kvm_max_guest_tsc_khz;
132 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
133 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
134 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
135 u64  __read_mostly kvm_max_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
137 u64 __read_mostly kvm_default_tsc_scaling_ratio;
138 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
139 
140 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
141 static u32 __read_mostly tsc_tolerance_ppm = 250;
142 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
143 
144 /*
145  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
146  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
147  * advancement entirely.  Any other value is used as-is and disables adaptive
148  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
149  */
150 static int __read_mostly lapic_timer_advance_ns = -1;
151 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
152 
153 static bool __read_mostly vector_hashing = true;
154 module_param(vector_hashing, bool, S_IRUGO);
155 
156 bool __read_mostly enable_vmware_backdoor = false;
157 module_param(enable_vmware_backdoor, bool, S_IRUGO);
158 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
159 
160 static bool __read_mostly force_emulation_prefix = false;
161 module_param(force_emulation_prefix, bool, S_IRUGO);
162 
163 int __read_mostly pi_inject_timer = -1;
164 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
165 
166 /*
167  * Restoring the host value for MSRs that are only consumed when running in
168  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
169  * returns to userspace, i.e. the kernel can run with the guest's value.
170  */
171 #define KVM_MAX_NR_USER_RETURN_MSRS 16
172 
173 struct kvm_user_return_msrs_global {
174 	int nr;
175 	u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
176 };
177 
178 struct kvm_user_return_msrs {
179 	struct user_return_notifier urn;
180 	bool registered;
181 	struct kvm_user_return_msr_values {
182 		u64 host;
183 		u64 curr;
184 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
185 };
186 
187 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
188 static struct kvm_user_return_msrs __percpu *user_return_msrs;
189 
190 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
191 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
192 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
193 				| XFEATURE_MASK_PKRU)
194 
195 u64 __read_mostly host_efer;
196 EXPORT_SYMBOL_GPL(host_efer);
197 
198 bool __read_mostly allow_smaller_maxphyaddr = 0;
199 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
200 
201 static u64 __read_mostly host_xss;
202 u64 __read_mostly supported_xss;
203 EXPORT_SYMBOL_GPL(supported_xss);
204 
205 struct kvm_stats_debugfs_item debugfs_entries[] = {
206 	VCPU_STAT("pf_fixed", pf_fixed),
207 	VCPU_STAT("pf_guest", pf_guest),
208 	VCPU_STAT("tlb_flush", tlb_flush),
209 	VCPU_STAT("invlpg", invlpg),
210 	VCPU_STAT("exits", exits),
211 	VCPU_STAT("io_exits", io_exits),
212 	VCPU_STAT("mmio_exits", mmio_exits),
213 	VCPU_STAT("signal_exits", signal_exits),
214 	VCPU_STAT("irq_window", irq_window_exits),
215 	VCPU_STAT("nmi_window", nmi_window_exits),
216 	VCPU_STAT("halt_exits", halt_exits),
217 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
218 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
219 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
220 	VCPU_STAT("halt_wakeup", halt_wakeup),
221 	VCPU_STAT("hypercalls", hypercalls),
222 	VCPU_STAT("request_irq", request_irq_exits),
223 	VCPU_STAT("irq_exits", irq_exits),
224 	VCPU_STAT("host_state_reload", host_state_reload),
225 	VCPU_STAT("fpu_reload", fpu_reload),
226 	VCPU_STAT("insn_emulation", insn_emulation),
227 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
228 	VCPU_STAT("irq_injections", irq_injections),
229 	VCPU_STAT("nmi_injections", nmi_injections),
230 	VCPU_STAT("req_event", req_event),
231 	VCPU_STAT("l1d_flush", l1d_flush),
232 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
233 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
234 	VCPU_STAT("preemption_reported", preemption_reported),
235 	VCPU_STAT("preemption_other", preemption_other),
236 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
237 	VM_STAT("mmu_pte_write", mmu_pte_write),
238 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
239 	VM_STAT("mmu_flooded", mmu_flooded),
240 	VM_STAT("mmu_recycled", mmu_recycled),
241 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
242 	VM_STAT("mmu_unsync", mmu_unsync),
243 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
244 	VM_STAT("largepages", lpages, .mode = 0444),
245 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
246 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
247 	{ NULL }
248 };
249 
250 u64 __read_mostly host_xcr0;
251 u64 __read_mostly supported_xcr0;
252 EXPORT_SYMBOL_GPL(supported_xcr0);
253 
254 static struct kmem_cache *x86_fpu_cache;
255 
256 static struct kmem_cache *x86_emulator_cache;
257 
258 /*
259  * When called, it means the previous get/set msr reached an invalid msr.
260  * Return true if we want to ignore/silent this failed msr access.
261  */
kvm_msr_ignored_check(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool write)262 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
263 				  u64 data, bool write)
264 {
265 	const char *op = write ? "wrmsr" : "rdmsr";
266 
267 	if (ignore_msrs) {
268 		if (report_ignored_msrs)
269 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
270 				      op, msr, data);
271 		/* Mask the error */
272 		return true;
273 	} else {
274 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
275 				      op, msr, data);
276 		return false;
277 	}
278 }
279 
kvm_alloc_emulator_cache(void)280 static struct kmem_cache *kvm_alloc_emulator_cache(void)
281 {
282 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
283 	unsigned int size = sizeof(struct x86_emulate_ctxt);
284 
285 	return kmem_cache_create_usercopy("x86_emulator", size,
286 					  __alignof__(struct x86_emulate_ctxt),
287 					  SLAB_ACCOUNT, useroffset,
288 					  size - useroffset, NULL);
289 }
290 
291 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
292 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)293 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
294 {
295 	int i;
296 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
297 		vcpu->arch.apf.gfns[i] = ~0;
298 }
299 
kvm_on_user_return(struct user_return_notifier * urn)300 static void kvm_on_user_return(struct user_return_notifier *urn)
301 {
302 	unsigned slot;
303 	struct kvm_user_return_msrs *msrs
304 		= container_of(urn, struct kvm_user_return_msrs, urn);
305 	struct kvm_user_return_msr_values *values;
306 	unsigned long flags;
307 
308 	/*
309 	 * Disabling irqs at this point since the following code could be
310 	 * interrupted and executed through kvm_arch_hardware_disable()
311 	 */
312 	local_irq_save(flags);
313 	if (msrs->registered) {
314 		msrs->registered = false;
315 		user_return_notifier_unregister(urn);
316 	}
317 	local_irq_restore(flags);
318 	for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
319 		values = &msrs->values[slot];
320 		if (values->host != values->curr) {
321 			wrmsrl(user_return_msrs_global.msrs[slot], values->host);
322 			values->curr = values->host;
323 		}
324 	}
325 }
326 
kvm_probe_user_return_msr(u32 msr)327 int kvm_probe_user_return_msr(u32 msr)
328 {
329 	u64 val;
330 	int ret;
331 
332 	preempt_disable();
333 	ret = rdmsrl_safe(msr, &val);
334 	if (ret)
335 		goto out;
336 	ret = wrmsrl_safe(msr, val);
337 out:
338 	preempt_enable();
339 	return ret;
340 }
341 EXPORT_SYMBOL_GPL(kvm_probe_user_return_msr);
342 
kvm_define_user_return_msr(unsigned slot,u32 msr)343 void kvm_define_user_return_msr(unsigned slot, u32 msr)
344 {
345 	BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
346 	user_return_msrs_global.msrs[slot] = msr;
347 	if (slot >= user_return_msrs_global.nr)
348 		user_return_msrs_global.nr = slot + 1;
349 }
350 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
351 
kvm_user_return_msr_cpu_online(void)352 static void kvm_user_return_msr_cpu_online(void)
353 {
354 	unsigned int cpu = smp_processor_id();
355 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
356 	u64 value;
357 	int i;
358 
359 	for (i = 0; i < user_return_msrs_global.nr; ++i) {
360 		rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
361 		msrs->values[i].host = value;
362 		msrs->values[i].curr = value;
363 	}
364 }
365 
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)366 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
367 {
368 	unsigned int cpu = smp_processor_id();
369 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
370 	int err;
371 
372 	value = (value & mask) | (msrs->values[slot].host & ~mask);
373 	if (value == msrs->values[slot].curr)
374 		return 0;
375 	err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
376 	if (err)
377 		return 1;
378 
379 	msrs->values[slot].curr = value;
380 	if (!msrs->registered) {
381 		msrs->urn.on_user_return = kvm_on_user_return;
382 		user_return_notifier_register(&msrs->urn);
383 		msrs->registered = true;
384 	}
385 	return 0;
386 }
387 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
388 
drop_user_return_notifiers(void)389 static void drop_user_return_notifiers(void)
390 {
391 	unsigned int cpu = smp_processor_id();
392 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
393 
394 	if (msrs->registered)
395 		kvm_on_user_return(&msrs->urn);
396 }
397 
kvm_get_apic_base(struct kvm_vcpu * vcpu)398 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
399 {
400 	return vcpu->arch.apic_base;
401 }
402 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
403 
kvm_get_apic_mode(struct kvm_vcpu * vcpu)404 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
405 {
406 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
407 }
408 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
409 
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)410 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
411 {
412 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
413 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
414 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
415 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
416 
417 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
418 		return 1;
419 	if (!msr_info->host_initiated) {
420 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
421 			return 1;
422 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
423 			return 1;
424 	}
425 
426 	kvm_lapic_set_base(vcpu, msr_info->data);
427 	kvm_recalculate_apic_map(vcpu->kvm);
428 	return 0;
429 }
430 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
431 
kvm_spurious_fault(void)432 asmlinkage __visible noinstr void kvm_spurious_fault(void)
433 {
434 	/* Fault while not rebooting.  We want the trace. */
435 	BUG_ON(!kvm_rebooting);
436 }
437 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
438 
439 #define EXCPT_BENIGN		0
440 #define EXCPT_CONTRIBUTORY	1
441 #define EXCPT_PF		2
442 
exception_class(int vector)443 static int exception_class(int vector)
444 {
445 	switch (vector) {
446 	case PF_VECTOR:
447 		return EXCPT_PF;
448 	case DE_VECTOR:
449 	case TS_VECTOR:
450 	case NP_VECTOR:
451 	case SS_VECTOR:
452 	case GP_VECTOR:
453 		return EXCPT_CONTRIBUTORY;
454 	default:
455 		break;
456 	}
457 	return EXCPT_BENIGN;
458 }
459 
460 #define EXCPT_FAULT		0
461 #define EXCPT_TRAP		1
462 #define EXCPT_ABORT		2
463 #define EXCPT_INTERRUPT		3
464 #define EXCPT_DB		4
465 
exception_type(int vector)466 static int exception_type(int vector)
467 {
468 	unsigned int mask;
469 
470 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
471 		return EXCPT_INTERRUPT;
472 
473 	mask = 1 << vector;
474 
475 	/*
476 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
477 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
478 	 */
479 	if (mask & (1 << DB_VECTOR))
480 		return EXCPT_DB;
481 
482 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
483 		return EXCPT_TRAP;
484 
485 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
486 		return EXCPT_ABORT;
487 
488 	/* Reserved exceptions will result in fault */
489 	return EXCPT_FAULT;
490 }
491 
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu)492 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
493 {
494 	unsigned nr = vcpu->arch.exception.nr;
495 	bool has_payload = vcpu->arch.exception.has_payload;
496 	unsigned long payload = vcpu->arch.exception.payload;
497 
498 	if (!has_payload)
499 		return;
500 
501 	switch (nr) {
502 	case DB_VECTOR:
503 		/*
504 		 * "Certain debug exceptions may clear bit 0-3.  The
505 		 * remaining contents of the DR6 register are never
506 		 * cleared by the processor".
507 		 */
508 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
509 		/*
510 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
511 		 */
512 		vcpu->arch.dr6 |= DR6_RTM;
513 		vcpu->arch.dr6 |= payload;
514 		/*
515 		 * Bit 16 should be set in the payload whenever the #DB
516 		 * exception should clear DR6.RTM. This makes the payload
517 		 * compatible with the pending debug exceptions under VMX.
518 		 * Though not currently documented in the SDM, this also
519 		 * makes the payload compatible with the exit qualification
520 		 * for #DB exceptions under VMX.
521 		 */
522 		vcpu->arch.dr6 ^= payload & DR6_RTM;
523 
524 		/*
525 		 * The #DB payload is defined as compatible with the 'pending
526 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
527 		 * defined in the 'pending debug exceptions' field (enabled
528 		 * breakpoint), it is reserved and must be zero in DR6.
529 		 */
530 		vcpu->arch.dr6 &= ~BIT(12);
531 		break;
532 	case PF_VECTOR:
533 		vcpu->arch.cr2 = payload;
534 		break;
535 	}
536 
537 	vcpu->arch.exception.has_payload = false;
538 	vcpu->arch.exception.payload = 0;
539 }
540 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
541 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)542 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
543 		unsigned nr, bool has_error, u32 error_code,
544 	        bool has_payload, unsigned long payload, bool reinject)
545 {
546 	u32 prev_nr;
547 	int class1, class2;
548 
549 	kvm_make_request(KVM_REQ_EVENT, vcpu);
550 
551 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
552 	queue:
553 		if (reinject) {
554 			/*
555 			 * On vmentry, vcpu->arch.exception.pending is only
556 			 * true if an event injection was blocked by
557 			 * nested_run_pending.  In that case, however,
558 			 * vcpu_enter_guest requests an immediate exit,
559 			 * and the guest shouldn't proceed far enough to
560 			 * need reinjection.
561 			 */
562 			WARN_ON_ONCE(vcpu->arch.exception.pending);
563 			vcpu->arch.exception.injected = true;
564 			if (WARN_ON_ONCE(has_payload)) {
565 				/*
566 				 * A reinjected event has already
567 				 * delivered its payload.
568 				 */
569 				has_payload = false;
570 				payload = 0;
571 			}
572 		} else {
573 			vcpu->arch.exception.pending = true;
574 			vcpu->arch.exception.injected = false;
575 		}
576 		vcpu->arch.exception.has_error_code = has_error;
577 		vcpu->arch.exception.nr = nr;
578 		vcpu->arch.exception.error_code = error_code;
579 		vcpu->arch.exception.has_payload = has_payload;
580 		vcpu->arch.exception.payload = payload;
581 		if (!is_guest_mode(vcpu))
582 			kvm_deliver_exception_payload(vcpu);
583 		return;
584 	}
585 
586 	/* to check exception */
587 	prev_nr = vcpu->arch.exception.nr;
588 	if (prev_nr == DF_VECTOR) {
589 		/* triple fault -> shutdown */
590 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
591 		return;
592 	}
593 	class1 = exception_class(prev_nr);
594 	class2 = exception_class(nr);
595 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
596 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
597 		/*
598 		 * Generate double fault per SDM Table 5-5.  Set
599 		 * exception.pending = true so that the double fault
600 		 * can trigger a nested vmexit.
601 		 */
602 		vcpu->arch.exception.pending = true;
603 		vcpu->arch.exception.injected = false;
604 		vcpu->arch.exception.has_error_code = true;
605 		vcpu->arch.exception.nr = DF_VECTOR;
606 		vcpu->arch.exception.error_code = 0;
607 		vcpu->arch.exception.has_payload = false;
608 		vcpu->arch.exception.payload = 0;
609 	} else
610 		/* replace previous exception with a new one in a hope
611 		   that instruction re-execution will regenerate lost
612 		   exception */
613 		goto queue;
614 }
615 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)616 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
617 {
618 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
619 }
620 EXPORT_SYMBOL_GPL(kvm_queue_exception);
621 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)622 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
623 {
624 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
625 }
626 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
627 
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)628 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
629 			   unsigned long payload)
630 {
631 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
632 }
633 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
634 
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)635 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
636 				    u32 error_code, unsigned long payload)
637 {
638 	kvm_multiple_exception(vcpu, nr, true, error_code,
639 			       true, payload, false);
640 }
641 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)642 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
643 {
644 	if (err)
645 		kvm_inject_gp(vcpu, 0);
646 	else
647 		return kvm_skip_emulated_instruction(vcpu);
648 
649 	return 1;
650 }
651 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
652 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)653 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
654 {
655 	++vcpu->stat.pf_guest;
656 	vcpu->arch.exception.nested_apf =
657 		is_guest_mode(vcpu) && fault->async_page_fault;
658 	if (vcpu->arch.exception.nested_apf) {
659 		vcpu->arch.apf.nested_apf_token = fault->address;
660 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
661 	} else {
662 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
663 					fault->address);
664 	}
665 }
666 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
667 
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)668 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
669 				    struct x86_exception *fault)
670 {
671 	struct kvm_mmu *fault_mmu;
672 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
673 
674 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
675 					       vcpu->arch.walk_mmu;
676 
677 	/*
678 	 * Invalidate the TLB entry for the faulting address, if it exists,
679 	 * else the access will fault indefinitely (and to emulate hardware).
680 	 */
681 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
682 	    !(fault->error_code & PFERR_RSVD_MASK))
683 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
684 				       fault_mmu->root_hpa);
685 
686 	fault_mmu->inject_page_fault(vcpu, fault);
687 	return fault->nested_page_fault;
688 }
689 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
690 
kvm_inject_nmi(struct kvm_vcpu * vcpu)691 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
692 {
693 	atomic_inc(&vcpu->arch.nmi_queued);
694 	kvm_make_request(KVM_REQ_NMI, vcpu);
695 }
696 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
697 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)698 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
699 {
700 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
701 }
702 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
703 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)704 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
705 {
706 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
707 }
708 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
709 
710 /*
711  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
712  * a #GP and return false.
713  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)714 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
715 {
716 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
717 		return true;
718 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
719 	return false;
720 }
721 EXPORT_SYMBOL_GPL(kvm_require_cpl);
722 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)723 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
724 {
725 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
726 		return true;
727 
728 	kvm_queue_exception(vcpu, UD_VECTOR);
729 	return false;
730 }
731 EXPORT_SYMBOL_GPL(kvm_require_dr);
732 
733 /*
734  * This function will be used to read from the physical memory of the currently
735  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
736  * can read from guest physical or from the guest's guest physical memory.
737  */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)738 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
739 			    gfn_t ngfn, void *data, int offset, int len,
740 			    u32 access)
741 {
742 	struct x86_exception exception;
743 	gfn_t real_gfn;
744 	gpa_t ngpa;
745 
746 	ngpa     = gfn_to_gpa(ngfn);
747 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
748 	if (real_gfn == UNMAPPED_GVA)
749 		return -EFAULT;
750 
751 	real_gfn = gpa_to_gfn(real_gfn);
752 
753 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
754 }
755 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
756 
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)757 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
758 			       void *data, int offset, int len, u32 access)
759 {
760 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
761 				       data, offset, len, access);
762 }
763 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)764 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
765 {
766 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
767 	       rsvd_bits(1, 2);
768 }
769 
770 /*
771  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
772  */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)773 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
774 {
775 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
776 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
777 	int i;
778 	int ret;
779 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
780 
781 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
782 				      offset * sizeof(u64), sizeof(pdpte),
783 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
784 	if (ret < 0) {
785 		ret = 0;
786 		goto out;
787 	}
788 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
789 		if ((pdpte[i] & PT_PRESENT_MASK) &&
790 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
791 			ret = 0;
792 			goto out;
793 		}
794 	}
795 	ret = 1;
796 
797 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
798 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
799 
800 out:
801 
802 	return ret;
803 }
804 EXPORT_SYMBOL_GPL(load_pdptrs);
805 
pdptrs_changed(struct kvm_vcpu * vcpu)806 bool pdptrs_changed(struct kvm_vcpu *vcpu)
807 {
808 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
809 	int offset;
810 	gfn_t gfn;
811 	int r;
812 
813 	if (!is_pae_paging(vcpu))
814 		return false;
815 
816 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
817 		return true;
818 
819 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
820 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
821 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
822 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
823 	if (r < 0)
824 		return true;
825 
826 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
827 }
828 EXPORT_SYMBOL_GPL(pdptrs_changed);
829 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)830 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
831 {
832 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
833 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
834 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
835 
836 	cr0 |= X86_CR0_ET;
837 
838 #ifdef CONFIG_X86_64
839 	if (cr0 & 0xffffffff00000000UL)
840 		return 1;
841 #endif
842 
843 	cr0 &= ~CR0_RESERVED_BITS;
844 
845 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
846 		return 1;
847 
848 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
849 		return 1;
850 
851 #ifdef CONFIG_X86_64
852 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
853 	    (cr0 & X86_CR0_PG)) {
854 		int cs_db, cs_l;
855 
856 		if (!is_pae(vcpu))
857 			return 1;
858 		kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
859 		if (cs_l)
860 			return 1;
861 	}
862 #endif
863 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
864 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
865 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
866 		return 1;
867 
868 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
869 		return 1;
870 
871 	kvm_x86_ops.set_cr0(vcpu, cr0);
872 
873 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
874 		kvm_clear_async_pf_completion_queue(vcpu);
875 		kvm_async_pf_hash_reset(vcpu);
876 	}
877 
878 	if ((cr0 ^ old_cr0) & update_bits)
879 		kvm_mmu_reset_context(vcpu);
880 
881 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
882 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
883 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
884 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
885 
886 	return 0;
887 }
888 EXPORT_SYMBOL_GPL(kvm_set_cr0);
889 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)890 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
891 {
892 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
893 }
894 EXPORT_SYMBOL_GPL(kvm_lmsw);
895 
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)896 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
897 {
898 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
899 
900 		if (vcpu->arch.xcr0 != host_xcr0)
901 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
902 
903 		if (vcpu->arch.xsaves_enabled &&
904 		    vcpu->arch.ia32_xss != host_xss)
905 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
906 	}
907 
908 	if (static_cpu_has(X86_FEATURE_PKU) &&
909 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
910 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
911 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
912 		__write_pkru(vcpu->arch.pkru);
913 }
914 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
915 
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)916 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
917 {
918 	if (static_cpu_has(X86_FEATURE_PKU) &&
919 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
920 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
921 		vcpu->arch.pkru = rdpkru();
922 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
923 			__write_pkru(vcpu->arch.host_pkru);
924 	}
925 
926 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
927 
928 		if (vcpu->arch.xcr0 != host_xcr0)
929 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
930 
931 		if (vcpu->arch.xsaves_enabled &&
932 		    vcpu->arch.ia32_xss != host_xss)
933 			wrmsrl(MSR_IA32_XSS, host_xss);
934 	}
935 
936 }
937 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
938 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)939 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
940 {
941 	u64 xcr0 = xcr;
942 	u64 old_xcr0 = vcpu->arch.xcr0;
943 	u64 valid_bits;
944 
945 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
946 	if (index != XCR_XFEATURE_ENABLED_MASK)
947 		return 1;
948 	if (!(xcr0 & XFEATURE_MASK_FP))
949 		return 1;
950 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
951 		return 1;
952 
953 	/*
954 	 * Do not allow the guest to set bits that we do not support
955 	 * saving.  However, xcr0 bit 0 is always set, even if the
956 	 * emulated CPU does not support XSAVE (see fx_init).
957 	 */
958 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
959 	if (xcr0 & ~valid_bits)
960 		return 1;
961 
962 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
963 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
964 		return 1;
965 
966 	if (xcr0 & XFEATURE_MASK_AVX512) {
967 		if (!(xcr0 & XFEATURE_MASK_YMM))
968 			return 1;
969 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
970 			return 1;
971 	}
972 	vcpu->arch.xcr0 = xcr0;
973 
974 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
975 		kvm_update_cpuid_runtime(vcpu);
976 	return 0;
977 }
978 
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)979 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
982 	    __kvm_set_xcr(vcpu, index, xcr)) {
983 		kvm_inject_gp(vcpu, 0);
984 		return 1;
985 	}
986 	return 0;
987 }
988 EXPORT_SYMBOL_GPL(kvm_set_xcr);
989 
kvm_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)990 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
991 {
992 	if (cr4 & cr4_reserved_bits)
993 		return -EINVAL;
994 
995 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
996 		return -EINVAL;
997 
998 	if (!kvm_x86_ops.is_valid_cr4(vcpu, cr4))
999 		return -EINVAL;
1000 
1001 	return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
1004 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1005 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1006 {
1007 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1008 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1009 				   X86_CR4_SMEP;
1010 	unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
1011 
1012 	if (kvm_valid_cr4(vcpu, cr4))
1013 		return 1;
1014 
1015 	if (is_long_mode(vcpu)) {
1016 		if (!(cr4 & X86_CR4_PAE))
1017 			return 1;
1018 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1019 			return 1;
1020 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1021 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1022 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1023 				   kvm_read_cr3(vcpu)))
1024 		return 1;
1025 
1026 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1027 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1028 			return 1;
1029 
1030 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1031 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1032 			return 1;
1033 	}
1034 
1035 	kvm_x86_ops.set_cr4(vcpu, cr4);
1036 
1037 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1038 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1039 		kvm_mmu_reset_context(vcpu);
1040 
1041 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1042 		kvm_update_cpuid_runtime(vcpu);
1043 
1044 	return 0;
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1047 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1048 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1049 {
1050 	bool skip_tlb_flush = false;
1051 #ifdef CONFIG_X86_64
1052 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1053 
1054 	if (pcid_enabled) {
1055 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1056 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1057 	}
1058 #endif
1059 
1060 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1061 		if (!skip_tlb_flush) {
1062 			kvm_mmu_sync_roots(vcpu);
1063 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1064 		}
1065 		return 0;
1066 	}
1067 
1068 	if (is_long_mode(vcpu) &&
1069 	    (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1070 		return 1;
1071 	else if (is_pae_paging(vcpu) &&
1072 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1073 		return 1;
1074 
1075 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1076 	vcpu->arch.cr3 = cr3;
1077 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1078 
1079 	return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1082 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1083 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1084 {
1085 	if (cr8 & CR8_RESERVED_BITS)
1086 		return 1;
1087 	if (lapic_in_kernel(vcpu))
1088 		kvm_lapic_set_tpr(vcpu, cr8);
1089 	else
1090 		vcpu->arch.cr8 = cr8;
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1094 
kvm_get_cr8(struct kvm_vcpu * vcpu)1095 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1096 {
1097 	if (lapic_in_kernel(vcpu))
1098 		return kvm_lapic_get_cr8(vcpu);
1099 	else
1100 		return vcpu->arch.cr8;
1101 }
1102 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1103 
kvm_update_dr0123(struct kvm_vcpu * vcpu)1104 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1105 {
1106 	int i;
1107 
1108 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1109 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1110 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1111 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1112 	}
1113 }
1114 
kvm_update_dr7(struct kvm_vcpu * vcpu)1115 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1116 {
1117 	unsigned long dr7;
1118 
1119 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1120 		dr7 = vcpu->arch.guest_debug_dr7;
1121 	else
1122 		dr7 = vcpu->arch.dr7;
1123 	kvm_x86_ops.set_dr7(vcpu, dr7);
1124 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1125 	if (dr7 & DR7_BP_EN_MASK)
1126 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1129 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1130 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1131 {
1132 	u64 fixed = DR6_FIXED_1;
1133 
1134 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1135 		fixed |= DR6_RTM;
1136 	return fixed;
1137 }
1138 
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1139 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1140 {
1141 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1142 
1143 	switch (dr) {
1144 	case 0 ... 3:
1145 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1146 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1147 			vcpu->arch.eff_db[dr] = val;
1148 		break;
1149 	case 4:
1150 	case 6:
1151 		if (!kvm_dr6_valid(val))
1152 			return -1; /* #GP */
1153 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1154 		break;
1155 	case 5:
1156 	default: /* 7 */
1157 		if (!kvm_dr7_valid(val))
1158 			return -1; /* #GP */
1159 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1160 		kvm_update_dr7(vcpu);
1161 		break;
1162 	}
1163 
1164 	return 0;
1165 }
1166 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1167 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1168 {
1169 	if (__kvm_set_dr(vcpu, dr, val)) {
1170 		kvm_inject_gp(vcpu, 0);
1171 		return 1;
1172 	}
1173 	return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(kvm_set_dr);
1176 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1177 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1178 {
1179 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1180 
1181 	switch (dr) {
1182 	case 0 ... 3:
1183 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1184 		break;
1185 	case 4:
1186 	case 6:
1187 		*val = vcpu->arch.dr6;
1188 		break;
1189 	case 5:
1190 	default: /* 7 */
1191 		*val = vcpu->arch.dr7;
1192 		break;
1193 	}
1194 	return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_get_dr);
1197 
kvm_rdpmc(struct kvm_vcpu * vcpu)1198 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1199 {
1200 	u32 ecx = kvm_rcx_read(vcpu);
1201 	u64 data;
1202 	int err;
1203 
1204 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1205 	if (err)
1206 		return err;
1207 	kvm_rax_write(vcpu, (u32)data);
1208 	kvm_rdx_write(vcpu, data >> 32);
1209 	return err;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1212 
1213 /*
1214  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1215  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1216  *
1217  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1218  * extract the supported MSRs from the related const lists.
1219  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1220  * capabilities of the host cpu. This capabilities test skips MSRs that are
1221  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1222  * may depend on host virtualization features rather than host cpu features.
1223  */
1224 
1225 static const u32 msrs_to_save_all[] = {
1226 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1227 	MSR_STAR,
1228 #ifdef CONFIG_X86_64
1229 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1230 #endif
1231 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1232 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1233 	MSR_IA32_SPEC_CTRL,
1234 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1235 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1236 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1237 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1238 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1239 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1240 	MSR_IA32_UMWAIT_CONTROL,
1241 
1242 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1243 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1244 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1245 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1246 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1247 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1248 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1249 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1250 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1251 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1252 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1253 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1254 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1255 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1256 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1257 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1258 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1259 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1260 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1261 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1262 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1263 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1264 
1265 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1266 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1267 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1268 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1269 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1270 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1271 };
1272 
1273 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1274 static unsigned num_msrs_to_save;
1275 
1276 static const u32 emulated_msrs_all[] = {
1277 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1278 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1279 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1280 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1281 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1282 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1283 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1284 	HV_X64_MSR_RESET,
1285 	HV_X64_MSR_VP_INDEX,
1286 	HV_X64_MSR_VP_RUNTIME,
1287 	HV_X64_MSR_SCONTROL,
1288 	HV_X64_MSR_STIMER0_CONFIG,
1289 	HV_X64_MSR_VP_ASSIST_PAGE,
1290 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1291 	HV_X64_MSR_TSC_EMULATION_STATUS,
1292 	HV_X64_MSR_SYNDBG_OPTIONS,
1293 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1294 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1295 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1296 
1297 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1298 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1299 
1300 	MSR_IA32_TSC_ADJUST,
1301 	MSR_IA32_TSCDEADLINE,
1302 	MSR_IA32_ARCH_CAPABILITIES,
1303 	MSR_IA32_PERF_CAPABILITIES,
1304 	MSR_IA32_MISC_ENABLE,
1305 	MSR_IA32_MCG_STATUS,
1306 	MSR_IA32_MCG_CTL,
1307 	MSR_IA32_MCG_EXT_CTL,
1308 	MSR_IA32_SMBASE,
1309 	MSR_SMI_COUNT,
1310 	MSR_PLATFORM_INFO,
1311 	MSR_MISC_FEATURES_ENABLES,
1312 	MSR_AMD64_VIRT_SPEC_CTRL,
1313 	MSR_IA32_POWER_CTL,
1314 	MSR_IA32_UCODE_REV,
1315 
1316 	/*
1317 	 * The following list leaves out MSRs whose values are determined
1318 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1319 	 * We always support the "true" VMX control MSRs, even if the host
1320 	 * processor does not, so I am putting these registers here rather
1321 	 * than in msrs_to_save_all.
1322 	 */
1323 	MSR_IA32_VMX_BASIC,
1324 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1325 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1326 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1327 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1328 	MSR_IA32_VMX_MISC,
1329 	MSR_IA32_VMX_CR0_FIXED0,
1330 	MSR_IA32_VMX_CR4_FIXED0,
1331 	MSR_IA32_VMX_VMCS_ENUM,
1332 	MSR_IA32_VMX_PROCBASED_CTLS2,
1333 	MSR_IA32_VMX_EPT_VPID_CAP,
1334 	MSR_IA32_VMX_VMFUNC,
1335 
1336 	MSR_K7_HWCR,
1337 	MSR_KVM_POLL_CONTROL,
1338 };
1339 
1340 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1341 static unsigned num_emulated_msrs;
1342 
1343 /*
1344  * List of msr numbers which are used to expose MSR-based features that
1345  * can be used by a hypervisor to validate requested CPU features.
1346  */
1347 static const u32 msr_based_features_all[] = {
1348 	MSR_IA32_VMX_BASIC,
1349 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1350 	MSR_IA32_VMX_PINBASED_CTLS,
1351 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1352 	MSR_IA32_VMX_PROCBASED_CTLS,
1353 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1354 	MSR_IA32_VMX_EXIT_CTLS,
1355 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1356 	MSR_IA32_VMX_ENTRY_CTLS,
1357 	MSR_IA32_VMX_MISC,
1358 	MSR_IA32_VMX_CR0_FIXED0,
1359 	MSR_IA32_VMX_CR0_FIXED1,
1360 	MSR_IA32_VMX_CR4_FIXED0,
1361 	MSR_IA32_VMX_CR4_FIXED1,
1362 	MSR_IA32_VMX_VMCS_ENUM,
1363 	MSR_IA32_VMX_PROCBASED_CTLS2,
1364 	MSR_IA32_VMX_EPT_VPID_CAP,
1365 	MSR_IA32_VMX_VMFUNC,
1366 
1367 	MSR_AMD64_DE_CFG,
1368 	MSR_IA32_UCODE_REV,
1369 	MSR_IA32_ARCH_CAPABILITIES,
1370 	MSR_IA32_PERF_CAPABILITIES,
1371 };
1372 
1373 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1374 static unsigned int num_msr_based_features;
1375 
1376 /*
1377  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1378  * does not yet virtualize. These include:
1379  *   10 - MISC_PACKAGE_CTRLS
1380  *   11 - ENERGY_FILTERING_CTL
1381  *   12 - DOITM
1382  *   18 - FB_CLEAR_CTRL
1383  *   21 - XAPIC_DISABLE_STATUS
1384  *   23 - OVERCLOCKING_STATUS
1385  */
1386 
1387 #define KVM_SUPPORTED_ARCH_CAP \
1388 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1389 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1390 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1391 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1392 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1393 
kvm_get_arch_capabilities(void)1394 static u64 kvm_get_arch_capabilities(void)
1395 {
1396 	u64 data = 0;
1397 
1398 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1399 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1400 		data &= KVM_SUPPORTED_ARCH_CAP;
1401 	}
1402 
1403 	/*
1404 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1405 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1406 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1407 	 * L1 guests, so it need not worry about its own (L2) guests.
1408 	 */
1409 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1410 
1411 	/*
1412 	 * If we're doing cache flushes (either "always" or "cond")
1413 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1414 	 * If an outer hypervisor is doing the cache flush for us
1415 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1416 	 * capability to the guest too, and if EPT is disabled we're not
1417 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1418 	 * require a nested hypervisor to do a flush of its own.
1419 	 */
1420 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1421 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1422 
1423 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1424 		data |= ARCH_CAP_RDCL_NO;
1425 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1426 		data |= ARCH_CAP_SSB_NO;
1427 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1428 		data |= ARCH_CAP_MDS_NO;
1429 
1430 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1431 		/*
1432 		 * If RTM=0 because the kernel has disabled TSX, the host might
1433 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1434 		 * and therefore knows that there cannot be TAA) but keep
1435 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1436 		 * and we want to allow migrating those guests to tsx=off hosts.
1437 		 */
1438 		data &= ~ARCH_CAP_TAA_NO;
1439 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1440 		data |= ARCH_CAP_TAA_NO;
1441 	} else {
1442 		/*
1443 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1444 		 * host so the guest can choose between disabling TSX or
1445 		 * using VERW to clear CPU buffers.
1446 		 */
1447 	}
1448 
1449 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1450 		data |= ARCH_CAP_GDS_NO;
1451 
1452 	return data;
1453 }
1454 
kvm_get_msr_feature(struct kvm_msr_entry * msr)1455 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1456 {
1457 	switch (msr->index) {
1458 	case MSR_IA32_ARCH_CAPABILITIES:
1459 		msr->data = kvm_get_arch_capabilities();
1460 		break;
1461 	case MSR_IA32_UCODE_REV:
1462 		rdmsrl_safe(msr->index, &msr->data);
1463 		break;
1464 	default:
1465 		return kvm_x86_ops.get_msr_feature(msr);
1466 	}
1467 	return 0;
1468 }
1469 
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1470 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1471 {
1472 	struct kvm_msr_entry msr;
1473 	int r;
1474 
1475 	msr.index = index;
1476 	r = kvm_get_msr_feature(&msr);
1477 
1478 	if (r == KVM_MSR_RET_INVALID) {
1479 		/* Unconditionally clear the output for simplicity */
1480 		*data = 0;
1481 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1482 			r = 0;
1483 	}
1484 
1485 	if (r)
1486 		return r;
1487 
1488 	*data = msr.data;
1489 
1490 	return 0;
1491 }
1492 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1493 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1494 {
1495 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1496 		return false;
1497 
1498 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1499 		return false;
1500 
1501 	if (efer & (EFER_LME | EFER_LMA) &&
1502 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1503 		return false;
1504 
1505 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1506 		return false;
1507 
1508 	return true;
1509 
1510 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1511 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1512 {
1513 	if (efer & efer_reserved_bits)
1514 		return false;
1515 
1516 	return __kvm_valid_efer(vcpu, efer);
1517 }
1518 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1519 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1520 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1521 {
1522 	u64 old_efer = vcpu->arch.efer;
1523 	u64 efer = msr_info->data;
1524 	int r;
1525 
1526 	if (efer & efer_reserved_bits)
1527 		return 1;
1528 
1529 	if (!msr_info->host_initiated) {
1530 		if (!__kvm_valid_efer(vcpu, efer))
1531 			return 1;
1532 
1533 		if (is_paging(vcpu) &&
1534 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1535 			return 1;
1536 	}
1537 
1538 	efer &= ~EFER_LMA;
1539 	efer |= vcpu->arch.efer & EFER_LMA;
1540 
1541 	r = kvm_x86_ops.set_efer(vcpu, efer);
1542 	if (r) {
1543 		WARN_ON(r > 0);
1544 		return r;
1545 	}
1546 
1547 	/* Update reserved bits */
1548 	if ((efer ^ old_efer) & EFER_NX)
1549 		kvm_mmu_reset_context(vcpu);
1550 
1551 	return 0;
1552 }
1553 
kvm_enable_efer_bits(u64 mask)1554 void kvm_enable_efer_bits(u64 mask)
1555 {
1556        efer_reserved_bits &= ~mask;
1557 }
1558 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1559 
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1560 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1561 {
1562 	struct kvm_x86_msr_filter *msr_filter;
1563 	struct msr_bitmap_range *ranges;
1564 	struct kvm *kvm = vcpu->kvm;
1565 	bool allowed;
1566 	int idx;
1567 	u32 i;
1568 
1569 	/* x2APIC MSRs do not support filtering. */
1570 	if (index >= 0x800 && index <= 0x8ff)
1571 		return true;
1572 
1573 	idx = srcu_read_lock(&kvm->srcu);
1574 
1575 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1576 	if (!msr_filter) {
1577 		allowed = true;
1578 		goto out;
1579 	}
1580 
1581 	allowed = msr_filter->default_allow;
1582 	ranges = msr_filter->ranges;
1583 
1584 	for (i = 0; i < msr_filter->count; i++) {
1585 		u32 start = ranges[i].base;
1586 		u32 end = start + ranges[i].nmsrs;
1587 		u32 flags = ranges[i].flags;
1588 		unsigned long *bitmap = ranges[i].bitmap;
1589 
1590 		if ((index >= start) && (index < end) && (flags & type)) {
1591 			allowed = !!test_bit(index - start, bitmap);
1592 			break;
1593 		}
1594 
1595 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
1596 		++vcpu->stat.exits;
1597 	}
1598 
1599 out:
1600 	srcu_read_unlock(&kvm->srcu, idx);
1601 
1602 	return allowed;
1603 }
1604 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1605 
1606 /*
1607  * Write @data into the MSR specified by @index.  Select MSR specific fault
1608  * checks are bypassed if @host_initiated is %true.
1609  * Returns 0 on success, non-0 otherwise.
1610  * Assumes vcpu_load() was already called.
1611  */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1612 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1613 			 bool host_initiated)
1614 {
1615 	struct msr_data msr;
1616 
1617 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1618 		return KVM_MSR_RET_FILTERED;
1619 
1620 	switch (index) {
1621 	case MSR_FS_BASE:
1622 	case MSR_GS_BASE:
1623 	case MSR_KERNEL_GS_BASE:
1624 	case MSR_CSTAR:
1625 	case MSR_LSTAR:
1626 		if (is_noncanonical_address(data, vcpu))
1627 			return 1;
1628 		break;
1629 	case MSR_IA32_SYSENTER_EIP:
1630 	case MSR_IA32_SYSENTER_ESP:
1631 		/*
1632 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1633 		 * non-canonical address is written on Intel but not on
1634 		 * AMD (which ignores the top 32-bits, because it does
1635 		 * not implement 64-bit SYSENTER).
1636 		 *
1637 		 * 64-bit code should hence be able to write a non-canonical
1638 		 * value on AMD.  Making the address canonical ensures that
1639 		 * vmentry does not fail on Intel after writing a non-canonical
1640 		 * value, and that something deterministic happens if the guest
1641 		 * invokes 64-bit SYSENTER.
1642 		 */
1643 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1644 	}
1645 
1646 	msr.data = data;
1647 	msr.index = index;
1648 	msr.host_initiated = host_initiated;
1649 
1650 	return kvm_x86_ops.set_msr(vcpu, &msr);
1651 }
1652 
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1653 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1654 				     u32 index, u64 data, bool host_initiated)
1655 {
1656 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1657 
1658 	if (ret == KVM_MSR_RET_INVALID)
1659 		if (kvm_msr_ignored_check(vcpu, index, data, true))
1660 			ret = 0;
1661 
1662 	return ret;
1663 }
1664 
1665 /*
1666  * Read the MSR specified by @index into @data.  Select MSR specific fault
1667  * checks are bypassed if @host_initiated is %true.
1668  * Returns 0 on success, non-0 otherwise.
1669  * Assumes vcpu_load() was already called.
1670  */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1671 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1672 		  bool host_initiated)
1673 {
1674 	struct msr_data msr;
1675 	int ret;
1676 
1677 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1678 		return KVM_MSR_RET_FILTERED;
1679 
1680 	msr.index = index;
1681 	msr.host_initiated = host_initiated;
1682 
1683 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1684 	if (!ret)
1685 		*data = msr.data;
1686 	return ret;
1687 }
1688 
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1689 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1690 				     u32 index, u64 *data, bool host_initiated)
1691 {
1692 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1693 
1694 	if (ret == KVM_MSR_RET_INVALID) {
1695 		/* Unconditionally clear *data for simplicity */
1696 		*data = 0;
1697 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1698 			ret = 0;
1699 	}
1700 
1701 	return ret;
1702 }
1703 
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1704 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1705 {
1706 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_get_msr);
1709 
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1710 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1711 {
1712 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_set_msr);
1715 
complete_emulated_msr(struct kvm_vcpu * vcpu,bool is_read)1716 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
1717 {
1718 	if (vcpu->run->msr.error) {
1719 		kvm_inject_gp(vcpu, 0);
1720 		return 1;
1721 	} else if (is_read) {
1722 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1723 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1724 	}
1725 
1726 	return kvm_skip_emulated_instruction(vcpu);
1727 }
1728 
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1729 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1730 {
1731 	return complete_emulated_msr(vcpu, true);
1732 }
1733 
complete_emulated_wrmsr(struct kvm_vcpu * vcpu)1734 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1735 {
1736 	return complete_emulated_msr(vcpu, false);
1737 }
1738 
kvm_msr_reason(int r)1739 static u64 kvm_msr_reason(int r)
1740 {
1741 	switch (r) {
1742 	case KVM_MSR_RET_INVALID:
1743 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1744 	case KVM_MSR_RET_FILTERED:
1745 		return KVM_MSR_EXIT_REASON_FILTER;
1746 	default:
1747 		return KVM_MSR_EXIT_REASON_INVAL;
1748 	}
1749 }
1750 
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1751 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1752 			      u32 exit_reason, u64 data,
1753 			      int (*completion)(struct kvm_vcpu *vcpu),
1754 			      int r)
1755 {
1756 	u64 msr_reason = kvm_msr_reason(r);
1757 
1758 	/* Check if the user wanted to know about this MSR fault */
1759 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1760 		return 0;
1761 
1762 	vcpu->run->exit_reason = exit_reason;
1763 	vcpu->run->msr.error = 0;
1764 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1765 	vcpu->run->msr.reason = msr_reason;
1766 	vcpu->run->msr.index = index;
1767 	vcpu->run->msr.data = data;
1768 	vcpu->arch.complete_userspace_io = completion;
1769 
1770 	return 1;
1771 }
1772 
kvm_get_msr_user_space(struct kvm_vcpu * vcpu,u32 index,int r)1773 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1774 {
1775 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1776 				   complete_emulated_rdmsr, r);
1777 }
1778 
kvm_set_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u64 data,int r)1779 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1780 {
1781 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1782 				   complete_emulated_wrmsr, r);
1783 }
1784 
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)1785 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1786 {
1787 	u32 ecx = kvm_rcx_read(vcpu);
1788 	u64 data;
1789 	int r;
1790 
1791 	r = kvm_get_msr(vcpu, ecx, &data);
1792 
1793 	/* MSR read failed? See if we should ask user space */
1794 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1795 		/* Bounce to user space */
1796 		return 0;
1797 	}
1798 
1799 	/* MSR read failed? Inject a #GP */
1800 	if (r) {
1801 		trace_kvm_msr_read_ex(ecx);
1802 		kvm_inject_gp(vcpu, 0);
1803 		return 1;
1804 	}
1805 
1806 	trace_kvm_msr_read(ecx, data);
1807 
1808 	kvm_rax_write(vcpu, data & -1u);
1809 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1810 	return kvm_skip_emulated_instruction(vcpu);
1811 }
1812 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1813 
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)1814 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1815 {
1816 	u32 ecx = kvm_rcx_read(vcpu);
1817 	u64 data = kvm_read_edx_eax(vcpu);
1818 	int r;
1819 
1820 	r = kvm_set_msr(vcpu, ecx, data);
1821 
1822 	/* MSR write failed? See if we should ask user space */
1823 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1824 		/* Bounce to user space */
1825 		return 0;
1826 
1827 	/* Signal all other negative errors to userspace */
1828 	if (r < 0)
1829 		return r;
1830 
1831 	/* MSR write failed? Inject a #GP */
1832 	if (r > 0) {
1833 		trace_kvm_msr_write_ex(ecx, data);
1834 		kvm_inject_gp(vcpu, 0);
1835 		return 1;
1836 	}
1837 
1838 	trace_kvm_msr_write(ecx, data);
1839 	return kvm_skip_emulated_instruction(vcpu);
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1842 
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)1843 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1844 {
1845 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1846 		xfer_to_guest_mode_work_pending();
1847 }
1848 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1849 
1850 /*
1851  * The fast path for frequent and performance sensitive wrmsr emulation,
1852  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1853  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1854  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1855  * other cases which must be called after interrupts are enabled on the host.
1856  */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)1857 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1858 {
1859 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1860 		return 1;
1861 
1862 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1863 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1864 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1865 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1866 
1867 		data &= ~(1 << 12);
1868 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1869 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1870 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1871 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1872 		return 0;
1873 	}
1874 
1875 	return 1;
1876 }
1877 
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)1878 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1879 {
1880 	if (!kvm_can_use_hv_timer(vcpu))
1881 		return 1;
1882 
1883 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1884 	return 0;
1885 }
1886 
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)1887 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1888 {
1889 	u32 msr = kvm_rcx_read(vcpu);
1890 	u64 data;
1891 	fastpath_t ret = EXIT_FASTPATH_NONE;
1892 
1893 	switch (msr) {
1894 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1895 		data = kvm_read_edx_eax(vcpu);
1896 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1897 			kvm_skip_emulated_instruction(vcpu);
1898 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1899 		}
1900 		break;
1901 	case MSR_IA32_TSCDEADLINE:
1902 		data = kvm_read_edx_eax(vcpu);
1903 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1904 			kvm_skip_emulated_instruction(vcpu);
1905 			ret = EXIT_FASTPATH_REENTER_GUEST;
1906 		}
1907 		break;
1908 	default:
1909 		break;
1910 	}
1911 
1912 	if (ret != EXIT_FASTPATH_NONE)
1913 		trace_kvm_msr_write(msr, data);
1914 
1915 	return ret;
1916 }
1917 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1918 
1919 /*
1920  * Adapt set_msr() to msr_io()'s calling convention
1921  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1922 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1923 {
1924 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
1925 }
1926 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1927 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1928 {
1929 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1930 }
1931 
1932 #ifdef CONFIG_X86_64
1933 struct pvclock_clock {
1934 	int vclock_mode;
1935 	u64 cycle_last;
1936 	u64 mask;
1937 	u32 mult;
1938 	u32 shift;
1939 	u64 base_cycles;
1940 	u64 offset;
1941 };
1942 
1943 struct pvclock_gtod_data {
1944 	seqcount_t	seq;
1945 
1946 	struct pvclock_clock clock; /* extract of a clocksource struct */
1947 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1948 
1949 	ktime_t		offs_boot;
1950 	u64		wall_time_sec;
1951 };
1952 
1953 static struct pvclock_gtod_data pvclock_gtod_data;
1954 
update_pvclock_gtod(struct timekeeper * tk)1955 static void update_pvclock_gtod(struct timekeeper *tk)
1956 {
1957 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1958 
1959 	write_seqcount_begin(&vdata->seq);
1960 
1961 	/* copy pvclock gtod data */
1962 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1963 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1964 	vdata->clock.mask		= tk->tkr_mono.mask;
1965 	vdata->clock.mult		= tk->tkr_mono.mult;
1966 	vdata->clock.shift		= tk->tkr_mono.shift;
1967 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1968 	vdata->clock.offset		= tk->tkr_mono.base;
1969 
1970 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1971 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1972 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1973 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1974 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1975 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1976 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1977 
1978 	vdata->wall_time_sec            = tk->xtime_sec;
1979 
1980 	vdata->offs_boot		= tk->offs_boot;
1981 
1982 	write_seqcount_end(&vdata->seq);
1983 }
1984 
get_kvmclock_base_ns(void)1985 static s64 get_kvmclock_base_ns(void)
1986 {
1987 	/* Count up from boot time, but with the frequency of the raw clock.  */
1988 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1989 }
1990 #else
get_kvmclock_base_ns(void)1991 static s64 get_kvmclock_base_ns(void)
1992 {
1993 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1994 	return ktime_get_boottime_ns();
1995 }
1996 #endif
1997 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1998 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1999 {
2000 	int version;
2001 	int r;
2002 	struct pvclock_wall_clock wc;
2003 	u64 wall_nsec;
2004 
2005 	kvm->arch.wall_clock = wall_clock;
2006 
2007 	if (!wall_clock)
2008 		return;
2009 
2010 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2011 	if (r)
2012 		return;
2013 
2014 	if (version & 1)
2015 		++version;  /* first time write, random junk */
2016 
2017 	++version;
2018 
2019 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2020 		return;
2021 
2022 	/*
2023 	 * The guest calculates current wall clock time by adding
2024 	 * system time (updated by kvm_guest_time_update below) to the
2025 	 * wall clock specified here.  We do the reverse here.
2026 	 */
2027 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2028 
2029 	wc.nsec = do_div(wall_nsec, 1000000000);
2030 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2031 	wc.version = version;
2032 
2033 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2034 
2035 	version++;
2036 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2037 }
2038 
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2039 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2040 				  bool old_msr, bool host_initiated)
2041 {
2042 	struct kvm_arch *ka = &vcpu->kvm->arch;
2043 
2044 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2045 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2046 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2047 
2048 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2049 	}
2050 
2051 	vcpu->arch.time = system_time;
2052 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2053 
2054 	/* we verify if the enable bit is set... */
2055 	vcpu->arch.pv_time_enabled = false;
2056 	if (!(system_time & 1))
2057 		return;
2058 
2059 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2060 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2061 				       sizeof(struct pvclock_vcpu_time_info)))
2062 		vcpu->arch.pv_time_enabled = true;
2063 
2064 	return;
2065 }
2066 
div_frac(uint32_t dividend,uint32_t divisor)2067 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2068 {
2069 	do_shl32_div32(dividend, divisor);
2070 	return dividend;
2071 }
2072 
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2073 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2074 			       s8 *pshift, u32 *pmultiplier)
2075 {
2076 	uint64_t scaled64;
2077 	int32_t  shift = 0;
2078 	uint64_t tps64;
2079 	uint32_t tps32;
2080 
2081 	tps64 = base_hz;
2082 	scaled64 = scaled_hz;
2083 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2084 		tps64 >>= 1;
2085 		shift--;
2086 	}
2087 
2088 	tps32 = (uint32_t)tps64;
2089 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2090 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2091 			scaled64 >>= 1;
2092 		else
2093 			tps32 <<= 1;
2094 		shift++;
2095 	}
2096 
2097 	*pshift = shift;
2098 	*pmultiplier = div_frac(scaled64, tps32);
2099 }
2100 
2101 #ifdef CONFIG_X86_64
2102 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2103 #endif
2104 
2105 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2106 static unsigned long max_tsc_khz;
2107 
adjust_tsc_khz(u32 khz,s32 ppm)2108 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2109 {
2110 	u64 v = (u64)khz * (1000000 + ppm);
2111 	do_div(v, 1000000);
2112 	return v;
2113 }
2114 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2115 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2116 {
2117 	u64 ratio;
2118 
2119 	/* Guest TSC same frequency as host TSC? */
2120 	if (!scale) {
2121 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2122 		return 0;
2123 	}
2124 
2125 	/* TSC scaling supported? */
2126 	if (!kvm_has_tsc_control) {
2127 		if (user_tsc_khz > tsc_khz) {
2128 			vcpu->arch.tsc_catchup = 1;
2129 			vcpu->arch.tsc_always_catchup = 1;
2130 			return 0;
2131 		} else {
2132 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2133 			return -1;
2134 		}
2135 	}
2136 
2137 	/* TSC scaling required  - calculate ratio */
2138 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2139 				user_tsc_khz, tsc_khz);
2140 
2141 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2142 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2143 			            user_tsc_khz);
2144 		return -1;
2145 	}
2146 
2147 	vcpu->arch.tsc_scaling_ratio = ratio;
2148 	return 0;
2149 }
2150 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2151 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2152 {
2153 	u32 thresh_lo, thresh_hi;
2154 	int use_scaling = 0;
2155 
2156 	/* tsc_khz can be zero if TSC calibration fails */
2157 	if (user_tsc_khz == 0) {
2158 		/* set tsc_scaling_ratio to a safe value */
2159 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2160 		return -1;
2161 	}
2162 
2163 	/* Compute a scale to convert nanoseconds in TSC cycles */
2164 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2165 			   &vcpu->arch.virtual_tsc_shift,
2166 			   &vcpu->arch.virtual_tsc_mult);
2167 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2168 
2169 	/*
2170 	 * Compute the variation in TSC rate which is acceptable
2171 	 * within the range of tolerance and decide if the
2172 	 * rate being applied is within that bounds of the hardware
2173 	 * rate.  If so, no scaling or compensation need be done.
2174 	 */
2175 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2176 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2177 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2178 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2179 		use_scaling = 1;
2180 	}
2181 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2182 }
2183 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2184 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2185 {
2186 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2187 				      vcpu->arch.virtual_tsc_mult,
2188 				      vcpu->arch.virtual_tsc_shift);
2189 	tsc += vcpu->arch.this_tsc_write;
2190 	return tsc;
2191 }
2192 
gtod_is_based_on_tsc(int mode)2193 static inline int gtod_is_based_on_tsc(int mode)
2194 {
2195 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2196 }
2197 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2198 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2199 {
2200 #ifdef CONFIG_X86_64
2201 	bool vcpus_matched;
2202 	struct kvm_arch *ka = &vcpu->kvm->arch;
2203 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2204 
2205 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2206 			 atomic_read(&vcpu->kvm->online_vcpus));
2207 
2208 	/*
2209 	 * Once the masterclock is enabled, always perform request in
2210 	 * order to update it.
2211 	 *
2212 	 * In order to enable masterclock, the host clocksource must be TSC
2213 	 * and the vcpus need to have matched TSCs.  When that happens,
2214 	 * perform request to enable masterclock.
2215 	 */
2216 	if (ka->use_master_clock ||
2217 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2218 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2219 
2220 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2221 			    atomic_read(&vcpu->kvm->online_vcpus),
2222 		            ka->use_master_clock, gtod->clock.vclock_mode);
2223 #endif
2224 }
2225 
2226 /*
2227  * Multiply tsc by a fixed point number represented by ratio.
2228  *
2229  * The most significant 64-N bits (mult) of ratio represent the
2230  * integral part of the fixed point number; the remaining N bits
2231  * (frac) represent the fractional part, ie. ratio represents a fixed
2232  * point number (mult + frac * 2^(-N)).
2233  *
2234  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2235  */
__scale_tsc(u64 ratio,u64 tsc)2236 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2237 {
2238 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2239 }
2240 
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)2241 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2242 {
2243 	u64 _tsc = tsc;
2244 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
2245 
2246 	if (ratio != kvm_default_tsc_scaling_ratio)
2247 		_tsc = __scale_tsc(ratio, tsc);
2248 
2249 	return _tsc;
2250 }
2251 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2252 
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2253 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2254 {
2255 	u64 tsc;
2256 
2257 	tsc = kvm_scale_tsc(vcpu, rdtsc());
2258 
2259 	return target_tsc - tsc;
2260 }
2261 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2262 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2263 {
2264 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2265 }
2266 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2267 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)2268 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2269 {
2270 	vcpu->arch.l1_tsc_offset = offset;
2271 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2272 }
2273 
kvm_check_tsc_unstable(void)2274 static inline bool kvm_check_tsc_unstable(void)
2275 {
2276 #ifdef CONFIG_X86_64
2277 	/*
2278 	 * TSC is marked unstable when we're running on Hyper-V,
2279 	 * 'TSC page' clocksource is good.
2280 	 */
2281 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2282 		return false;
2283 #endif
2284 	return check_tsc_unstable();
2285 }
2286 
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2287 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2288 {
2289 	struct kvm *kvm = vcpu->kvm;
2290 	u64 offset, ns, elapsed;
2291 	unsigned long flags;
2292 	bool matched;
2293 	bool already_matched;
2294 	bool synchronizing = false;
2295 
2296 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2297 	offset = kvm_compute_tsc_offset(vcpu, data);
2298 	ns = get_kvmclock_base_ns();
2299 	elapsed = ns - kvm->arch.last_tsc_nsec;
2300 
2301 	if (vcpu->arch.virtual_tsc_khz) {
2302 		if (data == 0) {
2303 			/*
2304 			 * detection of vcpu initialization -- need to sync
2305 			 * with other vCPUs. This particularly helps to keep
2306 			 * kvm_clock stable after CPU hotplug
2307 			 */
2308 			synchronizing = true;
2309 		} else {
2310 			u64 tsc_exp = kvm->arch.last_tsc_write +
2311 						nsec_to_cycles(vcpu, elapsed);
2312 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2313 			/*
2314 			 * Special case: TSC write with a small delta (1 second)
2315 			 * of virtual cycle time against real time is
2316 			 * interpreted as an attempt to synchronize the CPU.
2317 			 */
2318 			synchronizing = data < tsc_exp + tsc_hz &&
2319 					data + tsc_hz > tsc_exp;
2320 		}
2321 	}
2322 
2323 	/*
2324 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2325 	 * TSC, we add elapsed time in this computation.  We could let the
2326 	 * compensation code attempt to catch up if we fall behind, but
2327 	 * it's better to try to match offsets from the beginning.
2328          */
2329 	if (synchronizing &&
2330 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2331 		if (!kvm_check_tsc_unstable()) {
2332 			offset = kvm->arch.cur_tsc_offset;
2333 		} else {
2334 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2335 			data += delta;
2336 			offset = kvm_compute_tsc_offset(vcpu, data);
2337 		}
2338 		matched = true;
2339 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2340 	} else {
2341 		/*
2342 		 * We split periods of matched TSC writes into generations.
2343 		 * For each generation, we track the original measured
2344 		 * nanosecond time, offset, and write, so if TSCs are in
2345 		 * sync, we can match exact offset, and if not, we can match
2346 		 * exact software computation in compute_guest_tsc()
2347 		 *
2348 		 * These values are tracked in kvm->arch.cur_xxx variables.
2349 		 */
2350 		kvm->arch.cur_tsc_generation++;
2351 		kvm->arch.cur_tsc_nsec = ns;
2352 		kvm->arch.cur_tsc_write = data;
2353 		kvm->arch.cur_tsc_offset = offset;
2354 		matched = false;
2355 	}
2356 
2357 	/*
2358 	 * We also track th most recent recorded KHZ, write and time to
2359 	 * allow the matching interval to be extended at each write.
2360 	 */
2361 	kvm->arch.last_tsc_nsec = ns;
2362 	kvm->arch.last_tsc_write = data;
2363 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2364 
2365 	vcpu->arch.last_guest_tsc = data;
2366 
2367 	/* Keep track of which generation this VCPU has synchronized to */
2368 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2369 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2370 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2371 
2372 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2373 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2374 
2375 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2376 	if (!matched) {
2377 		kvm->arch.nr_vcpus_matched_tsc = 0;
2378 	} else if (!already_matched) {
2379 		kvm->arch.nr_vcpus_matched_tsc++;
2380 	}
2381 
2382 	kvm_track_tsc_matching(vcpu);
2383 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2384 }
2385 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2386 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2387 					   s64 adjustment)
2388 {
2389 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2390 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2391 }
2392 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2393 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2394 {
2395 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2396 		WARN_ON(adjustment < 0);
2397 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2398 	adjust_tsc_offset_guest(vcpu, adjustment);
2399 }
2400 
2401 #ifdef CONFIG_X86_64
2402 
read_tsc(void)2403 static u64 read_tsc(void)
2404 {
2405 	u64 ret = (u64)rdtsc_ordered();
2406 	u64 last = pvclock_gtod_data.clock.cycle_last;
2407 
2408 	if (likely(ret >= last))
2409 		return ret;
2410 
2411 	/*
2412 	 * GCC likes to generate cmov here, but this branch is extremely
2413 	 * predictable (it's just a function of time and the likely is
2414 	 * very likely) and there's a data dependence, so force GCC
2415 	 * to generate a branch instead.  I don't barrier() because
2416 	 * we don't actually need a barrier, and if this function
2417 	 * ever gets inlined it will generate worse code.
2418 	 */
2419 	asm volatile ("");
2420 	return last;
2421 }
2422 
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2423 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2424 			  int *mode)
2425 {
2426 	long v;
2427 	u64 tsc_pg_val;
2428 
2429 	switch (clock->vclock_mode) {
2430 	case VDSO_CLOCKMODE_HVCLOCK:
2431 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2432 						  tsc_timestamp);
2433 		if (tsc_pg_val != U64_MAX) {
2434 			/* TSC page valid */
2435 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2436 			v = (tsc_pg_val - clock->cycle_last) &
2437 				clock->mask;
2438 		} else {
2439 			/* TSC page invalid */
2440 			*mode = VDSO_CLOCKMODE_NONE;
2441 		}
2442 		break;
2443 	case VDSO_CLOCKMODE_TSC:
2444 		*mode = VDSO_CLOCKMODE_TSC;
2445 		*tsc_timestamp = read_tsc();
2446 		v = (*tsc_timestamp - clock->cycle_last) &
2447 			clock->mask;
2448 		break;
2449 	default:
2450 		*mode = VDSO_CLOCKMODE_NONE;
2451 	}
2452 
2453 	if (*mode == VDSO_CLOCKMODE_NONE)
2454 		*tsc_timestamp = v = 0;
2455 
2456 	return v * clock->mult;
2457 }
2458 
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2459 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2460 {
2461 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2462 	unsigned long seq;
2463 	int mode;
2464 	u64 ns;
2465 
2466 	do {
2467 		seq = read_seqcount_begin(&gtod->seq);
2468 		ns = gtod->raw_clock.base_cycles;
2469 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2470 		ns >>= gtod->raw_clock.shift;
2471 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2472 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2473 	*t = ns;
2474 
2475 	return mode;
2476 }
2477 
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2478 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2479 {
2480 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2481 	unsigned long seq;
2482 	int mode;
2483 	u64 ns;
2484 
2485 	do {
2486 		seq = read_seqcount_begin(&gtod->seq);
2487 		ts->tv_sec = gtod->wall_time_sec;
2488 		ns = gtod->clock.base_cycles;
2489 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2490 		ns >>= gtod->clock.shift;
2491 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2492 
2493 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2494 	ts->tv_nsec = ns;
2495 
2496 	return mode;
2497 }
2498 
2499 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2500 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2501 {
2502 	/* checked again under seqlock below */
2503 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2504 		return false;
2505 
2506 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2507 						      tsc_timestamp));
2508 }
2509 
2510 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2511 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2512 					   u64 *tsc_timestamp)
2513 {
2514 	/* checked again under seqlock below */
2515 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2516 		return false;
2517 
2518 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2519 }
2520 #endif
2521 
2522 /*
2523  *
2524  * Assuming a stable TSC across physical CPUS, and a stable TSC
2525  * across virtual CPUs, the following condition is possible.
2526  * Each numbered line represents an event visible to both
2527  * CPUs at the next numbered event.
2528  *
2529  * "timespecX" represents host monotonic time. "tscX" represents
2530  * RDTSC value.
2531  *
2532  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2533  *
2534  * 1.  read timespec0,tsc0
2535  * 2.					| timespec1 = timespec0 + N
2536  * 					| tsc1 = tsc0 + M
2537  * 3. transition to guest		| transition to guest
2538  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2539  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2540  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2541  *
2542  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2543  *
2544  * 	- ret0 < ret1
2545  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2546  *		...
2547  *	- 0 < N - M => M < N
2548  *
2549  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2550  * always the case (the difference between two distinct xtime instances
2551  * might be smaller then the difference between corresponding TSC reads,
2552  * when updating guest vcpus pvclock areas).
2553  *
2554  * To avoid that problem, do not allow visibility of distinct
2555  * system_timestamp/tsc_timestamp values simultaneously: use a master
2556  * copy of host monotonic time values. Update that master copy
2557  * in lockstep.
2558  *
2559  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2560  *
2561  */
2562 
pvclock_update_vm_gtod_copy(struct kvm * kvm)2563 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2564 {
2565 #ifdef CONFIG_X86_64
2566 	struct kvm_arch *ka = &kvm->arch;
2567 	int vclock_mode;
2568 	bool host_tsc_clocksource, vcpus_matched;
2569 
2570 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2571 			atomic_read(&kvm->online_vcpus));
2572 
2573 	/*
2574 	 * If the host uses TSC clock, then passthrough TSC as stable
2575 	 * to the guest.
2576 	 */
2577 	host_tsc_clocksource = kvm_get_time_and_clockread(
2578 					&ka->master_kernel_ns,
2579 					&ka->master_cycle_now);
2580 
2581 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2582 				&& !ka->backwards_tsc_observed
2583 				&& !ka->boot_vcpu_runs_old_kvmclock;
2584 
2585 	if (ka->use_master_clock)
2586 		atomic_set(&kvm_guest_has_master_clock, 1);
2587 
2588 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2589 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2590 					vcpus_matched);
2591 #endif
2592 }
2593 
kvm_make_mclock_inprogress_request(struct kvm * kvm)2594 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2595 {
2596 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2597 }
2598 
kvm_gen_update_masterclock(struct kvm * kvm)2599 static void kvm_gen_update_masterclock(struct kvm *kvm)
2600 {
2601 #ifdef CONFIG_X86_64
2602 	int i;
2603 	struct kvm_vcpu *vcpu;
2604 	struct kvm_arch *ka = &kvm->arch;
2605 
2606 	spin_lock(&ka->pvclock_gtod_sync_lock);
2607 	kvm_make_mclock_inprogress_request(kvm);
2608 	/* no guest entries from this point */
2609 	pvclock_update_vm_gtod_copy(kvm);
2610 
2611 	kvm_for_each_vcpu(i, vcpu, kvm)
2612 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2613 
2614 	/* guest entries allowed */
2615 	kvm_for_each_vcpu(i, vcpu, kvm)
2616 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2617 
2618 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2619 #endif
2620 }
2621 
get_kvmclock_ns(struct kvm * kvm)2622 u64 get_kvmclock_ns(struct kvm *kvm)
2623 {
2624 	struct kvm_arch *ka = &kvm->arch;
2625 	struct pvclock_vcpu_time_info hv_clock;
2626 	u64 ret;
2627 
2628 	spin_lock(&ka->pvclock_gtod_sync_lock);
2629 	if (!ka->use_master_clock) {
2630 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2631 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2632 	}
2633 
2634 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2635 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2636 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2637 
2638 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2639 	get_cpu();
2640 
2641 	if (__this_cpu_read(cpu_tsc_khz)) {
2642 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2643 				   &hv_clock.tsc_shift,
2644 				   &hv_clock.tsc_to_system_mul);
2645 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2646 	} else
2647 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2648 
2649 	put_cpu();
2650 
2651 	return ret;
2652 }
2653 
kvm_setup_pvclock_page(struct kvm_vcpu * v)2654 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2655 {
2656 	struct kvm_vcpu_arch *vcpu = &v->arch;
2657 	struct pvclock_vcpu_time_info guest_hv_clock;
2658 
2659 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2660 		&guest_hv_clock, sizeof(guest_hv_clock))))
2661 		return;
2662 
2663 	/* This VCPU is paused, but it's legal for a guest to read another
2664 	 * VCPU's kvmclock, so we really have to follow the specification where
2665 	 * it says that version is odd if data is being modified, and even after
2666 	 * it is consistent.
2667 	 *
2668 	 * Version field updates must be kept separate.  This is because
2669 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2670 	 * writes within a string instruction are weakly ordered.  So there
2671 	 * are three writes overall.
2672 	 *
2673 	 * As a small optimization, only write the version field in the first
2674 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2675 	 * version field is the first in the struct.
2676 	 */
2677 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2678 
2679 	if (guest_hv_clock.version & 1)
2680 		++guest_hv_clock.version;  /* first time write, random junk */
2681 
2682 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2683 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2684 				&vcpu->hv_clock,
2685 				sizeof(vcpu->hv_clock.version));
2686 
2687 	smp_wmb();
2688 
2689 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2690 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2691 
2692 	if (vcpu->pvclock_set_guest_stopped_request) {
2693 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2694 		vcpu->pvclock_set_guest_stopped_request = false;
2695 	}
2696 
2697 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2698 
2699 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2700 				&vcpu->hv_clock,
2701 				sizeof(vcpu->hv_clock));
2702 
2703 	smp_wmb();
2704 
2705 	vcpu->hv_clock.version++;
2706 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2707 				&vcpu->hv_clock,
2708 				sizeof(vcpu->hv_clock.version));
2709 }
2710 
kvm_guest_time_update(struct kvm_vcpu * v)2711 static int kvm_guest_time_update(struct kvm_vcpu *v)
2712 {
2713 	unsigned long flags, tgt_tsc_khz;
2714 	struct kvm_vcpu_arch *vcpu = &v->arch;
2715 	struct kvm_arch *ka = &v->kvm->arch;
2716 	s64 kernel_ns;
2717 	u64 tsc_timestamp, host_tsc;
2718 	u8 pvclock_flags;
2719 	bool use_master_clock;
2720 
2721 	kernel_ns = 0;
2722 	host_tsc = 0;
2723 
2724 	/*
2725 	 * If the host uses TSC clock, then passthrough TSC as stable
2726 	 * to the guest.
2727 	 */
2728 	spin_lock(&ka->pvclock_gtod_sync_lock);
2729 	use_master_clock = ka->use_master_clock;
2730 	if (use_master_clock) {
2731 		host_tsc = ka->master_cycle_now;
2732 		kernel_ns = ka->master_kernel_ns;
2733 	}
2734 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2735 
2736 	/* Keep irq disabled to prevent changes to the clock */
2737 	local_irq_save(flags);
2738 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2739 	if (unlikely(tgt_tsc_khz == 0)) {
2740 		local_irq_restore(flags);
2741 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2742 		return 1;
2743 	}
2744 	if (!use_master_clock) {
2745 		host_tsc = rdtsc();
2746 		kernel_ns = get_kvmclock_base_ns();
2747 	}
2748 
2749 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2750 
2751 	/*
2752 	 * We may have to catch up the TSC to match elapsed wall clock
2753 	 * time for two reasons, even if kvmclock is used.
2754 	 *   1) CPU could have been running below the maximum TSC rate
2755 	 *   2) Broken TSC compensation resets the base at each VCPU
2756 	 *      entry to avoid unknown leaps of TSC even when running
2757 	 *      again on the same CPU.  This may cause apparent elapsed
2758 	 *      time to disappear, and the guest to stand still or run
2759 	 *	very slowly.
2760 	 */
2761 	if (vcpu->tsc_catchup) {
2762 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2763 		if (tsc > tsc_timestamp) {
2764 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2765 			tsc_timestamp = tsc;
2766 		}
2767 	}
2768 
2769 	local_irq_restore(flags);
2770 
2771 	/* With all the info we got, fill in the values */
2772 
2773 	if (kvm_has_tsc_control)
2774 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2775 
2776 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2777 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2778 				   &vcpu->hv_clock.tsc_shift,
2779 				   &vcpu->hv_clock.tsc_to_system_mul);
2780 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2781 	}
2782 
2783 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2784 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2785 	vcpu->last_guest_tsc = tsc_timestamp;
2786 
2787 	/* If the host uses TSC clocksource, then it is stable */
2788 	pvclock_flags = 0;
2789 	if (use_master_clock)
2790 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2791 
2792 	vcpu->hv_clock.flags = pvclock_flags;
2793 
2794 	if (vcpu->pv_time_enabled)
2795 		kvm_setup_pvclock_page(v);
2796 	if (v == kvm_get_vcpu(v->kvm, 0))
2797 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2798 	return 0;
2799 }
2800 
2801 /*
2802  * kvmclock updates which are isolated to a given vcpu, such as
2803  * vcpu->cpu migration, should not allow system_timestamp from
2804  * the rest of the vcpus to remain static. Otherwise ntp frequency
2805  * correction applies to one vcpu's system_timestamp but not
2806  * the others.
2807  *
2808  * So in those cases, request a kvmclock update for all vcpus.
2809  * We need to rate-limit these requests though, as they can
2810  * considerably slow guests that have a large number of vcpus.
2811  * The time for a remote vcpu to update its kvmclock is bound
2812  * by the delay we use to rate-limit the updates.
2813  */
2814 
2815 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2816 
kvmclock_update_fn(struct work_struct * work)2817 static void kvmclock_update_fn(struct work_struct *work)
2818 {
2819 	int i;
2820 	struct delayed_work *dwork = to_delayed_work(work);
2821 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2822 					   kvmclock_update_work);
2823 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2824 	struct kvm_vcpu *vcpu;
2825 
2826 	kvm_for_each_vcpu(i, vcpu, kvm) {
2827 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2828 		kvm_vcpu_kick(vcpu);
2829 	}
2830 }
2831 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)2832 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2833 {
2834 	struct kvm *kvm = v->kvm;
2835 
2836 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2837 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2838 					KVMCLOCK_UPDATE_DELAY);
2839 }
2840 
2841 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2842 
kvmclock_sync_fn(struct work_struct * work)2843 static void kvmclock_sync_fn(struct work_struct *work)
2844 {
2845 	struct delayed_work *dwork = to_delayed_work(work);
2846 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2847 					   kvmclock_sync_work);
2848 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2849 
2850 	if (!kvmclock_periodic_sync)
2851 		return;
2852 
2853 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2854 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2855 					KVMCLOCK_SYNC_PERIOD);
2856 }
2857 
2858 /*
2859  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2860  */
can_set_mci_status(struct kvm_vcpu * vcpu)2861 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2862 {
2863 	/* McStatusWrEn enabled? */
2864 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2865 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2866 
2867 	return false;
2868 }
2869 
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2870 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2871 {
2872 	u64 mcg_cap = vcpu->arch.mcg_cap;
2873 	unsigned bank_num = mcg_cap & 0xff;
2874 	u32 msr = msr_info->index;
2875 	u64 data = msr_info->data;
2876 
2877 	switch (msr) {
2878 	case MSR_IA32_MCG_STATUS:
2879 		vcpu->arch.mcg_status = data;
2880 		break;
2881 	case MSR_IA32_MCG_CTL:
2882 		if (!(mcg_cap & MCG_CTL_P) &&
2883 		    (data || !msr_info->host_initiated))
2884 			return 1;
2885 		if (data != 0 && data != ~(u64)0)
2886 			return 1;
2887 		vcpu->arch.mcg_ctl = data;
2888 		break;
2889 	default:
2890 		if (msr >= MSR_IA32_MC0_CTL &&
2891 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2892 			u32 offset = array_index_nospec(
2893 				msr - MSR_IA32_MC0_CTL,
2894 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2895 
2896 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2897 			 * some Linux kernels though clear bit 10 in bank 4 to
2898 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2899 			 * this to avoid an uncatched #GP in the guest.
2900 			 *
2901 			 * UNIXWARE clears bit 0 of MC1_CTL to ignore
2902 			 * correctable, single-bit ECC data errors.
2903 			 */
2904 			if ((offset & 0x3) == 0 &&
2905 			    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
2906 				return 1;
2907 
2908 			/* MCi_STATUS */
2909 			if (!msr_info->host_initiated &&
2910 			    (offset & 0x3) == 1 && data != 0) {
2911 				if (!can_set_mci_status(vcpu))
2912 					return 1;
2913 			}
2914 
2915 			vcpu->arch.mce_banks[offset] = data;
2916 			break;
2917 		}
2918 		return 1;
2919 	}
2920 	return 0;
2921 }
2922 
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2923 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2924 {
2925 	struct kvm *kvm = vcpu->kvm;
2926 	int lm = is_long_mode(vcpu);
2927 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2928 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2929 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2930 		: kvm->arch.xen_hvm_config.blob_size_32;
2931 	u32 page_num = data & ~PAGE_MASK;
2932 	u64 page_addr = data & PAGE_MASK;
2933 	u8 *page;
2934 
2935 	if (page_num >= blob_size)
2936 		return 1;
2937 
2938 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2939 	if (IS_ERR(page))
2940 		return PTR_ERR(page);
2941 
2942 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2943 		kfree(page);
2944 		return 1;
2945 	}
2946 	return 0;
2947 }
2948 
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)2949 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2950 {
2951 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2952 
2953 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2954 }
2955 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2956 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2957 {
2958 	gpa_t gpa = data & ~0x3f;
2959 
2960 	/* Bits 4:5 are reserved, Should be zero */
2961 	if (data & 0x30)
2962 		return 1;
2963 
2964 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2965 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2966 		return 1;
2967 
2968 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2969 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2970 		return 1;
2971 
2972 	if (!lapic_in_kernel(vcpu))
2973 		return data ? 1 : 0;
2974 
2975 	vcpu->arch.apf.msr_en_val = data;
2976 
2977 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2978 		kvm_clear_async_pf_completion_queue(vcpu);
2979 		kvm_async_pf_hash_reset(vcpu);
2980 		return 0;
2981 	}
2982 
2983 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2984 					sizeof(u64)))
2985 		return 1;
2986 
2987 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2988 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2989 
2990 	kvm_async_pf_wakeup_all(vcpu);
2991 
2992 	return 0;
2993 }
2994 
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)2995 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2996 {
2997 	/* Bits 8-63 are reserved */
2998 	if (data >> 8)
2999 		return 1;
3000 
3001 	if (!lapic_in_kernel(vcpu))
3002 		return 1;
3003 
3004 	vcpu->arch.apf.msr_int_val = data;
3005 
3006 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3007 
3008 	return 0;
3009 }
3010 
kvmclock_reset(struct kvm_vcpu * vcpu)3011 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3012 {
3013 	vcpu->arch.pv_time_enabled = false;
3014 	vcpu->arch.time = 0;
3015 }
3016 
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3017 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3018 {
3019 	++vcpu->stat.tlb_flush;
3020 	kvm_x86_ops.tlb_flush_all(vcpu);
3021 }
3022 
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3023 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3024 {
3025 	++vcpu->stat.tlb_flush;
3026 	kvm_x86_ops.tlb_flush_guest(vcpu);
3027 }
3028 
record_steal_time(struct kvm_vcpu * vcpu)3029 static void record_steal_time(struct kvm_vcpu *vcpu)
3030 {
3031 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3032 	struct kvm_steal_time __user *st;
3033 	struct kvm_memslots *slots;
3034 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3035 	u64 steal;
3036 	u32 version;
3037 
3038 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3039 		return;
3040 
3041 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3042 		return;
3043 
3044 	slots = kvm_memslots(vcpu->kvm);
3045 
3046 	if (unlikely(slots->generation != ghc->generation ||
3047 		     gpa != ghc->gpa ||
3048 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3049 		/* We rely on the fact that it fits in a single page. */
3050 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3051 
3052 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3053 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3054 			return;
3055 	}
3056 
3057 	st = (struct kvm_steal_time __user *)ghc->hva;
3058 	/*
3059 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3060 	 * expensive IPIs.
3061 	 */
3062 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3063 		u8 st_preempted = 0;
3064 		int err = -EFAULT;
3065 
3066 		if (!user_access_begin(st, sizeof(*st)))
3067 			return;
3068 
3069 		asm volatile("1: xchgb %0, %2\n"
3070 			     "xor %1, %1\n"
3071 			     "2:\n"
3072 			     _ASM_EXTABLE_UA(1b, 2b)
3073 			     : "+q" (st_preempted),
3074 			       "+&r" (err),
3075 			       "+m" (st->preempted));
3076 		if (err)
3077 			goto out;
3078 
3079 		user_access_end();
3080 
3081 		vcpu->arch.st.preempted = 0;
3082 
3083 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3084 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3085 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3086 			kvm_vcpu_flush_tlb_guest(vcpu);
3087 
3088 		if (!user_access_begin(st, sizeof(*st)))
3089 			goto dirty;
3090 	} else {
3091 		if (!user_access_begin(st, sizeof(*st)))
3092 			return;
3093 
3094 		unsafe_put_user(0, &st->preempted, out);
3095 		vcpu->arch.st.preempted = 0;
3096 	}
3097 
3098 	unsafe_get_user(version, &st->version, out);
3099 	if (version & 1)
3100 		version += 1;  /* first time write, random junk */
3101 
3102 	version += 1;
3103 	unsafe_put_user(version, &st->version, out);
3104 
3105 	smp_wmb();
3106 
3107 	unsafe_get_user(steal, &st->steal, out);
3108 	steal += current->sched_info.run_delay -
3109 		vcpu->arch.st.last_steal;
3110 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3111 	unsafe_put_user(steal, &st->steal, out);
3112 
3113 	version += 1;
3114 	unsafe_put_user(version, &st->version, out);
3115 
3116  out:
3117 	user_access_end();
3118  dirty:
3119 	mark_page_dirty_in_slot(ghc->memslot, gpa_to_gfn(ghc->gpa));
3120 }
3121 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3122 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3123 {
3124 	bool pr = false;
3125 	u32 msr = msr_info->index;
3126 	u64 data = msr_info->data;
3127 
3128 	switch (msr) {
3129 	case MSR_AMD64_NB_CFG:
3130 	case MSR_IA32_UCODE_WRITE:
3131 	case MSR_VM_HSAVE_PA:
3132 	case MSR_AMD64_PATCH_LOADER:
3133 	case MSR_AMD64_BU_CFG2:
3134 	case MSR_AMD64_DC_CFG:
3135 	case MSR_AMD64_TW_CFG:
3136 	case MSR_F15H_EX_CFG:
3137 		break;
3138 
3139 	case MSR_IA32_UCODE_REV:
3140 		if (msr_info->host_initiated)
3141 			vcpu->arch.microcode_version = data;
3142 		break;
3143 	case MSR_IA32_ARCH_CAPABILITIES:
3144 		if (!msr_info->host_initiated)
3145 			return 1;
3146 		vcpu->arch.arch_capabilities = data;
3147 		break;
3148 	case MSR_IA32_PERF_CAPABILITIES: {
3149 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3150 
3151 		if (!msr_info->host_initiated)
3152 			return 1;
3153 		if (kvm_get_msr_feature(&msr_ent))
3154 			return 1;
3155 		if (data & ~msr_ent.data)
3156 			return 1;
3157 
3158 		vcpu->arch.perf_capabilities = data;
3159 
3160 		return 0;
3161 		}
3162 	case MSR_EFER:
3163 		return set_efer(vcpu, msr_info);
3164 	case MSR_K7_HWCR:
3165 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3166 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3167 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3168 
3169 		/* Handle McStatusWrEn */
3170 		if (data == BIT_ULL(18)) {
3171 			vcpu->arch.msr_hwcr = data;
3172 		} else if (data != 0) {
3173 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3174 				    data);
3175 			return 1;
3176 		}
3177 		break;
3178 	case MSR_FAM10H_MMIO_CONF_BASE:
3179 		if (data != 0) {
3180 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3181 				    "0x%llx\n", data);
3182 			return 1;
3183 		}
3184 		break;
3185 	case MSR_IA32_DEBUGCTLMSR:
3186 		if (!data) {
3187 			/* We support the non-activated case already */
3188 			break;
3189 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3190 			/* Values other than LBR and BTF are vendor-specific,
3191 			   thus reserved and should throw a #GP */
3192 			return 1;
3193 		} else if (report_ignored_msrs)
3194 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3195 				    __func__, data);
3196 		break;
3197 	case 0x200 ... 0x2ff:
3198 		return kvm_mtrr_set_msr(vcpu, msr, data);
3199 	case MSR_IA32_APICBASE:
3200 		return kvm_set_apic_base(vcpu, msr_info);
3201 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3202 		return kvm_x2apic_msr_write(vcpu, msr, data);
3203 	case MSR_IA32_TSCDEADLINE:
3204 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3205 		break;
3206 	case MSR_IA32_TSC_ADJUST:
3207 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3208 			if (!msr_info->host_initiated) {
3209 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3210 				adjust_tsc_offset_guest(vcpu, adj);
3211 				/* Before back to guest, tsc_timestamp must be adjusted
3212 				 * as well, otherwise guest's percpu pvclock time could jump.
3213 				 */
3214 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3215 			}
3216 			vcpu->arch.ia32_tsc_adjust_msr = data;
3217 		}
3218 		break;
3219 	case MSR_IA32_MISC_ENABLE:
3220 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3221 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3222 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3223 				return 1;
3224 			vcpu->arch.ia32_misc_enable_msr = data;
3225 			kvm_update_cpuid_runtime(vcpu);
3226 		} else {
3227 			vcpu->arch.ia32_misc_enable_msr = data;
3228 		}
3229 		break;
3230 	case MSR_IA32_SMBASE:
3231 		if (!msr_info->host_initiated)
3232 			return 1;
3233 		vcpu->arch.smbase = data;
3234 		break;
3235 	case MSR_IA32_POWER_CTL:
3236 		vcpu->arch.msr_ia32_power_ctl = data;
3237 		break;
3238 	case MSR_IA32_TSC:
3239 		if (msr_info->host_initiated) {
3240 			kvm_synchronize_tsc(vcpu, data);
3241 		} else {
3242 			u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3243 			adjust_tsc_offset_guest(vcpu, adj);
3244 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3245 		}
3246 		break;
3247 	case MSR_IA32_XSS:
3248 		if (!msr_info->host_initiated &&
3249 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3250 			return 1;
3251 		/*
3252 		 * KVM supports exposing PT to the guest, but does not support
3253 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3254 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3255 		 */
3256 		if (data & ~supported_xss)
3257 			return 1;
3258 		vcpu->arch.ia32_xss = data;
3259 		kvm_update_cpuid_runtime(vcpu);
3260 		break;
3261 	case MSR_SMI_COUNT:
3262 		if (!msr_info->host_initiated)
3263 			return 1;
3264 		vcpu->arch.smi_count = data;
3265 		break;
3266 	case MSR_KVM_WALL_CLOCK_NEW:
3267 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3268 			return 1;
3269 
3270 		kvm_write_wall_clock(vcpu->kvm, data);
3271 		break;
3272 	case MSR_KVM_WALL_CLOCK:
3273 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3274 			return 1;
3275 
3276 		kvm_write_wall_clock(vcpu->kvm, data);
3277 		break;
3278 	case MSR_KVM_SYSTEM_TIME_NEW:
3279 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3280 			return 1;
3281 
3282 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3283 		break;
3284 	case MSR_KVM_SYSTEM_TIME:
3285 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3286 			return 1;
3287 
3288 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3289 		break;
3290 	case MSR_KVM_ASYNC_PF_EN:
3291 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3292 			return 1;
3293 
3294 		if (kvm_pv_enable_async_pf(vcpu, data))
3295 			return 1;
3296 		break;
3297 	case MSR_KVM_ASYNC_PF_INT:
3298 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3299 			return 1;
3300 
3301 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3302 			return 1;
3303 		break;
3304 	case MSR_KVM_ASYNC_PF_ACK:
3305 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3306 			return 1;
3307 		if (data & 0x1) {
3308 			vcpu->arch.apf.pageready_pending = false;
3309 			kvm_check_async_pf_completion(vcpu);
3310 		}
3311 		break;
3312 	case MSR_KVM_STEAL_TIME:
3313 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3314 			return 1;
3315 
3316 		if (unlikely(!sched_info_on()))
3317 			return 1;
3318 
3319 		if (data & KVM_STEAL_RESERVED_MASK)
3320 			return 1;
3321 
3322 		vcpu->arch.st.msr_val = data;
3323 
3324 		if (!(data & KVM_MSR_ENABLED))
3325 			break;
3326 
3327 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3328 
3329 		break;
3330 	case MSR_KVM_PV_EOI_EN:
3331 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3332 			return 1;
3333 
3334 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3335 			return 1;
3336 		break;
3337 
3338 	case MSR_KVM_POLL_CONTROL:
3339 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3340 			return 1;
3341 
3342 		/* only enable bit supported */
3343 		if (data & (-1ULL << 1))
3344 			return 1;
3345 
3346 		vcpu->arch.msr_kvm_poll_control = data;
3347 		break;
3348 
3349 	case MSR_IA32_MCG_CTL:
3350 	case MSR_IA32_MCG_STATUS:
3351 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3352 		return set_msr_mce(vcpu, msr_info);
3353 
3354 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3355 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3356 		pr = true;
3357 		fallthrough;
3358 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3359 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3360 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3361 			return kvm_pmu_set_msr(vcpu, msr_info);
3362 
3363 		if (pr || data != 0)
3364 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3365 				    "0x%x data 0x%llx\n", msr, data);
3366 		break;
3367 	case MSR_K7_CLK_CTL:
3368 		/*
3369 		 * Ignore all writes to this no longer documented MSR.
3370 		 * Writes are only relevant for old K7 processors,
3371 		 * all pre-dating SVM, but a recommended workaround from
3372 		 * AMD for these chips. It is possible to specify the
3373 		 * affected processor models on the command line, hence
3374 		 * the need to ignore the workaround.
3375 		 */
3376 		break;
3377 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3378 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3379 	case HV_X64_MSR_SYNDBG_OPTIONS:
3380 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3381 	case HV_X64_MSR_CRASH_CTL:
3382 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3383 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3384 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3385 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3386 		return kvm_hv_set_msr_common(vcpu, msr, data,
3387 					     msr_info->host_initiated);
3388 	case MSR_IA32_BBL_CR_CTL3:
3389 		/* Drop writes to this legacy MSR -- see rdmsr
3390 		 * counterpart for further detail.
3391 		 */
3392 		if (report_ignored_msrs)
3393 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3394 				msr, data);
3395 		break;
3396 	case MSR_AMD64_OSVW_ID_LENGTH:
3397 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3398 			return 1;
3399 		vcpu->arch.osvw.length = data;
3400 		break;
3401 	case MSR_AMD64_OSVW_STATUS:
3402 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3403 			return 1;
3404 		vcpu->arch.osvw.status = data;
3405 		break;
3406 	case MSR_PLATFORM_INFO:
3407 		if (!msr_info->host_initiated ||
3408 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3409 		     cpuid_fault_enabled(vcpu)))
3410 			return 1;
3411 		vcpu->arch.msr_platform_info = data;
3412 		break;
3413 	case MSR_MISC_FEATURES_ENABLES:
3414 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3415 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3416 		     !supports_cpuid_fault(vcpu)))
3417 			return 1;
3418 		vcpu->arch.msr_misc_features_enables = data;
3419 		break;
3420 	default:
3421 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3422 			return xen_hvm_config(vcpu, data);
3423 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3424 			return kvm_pmu_set_msr(vcpu, msr_info);
3425 		return KVM_MSR_RET_INVALID;
3426 	}
3427 	return 0;
3428 }
3429 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3430 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)3431 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3432 {
3433 	u64 data;
3434 	u64 mcg_cap = vcpu->arch.mcg_cap;
3435 	unsigned bank_num = mcg_cap & 0xff;
3436 
3437 	switch (msr) {
3438 	case MSR_IA32_P5_MC_ADDR:
3439 	case MSR_IA32_P5_MC_TYPE:
3440 		data = 0;
3441 		break;
3442 	case MSR_IA32_MCG_CAP:
3443 		data = vcpu->arch.mcg_cap;
3444 		break;
3445 	case MSR_IA32_MCG_CTL:
3446 		if (!(mcg_cap & MCG_CTL_P) && !host)
3447 			return 1;
3448 		data = vcpu->arch.mcg_ctl;
3449 		break;
3450 	case MSR_IA32_MCG_STATUS:
3451 		data = vcpu->arch.mcg_status;
3452 		break;
3453 	default:
3454 		if (msr >= MSR_IA32_MC0_CTL &&
3455 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3456 			u32 offset = array_index_nospec(
3457 				msr - MSR_IA32_MC0_CTL,
3458 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3459 
3460 			data = vcpu->arch.mce_banks[offset];
3461 			break;
3462 		}
3463 		return 1;
3464 	}
3465 	*pdata = data;
3466 	return 0;
3467 }
3468 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3469 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3470 {
3471 	switch (msr_info->index) {
3472 	case MSR_IA32_PLATFORM_ID:
3473 	case MSR_IA32_EBL_CR_POWERON:
3474 	case MSR_IA32_DEBUGCTLMSR:
3475 	case MSR_IA32_LASTBRANCHFROMIP:
3476 	case MSR_IA32_LASTBRANCHTOIP:
3477 	case MSR_IA32_LASTINTFROMIP:
3478 	case MSR_IA32_LASTINTTOIP:
3479 	case MSR_K8_SYSCFG:
3480 	case MSR_K8_TSEG_ADDR:
3481 	case MSR_K8_TSEG_MASK:
3482 	case MSR_VM_HSAVE_PA:
3483 	case MSR_K8_INT_PENDING_MSG:
3484 	case MSR_AMD64_NB_CFG:
3485 	case MSR_FAM10H_MMIO_CONF_BASE:
3486 	case MSR_AMD64_BU_CFG2:
3487 	case MSR_IA32_PERF_CTL:
3488 	case MSR_AMD64_DC_CFG:
3489 	case MSR_AMD64_TW_CFG:
3490 	case MSR_F15H_EX_CFG:
3491 	/*
3492 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3493 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3494 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3495 	 * so for existing CPU-specific MSRs.
3496 	 */
3497 	case MSR_RAPL_POWER_UNIT:
3498 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3499 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3500 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3501 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3502 		msr_info->data = 0;
3503 		break;
3504 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3505 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3506 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3507 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3508 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3509 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3510 			return kvm_pmu_get_msr(vcpu, msr_info);
3511 		msr_info->data = 0;
3512 		break;
3513 	case MSR_IA32_UCODE_REV:
3514 		msr_info->data = vcpu->arch.microcode_version;
3515 		break;
3516 	case MSR_IA32_ARCH_CAPABILITIES:
3517 		if (!msr_info->host_initiated &&
3518 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3519 			return 1;
3520 		msr_info->data = vcpu->arch.arch_capabilities;
3521 		break;
3522 	case MSR_IA32_PERF_CAPABILITIES:
3523 		if (!msr_info->host_initiated &&
3524 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3525 			return 1;
3526 		msr_info->data = vcpu->arch.perf_capabilities;
3527 		break;
3528 	case MSR_IA32_POWER_CTL:
3529 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3530 		break;
3531 	case MSR_IA32_TSC: {
3532 		/*
3533 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3534 		 * even when not intercepted. AMD manual doesn't explicitly
3535 		 * state this but appears to behave the same.
3536 		 *
3537 		 * On userspace reads and writes, however, we unconditionally
3538 		 * return L1's TSC value to ensure backwards-compatible
3539 		 * behavior for migration.
3540 		 */
3541 		u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3542 							    vcpu->arch.tsc_offset;
3543 
3544 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3545 		break;
3546 	}
3547 	case MSR_MTRRcap:
3548 	case 0x200 ... 0x2ff:
3549 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3550 	case 0xcd: /* fsb frequency */
3551 		msr_info->data = 3;
3552 		break;
3553 		/*
3554 		 * MSR_EBC_FREQUENCY_ID
3555 		 * Conservative value valid for even the basic CPU models.
3556 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3557 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3558 		 * and 266MHz for model 3, or 4. Set Core Clock
3559 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3560 		 * 31:24) even though these are only valid for CPU
3561 		 * models > 2, however guests may end up dividing or
3562 		 * multiplying by zero otherwise.
3563 		 */
3564 	case MSR_EBC_FREQUENCY_ID:
3565 		msr_info->data = 1 << 24;
3566 		break;
3567 	case MSR_IA32_APICBASE:
3568 		msr_info->data = kvm_get_apic_base(vcpu);
3569 		break;
3570 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3571 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3572 	case MSR_IA32_TSCDEADLINE:
3573 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3574 		break;
3575 	case MSR_IA32_TSC_ADJUST:
3576 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3577 		break;
3578 	case MSR_IA32_MISC_ENABLE:
3579 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3580 		break;
3581 	case MSR_IA32_SMBASE:
3582 		if (!msr_info->host_initiated)
3583 			return 1;
3584 		msr_info->data = vcpu->arch.smbase;
3585 		break;
3586 	case MSR_SMI_COUNT:
3587 		msr_info->data = vcpu->arch.smi_count;
3588 		break;
3589 	case MSR_IA32_PERF_STATUS:
3590 		/* TSC increment by tick */
3591 		msr_info->data = 1000ULL;
3592 		/* CPU multiplier */
3593 		msr_info->data |= (((uint64_t)4ULL) << 40);
3594 		break;
3595 	case MSR_EFER:
3596 		msr_info->data = vcpu->arch.efer;
3597 		break;
3598 	case MSR_KVM_WALL_CLOCK:
3599 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3600 			return 1;
3601 
3602 		msr_info->data = vcpu->kvm->arch.wall_clock;
3603 		break;
3604 	case MSR_KVM_WALL_CLOCK_NEW:
3605 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3606 			return 1;
3607 
3608 		msr_info->data = vcpu->kvm->arch.wall_clock;
3609 		break;
3610 	case MSR_KVM_SYSTEM_TIME:
3611 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3612 			return 1;
3613 
3614 		msr_info->data = vcpu->arch.time;
3615 		break;
3616 	case MSR_KVM_SYSTEM_TIME_NEW:
3617 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3618 			return 1;
3619 
3620 		msr_info->data = vcpu->arch.time;
3621 		break;
3622 	case MSR_KVM_ASYNC_PF_EN:
3623 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3624 			return 1;
3625 
3626 		msr_info->data = vcpu->arch.apf.msr_en_val;
3627 		break;
3628 	case MSR_KVM_ASYNC_PF_INT:
3629 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3630 			return 1;
3631 
3632 		msr_info->data = vcpu->arch.apf.msr_int_val;
3633 		break;
3634 	case MSR_KVM_ASYNC_PF_ACK:
3635 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3636 			return 1;
3637 
3638 		msr_info->data = 0;
3639 		break;
3640 	case MSR_KVM_STEAL_TIME:
3641 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3642 			return 1;
3643 
3644 		msr_info->data = vcpu->arch.st.msr_val;
3645 		break;
3646 	case MSR_KVM_PV_EOI_EN:
3647 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3648 			return 1;
3649 
3650 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3651 		break;
3652 	case MSR_KVM_POLL_CONTROL:
3653 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3654 			return 1;
3655 
3656 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3657 		break;
3658 	case MSR_IA32_P5_MC_ADDR:
3659 	case MSR_IA32_P5_MC_TYPE:
3660 	case MSR_IA32_MCG_CAP:
3661 	case MSR_IA32_MCG_CTL:
3662 	case MSR_IA32_MCG_STATUS:
3663 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3664 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3665 				   msr_info->host_initiated);
3666 	case MSR_IA32_XSS:
3667 		if (!msr_info->host_initiated &&
3668 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3669 			return 1;
3670 		msr_info->data = vcpu->arch.ia32_xss;
3671 		break;
3672 	case MSR_K7_CLK_CTL:
3673 		/*
3674 		 * Provide expected ramp-up count for K7. All other
3675 		 * are set to zero, indicating minimum divisors for
3676 		 * every field.
3677 		 *
3678 		 * This prevents guest kernels on AMD host with CPU
3679 		 * type 6, model 8 and higher from exploding due to
3680 		 * the rdmsr failing.
3681 		 */
3682 		msr_info->data = 0x20000000;
3683 		break;
3684 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3685 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3686 	case HV_X64_MSR_SYNDBG_OPTIONS:
3687 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3688 	case HV_X64_MSR_CRASH_CTL:
3689 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3690 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3691 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3692 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3693 		return kvm_hv_get_msr_common(vcpu,
3694 					     msr_info->index, &msr_info->data,
3695 					     msr_info->host_initiated);
3696 	case MSR_IA32_BBL_CR_CTL3:
3697 		/* This legacy MSR exists but isn't fully documented in current
3698 		 * silicon.  It is however accessed by winxp in very narrow
3699 		 * scenarios where it sets bit #19, itself documented as
3700 		 * a "reserved" bit.  Best effort attempt to source coherent
3701 		 * read data here should the balance of the register be
3702 		 * interpreted by the guest:
3703 		 *
3704 		 * L2 cache control register 3: 64GB range, 256KB size,
3705 		 * enabled, latency 0x1, configured
3706 		 */
3707 		msr_info->data = 0xbe702111;
3708 		break;
3709 	case MSR_AMD64_OSVW_ID_LENGTH:
3710 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3711 			return 1;
3712 		msr_info->data = vcpu->arch.osvw.length;
3713 		break;
3714 	case MSR_AMD64_OSVW_STATUS:
3715 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3716 			return 1;
3717 		msr_info->data = vcpu->arch.osvw.status;
3718 		break;
3719 	case MSR_PLATFORM_INFO:
3720 		if (!msr_info->host_initiated &&
3721 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3722 			return 1;
3723 		msr_info->data = vcpu->arch.msr_platform_info;
3724 		break;
3725 	case MSR_MISC_FEATURES_ENABLES:
3726 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3727 		break;
3728 	case MSR_K7_HWCR:
3729 		msr_info->data = vcpu->arch.msr_hwcr;
3730 		break;
3731 	default:
3732 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3733 			return kvm_pmu_get_msr(vcpu, msr_info);
3734 		return KVM_MSR_RET_INVALID;
3735 	}
3736 	return 0;
3737 }
3738 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3739 
3740 /*
3741  * Read or write a bunch of msrs. All parameters are kernel addresses.
3742  *
3743  * @return number of msrs set successfully.
3744  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))3745 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3746 		    struct kvm_msr_entry *entries,
3747 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3748 				  unsigned index, u64 *data))
3749 {
3750 	int i;
3751 
3752 	for (i = 0; i < msrs->nmsrs; ++i)
3753 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3754 			break;
3755 
3756 	return i;
3757 }
3758 
3759 /*
3760  * Read or write a bunch of msrs. Parameters are user addresses.
3761  *
3762  * @return number of msrs set successfully.
3763  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)3764 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3765 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3766 				unsigned index, u64 *data),
3767 		  int writeback)
3768 {
3769 	struct kvm_msrs msrs;
3770 	struct kvm_msr_entry *entries;
3771 	int r, n;
3772 	unsigned size;
3773 
3774 	r = -EFAULT;
3775 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3776 		goto out;
3777 
3778 	r = -E2BIG;
3779 	if (msrs.nmsrs >= MAX_IO_MSRS)
3780 		goto out;
3781 
3782 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3783 	entries = memdup_user(user_msrs->entries, size);
3784 	if (IS_ERR(entries)) {
3785 		r = PTR_ERR(entries);
3786 		goto out;
3787 	}
3788 
3789 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3790 	if (r < 0)
3791 		goto out_free;
3792 
3793 	r = -EFAULT;
3794 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3795 		goto out_free;
3796 
3797 	r = n;
3798 
3799 out_free:
3800 	kfree(entries);
3801 out:
3802 	return r;
3803 }
3804 
kvm_can_mwait_in_guest(void)3805 static inline bool kvm_can_mwait_in_guest(void)
3806 {
3807 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3808 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3809 		boot_cpu_has(X86_FEATURE_ARAT);
3810 }
3811 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)3812 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3813 {
3814 	int r = 0;
3815 
3816 	switch (ext) {
3817 	case KVM_CAP_IRQCHIP:
3818 	case KVM_CAP_HLT:
3819 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3820 	case KVM_CAP_SET_TSS_ADDR:
3821 	case KVM_CAP_EXT_CPUID:
3822 	case KVM_CAP_EXT_EMUL_CPUID:
3823 	case KVM_CAP_CLOCKSOURCE:
3824 	case KVM_CAP_PIT:
3825 	case KVM_CAP_NOP_IO_DELAY:
3826 	case KVM_CAP_MP_STATE:
3827 	case KVM_CAP_SYNC_MMU:
3828 	case KVM_CAP_USER_NMI:
3829 	case KVM_CAP_REINJECT_CONTROL:
3830 	case KVM_CAP_IRQ_INJECT_STATUS:
3831 	case KVM_CAP_IOEVENTFD:
3832 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3833 	case KVM_CAP_PIT2:
3834 	case KVM_CAP_PIT_STATE2:
3835 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3836 	case KVM_CAP_XEN_HVM:
3837 	case KVM_CAP_VCPU_EVENTS:
3838 	case KVM_CAP_HYPERV:
3839 	case KVM_CAP_HYPERV_VAPIC:
3840 	case KVM_CAP_HYPERV_SPIN:
3841 	case KVM_CAP_HYPERV_SYNIC:
3842 	case KVM_CAP_HYPERV_SYNIC2:
3843 	case KVM_CAP_HYPERV_VP_INDEX:
3844 	case KVM_CAP_HYPERV_EVENTFD:
3845 	case KVM_CAP_HYPERV_TLBFLUSH:
3846 	case KVM_CAP_HYPERV_SEND_IPI:
3847 	case KVM_CAP_HYPERV_CPUID:
3848 	case KVM_CAP_PCI_SEGMENT:
3849 	case KVM_CAP_DEBUGREGS:
3850 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3851 	case KVM_CAP_XSAVE:
3852 	case KVM_CAP_ASYNC_PF:
3853 	case KVM_CAP_ASYNC_PF_INT:
3854 	case KVM_CAP_GET_TSC_KHZ:
3855 	case KVM_CAP_KVMCLOCK_CTRL:
3856 	case KVM_CAP_READONLY_MEM:
3857 	case KVM_CAP_HYPERV_TIME:
3858 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3859 	case KVM_CAP_TSC_DEADLINE_TIMER:
3860 	case KVM_CAP_DISABLE_QUIRKS:
3861 	case KVM_CAP_SET_BOOT_CPU_ID:
3862  	case KVM_CAP_SPLIT_IRQCHIP:
3863 	case KVM_CAP_IMMEDIATE_EXIT:
3864 	case KVM_CAP_PMU_EVENT_FILTER:
3865 	case KVM_CAP_GET_MSR_FEATURES:
3866 	case KVM_CAP_MSR_PLATFORM_INFO:
3867 	case KVM_CAP_EXCEPTION_PAYLOAD:
3868 	case KVM_CAP_SET_GUEST_DEBUG:
3869 	case KVM_CAP_LAST_CPU:
3870 	case KVM_CAP_X86_USER_SPACE_MSR:
3871 	case KVM_CAP_X86_MSR_FILTER:
3872 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3873 		r = 1;
3874 		break;
3875 	case KVM_CAP_SYNC_REGS:
3876 		r = KVM_SYNC_X86_VALID_FIELDS;
3877 		break;
3878 	case KVM_CAP_ADJUST_CLOCK:
3879 		r = KVM_CLOCK_TSC_STABLE;
3880 		break;
3881 	case KVM_CAP_X86_DISABLE_EXITS:
3882 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3883 		      KVM_X86_DISABLE_EXITS_CSTATE;
3884 		if(kvm_can_mwait_in_guest())
3885 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3886 		break;
3887 	case KVM_CAP_X86_SMM:
3888 		/* SMBASE is usually relocated above 1M on modern chipsets,
3889 		 * and SMM handlers might indeed rely on 4G segment limits,
3890 		 * so do not report SMM to be available if real mode is
3891 		 * emulated via vm86 mode.  Still, do not go to great lengths
3892 		 * to avoid userspace's usage of the feature, because it is a
3893 		 * fringe case that is not enabled except via specific settings
3894 		 * of the module parameters.
3895 		 */
3896 		r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3897 		break;
3898 	case KVM_CAP_VAPIC:
3899 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3900 		break;
3901 	case KVM_CAP_NR_VCPUS:
3902 		r = KVM_SOFT_MAX_VCPUS;
3903 		break;
3904 	case KVM_CAP_MAX_VCPUS:
3905 		r = KVM_MAX_VCPUS;
3906 		break;
3907 	case KVM_CAP_MAX_VCPU_ID:
3908 		r = KVM_MAX_VCPU_ID;
3909 		break;
3910 	case KVM_CAP_PV_MMU:	/* obsolete */
3911 		r = 0;
3912 		break;
3913 	case KVM_CAP_MCE:
3914 		r = KVM_MAX_MCE_BANKS;
3915 		break;
3916 	case KVM_CAP_XCRS:
3917 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3918 		break;
3919 	case KVM_CAP_TSC_CONTROL:
3920 		r = kvm_has_tsc_control;
3921 		break;
3922 	case KVM_CAP_X2APIC_API:
3923 		r = KVM_X2APIC_API_VALID_FLAGS;
3924 		break;
3925 	case KVM_CAP_NESTED_STATE:
3926 		r = kvm_x86_ops.nested_ops->get_state ?
3927 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3928 		break;
3929 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3930 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3931 		break;
3932 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3933 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3934 		break;
3935 	case KVM_CAP_SMALLER_MAXPHYADDR:
3936 		r = (int) allow_smaller_maxphyaddr;
3937 		break;
3938 	case KVM_CAP_STEAL_TIME:
3939 		r = sched_info_on();
3940 		break;
3941 	default:
3942 		break;
3943 	}
3944 	return r;
3945 
3946 }
3947 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3948 long kvm_arch_dev_ioctl(struct file *filp,
3949 			unsigned int ioctl, unsigned long arg)
3950 {
3951 	void __user *argp = (void __user *)arg;
3952 	long r;
3953 
3954 	switch (ioctl) {
3955 	case KVM_GET_MSR_INDEX_LIST: {
3956 		struct kvm_msr_list __user *user_msr_list = argp;
3957 		struct kvm_msr_list msr_list;
3958 		unsigned n;
3959 
3960 		r = -EFAULT;
3961 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3962 			goto out;
3963 		n = msr_list.nmsrs;
3964 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3965 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3966 			goto out;
3967 		r = -E2BIG;
3968 		if (n < msr_list.nmsrs)
3969 			goto out;
3970 		r = -EFAULT;
3971 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3972 				 num_msrs_to_save * sizeof(u32)))
3973 			goto out;
3974 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3975 				 &emulated_msrs,
3976 				 num_emulated_msrs * sizeof(u32)))
3977 			goto out;
3978 		r = 0;
3979 		break;
3980 	}
3981 	case KVM_GET_SUPPORTED_CPUID:
3982 	case KVM_GET_EMULATED_CPUID: {
3983 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3984 		struct kvm_cpuid2 cpuid;
3985 
3986 		r = -EFAULT;
3987 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3988 			goto out;
3989 
3990 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3991 					    ioctl);
3992 		if (r)
3993 			goto out;
3994 
3995 		r = -EFAULT;
3996 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3997 			goto out;
3998 		r = 0;
3999 		break;
4000 	}
4001 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4002 		r = -EFAULT;
4003 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4004 				 sizeof(kvm_mce_cap_supported)))
4005 			goto out;
4006 		r = 0;
4007 		break;
4008 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4009 		struct kvm_msr_list __user *user_msr_list = argp;
4010 		struct kvm_msr_list msr_list;
4011 		unsigned int n;
4012 
4013 		r = -EFAULT;
4014 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4015 			goto out;
4016 		n = msr_list.nmsrs;
4017 		msr_list.nmsrs = num_msr_based_features;
4018 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4019 			goto out;
4020 		r = -E2BIG;
4021 		if (n < msr_list.nmsrs)
4022 			goto out;
4023 		r = -EFAULT;
4024 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4025 				 num_msr_based_features * sizeof(u32)))
4026 			goto out;
4027 		r = 0;
4028 		break;
4029 	}
4030 	case KVM_GET_MSRS:
4031 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4032 		break;
4033 	default:
4034 		r = -EINVAL;
4035 		break;
4036 	}
4037 out:
4038 	return r;
4039 }
4040 
wbinvd_ipi(void * garbage)4041 static void wbinvd_ipi(void *garbage)
4042 {
4043 	wbinvd();
4044 }
4045 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4046 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4047 {
4048 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4049 }
4050 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4051 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4052 {
4053 	/* Address WBINVD may be executed by guest */
4054 	if (need_emulate_wbinvd(vcpu)) {
4055 		if (kvm_x86_ops.has_wbinvd_exit())
4056 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4057 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4058 			smp_call_function_single(vcpu->cpu,
4059 					wbinvd_ipi, NULL, 1);
4060 	}
4061 
4062 	kvm_x86_ops.vcpu_load(vcpu, cpu);
4063 
4064 	/* Save host pkru register if supported */
4065 	vcpu->arch.host_pkru = read_pkru();
4066 
4067 	/* Apply any externally detected TSC adjustments (due to suspend) */
4068 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4069 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4070 		vcpu->arch.tsc_offset_adjustment = 0;
4071 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4072 	}
4073 
4074 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4075 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4076 				rdtsc() - vcpu->arch.last_host_tsc;
4077 		if (tsc_delta < 0)
4078 			mark_tsc_unstable("KVM discovered backwards TSC");
4079 
4080 		if (kvm_check_tsc_unstable()) {
4081 			u64 offset = kvm_compute_tsc_offset(vcpu,
4082 						vcpu->arch.last_guest_tsc);
4083 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4084 			vcpu->arch.tsc_catchup = 1;
4085 		}
4086 
4087 		if (kvm_lapic_hv_timer_in_use(vcpu))
4088 			kvm_lapic_restart_hv_timer(vcpu);
4089 
4090 		/*
4091 		 * On a host with synchronized TSC, there is no need to update
4092 		 * kvmclock on vcpu->cpu migration
4093 		 */
4094 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4095 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4096 		if (vcpu->cpu != cpu)
4097 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4098 		vcpu->cpu = cpu;
4099 	}
4100 
4101 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4102 }
4103 
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4104 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4105 {
4106 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4107 	struct kvm_steal_time __user *st;
4108 	struct kvm_memslots *slots;
4109 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4110 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4111 
4112 	/*
4113 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4114 	 * an instruction boundary and will not trigger guest emulation of any
4115 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4116 	 * when this is true, for example allowing the vCPU to be marked
4117 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4118 	 */
4119 	if (!vcpu->arch.at_instruction_boundary) {
4120 		vcpu->stat.preemption_other++;
4121 		return;
4122 	}
4123 
4124 	vcpu->stat.preemption_reported++;
4125 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4126 		return;
4127 
4128 	if (vcpu->arch.st.preempted)
4129 		return;
4130 
4131 	/* This happens on process exit */
4132 	if (unlikely(current->mm != vcpu->kvm->mm))
4133 		return;
4134 
4135 	slots = kvm_memslots(vcpu->kvm);
4136 
4137 	if (unlikely(slots->generation != ghc->generation ||
4138 		     gpa != ghc->gpa ||
4139 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4140 		return;
4141 
4142 	st = (struct kvm_steal_time __user *)ghc->hva;
4143 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4144 
4145 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4146 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4147 
4148 	mark_page_dirty_in_slot(ghc->memslot, gpa_to_gfn(ghc->gpa));
4149 }
4150 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4151 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4152 {
4153 	int idx;
4154 
4155 	if (vcpu->preempted) {
4156 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4157 
4158 		/*
4159 		 * Take the srcu lock as memslots will be accessed to check the gfn
4160 		 * cache generation against the memslots generation.
4161 		 */
4162 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4163 		kvm_steal_time_set_preempted(vcpu);
4164 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4165 	}
4166 
4167 	kvm_x86_ops.vcpu_put(vcpu);
4168 	vcpu->arch.last_host_tsc = rdtsc();
4169 	/*
4170 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4171 	 * on every vmexit, but if not, we might have a stale dr6 from the
4172 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4173 	 */
4174 	set_debugreg(0, 6);
4175 }
4176 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4177 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4178 				    struct kvm_lapic_state *s)
4179 {
4180 	if (vcpu->arch.apicv_active)
4181 		kvm_x86_ops.sync_pir_to_irr(vcpu);
4182 
4183 	return kvm_apic_get_state(vcpu, s);
4184 }
4185 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4186 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4187 				    struct kvm_lapic_state *s)
4188 {
4189 	int r;
4190 
4191 	r = kvm_apic_set_state(vcpu, s);
4192 	if (r)
4193 		return r;
4194 	update_cr8_intercept(vcpu);
4195 
4196 	return 0;
4197 }
4198 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4199 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4200 {
4201 	/*
4202 	 * We can accept userspace's request for interrupt injection
4203 	 * as long as we have a place to store the interrupt number.
4204 	 * The actual injection will happen when the CPU is able to
4205 	 * deliver the interrupt.
4206 	 */
4207 	if (kvm_cpu_has_extint(vcpu))
4208 		return false;
4209 
4210 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4211 	return (!lapic_in_kernel(vcpu) ||
4212 		kvm_apic_accept_pic_intr(vcpu));
4213 }
4214 
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4215 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4216 {
4217 	/*
4218 	 * Do not cause an interrupt window exit if an exception
4219 	 * is pending or an event needs reinjection; userspace
4220 	 * might want to inject the interrupt manually using KVM_SET_REGS
4221 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4222 	 * instruction boundary and with no events half-injected.
4223 	 */
4224 	return (kvm_arch_interrupt_allowed(vcpu) &&
4225 		kvm_cpu_accept_dm_intr(vcpu) &&
4226 		!kvm_event_needs_reinjection(vcpu) &&
4227 		!vcpu->arch.exception.pending);
4228 }
4229 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4230 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4231 				    struct kvm_interrupt *irq)
4232 {
4233 	if (irq->irq >= KVM_NR_INTERRUPTS)
4234 		return -EINVAL;
4235 
4236 	if (!irqchip_in_kernel(vcpu->kvm)) {
4237 		kvm_queue_interrupt(vcpu, irq->irq, false);
4238 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4239 		return 0;
4240 	}
4241 
4242 	/*
4243 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4244 	 * fail for in-kernel 8259.
4245 	 */
4246 	if (pic_in_kernel(vcpu->kvm))
4247 		return -ENXIO;
4248 
4249 	if (vcpu->arch.pending_external_vector != -1)
4250 		return -EEXIST;
4251 
4252 	vcpu->arch.pending_external_vector = irq->irq;
4253 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4254 	return 0;
4255 }
4256 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)4257 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4258 {
4259 	kvm_inject_nmi(vcpu);
4260 
4261 	return 0;
4262 }
4263 
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)4264 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4265 {
4266 	kvm_make_request(KVM_REQ_SMI, vcpu);
4267 
4268 	return 0;
4269 }
4270 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)4271 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4272 					   struct kvm_tpr_access_ctl *tac)
4273 {
4274 	if (tac->flags)
4275 		return -EINVAL;
4276 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4277 	return 0;
4278 }
4279 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)4280 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4281 					u64 mcg_cap)
4282 {
4283 	int r;
4284 	unsigned bank_num = mcg_cap & 0xff, bank;
4285 
4286 	r = -EINVAL;
4287 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4288 		goto out;
4289 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4290 		goto out;
4291 	r = 0;
4292 	vcpu->arch.mcg_cap = mcg_cap;
4293 	/* Init IA32_MCG_CTL to all 1s */
4294 	if (mcg_cap & MCG_CTL_P)
4295 		vcpu->arch.mcg_ctl = ~(u64)0;
4296 	/* Init IA32_MCi_CTL to all 1s */
4297 	for (bank = 0; bank < bank_num; bank++)
4298 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4299 
4300 	kvm_x86_ops.setup_mce(vcpu);
4301 out:
4302 	return r;
4303 }
4304 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)4305 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4306 				      struct kvm_x86_mce *mce)
4307 {
4308 	u64 mcg_cap = vcpu->arch.mcg_cap;
4309 	unsigned bank_num = mcg_cap & 0xff;
4310 	u64 *banks = vcpu->arch.mce_banks;
4311 
4312 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4313 		return -EINVAL;
4314 	/*
4315 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4316 	 * reporting is disabled
4317 	 */
4318 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4319 	    vcpu->arch.mcg_ctl != ~(u64)0)
4320 		return 0;
4321 	banks += 4 * mce->bank;
4322 	/*
4323 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4324 	 * reporting is disabled for the bank
4325 	 */
4326 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4327 		return 0;
4328 	if (mce->status & MCI_STATUS_UC) {
4329 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4330 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4331 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4332 			return 0;
4333 		}
4334 		if (banks[1] & MCI_STATUS_VAL)
4335 			mce->status |= MCI_STATUS_OVER;
4336 		banks[2] = mce->addr;
4337 		banks[3] = mce->misc;
4338 		vcpu->arch.mcg_status = mce->mcg_status;
4339 		banks[1] = mce->status;
4340 		kvm_queue_exception(vcpu, MC_VECTOR);
4341 	} else if (!(banks[1] & MCI_STATUS_VAL)
4342 		   || !(banks[1] & MCI_STATUS_UC)) {
4343 		if (banks[1] & MCI_STATUS_VAL)
4344 			mce->status |= MCI_STATUS_OVER;
4345 		banks[2] = mce->addr;
4346 		banks[3] = mce->misc;
4347 		banks[1] = mce->status;
4348 	} else
4349 		banks[1] |= MCI_STATUS_OVER;
4350 	return 0;
4351 }
4352 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4353 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4354 					       struct kvm_vcpu_events *events)
4355 {
4356 	process_nmi(vcpu);
4357 
4358 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4359 		process_smi(vcpu);
4360 
4361 	/*
4362 	 * In guest mode, payload delivery should be deferred,
4363 	 * so that the L1 hypervisor can intercept #PF before
4364 	 * CR2 is modified (or intercept #DB before DR6 is
4365 	 * modified under nVMX). Unless the per-VM capability,
4366 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4367 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4368 	 * opportunistically defer the exception payload, deliver it if the
4369 	 * capability hasn't been requested before processing a
4370 	 * KVM_GET_VCPU_EVENTS.
4371 	 */
4372 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4373 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4374 		kvm_deliver_exception_payload(vcpu);
4375 
4376 	/*
4377 	 * The API doesn't provide the instruction length for software
4378 	 * exceptions, so don't report them. As long as the guest RIP
4379 	 * isn't advanced, we should expect to encounter the exception
4380 	 * again.
4381 	 */
4382 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4383 		events->exception.injected = 0;
4384 		events->exception.pending = 0;
4385 	} else {
4386 		events->exception.injected = vcpu->arch.exception.injected;
4387 		events->exception.pending = vcpu->arch.exception.pending;
4388 		/*
4389 		 * For ABI compatibility, deliberately conflate
4390 		 * pending and injected exceptions when
4391 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4392 		 */
4393 		if (!vcpu->kvm->arch.exception_payload_enabled)
4394 			events->exception.injected |=
4395 				vcpu->arch.exception.pending;
4396 	}
4397 	events->exception.nr = vcpu->arch.exception.nr;
4398 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4399 	events->exception.error_code = vcpu->arch.exception.error_code;
4400 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4401 	events->exception_payload = vcpu->arch.exception.payload;
4402 
4403 	events->interrupt.injected =
4404 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4405 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4406 	events->interrupt.soft = 0;
4407 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4408 
4409 	events->nmi.injected = vcpu->arch.nmi_injected;
4410 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4411 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4412 	events->nmi.pad = 0;
4413 
4414 	events->sipi_vector = 0; /* never valid when reporting to user space */
4415 
4416 	events->smi.smm = is_smm(vcpu);
4417 	events->smi.pending = vcpu->arch.smi_pending;
4418 	events->smi.smm_inside_nmi =
4419 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4420 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4421 
4422 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4423 			 | KVM_VCPUEVENT_VALID_SHADOW
4424 			 | KVM_VCPUEVENT_VALID_SMM);
4425 	if (vcpu->kvm->arch.exception_payload_enabled)
4426 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4427 
4428 	memset(&events->reserved, 0, sizeof(events->reserved));
4429 }
4430 
4431 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4432 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4433 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4434 					      struct kvm_vcpu_events *events)
4435 {
4436 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4437 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4438 			      | KVM_VCPUEVENT_VALID_SHADOW
4439 			      | KVM_VCPUEVENT_VALID_SMM
4440 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4441 		return -EINVAL;
4442 
4443 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4444 		if (!vcpu->kvm->arch.exception_payload_enabled)
4445 			return -EINVAL;
4446 		if (events->exception.pending)
4447 			events->exception.injected = 0;
4448 		else
4449 			events->exception_has_payload = 0;
4450 	} else {
4451 		events->exception.pending = 0;
4452 		events->exception_has_payload = 0;
4453 	}
4454 
4455 	if ((events->exception.injected || events->exception.pending) &&
4456 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4457 		return -EINVAL;
4458 
4459 	/* INITs are latched while in SMM */
4460 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4461 	    (events->smi.smm || events->smi.pending) &&
4462 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4463 		return -EINVAL;
4464 
4465 	process_nmi(vcpu);
4466 	vcpu->arch.exception.injected = events->exception.injected;
4467 	vcpu->arch.exception.pending = events->exception.pending;
4468 	vcpu->arch.exception.nr = events->exception.nr;
4469 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4470 	vcpu->arch.exception.error_code = events->exception.error_code;
4471 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4472 	vcpu->arch.exception.payload = events->exception_payload;
4473 
4474 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4475 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4476 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4477 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4478 		kvm_x86_ops.set_interrupt_shadow(vcpu,
4479 						  events->interrupt.shadow);
4480 
4481 	vcpu->arch.nmi_injected = events->nmi.injected;
4482 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4483 		vcpu->arch.nmi_pending = events->nmi.pending;
4484 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4485 
4486 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4487 	    lapic_in_kernel(vcpu))
4488 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4489 
4490 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4491 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4492 			if (events->smi.smm)
4493 				vcpu->arch.hflags |= HF_SMM_MASK;
4494 			else
4495 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4496 
4497 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
4498 			kvm_smm_changed(vcpu);
4499 		}
4500 
4501 		vcpu->arch.smi_pending = events->smi.pending;
4502 
4503 		if (events->smi.smm) {
4504 			if (events->smi.smm_inside_nmi)
4505 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4506 			else
4507 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4508 		}
4509 
4510 		if (lapic_in_kernel(vcpu)) {
4511 			if (events->smi.latched_init)
4512 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4513 			else
4514 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4515 		}
4516 	}
4517 
4518 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4519 
4520 	return 0;
4521 }
4522 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4523 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4524 					     struct kvm_debugregs *dbgregs)
4525 {
4526 	unsigned long val;
4527 
4528 	memset(dbgregs, 0, sizeof(*dbgregs));
4529 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4530 	kvm_get_dr(vcpu, 6, &val);
4531 	dbgregs->dr6 = val;
4532 	dbgregs->dr7 = vcpu->arch.dr7;
4533 }
4534 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4535 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4536 					    struct kvm_debugregs *dbgregs)
4537 {
4538 	if (dbgregs->flags)
4539 		return -EINVAL;
4540 
4541 	if (dbgregs->dr6 & ~0xffffffffull)
4542 		return -EINVAL;
4543 	if (dbgregs->dr7 & ~0xffffffffull)
4544 		return -EINVAL;
4545 
4546 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4547 	kvm_update_dr0123(vcpu);
4548 	vcpu->arch.dr6 = dbgregs->dr6;
4549 	vcpu->arch.dr7 = dbgregs->dr7;
4550 	kvm_update_dr7(vcpu);
4551 
4552 	return 0;
4553 }
4554 
4555 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4556 
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)4557 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4558 {
4559 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4560 	u64 xstate_bv = xsave->header.xfeatures;
4561 	u64 valid;
4562 
4563 	/*
4564 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4565 	 * leaves 0 and 1 in the loop below.
4566 	 */
4567 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4568 
4569 	/* Set XSTATE_BV */
4570 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4571 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4572 
4573 	/*
4574 	 * Copy each region from the possibly compacted offset to the
4575 	 * non-compacted offset.
4576 	 */
4577 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4578 	while (valid) {
4579 		u64 xfeature_mask = valid & -valid;
4580 		int xfeature_nr = fls64(xfeature_mask) - 1;
4581 		void *src = get_xsave_addr(xsave, xfeature_nr);
4582 
4583 		if (src) {
4584 			u32 size, offset, ecx, edx;
4585 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4586 				    &size, &offset, &ecx, &edx);
4587 			if (xfeature_nr == XFEATURE_PKRU)
4588 				memcpy(dest + offset, &vcpu->arch.pkru,
4589 				       sizeof(vcpu->arch.pkru));
4590 			else
4591 				memcpy(dest + offset, src, size);
4592 
4593 		}
4594 
4595 		valid -= xfeature_mask;
4596 	}
4597 }
4598 
load_xsave(struct kvm_vcpu * vcpu,u8 * src)4599 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4600 {
4601 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4602 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4603 	u64 valid;
4604 
4605 	/*
4606 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4607 	 * leaves 0 and 1 in the loop below.
4608 	 */
4609 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4610 
4611 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4612 	xsave->header.xfeatures = xstate_bv;
4613 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4614 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4615 
4616 	/*
4617 	 * Copy each region from the non-compacted offset to the
4618 	 * possibly compacted offset.
4619 	 */
4620 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4621 	while (valid) {
4622 		u64 xfeature_mask = valid & -valid;
4623 		int xfeature_nr = fls64(xfeature_mask) - 1;
4624 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4625 
4626 		if (dest) {
4627 			u32 size, offset, ecx, edx;
4628 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4629 				    &size, &offset, &ecx, &edx);
4630 			if (xfeature_nr == XFEATURE_PKRU)
4631 				memcpy(&vcpu->arch.pkru, src + offset,
4632 				       sizeof(vcpu->arch.pkru));
4633 			else
4634 				memcpy(dest, src + offset, size);
4635 		}
4636 
4637 		valid -= xfeature_mask;
4638 	}
4639 }
4640 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4641 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4642 					 struct kvm_xsave *guest_xsave)
4643 {
4644 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4645 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4646 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4647 	} else {
4648 		memcpy(guest_xsave->region,
4649 			&vcpu->arch.guest_fpu->state.fxsave,
4650 			sizeof(struct fxregs_state));
4651 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4652 			XFEATURE_MASK_FPSSE;
4653 	}
4654 }
4655 
4656 #define XSAVE_MXCSR_OFFSET 24
4657 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4658 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4659 					struct kvm_xsave *guest_xsave)
4660 {
4661 	u64 xstate_bv =
4662 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4663 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4664 
4665 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4666 		/*
4667 		 * Here we allow setting states that are not present in
4668 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4669 		 * with old userspace.
4670 		 */
4671 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4672 			return -EINVAL;
4673 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4674 	} else {
4675 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4676 			mxcsr & ~mxcsr_feature_mask)
4677 			return -EINVAL;
4678 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4679 			guest_xsave->region, sizeof(struct fxregs_state));
4680 	}
4681 	return 0;
4682 }
4683 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4684 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4685 					struct kvm_xcrs *guest_xcrs)
4686 {
4687 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4688 		guest_xcrs->nr_xcrs = 0;
4689 		return;
4690 	}
4691 
4692 	guest_xcrs->nr_xcrs = 1;
4693 	guest_xcrs->flags = 0;
4694 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4695 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4696 }
4697 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4698 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4699 				       struct kvm_xcrs *guest_xcrs)
4700 {
4701 	int i, r = 0;
4702 
4703 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4704 		return -EINVAL;
4705 
4706 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4707 		return -EINVAL;
4708 
4709 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4710 		/* Only support XCR0 currently */
4711 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4712 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4713 				guest_xcrs->xcrs[i].value);
4714 			break;
4715 		}
4716 	if (r)
4717 		r = -EINVAL;
4718 	return r;
4719 }
4720 
4721 /*
4722  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4723  * stopped by the hypervisor.  This function will be called from the host only.
4724  * EINVAL is returned when the host attempts to set the flag for a guest that
4725  * does not support pv clocks.
4726  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)4727 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4728 {
4729 	if (!vcpu->arch.pv_time_enabled)
4730 		return -EINVAL;
4731 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4732 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4733 	return 0;
4734 }
4735 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)4736 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4737 				     struct kvm_enable_cap *cap)
4738 {
4739 	int r;
4740 	uint16_t vmcs_version;
4741 	void __user *user_ptr;
4742 
4743 	if (cap->flags)
4744 		return -EINVAL;
4745 
4746 	switch (cap->cap) {
4747 	case KVM_CAP_HYPERV_SYNIC2:
4748 		if (cap->args[0])
4749 			return -EINVAL;
4750 		fallthrough;
4751 
4752 	case KVM_CAP_HYPERV_SYNIC:
4753 		if (!irqchip_in_kernel(vcpu->kvm))
4754 			return -EINVAL;
4755 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4756 					     KVM_CAP_HYPERV_SYNIC2);
4757 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4758 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4759 			return -ENOTTY;
4760 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4761 		if (!r) {
4762 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4763 			if (copy_to_user(user_ptr, &vmcs_version,
4764 					 sizeof(vmcs_version)))
4765 				r = -EFAULT;
4766 		}
4767 		return r;
4768 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4769 		if (!kvm_x86_ops.enable_direct_tlbflush)
4770 			return -ENOTTY;
4771 
4772 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4773 
4774 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4775 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4776 		if (vcpu->arch.pv_cpuid.enforce)
4777 			kvm_update_pv_runtime(vcpu);
4778 
4779 		return 0;
4780 
4781 	default:
4782 		return -EINVAL;
4783 	}
4784 }
4785 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4786 long kvm_arch_vcpu_ioctl(struct file *filp,
4787 			 unsigned int ioctl, unsigned long arg)
4788 {
4789 	struct kvm_vcpu *vcpu = filp->private_data;
4790 	void __user *argp = (void __user *)arg;
4791 	int r;
4792 	union {
4793 		struct kvm_lapic_state *lapic;
4794 		struct kvm_xsave *xsave;
4795 		struct kvm_xcrs *xcrs;
4796 		void *buffer;
4797 	} u;
4798 
4799 	vcpu_load(vcpu);
4800 
4801 	u.buffer = NULL;
4802 	switch (ioctl) {
4803 	case KVM_GET_LAPIC: {
4804 		r = -EINVAL;
4805 		if (!lapic_in_kernel(vcpu))
4806 			goto out;
4807 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4808 				GFP_KERNEL_ACCOUNT);
4809 
4810 		r = -ENOMEM;
4811 		if (!u.lapic)
4812 			goto out;
4813 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4814 		if (r)
4815 			goto out;
4816 		r = -EFAULT;
4817 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4818 			goto out;
4819 		r = 0;
4820 		break;
4821 	}
4822 	case KVM_SET_LAPIC: {
4823 		r = -EINVAL;
4824 		if (!lapic_in_kernel(vcpu))
4825 			goto out;
4826 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4827 		if (IS_ERR(u.lapic)) {
4828 			r = PTR_ERR(u.lapic);
4829 			goto out_nofree;
4830 		}
4831 
4832 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4833 		break;
4834 	}
4835 	case KVM_INTERRUPT: {
4836 		struct kvm_interrupt irq;
4837 
4838 		r = -EFAULT;
4839 		if (copy_from_user(&irq, argp, sizeof(irq)))
4840 			goto out;
4841 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4842 		break;
4843 	}
4844 	case KVM_NMI: {
4845 		r = kvm_vcpu_ioctl_nmi(vcpu);
4846 		break;
4847 	}
4848 	case KVM_SMI: {
4849 		r = kvm_vcpu_ioctl_smi(vcpu);
4850 		break;
4851 	}
4852 	case KVM_SET_CPUID: {
4853 		struct kvm_cpuid __user *cpuid_arg = argp;
4854 		struct kvm_cpuid cpuid;
4855 
4856 		r = -EFAULT;
4857 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4858 			goto out;
4859 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4860 		break;
4861 	}
4862 	case KVM_SET_CPUID2: {
4863 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4864 		struct kvm_cpuid2 cpuid;
4865 
4866 		r = -EFAULT;
4867 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4868 			goto out;
4869 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4870 					      cpuid_arg->entries);
4871 		break;
4872 	}
4873 	case KVM_GET_CPUID2: {
4874 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4875 		struct kvm_cpuid2 cpuid;
4876 
4877 		r = -EFAULT;
4878 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4879 			goto out;
4880 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4881 					      cpuid_arg->entries);
4882 		if (r)
4883 			goto out;
4884 		r = -EFAULT;
4885 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4886 			goto out;
4887 		r = 0;
4888 		break;
4889 	}
4890 	case KVM_GET_MSRS: {
4891 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4892 		r = msr_io(vcpu, argp, do_get_msr, 1);
4893 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4894 		break;
4895 	}
4896 	case KVM_SET_MSRS: {
4897 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4898 		r = msr_io(vcpu, argp, do_set_msr, 0);
4899 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4900 		break;
4901 	}
4902 	case KVM_TPR_ACCESS_REPORTING: {
4903 		struct kvm_tpr_access_ctl tac;
4904 
4905 		r = -EFAULT;
4906 		if (copy_from_user(&tac, argp, sizeof(tac)))
4907 			goto out;
4908 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4909 		if (r)
4910 			goto out;
4911 		r = -EFAULT;
4912 		if (copy_to_user(argp, &tac, sizeof(tac)))
4913 			goto out;
4914 		r = 0;
4915 		break;
4916 	};
4917 	case KVM_SET_VAPIC_ADDR: {
4918 		struct kvm_vapic_addr va;
4919 		int idx;
4920 
4921 		r = -EINVAL;
4922 		if (!lapic_in_kernel(vcpu))
4923 			goto out;
4924 		r = -EFAULT;
4925 		if (copy_from_user(&va, argp, sizeof(va)))
4926 			goto out;
4927 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4928 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4929 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4930 		break;
4931 	}
4932 	case KVM_X86_SETUP_MCE: {
4933 		u64 mcg_cap;
4934 
4935 		r = -EFAULT;
4936 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4937 			goto out;
4938 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4939 		break;
4940 	}
4941 	case KVM_X86_SET_MCE: {
4942 		struct kvm_x86_mce mce;
4943 
4944 		r = -EFAULT;
4945 		if (copy_from_user(&mce, argp, sizeof(mce)))
4946 			goto out;
4947 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4948 		break;
4949 	}
4950 	case KVM_GET_VCPU_EVENTS: {
4951 		struct kvm_vcpu_events events;
4952 
4953 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4954 
4955 		r = -EFAULT;
4956 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4957 			break;
4958 		r = 0;
4959 		break;
4960 	}
4961 	case KVM_SET_VCPU_EVENTS: {
4962 		struct kvm_vcpu_events events;
4963 
4964 		r = -EFAULT;
4965 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4966 			break;
4967 
4968 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4969 		break;
4970 	}
4971 	case KVM_GET_DEBUGREGS: {
4972 		struct kvm_debugregs dbgregs;
4973 
4974 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4975 
4976 		r = -EFAULT;
4977 		if (copy_to_user(argp, &dbgregs,
4978 				 sizeof(struct kvm_debugregs)))
4979 			break;
4980 		r = 0;
4981 		break;
4982 	}
4983 	case KVM_SET_DEBUGREGS: {
4984 		struct kvm_debugregs dbgregs;
4985 
4986 		r = -EFAULT;
4987 		if (copy_from_user(&dbgregs, argp,
4988 				   sizeof(struct kvm_debugregs)))
4989 			break;
4990 
4991 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4992 		break;
4993 	}
4994 	case KVM_GET_XSAVE: {
4995 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4996 		r = -ENOMEM;
4997 		if (!u.xsave)
4998 			break;
4999 
5000 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5001 
5002 		r = -EFAULT;
5003 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5004 			break;
5005 		r = 0;
5006 		break;
5007 	}
5008 	case KVM_SET_XSAVE: {
5009 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
5010 		if (IS_ERR(u.xsave)) {
5011 			r = PTR_ERR(u.xsave);
5012 			goto out_nofree;
5013 		}
5014 
5015 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5016 		break;
5017 	}
5018 	case KVM_GET_XCRS: {
5019 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5020 		r = -ENOMEM;
5021 		if (!u.xcrs)
5022 			break;
5023 
5024 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5025 
5026 		r = -EFAULT;
5027 		if (copy_to_user(argp, u.xcrs,
5028 				 sizeof(struct kvm_xcrs)))
5029 			break;
5030 		r = 0;
5031 		break;
5032 	}
5033 	case KVM_SET_XCRS: {
5034 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5035 		if (IS_ERR(u.xcrs)) {
5036 			r = PTR_ERR(u.xcrs);
5037 			goto out_nofree;
5038 		}
5039 
5040 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5041 		break;
5042 	}
5043 	case KVM_SET_TSC_KHZ: {
5044 		u32 user_tsc_khz;
5045 
5046 		r = -EINVAL;
5047 		user_tsc_khz = (u32)arg;
5048 
5049 		if (kvm_has_tsc_control &&
5050 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5051 			goto out;
5052 
5053 		if (user_tsc_khz == 0)
5054 			user_tsc_khz = tsc_khz;
5055 
5056 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5057 			r = 0;
5058 
5059 		goto out;
5060 	}
5061 	case KVM_GET_TSC_KHZ: {
5062 		r = vcpu->arch.virtual_tsc_khz;
5063 		goto out;
5064 	}
5065 	case KVM_KVMCLOCK_CTRL: {
5066 		r = kvm_set_guest_paused(vcpu);
5067 		goto out;
5068 	}
5069 	case KVM_ENABLE_CAP: {
5070 		struct kvm_enable_cap cap;
5071 
5072 		r = -EFAULT;
5073 		if (copy_from_user(&cap, argp, sizeof(cap)))
5074 			goto out;
5075 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5076 		break;
5077 	}
5078 	case KVM_GET_NESTED_STATE: {
5079 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5080 		u32 user_data_size;
5081 
5082 		r = -EINVAL;
5083 		if (!kvm_x86_ops.nested_ops->get_state)
5084 			break;
5085 
5086 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5087 		r = -EFAULT;
5088 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5089 			break;
5090 
5091 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5092 						     user_data_size);
5093 		if (r < 0)
5094 			break;
5095 
5096 		if (r > user_data_size) {
5097 			if (put_user(r, &user_kvm_nested_state->size))
5098 				r = -EFAULT;
5099 			else
5100 				r = -E2BIG;
5101 			break;
5102 		}
5103 
5104 		r = 0;
5105 		break;
5106 	}
5107 	case KVM_SET_NESTED_STATE: {
5108 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5109 		struct kvm_nested_state kvm_state;
5110 		int idx;
5111 
5112 		r = -EINVAL;
5113 		if (!kvm_x86_ops.nested_ops->set_state)
5114 			break;
5115 
5116 		r = -EFAULT;
5117 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5118 			break;
5119 
5120 		r = -EINVAL;
5121 		if (kvm_state.size < sizeof(kvm_state))
5122 			break;
5123 
5124 		if (kvm_state.flags &
5125 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5126 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5127 		      | KVM_STATE_NESTED_GIF_SET))
5128 			break;
5129 
5130 		/* nested_run_pending implies guest_mode.  */
5131 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5132 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5133 			break;
5134 
5135 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5136 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5137 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5138 		break;
5139 	}
5140 	case KVM_GET_SUPPORTED_HV_CPUID: {
5141 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5142 		struct kvm_cpuid2 cpuid;
5143 
5144 		r = -EFAULT;
5145 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5146 			goto out;
5147 
5148 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
5149 						cpuid_arg->entries);
5150 		if (r)
5151 			goto out;
5152 
5153 		r = -EFAULT;
5154 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5155 			goto out;
5156 		r = 0;
5157 		break;
5158 	}
5159 	default:
5160 		r = -EINVAL;
5161 	}
5162 out:
5163 	kfree(u.buffer);
5164 out_nofree:
5165 	vcpu_put(vcpu);
5166 	return r;
5167 }
5168 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5169 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5170 {
5171 	return VM_FAULT_SIGBUS;
5172 }
5173 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)5174 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5175 {
5176 	int ret;
5177 
5178 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5179 		return -EINVAL;
5180 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5181 	return ret;
5182 }
5183 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5184 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5185 					      u64 ident_addr)
5186 {
5187 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5188 }
5189 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)5190 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5191 					 unsigned long kvm_nr_mmu_pages)
5192 {
5193 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5194 		return -EINVAL;
5195 
5196 	mutex_lock(&kvm->slots_lock);
5197 
5198 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5199 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5200 
5201 	mutex_unlock(&kvm->slots_lock);
5202 	return 0;
5203 }
5204 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)5205 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5206 {
5207 	return kvm->arch.n_max_mmu_pages;
5208 }
5209 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5210 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5211 {
5212 	struct kvm_pic *pic = kvm->arch.vpic;
5213 	int r;
5214 
5215 	r = 0;
5216 	switch (chip->chip_id) {
5217 	case KVM_IRQCHIP_PIC_MASTER:
5218 		memcpy(&chip->chip.pic, &pic->pics[0],
5219 			sizeof(struct kvm_pic_state));
5220 		break;
5221 	case KVM_IRQCHIP_PIC_SLAVE:
5222 		memcpy(&chip->chip.pic, &pic->pics[1],
5223 			sizeof(struct kvm_pic_state));
5224 		break;
5225 	case KVM_IRQCHIP_IOAPIC:
5226 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5227 		break;
5228 	default:
5229 		r = -EINVAL;
5230 		break;
5231 	}
5232 	return r;
5233 }
5234 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5235 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5236 {
5237 	struct kvm_pic *pic = kvm->arch.vpic;
5238 	int r;
5239 
5240 	r = 0;
5241 	switch (chip->chip_id) {
5242 	case KVM_IRQCHIP_PIC_MASTER:
5243 		spin_lock(&pic->lock);
5244 		memcpy(&pic->pics[0], &chip->chip.pic,
5245 			sizeof(struct kvm_pic_state));
5246 		spin_unlock(&pic->lock);
5247 		break;
5248 	case KVM_IRQCHIP_PIC_SLAVE:
5249 		spin_lock(&pic->lock);
5250 		memcpy(&pic->pics[1], &chip->chip.pic,
5251 			sizeof(struct kvm_pic_state));
5252 		spin_unlock(&pic->lock);
5253 		break;
5254 	case KVM_IRQCHIP_IOAPIC:
5255 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5256 		break;
5257 	default:
5258 		r = -EINVAL;
5259 		break;
5260 	}
5261 	kvm_pic_update_irq(pic);
5262 	return r;
5263 }
5264 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)5265 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5266 {
5267 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5268 
5269 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5270 
5271 	mutex_lock(&kps->lock);
5272 	memcpy(ps, &kps->channels, sizeof(*ps));
5273 	mutex_unlock(&kps->lock);
5274 	return 0;
5275 }
5276 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)5277 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5278 {
5279 	int i;
5280 	struct kvm_pit *pit = kvm->arch.vpit;
5281 
5282 	mutex_lock(&pit->pit_state.lock);
5283 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5284 	for (i = 0; i < 3; i++)
5285 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5286 	mutex_unlock(&pit->pit_state.lock);
5287 	return 0;
5288 }
5289 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5290 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5291 {
5292 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5293 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5294 		sizeof(ps->channels));
5295 	ps->flags = kvm->arch.vpit->pit_state.flags;
5296 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5297 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5298 	return 0;
5299 }
5300 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5301 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5302 {
5303 	int start = 0;
5304 	int i;
5305 	u32 prev_legacy, cur_legacy;
5306 	struct kvm_pit *pit = kvm->arch.vpit;
5307 
5308 	mutex_lock(&pit->pit_state.lock);
5309 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5310 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5311 	if (!prev_legacy && cur_legacy)
5312 		start = 1;
5313 	memcpy(&pit->pit_state.channels, &ps->channels,
5314 	       sizeof(pit->pit_state.channels));
5315 	pit->pit_state.flags = ps->flags;
5316 	for (i = 0; i < 3; i++)
5317 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5318 				   start && i == 0);
5319 	mutex_unlock(&pit->pit_state.lock);
5320 	return 0;
5321 }
5322 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)5323 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5324 				 struct kvm_reinject_control *control)
5325 {
5326 	struct kvm_pit *pit = kvm->arch.vpit;
5327 
5328 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5329 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5330 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5331 	 */
5332 	mutex_lock(&pit->pit_state.lock);
5333 	kvm_pit_set_reinject(pit, control->pit_reinject);
5334 	mutex_unlock(&pit->pit_state.lock);
5335 
5336 	return 0;
5337 }
5338 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)5339 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5340 {
5341 	/*
5342 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5343 	 */
5344 	if (kvm_x86_ops.flush_log_dirty)
5345 		kvm_x86_ops.flush_log_dirty(kvm);
5346 }
5347 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)5348 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5349 			bool line_status)
5350 {
5351 	if (!irqchip_in_kernel(kvm))
5352 		return -ENXIO;
5353 
5354 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5355 					irq_event->irq, irq_event->level,
5356 					line_status);
5357 	return 0;
5358 }
5359 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)5360 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5361 			    struct kvm_enable_cap *cap)
5362 {
5363 	int r;
5364 
5365 	if (cap->flags)
5366 		return -EINVAL;
5367 
5368 	switch (cap->cap) {
5369 	case KVM_CAP_DISABLE_QUIRKS:
5370 		kvm->arch.disabled_quirks = cap->args[0];
5371 		r = 0;
5372 		break;
5373 	case KVM_CAP_SPLIT_IRQCHIP: {
5374 		mutex_lock(&kvm->lock);
5375 		r = -EINVAL;
5376 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5377 			goto split_irqchip_unlock;
5378 		r = -EEXIST;
5379 		if (irqchip_in_kernel(kvm))
5380 			goto split_irqchip_unlock;
5381 		if (kvm->created_vcpus)
5382 			goto split_irqchip_unlock;
5383 		r = kvm_setup_empty_irq_routing(kvm);
5384 		if (r)
5385 			goto split_irqchip_unlock;
5386 		/* Pairs with irqchip_in_kernel. */
5387 		smp_wmb();
5388 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5389 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5390 		r = 0;
5391 split_irqchip_unlock:
5392 		mutex_unlock(&kvm->lock);
5393 		break;
5394 	}
5395 	case KVM_CAP_X2APIC_API:
5396 		r = -EINVAL;
5397 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5398 			break;
5399 
5400 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5401 			kvm->arch.x2apic_format = true;
5402 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5403 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5404 
5405 		r = 0;
5406 		break;
5407 	case KVM_CAP_X86_DISABLE_EXITS:
5408 		r = -EINVAL;
5409 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5410 			break;
5411 
5412 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5413 			kvm_can_mwait_in_guest())
5414 			kvm->arch.mwait_in_guest = true;
5415 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5416 			kvm->arch.hlt_in_guest = true;
5417 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5418 			kvm->arch.pause_in_guest = true;
5419 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5420 			kvm->arch.cstate_in_guest = true;
5421 		r = 0;
5422 		break;
5423 	case KVM_CAP_MSR_PLATFORM_INFO:
5424 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5425 		r = 0;
5426 		break;
5427 	case KVM_CAP_EXCEPTION_PAYLOAD:
5428 		kvm->arch.exception_payload_enabled = cap->args[0];
5429 		r = 0;
5430 		break;
5431 	case KVM_CAP_X86_USER_SPACE_MSR:
5432 		r = -EINVAL;
5433 		if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
5434 				     KVM_MSR_EXIT_REASON_UNKNOWN |
5435 				     KVM_MSR_EXIT_REASON_FILTER))
5436 			break;
5437 		kvm->arch.user_space_msr_mask = cap->args[0];
5438 		r = 0;
5439 		break;
5440 	default:
5441 		r = -EINVAL;
5442 		break;
5443 	}
5444 	return r;
5445 }
5446 
kvm_alloc_msr_filter(bool default_allow)5447 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5448 {
5449 	struct kvm_x86_msr_filter *msr_filter;
5450 
5451 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5452 	if (!msr_filter)
5453 		return NULL;
5454 
5455 	msr_filter->default_allow = default_allow;
5456 	return msr_filter;
5457 }
5458 
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)5459 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5460 {
5461 	u32 i;
5462 
5463 	if (!msr_filter)
5464 		return;
5465 
5466 	for (i = 0; i < msr_filter->count; i++)
5467 		kfree(msr_filter->ranges[i].bitmap);
5468 
5469 	kfree(msr_filter);
5470 }
5471 
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)5472 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5473 			      struct kvm_msr_filter_range *user_range)
5474 {
5475 	struct msr_bitmap_range range;
5476 	unsigned long *bitmap = NULL;
5477 	size_t bitmap_size;
5478 	int r;
5479 
5480 	if (!user_range->nmsrs)
5481 		return 0;
5482 
5483 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5484 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5485 		return -EINVAL;
5486 
5487 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5488 	if (IS_ERR(bitmap))
5489 		return PTR_ERR(bitmap);
5490 
5491 	range = (struct msr_bitmap_range) {
5492 		.flags = user_range->flags,
5493 		.base = user_range->base,
5494 		.nmsrs = user_range->nmsrs,
5495 		.bitmap = bitmap,
5496 	};
5497 
5498 	if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5499 		r = -EINVAL;
5500 		goto err;
5501 	}
5502 
5503 	if (!range.flags) {
5504 		r = -EINVAL;
5505 		goto err;
5506 	}
5507 
5508 	/* Everything ok, add this range identifier. */
5509 	msr_filter->ranges[msr_filter->count] = range;
5510 	msr_filter->count++;
5511 
5512 	return 0;
5513 err:
5514 	kfree(bitmap);
5515 	return r;
5516 }
5517 
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)5518 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
5519 				       struct kvm_msr_filter *filter)
5520 {
5521 	struct kvm_x86_msr_filter *new_filter, *old_filter;
5522 	bool default_allow;
5523 	bool empty = true;
5524 	int r = 0;
5525 	u32 i;
5526 
5527 	if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
5528 		return -EINVAL;
5529 
5530 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
5531 		empty &= !filter->ranges[i].nmsrs;
5532 
5533 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
5534 	if (empty && !default_allow)
5535 		return -EINVAL;
5536 
5537 	new_filter = kvm_alloc_msr_filter(default_allow);
5538 	if (!new_filter)
5539 		return -ENOMEM;
5540 
5541 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
5542 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
5543 		if (r) {
5544 			kvm_free_msr_filter(new_filter);
5545 			return r;
5546 		}
5547 	}
5548 
5549 	mutex_lock(&kvm->lock);
5550 
5551 	/* The per-VM filter is protected by kvm->lock... */
5552 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5553 
5554 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5555 	synchronize_srcu(&kvm->srcu);
5556 
5557 	kvm_free_msr_filter(old_filter);
5558 
5559 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5560 	mutex_unlock(&kvm->lock);
5561 
5562 	return 0;
5563 }
5564 
5565 #ifdef CONFIG_KVM_COMPAT
5566 /* for KVM_X86_SET_MSR_FILTER */
5567 struct kvm_msr_filter_range_compat {
5568 	__u32 flags;
5569 	__u32 nmsrs;
5570 	__u32 base;
5571 	__u32 bitmap;
5572 };
5573 
5574 struct kvm_msr_filter_compat {
5575 	__u32 flags;
5576 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
5577 };
5578 
5579 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
5580 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5581 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5582 			      unsigned long arg)
5583 {
5584 	void __user *argp = (void __user *)arg;
5585 	struct kvm *kvm = filp->private_data;
5586 	long r = -ENOTTY;
5587 
5588 	switch (ioctl) {
5589 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
5590 		struct kvm_msr_filter __user *user_msr_filter = argp;
5591 		struct kvm_msr_filter_compat filter_compat;
5592 		struct kvm_msr_filter filter;
5593 		int i;
5594 
5595 		if (copy_from_user(&filter_compat, user_msr_filter,
5596 				   sizeof(filter_compat)))
5597 			return -EFAULT;
5598 
5599 		filter.flags = filter_compat.flags;
5600 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5601 			struct kvm_msr_filter_range_compat *cr;
5602 
5603 			cr = &filter_compat.ranges[i];
5604 			filter.ranges[i] = (struct kvm_msr_filter_range) {
5605 				.flags = cr->flags,
5606 				.nmsrs = cr->nmsrs,
5607 				.base = cr->base,
5608 				.bitmap = (__u8 *)(ulong)cr->bitmap,
5609 			};
5610 		}
5611 
5612 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
5613 		break;
5614 	}
5615 	}
5616 
5617 	return r;
5618 }
5619 #endif
5620 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5621 long kvm_arch_vm_ioctl(struct file *filp,
5622 		       unsigned int ioctl, unsigned long arg)
5623 {
5624 	struct kvm *kvm = filp->private_data;
5625 	void __user *argp = (void __user *)arg;
5626 	int r = -ENOTTY;
5627 	/*
5628 	 * This union makes it completely explicit to gcc-3.x
5629 	 * that these two variables' stack usage should be
5630 	 * combined, not added together.
5631 	 */
5632 	union {
5633 		struct kvm_pit_state ps;
5634 		struct kvm_pit_state2 ps2;
5635 		struct kvm_pit_config pit_config;
5636 	} u;
5637 
5638 	switch (ioctl) {
5639 	case KVM_SET_TSS_ADDR:
5640 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5641 		break;
5642 	case KVM_SET_IDENTITY_MAP_ADDR: {
5643 		u64 ident_addr;
5644 
5645 		mutex_lock(&kvm->lock);
5646 		r = -EINVAL;
5647 		if (kvm->created_vcpus)
5648 			goto set_identity_unlock;
5649 		r = -EFAULT;
5650 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5651 			goto set_identity_unlock;
5652 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5653 set_identity_unlock:
5654 		mutex_unlock(&kvm->lock);
5655 		break;
5656 	}
5657 	case KVM_SET_NR_MMU_PAGES:
5658 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5659 		break;
5660 	case KVM_GET_NR_MMU_PAGES:
5661 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5662 		break;
5663 	case KVM_CREATE_IRQCHIP: {
5664 		mutex_lock(&kvm->lock);
5665 
5666 		r = -EEXIST;
5667 		if (irqchip_in_kernel(kvm))
5668 			goto create_irqchip_unlock;
5669 
5670 		r = -EINVAL;
5671 		if (kvm->created_vcpus)
5672 			goto create_irqchip_unlock;
5673 
5674 		r = kvm_pic_init(kvm);
5675 		if (r)
5676 			goto create_irqchip_unlock;
5677 
5678 		r = kvm_ioapic_init(kvm);
5679 		if (r) {
5680 			kvm_pic_destroy(kvm);
5681 			goto create_irqchip_unlock;
5682 		}
5683 
5684 		r = kvm_setup_default_irq_routing(kvm);
5685 		if (r) {
5686 			kvm_ioapic_destroy(kvm);
5687 			kvm_pic_destroy(kvm);
5688 			goto create_irqchip_unlock;
5689 		}
5690 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5691 		smp_wmb();
5692 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5693 	create_irqchip_unlock:
5694 		mutex_unlock(&kvm->lock);
5695 		break;
5696 	}
5697 	case KVM_CREATE_PIT:
5698 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5699 		goto create_pit;
5700 	case KVM_CREATE_PIT2:
5701 		r = -EFAULT;
5702 		if (copy_from_user(&u.pit_config, argp,
5703 				   sizeof(struct kvm_pit_config)))
5704 			goto out;
5705 	create_pit:
5706 		mutex_lock(&kvm->lock);
5707 		r = -EEXIST;
5708 		if (kvm->arch.vpit)
5709 			goto create_pit_unlock;
5710 		r = -ENOMEM;
5711 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5712 		if (kvm->arch.vpit)
5713 			r = 0;
5714 	create_pit_unlock:
5715 		mutex_unlock(&kvm->lock);
5716 		break;
5717 	case KVM_GET_IRQCHIP: {
5718 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5719 		struct kvm_irqchip *chip;
5720 
5721 		chip = memdup_user(argp, sizeof(*chip));
5722 		if (IS_ERR(chip)) {
5723 			r = PTR_ERR(chip);
5724 			goto out;
5725 		}
5726 
5727 		r = -ENXIO;
5728 		if (!irqchip_kernel(kvm))
5729 			goto get_irqchip_out;
5730 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5731 		if (r)
5732 			goto get_irqchip_out;
5733 		r = -EFAULT;
5734 		if (copy_to_user(argp, chip, sizeof(*chip)))
5735 			goto get_irqchip_out;
5736 		r = 0;
5737 	get_irqchip_out:
5738 		kfree(chip);
5739 		break;
5740 	}
5741 	case KVM_SET_IRQCHIP: {
5742 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5743 		struct kvm_irqchip *chip;
5744 
5745 		chip = memdup_user(argp, sizeof(*chip));
5746 		if (IS_ERR(chip)) {
5747 			r = PTR_ERR(chip);
5748 			goto out;
5749 		}
5750 
5751 		r = -ENXIO;
5752 		if (!irqchip_kernel(kvm))
5753 			goto set_irqchip_out;
5754 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5755 	set_irqchip_out:
5756 		kfree(chip);
5757 		break;
5758 	}
5759 	case KVM_GET_PIT: {
5760 		r = -EFAULT;
5761 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5762 			goto out;
5763 		r = -ENXIO;
5764 		if (!kvm->arch.vpit)
5765 			goto out;
5766 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5767 		if (r)
5768 			goto out;
5769 		r = -EFAULT;
5770 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5771 			goto out;
5772 		r = 0;
5773 		break;
5774 	}
5775 	case KVM_SET_PIT: {
5776 		r = -EFAULT;
5777 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5778 			goto out;
5779 		mutex_lock(&kvm->lock);
5780 		r = -ENXIO;
5781 		if (!kvm->arch.vpit)
5782 			goto set_pit_out;
5783 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5784 set_pit_out:
5785 		mutex_unlock(&kvm->lock);
5786 		break;
5787 	}
5788 	case KVM_GET_PIT2: {
5789 		r = -ENXIO;
5790 		if (!kvm->arch.vpit)
5791 			goto out;
5792 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5793 		if (r)
5794 			goto out;
5795 		r = -EFAULT;
5796 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5797 			goto out;
5798 		r = 0;
5799 		break;
5800 	}
5801 	case KVM_SET_PIT2: {
5802 		r = -EFAULT;
5803 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5804 			goto out;
5805 		mutex_lock(&kvm->lock);
5806 		r = -ENXIO;
5807 		if (!kvm->arch.vpit)
5808 			goto set_pit2_out;
5809 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5810 set_pit2_out:
5811 		mutex_unlock(&kvm->lock);
5812 		break;
5813 	}
5814 	case KVM_REINJECT_CONTROL: {
5815 		struct kvm_reinject_control control;
5816 		r =  -EFAULT;
5817 		if (copy_from_user(&control, argp, sizeof(control)))
5818 			goto out;
5819 		r = -ENXIO;
5820 		if (!kvm->arch.vpit)
5821 			goto out;
5822 		r = kvm_vm_ioctl_reinject(kvm, &control);
5823 		break;
5824 	}
5825 	case KVM_SET_BOOT_CPU_ID:
5826 		r = 0;
5827 		mutex_lock(&kvm->lock);
5828 		if (kvm->created_vcpus)
5829 			r = -EBUSY;
5830 		else
5831 			kvm->arch.bsp_vcpu_id = arg;
5832 		mutex_unlock(&kvm->lock);
5833 		break;
5834 	case KVM_XEN_HVM_CONFIG: {
5835 		struct kvm_xen_hvm_config xhc;
5836 		r = -EFAULT;
5837 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5838 			goto out;
5839 		r = -EINVAL;
5840 		if (xhc.flags)
5841 			goto out;
5842 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5843 		r = 0;
5844 		break;
5845 	}
5846 	case KVM_SET_CLOCK: {
5847 		struct kvm_clock_data user_ns;
5848 		u64 now_ns;
5849 
5850 		r = -EFAULT;
5851 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5852 			goto out;
5853 
5854 		r = -EINVAL;
5855 		if (user_ns.flags)
5856 			goto out;
5857 
5858 		r = 0;
5859 		/*
5860 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5861 		 * kvm_gen_update_masterclock() can be cut down to locked
5862 		 * pvclock_update_vm_gtod_copy().
5863 		 */
5864 		kvm_gen_update_masterclock(kvm);
5865 		now_ns = get_kvmclock_ns(kvm);
5866 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5867 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5868 		break;
5869 	}
5870 	case KVM_GET_CLOCK: {
5871 		struct kvm_clock_data user_ns;
5872 		u64 now_ns;
5873 
5874 		now_ns = get_kvmclock_ns(kvm);
5875 		user_ns.clock = now_ns;
5876 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5877 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5878 
5879 		r = -EFAULT;
5880 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5881 			goto out;
5882 		r = 0;
5883 		break;
5884 	}
5885 	case KVM_MEMORY_ENCRYPT_OP: {
5886 		r = -ENOTTY;
5887 		if (kvm_x86_ops.mem_enc_op)
5888 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5889 		break;
5890 	}
5891 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5892 		struct kvm_enc_region region;
5893 
5894 		r = -EFAULT;
5895 		if (copy_from_user(&region, argp, sizeof(region)))
5896 			goto out;
5897 
5898 		r = -ENOTTY;
5899 		if (kvm_x86_ops.mem_enc_reg_region)
5900 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5901 		break;
5902 	}
5903 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5904 		struct kvm_enc_region region;
5905 
5906 		r = -EFAULT;
5907 		if (copy_from_user(&region, argp, sizeof(region)))
5908 			goto out;
5909 
5910 		r = -ENOTTY;
5911 		if (kvm_x86_ops.mem_enc_unreg_region)
5912 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5913 		break;
5914 	}
5915 	case KVM_HYPERV_EVENTFD: {
5916 		struct kvm_hyperv_eventfd hvevfd;
5917 
5918 		r = -EFAULT;
5919 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5920 			goto out;
5921 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5922 		break;
5923 	}
5924 	case KVM_SET_PMU_EVENT_FILTER:
5925 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5926 		break;
5927 	case KVM_X86_SET_MSR_FILTER: {
5928 		struct kvm_msr_filter __user *user_msr_filter = argp;
5929 		struct kvm_msr_filter filter;
5930 
5931 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5932 			return -EFAULT;
5933 
5934 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
5935 		break;
5936 	}
5937 	default:
5938 		r = -ENOTTY;
5939 	}
5940 out:
5941 	return r;
5942 }
5943 
kvm_init_msr_list(void)5944 static void kvm_init_msr_list(void)
5945 {
5946 	struct x86_pmu_capability x86_pmu;
5947 	u32 dummy[2];
5948 	unsigned i;
5949 
5950 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5951 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5952 
5953 	perf_get_x86_pmu_capability(&x86_pmu);
5954 
5955 	num_msrs_to_save = 0;
5956 	num_emulated_msrs = 0;
5957 	num_msr_based_features = 0;
5958 
5959 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5960 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5961 			continue;
5962 
5963 		/*
5964 		 * Even MSRs that are valid in the host may not be exposed
5965 		 * to the guests in some cases.
5966 		 */
5967 		switch (msrs_to_save_all[i]) {
5968 		case MSR_IA32_BNDCFGS:
5969 			if (!kvm_mpx_supported())
5970 				continue;
5971 			break;
5972 		case MSR_TSC_AUX:
5973 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5974 				continue;
5975 			break;
5976 		case MSR_IA32_UMWAIT_CONTROL:
5977 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5978 				continue;
5979 			break;
5980 		case MSR_IA32_RTIT_CTL:
5981 		case MSR_IA32_RTIT_STATUS:
5982 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5983 				continue;
5984 			break;
5985 		case MSR_IA32_RTIT_CR3_MATCH:
5986 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5987 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5988 				continue;
5989 			break;
5990 		case MSR_IA32_RTIT_OUTPUT_BASE:
5991 		case MSR_IA32_RTIT_OUTPUT_MASK:
5992 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5993 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5994 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5995 				continue;
5996 			break;
5997 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5998 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5999 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6000 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6001 				continue;
6002 			break;
6003 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6004 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6005 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6006 				continue;
6007 			break;
6008 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6009 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6010 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6011 				continue;
6012 			break;
6013 		default:
6014 			break;
6015 		}
6016 
6017 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6018 	}
6019 
6020 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6021 		if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
6022 			continue;
6023 
6024 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6025 	}
6026 
6027 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6028 		struct kvm_msr_entry msr;
6029 
6030 		msr.index = msr_based_features_all[i];
6031 		if (kvm_get_msr_feature(&msr))
6032 			continue;
6033 
6034 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6035 	}
6036 }
6037 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)6038 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6039 			   const void *v)
6040 {
6041 	int handled = 0;
6042 	int n;
6043 
6044 	do {
6045 		n = min(len, 8);
6046 		if (!(lapic_in_kernel(vcpu) &&
6047 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6048 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6049 			break;
6050 		handled += n;
6051 		addr += n;
6052 		len -= n;
6053 		v += n;
6054 	} while (len);
6055 
6056 	return handled;
6057 }
6058 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)6059 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6060 {
6061 	int handled = 0;
6062 	int n;
6063 
6064 	do {
6065 		n = min(len, 8);
6066 		if (!(lapic_in_kernel(vcpu) &&
6067 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6068 					 addr, n, v))
6069 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6070 			break;
6071 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6072 		handled += n;
6073 		addr += n;
6074 		len -= n;
6075 		v += n;
6076 	} while (len);
6077 
6078 	return handled;
6079 }
6080 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6081 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6082 			struct kvm_segment *var, int seg)
6083 {
6084 	kvm_x86_ops.set_segment(vcpu, var, seg);
6085 }
6086 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6087 void kvm_get_segment(struct kvm_vcpu *vcpu,
6088 		     struct kvm_segment *var, int seg)
6089 {
6090 	kvm_x86_ops.get_segment(vcpu, var, seg);
6091 }
6092 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)6093 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6094 			   struct x86_exception *exception)
6095 {
6096 	gpa_t t_gpa;
6097 
6098 	BUG_ON(!mmu_is_nested(vcpu));
6099 
6100 	/* NPT walks are always user-walks */
6101 	access |= PFERR_USER_MASK;
6102 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6103 
6104 	return t_gpa;
6105 }
6106 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6107 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6108 			      struct x86_exception *exception)
6109 {
6110 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6111 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6112 }
6113 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6114  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6115 				struct x86_exception *exception)
6116 {
6117 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6118 	access |= PFERR_FETCH_MASK;
6119 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6120 }
6121 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6122 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6123 			       struct x86_exception *exception)
6124 {
6125 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6126 	access |= PFERR_WRITE_MASK;
6127 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6128 }
6129 
6130 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6131 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6132 				struct x86_exception *exception)
6133 {
6134 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6135 }
6136 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)6137 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6138 				      struct kvm_vcpu *vcpu, u32 access,
6139 				      struct x86_exception *exception)
6140 {
6141 	void *data = val;
6142 	int r = X86EMUL_CONTINUE;
6143 
6144 	while (bytes) {
6145 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6146 							    exception);
6147 		unsigned offset = addr & (PAGE_SIZE-1);
6148 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6149 		int ret;
6150 
6151 		if (gpa == UNMAPPED_GVA)
6152 			return X86EMUL_PROPAGATE_FAULT;
6153 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6154 					       offset, toread);
6155 		if (ret < 0) {
6156 			r = X86EMUL_IO_NEEDED;
6157 			goto out;
6158 		}
6159 
6160 		bytes -= toread;
6161 		data += toread;
6162 		addr += toread;
6163 	}
6164 out:
6165 	return r;
6166 }
6167 
6168 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6169 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6170 				gva_t addr, void *val, unsigned int bytes,
6171 				struct x86_exception *exception)
6172 {
6173 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6174 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6175 	unsigned offset;
6176 	int ret;
6177 
6178 	/* Inline kvm_read_guest_virt_helper for speed.  */
6179 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6180 						    exception);
6181 	if (unlikely(gpa == UNMAPPED_GVA))
6182 		return X86EMUL_PROPAGATE_FAULT;
6183 
6184 	offset = addr & (PAGE_SIZE-1);
6185 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6186 		bytes = (unsigned)PAGE_SIZE - offset;
6187 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6188 				       offset, bytes);
6189 	if (unlikely(ret < 0))
6190 		return X86EMUL_IO_NEEDED;
6191 
6192 	return X86EMUL_CONTINUE;
6193 }
6194 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6195 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6196 			       gva_t addr, void *val, unsigned int bytes,
6197 			       struct x86_exception *exception)
6198 {
6199 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6200 
6201 	/*
6202 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6203 	 * is returned, but our callers are not ready for that and they blindly
6204 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6205 	 * uninitialized kernel stack memory into cr2 and error code.
6206 	 */
6207 	memset(exception, 0, sizeof(*exception));
6208 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6209 					  exception);
6210 }
6211 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6212 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6213 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6214 			     gva_t addr, void *val, unsigned int bytes,
6215 			     struct x86_exception *exception, bool system)
6216 {
6217 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6218 	u32 access = 0;
6219 
6220 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6221 		access |= PFERR_USER_MASK;
6222 
6223 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6224 }
6225 
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)6226 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6227 		unsigned long addr, void *val, unsigned int bytes)
6228 {
6229 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6230 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6231 
6232 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6233 }
6234 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)6235 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6236 				      struct kvm_vcpu *vcpu, u32 access,
6237 				      struct x86_exception *exception)
6238 {
6239 	void *data = val;
6240 	int r = X86EMUL_CONTINUE;
6241 
6242 	while (bytes) {
6243 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6244 							     access,
6245 							     exception);
6246 		unsigned offset = addr & (PAGE_SIZE-1);
6247 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6248 		int ret;
6249 
6250 		if (gpa == UNMAPPED_GVA)
6251 			return X86EMUL_PROPAGATE_FAULT;
6252 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6253 		if (ret < 0) {
6254 			r = X86EMUL_IO_NEEDED;
6255 			goto out;
6256 		}
6257 
6258 		bytes -= towrite;
6259 		data += towrite;
6260 		addr += towrite;
6261 	}
6262 out:
6263 	return r;
6264 }
6265 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6266 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6267 			      unsigned int bytes, struct x86_exception *exception,
6268 			      bool system)
6269 {
6270 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6271 	u32 access = PFERR_WRITE_MASK;
6272 
6273 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6274 		access |= PFERR_USER_MASK;
6275 
6276 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6277 					   access, exception);
6278 }
6279 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6280 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6281 				unsigned int bytes, struct x86_exception *exception)
6282 {
6283 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6284 	vcpu->arch.l1tf_flush_l1d = true;
6285 
6286 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6287 					   PFERR_WRITE_MASK, exception);
6288 }
6289 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6290 
handle_ud(struct kvm_vcpu * vcpu)6291 int handle_ud(struct kvm_vcpu *vcpu)
6292 {
6293 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6294 	int emul_type = EMULTYPE_TRAP_UD;
6295 	char sig[5]; /* ud2; .ascii "kvm" */
6296 	struct x86_exception e;
6297 
6298 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6299 		return 1;
6300 
6301 	if (force_emulation_prefix &&
6302 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6303 				sig, sizeof(sig), &e) == 0 &&
6304 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6305 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6306 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6307 	}
6308 
6309 	return kvm_emulate_instruction(vcpu, emul_type);
6310 }
6311 EXPORT_SYMBOL_GPL(handle_ud);
6312 
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)6313 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6314 			    gpa_t gpa, bool write)
6315 {
6316 	/* For APIC access vmexit */
6317 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6318 		return 1;
6319 
6320 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6321 		trace_vcpu_match_mmio(gva, gpa, write, true);
6322 		return 1;
6323 	}
6324 
6325 	return 0;
6326 }
6327 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)6328 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6329 				gpa_t *gpa, struct x86_exception *exception,
6330 				bool write)
6331 {
6332 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6333 		| (write ? PFERR_WRITE_MASK : 0);
6334 
6335 	/*
6336 	 * currently PKRU is only applied to ept enabled guest so
6337 	 * there is no pkey in EPT page table for L1 guest or EPT
6338 	 * shadow page table for L2 guest.
6339 	 */
6340 	if (vcpu_match_mmio_gva(vcpu, gva)
6341 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6342 				 vcpu->arch.mmio_access, 0, access)) {
6343 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6344 					(gva & (PAGE_SIZE - 1));
6345 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6346 		return 1;
6347 	}
6348 
6349 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6350 
6351 	if (*gpa == UNMAPPED_GVA)
6352 		return -1;
6353 
6354 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6355 }
6356 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)6357 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6358 			const void *val, int bytes)
6359 {
6360 	int ret;
6361 
6362 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6363 	if (ret < 0)
6364 		return 0;
6365 	kvm_page_track_write(vcpu, gpa, val, bytes);
6366 	return 1;
6367 }
6368 
6369 struct read_write_emulator_ops {
6370 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6371 				  int bytes);
6372 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6373 				  void *val, int bytes);
6374 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6375 			       int bytes, void *val);
6376 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6377 				    void *val, int bytes);
6378 	bool write;
6379 };
6380 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)6381 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6382 {
6383 	if (vcpu->mmio_read_completed) {
6384 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6385 			       vcpu->mmio_fragments[0].gpa, val);
6386 		vcpu->mmio_read_completed = 0;
6387 		return 1;
6388 	}
6389 
6390 	return 0;
6391 }
6392 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6393 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6394 			void *val, int bytes)
6395 {
6396 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6397 }
6398 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6399 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6400 			 void *val, int bytes)
6401 {
6402 	return emulator_write_phys(vcpu, gpa, val, bytes);
6403 }
6404 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)6405 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6406 {
6407 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6408 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6409 }
6410 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6411 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6412 			  void *val, int bytes)
6413 {
6414 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6415 	return X86EMUL_IO_NEEDED;
6416 }
6417 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6418 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6419 			   void *val, int bytes)
6420 {
6421 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6422 
6423 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6424 	return X86EMUL_CONTINUE;
6425 }
6426 
6427 static const struct read_write_emulator_ops read_emultor = {
6428 	.read_write_prepare = read_prepare,
6429 	.read_write_emulate = read_emulate,
6430 	.read_write_mmio = vcpu_mmio_read,
6431 	.read_write_exit_mmio = read_exit_mmio,
6432 };
6433 
6434 static const struct read_write_emulator_ops write_emultor = {
6435 	.read_write_emulate = write_emulate,
6436 	.read_write_mmio = write_mmio,
6437 	.read_write_exit_mmio = write_exit_mmio,
6438 	.write = true,
6439 };
6440 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)6441 static int emulator_read_write_onepage(unsigned long addr, void *val,
6442 				       unsigned int bytes,
6443 				       struct x86_exception *exception,
6444 				       struct kvm_vcpu *vcpu,
6445 				       const struct read_write_emulator_ops *ops)
6446 {
6447 	gpa_t gpa;
6448 	int handled, ret;
6449 	bool write = ops->write;
6450 	struct kvm_mmio_fragment *frag;
6451 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6452 
6453 	/*
6454 	 * If the exit was due to a NPF we may already have a GPA.
6455 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6456 	 * Note, this cannot be used on string operations since string
6457 	 * operation using rep will only have the initial GPA from the NPF
6458 	 * occurred.
6459 	 */
6460 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6461 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6462 		gpa = ctxt->gpa_val;
6463 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6464 	} else {
6465 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6466 		if (ret < 0)
6467 			return X86EMUL_PROPAGATE_FAULT;
6468 	}
6469 
6470 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6471 		return X86EMUL_CONTINUE;
6472 
6473 	/*
6474 	 * Is this MMIO handled locally?
6475 	 */
6476 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6477 	if (handled == bytes)
6478 		return X86EMUL_CONTINUE;
6479 
6480 	gpa += handled;
6481 	bytes -= handled;
6482 	val += handled;
6483 
6484 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6485 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6486 	frag->gpa = gpa;
6487 	frag->data = val;
6488 	frag->len = bytes;
6489 	return X86EMUL_CONTINUE;
6490 }
6491 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)6492 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6493 			unsigned long addr,
6494 			void *val, unsigned int bytes,
6495 			struct x86_exception *exception,
6496 			const struct read_write_emulator_ops *ops)
6497 {
6498 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6499 	gpa_t gpa;
6500 	int rc;
6501 
6502 	if (ops->read_write_prepare &&
6503 		  ops->read_write_prepare(vcpu, val, bytes))
6504 		return X86EMUL_CONTINUE;
6505 
6506 	vcpu->mmio_nr_fragments = 0;
6507 
6508 	/* Crossing a page boundary? */
6509 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6510 		int now;
6511 
6512 		now = -addr & ~PAGE_MASK;
6513 		rc = emulator_read_write_onepage(addr, val, now, exception,
6514 						 vcpu, ops);
6515 
6516 		if (rc != X86EMUL_CONTINUE)
6517 			return rc;
6518 		addr += now;
6519 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6520 			addr = (u32)addr;
6521 		val += now;
6522 		bytes -= now;
6523 	}
6524 
6525 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6526 					 vcpu, ops);
6527 	if (rc != X86EMUL_CONTINUE)
6528 		return rc;
6529 
6530 	if (!vcpu->mmio_nr_fragments)
6531 		return rc;
6532 
6533 	gpa = vcpu->mmio_fragments[0].gpa;
6534 
6535 	vcpu->mmio_needed = 1;
6536 	vcpu->mmio_cur_fragment = 0;
6537 
6538 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6539 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6540 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6541 	vcpu->run->mmio.phys_addr = gpa;
6542 
6543 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6544 }
6545 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)6546 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6547 				  unsigned long addr,
6548 				  void *val,
6549 				  unsigned int bytes,
6550 				  struct x86_exception *exception)
6551 {
6552 	return emulator_read_write(ctxt, addr, val, bytes,
6553 				   exception, &read_emultor);
6554 }
6555 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)6556 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6557 			    unsigned long addr,
6558 			    const void *val,
6559 			    unsigned int bytes,
6560 			    struct x86_exception *exception)
6561 {
6562 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6563 				   exception, &write_emultor);
6564 }
6565 
6566 #define CMPXCHG_TYPE(t, ptr, old, new) \
6567 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6568 
6569 #ifdef CONFIG_X86_64
6570 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6571 #else
6572 #  define CMPXCHG64(ptr, old, new) \
6573 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6574 #endif
6575 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)6576 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6577 				     unsigned long addr,
6578 				     const void *old,
6579 				     const void *new,
6580 				     unsigned int bytes,
6581 				     struct x86_exception *exception)
6582 {
6583 	struct kvm_host_map map;
6584 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6585 	u64 page_line_mask;
6586 	gpa_t gpa;
6587 	char *kaddr;
6588 	bool exchanged;
6589 
6590 	/* guests cmpxchg8b have to be emulated atomically */
6591 	if (bytes > 8 || (bytes & (bytes - 1)))
6592 		goto emul_write;
6593 
6594 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6595 
6596 	if (gpa == UNMAPPED_GVA ||
6597 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6598 		goto emul_write;
6599 
6600 	/*
6601 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6602 	 * enabled in the host and the access splits a cache line.
6603 	 */
6604 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6605 		page_line_mask = ~(cache_line_size() - 1);
6606 	else
6607 		page_line_mask = PAGE_MASK;
6608 
6609 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6610 		goto emul_write;
6611 
6612 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6613 		goto emul_write;
6614 
6615 	kaddr = map.hva + offset_in_page(gpa);
6616 
6617 	switch (bytes) {
6618 	case 1:
6619 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6620 		break;
6621 	case 2:
6622 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6623 		break;
6624 	case 4:
6625 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6626 		break;
6627 	case 8:
6628 		exchanged = CMPXCHG64(kaddr, old, new);
6629 		break;
6630 	default:
6631 		BUG();
6632 	}
6633 
6634 	kvm_vcpu_unmap(vcpu, &map, true);
6635 
6636 	if (!exchanged)
6637 		return X86EMUL_CMPXCHG_FAILED;
6638 
6639 	kvm_page_track_write(vcpu, gpa, new, bytes);
6640 
6641 	return X86EMUL_CONTINUE;
6642 
6643 emul_write:
6644 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6645 
6646 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6647 }
6648 
kernel_pio(struct kvm_vcpu * vcpu,void * pd)6649 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6650 {
6651 	int r = 0, i;
6652 
6653 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6654 		if (vcpu->arch.pio.in)
6655 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6656 					    vcpu->arch.pio.size, pd);
6657 		else
6658 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6659 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6660 					     pd);
6661 		if (r)
6662 			break;
6663 		pd += vcpu->arch.pio.size;
6664 	}
6665 	return r;
6666 }
6667 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)6668 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6669 			       unsigned short port, void *val,
6670 			       unsigned int count, bool in)
6671 {
6672 	vcpu->arch.pio.port = port;
6673 	vcpu->arch.pio.in = in;
6674 	vcpu->arch.pio.count  = count;
6675 	vcpu->arch.pio.size = size;
6676 
6677 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6678 		vcpu->arch.pio.count = 0;
6679 		return 1;
6680 	}
6681 
6682 	vcpu->run->exit_reason = KVM_EXIT_IO;
6683 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6684 	vcpu->run->io.size = size;
6685 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6686 	vcpu->run->io.count = count;
6687 	vcpu->run->io.port = port;
6688 
6689 	return 0;
6690 }
6691 
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)6692 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6693 			   unsigned short port, void *val, unsigned int count)
6694 {
6695 	int ret;
6696 
6697 	if (vcpu->arch.pio.count)
6698 		goto data_avail;
6699 
6700 	memset(vcpu->arch.pio_data, 0, size * count);
6701 
6702 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6703 	if (ret) {
6704 data_avail:
6705 		memcpy(val, vcpu->arch.pio_data, size * count);
6706 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6707 		vcpu->arch.pio.count = 0;
6708 		return 1;
6709 	}
6710 
6711 	return 0;
6712 }
6713 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)6714 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6715 				    int size, unsigned short port, void *val,
6716 				    unsigned int count)
6717 {
6718 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6719 
6720 }
6721 
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)6722 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6723 			    unsigned short port, const void *val,
6724 			    unsigned int count)
6725 {
6726 	memcpy(vcpu->arch.pio_data, val, size * count);
6727 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6728 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6729 }
6730 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)6731 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6732 				     int size, unsigned short port,
6733 				     const void *val, unsigned int count)
6734 {
6735 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6736 }
6737 
get_segment_base(struct kvm_vcpu * vcpu,int seg)6738 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6739 {
6740 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6741 }
6742 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)6743 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6744 {
6745 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6746 }
6747 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)6748 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6749 {
6750 	if (!need_emulate_wbinvd(vcpu))
6751 		return X86EMUL_CONTINUE;
6752 
6753 	if (kvm_x86_ops.has_wbinvd_exit()) {
6754 		int cpu = get_cpu();
6755 
6756 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6757 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6758 				wbinvd_ipi, NULL, 1);
6759 		put_cpu();
6760 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6761 	} else
6762 		wbinvd();
6763 	return X86EMUL_CONTINUE;
6764 }
6765 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)6766 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6767 {
6768 	kvm_emulate_wbinvd_noskip(vcpu);
6769 	return kvm_skip_emulated_instruction(vcpu);
6770 }
6771 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6772 
6773 
6774 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)6775 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6776 {
6777 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6778 }
6779 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)6780 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6781 			   unsigned long *dest)
6782 {
6783 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6784 }
6785 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)6786 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6787 			   unsigned long value)
6788 {
6789 
6790 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6791 }
6792 
mk_cr_64(u64 curr_cr,u32 new_val)6793 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6794 {
6795 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6796 }
6797 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)6798 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6799 {
6800 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6801 	unsigned long value;
6802 
6803 	switch (cr) {
6804 	case 0:
6805 		value = kvm_read_cr0(vcpu);
6806 		break;
6807 	case 2:
6808 		value = vcpu->arch.cr2;
6809 		break;
6810 	case 3:
6811 		value = kvm_read_cr3(vcpu);
6812 		break;
6813 	case 4:
6814 		value = kvm_read_cr4(vcpu);
6815 		break;
6816 	case 8:
6817 		value = kvm_get_cr8(vcpu);
6818 		break;
6819 	default:
6820 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6821 		return 0;
6822 	}
6823 
6824 	return value;
6825 }
6826 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)6827 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6828 {
6829 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6830 	int res = 0;
6831 
6832 	switch (cr) {
6833 	case 0:
6834 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6835 		break;
6836 	case 2:
6837 		vcpu->arch.cr2 = val;
6838 		break;
6839 	case 3:
6840 		res = kvm_set_cr3(vcpu, val);
6841 		break;
6842 	case 4:
6843 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6844 		break;
6845 	case 8:
6846 		res = kvm_set_cr8(vcpu, val);
6847 		break;
6848 	default:
6849 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6850 		res = -1;
6851 	}
6852 
6853 	return res;
6854 }
6855 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)6856 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6857 {
6858 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6859 }
6860 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6861 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6862 {
6863 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6864 }
6865 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6866 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6867 {
6868 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6869 }
6870 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6871 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6872 {
6873 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6874 }
6875 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6876 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6877 {
6878 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6879 }
6880 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)6881 static unsigned long emulator_get_cached_segment_base(
6882 	struct x86_emulate_ctxt *ctxt, int seg)
6883 {
6884 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6885 }
6886 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)6887 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6888 				 struct desc_struct *desc, u32 *base3,
6889 				 int seg)
6890 {
6891 	struct kvm_segment var;
6892 
6893 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6894 	*selector = var.selector;
6895 
6896 	if (var.unusable) {
6897 		memset(desc, 0, sizeof(*desc));
6898 		if (base3)
6899 			*base3 = 0;
6900 		return false;
6901 	}
6902 
6903 	if (var.g)
6904 		var.limit >>= 12;
6905 	set_desc_limit(desc, var.limit);
6906 	set_desc_base(desc, (unsigned long)var.base);
6907 #ifdef CONFIG_X86_64
6908 	if (base3)
6909 		*base3 = var.base >> 32;
6910 #endif
6911 	desc->type = var.type;
6912 	desc->s = var.s;
6913 	desc->dpl = var.dpl;
6914 	desc->p = var.present;
6915 	desc->avl = var.avl;
6916 	desc->l = var.l;
6917 	desc->d = var.db;
6918 	desc->g = var.g;
6919 
6920 	return true;
6921 }
6922 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)6923 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6924 				 struct desc_struct *desc, u32 base3,
6925 				 int seg)
6926 {
6927 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6928 	struct kvm_segment var;
6929 
6930 	var.selector = selector;
6931 	var.base = get_desc_base(desc);
6932 #ifdef CONFIG_X86_64
6933 	var.base |= ((u64)base3) << 32;
6934 #endif
6935 	var.limit = get_desc_limit(desc);
6936 	if (desc->g)
6937 		var.limit = (var.limit << 12) | 0xfff;
6938 	var.type = desc->type;
6939 	var.dpl = desc->dpl;
6940 	var.db = desc->d;
6941 	var.s = desc->s;
6942 	var.l = desc->l;
6943 	var.g = desc->g;
6944 	var.avl = desc->avl;
6945 	var.present = desc->p;
6946 	var.unusable = !var.present;
6947 	var.padding = 0;
6948 
6949 	kvm_set_segment(vcpu, &var, seg);
6950 	return;
6951 }
6952 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)6953 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6954 			    u32 msr_index, u64 *pdata)
6955 {
6956 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6957 	int r;
6958 
6959 	r = kvm_get_msr(vcpu, msr_index, pdata);
6960 
6961 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6962 		/* Bounce to user space */
6963 		return X86EMUL_IO_NEEDED;
6964 	}
6965 
6966 	return r;
6967 }
6968 
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)6969 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6970 			    u32 msr_index, u64 data)
6971 {
6972 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6973 	int r;
6974 
6975 	r = kvm_set_msr(vcpu, msr_index, data);
6976 
6977 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6978 		/* Bounce to user space */
6979 		return X86EMUL_IO_NEEDED;
6980 	}
6981 
6982 	return r;
6983 }
6984 
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)6985 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6986 {
6987 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6988 
6989 	return vcpu->arch.smbase;
6990 }
6991 
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)6992 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6993 {
6994 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6995 
6996 	vcpu->arch.smbase = smbase;
6997 }
6998 
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)6999 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7000 			      u32 pmc)
7001 {
7002 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7003 }
7004 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)7005 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7006 			     u32 pmc, u64 *pdata)
7007 {
7008 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7009 }
7010 
emulator_halt(struct x86_emulate_ctxt * ctxt)7011 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7012 {
7013 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7014 }
7015 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)7016 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7017 			      struct x86_instruction_info *info,
7018 			      enum x86_intercept_stage stage)
7019 {
7020 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
7021 					    &ctxt->exception);
7022 }
7023 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)7024 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7025 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7026 			      bool exact_only)
7027 {
7028 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7029 }
7030 
emulator_guest_has_long_mode(struct x86_emulate_ctxt * ctxt)7031 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7032 {
7033 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7034 }
7035 
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)7036 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7037 {
7038 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7039 }
7040 
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)7041 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7042 {
7043 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7044 }
7045 
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)7046 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7047 {
7048 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7049 }
7050 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)7051 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7052 {
7053 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
7054 }
7055 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)7056 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7057 {
7058 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
7059 }
7060 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)7061 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7062 {
7063 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
7064 }
7065 
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)7066 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7067 {
7068 	return emul_to_vcpu(ctxt)->arch.hflags;
7069 }
7070 
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)7071 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
7072 {
7073 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7074 
7075 	vcpu->arch.hflags = emul_flags;
7076 	kvm_mmu_reset_context(vcpu);
7077 }
7078 
emulator_pre_leave_smm(struct x86_emulate_ctxt * ctxt,const char * smstate)7079 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
7080 				  const char *smstate)
7081 {
7082 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
7083 }
7084 
emulator_post_leave_smm(struct x86_emulate_ctxt * ctxt)7085 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
7086 {
7087 	kvm_smm_changed(emul_to_vcpu(ctxt));
7088 }
7089 
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)7090 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7091 {
7092 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7093 }
7094 
7095 static const struct x86_emulate_ops emulate_ops = {
7096 	.read_gpr            = emulator_read_gpr,
7097 	.write_gpr           = emulator_write_gpr,
7098 	.read_std            = emulator_read_std,
7099 	.write_std           = emulator_write_std,
7100 	.read_phys           = kvm_read_guest_phys_system,
7101 	.fetch               = kvm_fetch_guest_virt,
7102 	.read_emulated       = emulator_read_emulated,
7103 	.write_emulated      = emulator_write_emulated,
7104 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7105 	.invlpg              = emulator_invlpg,
7106 	.pio_in_emulated     = emulator_pio_in_emulated,
7107 	.pio_out_emulated    = emulator_pio_out_emulated,
7108 	.get_segment         = emulator_get_segment,
7109 	.set_segment         = emulator_set_segment,
7110 	.get_cached_segment_base = emulator_get_cached_segment_base,
7111 	.get_gdt             = emulator_get_gdt,
7112 	.get_idt	     = emulator_get_idt,
7113 	.set_gdt             = emulator_set_gdt,
7114 	.set_idt	     = emulator_set_idt,
7115 	.get_cr              = emulator_get_cr,
7116 	.set_cr              = emulator_set_cr,
7117 	.cpl                 = emulator_get_cpl,
7118 	.get_dr              = emulator_get_dr,
7119 	.set_dr              = emulator_set_dr,
7120 	.get_smbase          = emulator_get_smbase,
7121 	.set_smbase          = emulator_set_smbase,
7122 	.set_msr             = emulator_set_msr,
7123 	.get_msr             = emulator_get_msr,
7124 	.check_pmc	     = emulator_check_pmc,
7125 	.read_pmc            = emulator_read_pmc,
7126 	.halt                = emulator_halt,
7127 	.wbinvd              = emulator_wbinvd,
7128 	.fix_hypercall       = emulator_fix_hypercall,
7129 	.intercept           = emulator_intercept,
7130 	.get_cpuid           = emulator_get_cpuid,
7131 	.guest_has_long_mode = emulator_guest_has_long_mode,
7132 	.guest_has_movbe     = emulator_guest_has_movbe,
7133 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7134 	.guest_has_rdpid     = emulator_guest_has_rdpid,
7135 	.set_nmi_mask        = emulator_set_nmi_mask,
7136 	.get_hflags          = emulator_get_hflags,
7137 	.set_hflags          = emulator_set_hflags,
7138 	.pre_leave_smm       = emulator_pre_leave_smm,
7139 	.post_leave_smm      = emulator_post_leave_smm,
7140 	.set_xcr             = emulator_set_xcr,
7141 };
7142 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)7143 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7144 {
7145 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
7146 	/*
7147 	 * an sti; sti; sequence only disable interrupts for the first
7148 	 * instruction. So, if the last instruction, be it emulated or
7149 	 * not, left the system with the INT_STI flag enabled, it
7150 	 * means that the last instruction is an sti. We should not
7151 	 * leave the flag on in this case. The same goes for mov ss
7152 	 */
7153 	if (int_shadow & mask)
7154 		mask = 0;
7155 	if (unlikely(int_shadow || mask)) {
7156 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
7157 		if (!mask)
7158 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7159 	}
7160 }
7161 
inject_emulated_exception(struct kvm_vcpu * vcpu)7162 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7163 {
7164 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7165 	if (ctxt->exception.vector == PF_VECTOR)
7166 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7167 
7168 	if (ctxt->exception.error_code_valid)
7169 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7170 				      ctxt->exception.error_code);
7171 	else
7172 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7173 	return false;
7174 }
7175 
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)7176 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7177 {
7178 	struct x86_emulate_ctxt *ctxt;
7179 
7180 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7181 	if (!ctxt) {
7182 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7183 		return NULL;
7184 	}
7185 
7186 	ctxt->vcpu = vcpu;
7187 	ctxt->ops = &emulate_ops;
7188 	vcpu->arch.emulate_ctxt = ctxt;
7189 
7190 	return ctxt;
7191 }
7192 
init_emulate_ctxt(struct kvm_vcpu * vcpu)7193 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7194 {
7195 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7196 	int cs_db, cs_l;
7197 
7198 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
7199 
7200 	ctxt->gpa_available = false;
7201 	ctxt->eflags = kvm_get_rflags(vcpu);
7202 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7203 
7204 	ctxt->eip = kvm_rip_read(vcpu);
7205 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7206 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7207 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7208 		     cs_db				? X86EMUL_MODE_PROT32 :
7209 							  X86EMUL_MODE_PROT16;
7210 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7211 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7212 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7213 
7214 	ctxt->interruptibility = 0;
7215 	ctxt->have_exception = false;
7216 	ctxt->exception.vector = -1;
7217 	ctxt->perm_ok = false;
7218 
7219 	init_decode_cache(ctxt);
7220 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7221 }
7222 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)7223 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7224 {
7225 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7226 	int ret;
7227 
7228 	init_emulate_ctxt(vcpu);
7229 
7230 	ctxt->op_bytes = 2;
7231 	ctxt->ad_bytes = 2;
7232 	ctxt->_eip = ctxt->eip + inc_eip;
7233 	ret = emulate_int_real(ctxt, irq);
7234 
7235 	if (ret != X86EMUL_CONTINUE) {
7236 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7237 	} else {
7238 		ctxt->eip = ctxt->_eip;
7239 		kvm_rip_write(vcpu, ctxt->eip);
7240 		kvm_set_rflags(vcpu, ctxt->eflags);
7241 	}
7242 }
7243 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7244 
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)7245 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7246 {
7247 	++vcpu->stat.insn_emulation_fail;
7248 	trace_kvm_emulate_insn_failed(vcpu);
7249 
7250 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7251 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7252 		return 1;
7253 	}
7254 
7255 	if (emulation_type & EMULTYPE_SKIP) {
7256 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7257 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7258 		vcpu->run->internal.ndata = 0;
7259 		return 0;
7260 	}
7261 
7262 	kvm_queue_exception(vcpu, UD_VECTOR);
7263 
7264 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7265 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7266 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7267 		vcpu->run->internal.ndata = 0;
7268 		return 0;
7269 	}
7270 
7271 	return 1;
7272 }
7273 
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool write_fault_to_shadow_pgtable,int emulation_type)7274 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7275 				  bool write_fault_to_shadow_pgtable,
7276 				  int emulation_type)
7277 {
7278 	gpa_t gpa = cr2_or_gpa;
7279 	kvm_pfn_t pfn;
7280 
7281 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7282 		return false;
7283 
7284 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7285 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7286 		return false;
7287 
7288 	if (!vcpu->arch.mmu->direct_map) {
7289 		/*
7290 		 * Write permission should be allowed since only
7291 		 * write access need to be emulated.
7292 		 */
7293 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7294 
7295 		/*
7296 		 * If the mapping is invalid in guest, let cpu retry
7297 		 * it to generate fault.
7298 		 */
7299 		if (gpa == UNMAPPED_GVA)
7300 			return true;
7301 	}
7302 
7303 	/*
7304 	 * Do not retry the unhandleable instruction if it faults on the
7305 	 * readonly host memory, otherwise it will goto a infinite loop:
7306 	 * retry instruction -> write #PF -> emulation fail -> retry
7307 	 * instruction -> ...
7308 	 */
7309 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7310 
7311 	/*
7312 	 * If the instruction failed on the error pfn, it can not be fixed,
7313 	 * report the error to userspace.
7314 	 */
7315 	if (is_error_noslot_pfn(pfn))
7316 		return false;
7317 
7318 	kvm_release_pfn_clean(pfn);
7319 
7320 	/* The instructions are well-emulated on direct mmu. */
7321 	if (vcpu->arch.mmu->direct_map) {
7322 		unsigned int indirect_shadow_pages;
7323 
7324 		spin_lock(&vcpu->kvm->mmu_lock);
7325 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7326 		spin_unlock(&vcpu->kvm->mmu_lock);
7327 
7328 		if (indirect_shadow_pages)
7329 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7330 
7331 		return true;
7332 	}
7333 
7334 	/*
7335 	 * if emulation was due to access to shadowed page table
7336 	 * and it failed try to unshadow page and re-enter the
7337 	 * guest to let CPU execute the instruction.
7338 	 */
7339 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7340 
7341 	/*
7342 	 * If the access faults on its page table, it can not
7343 	 * be fixed by unprotecting shadow page and it should
7344 	 * be reported to userspace.
7345 	 */
7346 	return !write_fault_to_shadow_pgtable;
7347 }
7348 
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)7349 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7350 			      gpa_t cr2_or_gpa,  int emulation_type)
7351 {
7352 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7353 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7354 
7355 	last_retry_eip = vcpu->arch.last_retry_eip;
7356 	last_retry_addr = vcpu->arch.last_retry_addr;
7357 
7358 	/*
7359 	 * If the emulation is caused by #PF and it is non-page_table
7360 	 * writing instruction, it means the VM-EXIT is caused by shadow
7361 	 * page protected, we can zap the shadow page and retry this
7362 	 * instruction directly.
7363 	 *
7364 	 * Note: if the guest uses a non-page-table modifying instruction
7365 	 * on the PDE that points to the instruction, then we will unmap
7366 	 * the instruction and go to an infinite loop. So, we cache the
7367 	 * last retried eip and the last fault address, if we meet the eip
7368 	 * and the address again, we can break out of the potential infinite
7369 	 * loop.
7370 	 */
7371 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7372 
7373 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7374 		return false;
7375 
7376 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7377 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7378 		return false;
7379 
7380 	if (x86_page_table_writing_insn(ctxt))
7381 		return false;
7382 
7383 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7384 		return false;
7385 
7386 	vcpu->arch.last_retry_eip = ctxt->eip;
7387 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7388 
7389 	if (!vcpu->arch.mmu->direct_map)
7390 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7391 
7392 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7393 
7394 	return true;
7395 }
7396 
7397 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7398 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7399 
kvm_smm_changed(struct kvm_vcpu * vcpu)7400 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7401 {
7402 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7403 		/* This is a good place to trace that we are exiting SMM.  */
7404 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7405 
7406 		/* Process a latched INIT or SMI, if any.  */
7407 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7408 	}
7409 
7410 	kvm_mmu_reset_context(vcpu);
7411 }
7412 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)7413 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7414 				unsigned long *db)
7415 {
7416 	u32 dr6 = 0;
7417 	int i;
7418 	u32 enable, rwlen;
7419 
7420 	enable = dr7;
7421 	rwlen = dr7 >> 16;
7422 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7423 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7424 			dr6 |= (1 << i);
7425 	return dr6;
7426 }
7427 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)7428 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7429 {
7430 	struct kvm_run *kvm_run = vcpu->run;
7431 
7432 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7433 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7434 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7435 		kvm_run->debug.arch.exception = DB_VECTOR;
7436 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7437 		return 0;
7438 	}
7439 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7440 	return 1;
7441 }
7442 
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)7443 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7444 {
7445 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7446 	int r;
7447 
7448 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7449 	if (unlikely(!r))
7450 		return 0;
7451 
7452 	/*
7453 	 * rflags is the old, "raw" value of the flags.  The new value has
7454 	 * not been saved yet.
7455 	 *
7456 	 * This is correct even for TF set by the guest, because "the
7457 	 * processor will not generate this exception after the instruction
7458 	 * that sets the TF flag".
7459 	 */
7460 	if (unlikely(rflags & X86_EFLAGS_TF))
7461 		r = kvm_vcpu_do_singlestep(vcpu);
7462 	return r;
7463 }
7464 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7465 
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int * r)7466 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
7467 {
7468 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7469 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7470 		struct kvm_run *kvm_run = vcpu->run;
7471 		unsigned long eip = kvm_get_linear_rip(vcpu);
7472 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7473 					   vcpu->arch.guest_debug_dr7,
7474 					   vcpu->arch.eff_db);
7475 
7476 		if (dr6 != 0) {
7477 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7478 			kvm_run->debug.arch.pc = eip;
7479 			kvm_run->debug.arch.exception = DB_VECTOR;
7480 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7481 			*r = 0;
7482 			return true;
7483 		}
7484 	}
7485 
7486 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7487 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7488 		unsigned long eip = kvm_get_linear_rip(vcpu);
7489 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7490 					   vcpu->arch.dr7,
7491 					   vcpu->arch.db);
7492 
7493 		if (dr6 != 0) {
7494 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7495 			*r = 1;
7496 			return true;
7497 		}
7498 	}
7499 
7500 	return false;
7501 }
7502 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)7503 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7504 {
7505 	switch (ctxt->opcode_len) {
7506 	case 1:
7507 		switch (ctxt->b) {
7508 		case 0xe4:	/* IN */
7509 		case 0xe5:
7510 		case 0xec:
7511 		case 0xed:
7512 		case 0xe6:	/* OUT */
7513 		case 0xe7:
7514 		case 0xee:
7515 		case 0xef:
7516 		case 0x6c:	/* INS */
7517 		case 0x6d:
7518 		case 0x6e:	/* OUTS */
7519 		case 0x6f:
7520 			return true;
7521 		}
7522 		break;
7523 	case 2:
7524 		switch (ctxt->b) {
7525 		case 0x33:	/* RDPMC */
7526 			return true;
7527 		}
7528 		break;
7529 	}
7530 
7531 	return false;
7532 }
7533 
7534 /*
7535  * Decode an instruction for emulation.  The caller is responsible for handling
7536  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
7537  * (and wrong) when emulating on an intercepted fault-like exception[*], as
7538  * code breakpoints have higher priority and thus have already been done by
7539  * hardware.
7540  *
7541  * [*] Except #MC, which is higher priority, but KVM should never emulate in
7542  *     response to a machine check.
7543  */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)7544 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7545 				    void *insn, int insn_len)
7546 {
7547 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7548 	int r;
7549 
7550 	init_emulate_ctxt(vcpu);
7551 
7552 	ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7553 
7554 	r = x86_decode_insn(ctxt, insn, insn_len);
7555 
7556 	trace_kvm_emulate_insn_start(vcpu);
7557 	++vcpu->stat.insn_emulation;
7558 
7559 	return r;
7560 }
7561 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7562 
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)7563 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7564 			    int emulation_type, void *insn, int insn_len)
7565 {
7566 	int r;
7567 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7568 	bool writeback = true;
7569 	bool write_fault_to_spt;
7570 
7571 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7572 		return 1;
7573 
7574 	vcpu->arch.l1tf_flush_l1d = true;
7575 
7576 	/*
7577 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7578 	 * never reused.
7579 	 */
7580 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7581 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7582 
7583 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7584 		kvm_clear_exception_queue(vcpu);
7585 
7586 		/*
7587 		 * Return immediately if RIP hits a code breakpoint, such #DBs
7588 		 * are fault-like and are higher priority than any faults on
7589 		 * the code fetch itself.
7590 		 */
7591 		if (!(emulation_type & EMULTYPE_SKIP) &&
7592 		    kvm_vcpu_check_code_breakpoint(vcpu, &r))
7593 			return r;
7594 
7595 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
7596 						    insn, insn_len);
7597 		if (r != EMULATION_OK)  {
7598 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7599 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7600 				kvm_queue_exception(vcpu, UD_VECTOR);
7601 				return 1;
7602 			}
7603 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7604 						  write_fault_to_spt,
7605 						  emulation_type))
7606 				return 1;
7607 
7608 			if (ctxt->have_exception &&
7609 			    !(emulation_type & EMULTYPE_SKIP)) {
7610 				/*
7611 				 * #UD should result in just EMULATION_FAILED, and trap-like
7612 				 * exception should not be encountered during decode.
7613 				 */
7614 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7615 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7616 				inject_emulated_exception(vcpu);
7617 				return 1;
7618 			}
7619 			return handle_emulation_failure(vcpu, emulation_type);
7620 		}
7621 	}
7622 
7623 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7624 	    !is_vmware_backdoor_opcode(ctxt)) {
7625 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7626 		return 1;
7627 	}
7628 
7629 	/*
7630 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7631 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7632 	 * updating interruptibility state and injecting single-step #DBs.
7633 	 */
7634 	if (emulation_type & EMULTYPE_SKIP) {
7635 		kvm_rip_write(vcpu, ctxt->_eip);
7636 		if (ctxt->eflags & X86_EFLAGS_RF)
7637 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7638 		return 1;
7639 	}
7640 
7641 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7642 		return 1;
7643 
7644 	/* this is needed for vmware backdoor interface to work since it
7645 	   changes registers values  during IO operation */
7646 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7647 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7648 		emulator_invalidate_register_cache(ctxt);
7649 	}
7650 
7651 restart:
7652 	if (emulation_type & EMULTYPE_PF) {
7653 		/* Save the faulting GPA (cr2) in the address field */
7654 		ctxt->exception.address = cr2_or_gpa;
7655 
7656 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7657 		if (vcpu->arch.mmu->direct_map) {
7658 			ctxt->gpa_available = true;
7659 			ctxt->gpa_val = cr2_or_gpa;
7660 		}
7661 	} else {
7662 		/* Sanitize the address out of an abundance of paranoia. */
7663 		ctxt->exception.address = 0;
7664 	}
7665 
7666 	r = x86_emulate_insn(ctxt);
7667 
7668 	if (r == EMULATION_INTERCEPTED)
7669 		return 1;
7670 
7671 	if (r == EMULATION_FAILED) {
7672 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7673 					emulation_type))
7674 			return 1;
7675 
7676 		return handle_emulation_failure(vcpu, emulation_type);
7677 	}
7678 
7679 	if (ctxt->have_exception) {
7680 		r = 1;
7681 		if (inject_emulated_exception(vcpu))
7682 			return r;
7683 	} else if (vcpu->arch.pio.count) {
7684 		if (!vcpu->arch.pio.in) {
7685 			/* FIXME: return into emulator if single-stepping.  */
7686 			vcpu->arch.pio.count = 0;
7687 		} else {
7688 			writeback = false;
7689 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7690 		}
7691 		r = 0;
7692 	} else if (vcpu->mmio_needed) {
7693 		++vcpu->stat.mmio_exits;
7694 
7695 		if (!vcpu->mmio_is_write)
7696 			writeback = false;
7697 		r = 0;
7698 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7699 	} else if (r == EMULATION_RESTART)
7700 		goto restart;
7701 	else
7702 		r = 1;
7703 
7704 	if (writeback) {
7705 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7706 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7707 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7708 
7709 		/*
7710 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
7711 		 * only supports code breakpoints and general detect #DB, both
7712 		 * of which are fault-like.
7713 		 */
7714 		if (!ctxt->have_exception ||
7715 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7716 			kvm_rip_write(vcpu, ctxt->eip);
7717 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7718 				r = kvm_vcpu_do_singlestep(vcpu);
7719 			if (kvm_x86_ops.update_emulated_instruction)
7720 				kvm_x86_ops.update_emulated_instruction(vcpu);
7721 			__kvm_set_rflags(vcpu, ctxt->eflags);
7722 		}
7723 
7724 		/*
7725 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7726 		 * do nothing, and it will be requested again as soon as
7727 		 * the shadow expires.  But we still need to check here,
7728 		 * because POPF has no interrupt shadow.
7729 		 */
7730 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7731 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7732 	} else
7733 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7734 
7735 	return r;
7736 }
7737 
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)7738 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7739 {
7740 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7741 }
7742 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7743 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)7744 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7745 					void *insn, int insn_len)
7746 {
7747 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7748 }
7749 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7750 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)7751 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7752 {
7753 	vcpu->arch.pio.count = 0;
7754 	return 1;
7755 }
7756 
complete_fast_pio_out(struct kvm_vcpu * vcpu)7757 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7758 {
7759 	vcpu->arch.pio.count = 0;
7760 
7761 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7762 		return 1;
7763 
7764 	return kvm_skip_emulated_instruction(vcpu);
7765 }
7766 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)7767 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7768 			    unsigned short port)
7769 {
7770 	unsigned long val = kvm_rax_read(vcpu);
7771 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7772 
7773 	if (ret)
7774 		return ret;
7775 
7776 	/*
7777 	 * Workaround userspace that relies on old KVM behavior of %rip being
7778 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7779 	 */
7780 	if (port == 0x7e &&
7781 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7782 		vcpu->arch.complete_userspace_io =
7783 			complete_fast_pio_out_port_0x7e;
7784 		kvm_skip_emulated_instruction(vcpu);
7785 	} else {
7786 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7787 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7788 	}
7789 	return 0;
7790 }
7791 
complete_fast_pio_in(struct kvm_vcpu * vcpu)7792 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7793 {
7794 	unsigned long val;
7795 
7796 	/* We should only ever be called with arch.pio.count equal to 1 */
7797 	BUG_ON(vcpu->arch.pio.count != 1);
7798 
7799 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7800 		vcpu->arch.pio.count = 0;
7801 		return 1;
7802 	}
7803 
7804 	/* For size less than 4 we merge, else we zero extend */
7805 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7806 
7807 	/*
7808 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7809 	 * the copy and tracing
7810 	 */
7811 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7812 	kvm_rax_write(vcpu, val);
7813 
7814 	return kvm_skip_emulated_instruction(vcpu);
7815 }
7816 
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)7817 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7818 			   unsigned short port)
7819 {
7820 	unsigned long val;
7821 	int ret;
7822 
7823 	/* For size less than 4 we merge, else we zero extend */
7824 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7825 
7826 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7827 	if (ret) {
7828 		kvm_rax_write(vcpu, val);
7829 		return ret;
7830 	}
7831 
7832 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7833 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7834 
7835 	return 0;
7836 }
7837 
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)7838 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7839 {
7840 	int ret;
7841 
7842 	if (in)
7843 		ret = kvm_fast_pio_in(vcpu, size, port);
7844 	else
7845 		ret = kvm_fast_pio_out(vcpu, size, port);
7846 	return ret && kvm_skip_emulated_instruction(vcpu);
7847 }
7848 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7849 
kvmclock_cpu_down_prep(unsigned int cpu)7850 static int kvmclock_cpu_down_prep(unsigned int cpu)
7851 {
7852 	__this_cpu_write(cpu_tsc_khz, 0);
7853 	return 0;
7854 }
7855 
tsc_khz_changed(void * data)7856 static void tsc_khz_changed(void *data)
7857 {
7858 	struct cpufreq_freqs *freq = data;
7859 	unsigned long khz = 0;
7860 
7861 	if (data)
7862 		khz = freq->new;
7863 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7864 		khz = cpufreq_quick_get(raw_smp_processor_id());
7865 	if (!khz)
7866 		khz = tsc_khz;
7867 	__this_cpu_write(cpu_tsc_khz, khz);
7868 }
7869 
7870 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)7871 static void kvm_hyperv_tsc_notifier(void)
7872 {
7873 	struct kvm *kvm;
7874 	struct kvm_vcpu *vcpu;
7875 	int cpu;
7876 
7877 	mutex_lock(&kvm_lock);
7878 	list_for_each_entry(kvm, &vm_list, vm_list)
7879 		kvm_make_mclock_inprogress_request(kvm);
7880 
7881 	hyperv_stop_tsc_emulation();
7882 
7883 	/* TSC frequency always matches when on Hyper-V */
7884 	for_each_present_cpu(cpu)
7885 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7886 	kvm_max_guest_tsc_khz = tsc_khz;
7887 
7888 	list_for_each_entry(kvm, &vm_list, vm_list) {
7889 		struct kvm_arch *ka = &kvm->arch;
7890 
7891 		spin_lock(&ka->pvclock_gtod_sync_lock);
7892 
7893 		pvclock_update_vm_gtod_copy(kvm);
7894 
7895 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7896 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7897 
7898 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7899 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7900 
7901 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7902 	}
7903 	mutex_unlock(&kvm_lock);
7904 }
7905 #endif
7906 
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)7907 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7908 {
7909 	struct kvm *kvm;
7910 	struct kvm_vcpu *vcpu;
7911 	int i, send_ipi = 0;
7912 
7913 	/*
7914 	 * We allow guests to temporarily run on slowing clocks,
7915 	 * provided we notify them after, or to run on accelerating
7916 	 * clocks, provided we notify them before.  Thus time never
7917 	 * goes backwards.
7918 	 *
7919 	 * However, we have a problem.  We can't atomically update
7920 	 * the frequency of a given CPU from this function; it is
7921 	 * merely a notifier, which can be called from any CPU.
7922 	 * Changing the TSC frequency at arbitrary points in time
7923 	 * requires a recomputation of local variables related to
7924 	 * the TSC for each VCPU.  We must flag these local variables
7925 	 * to be updated and be sure the update takes place with the
7926 	 * new frequency before any guests proceed.
7927 	 *
7928 	 * Unfortunately, the combination of hotplug CPU and frequency
7929 	 * change creates an intractable locking scenario; the order
7930 	 * of when these callouts happen is undefined with respect to
7931 	 * CPU hotplug, and they can race with each other.  As such,
7932 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7933 	 * undefined; you can actually have a CPU frequency change take
7934 	 * place in between the computation of X and the setting of the
7935 	 * variable.  To protect against this problem, all updates of
7936 	 * the per_cpu tsc_khz variable are done in an interrupt
7937 	 * protected IPI, and all callers wishing to update the value
7938 	 * must wait for a synchronous IPI to complete (which is trivial
7939 	 * if the caller is on the CPU already).  This establishes the
7940 	 * necessary total order on variable updates.
7941 	 *
7942 	 * Note that because a guest time update may take place
7943 	 * anytime after the setting of the VCPU's request bit, the
7944 	 * correct TSC value must be set before the request.  However,
7945 	 * to ensure the update actually makes it to any guest which
7946 	 * starts running in hardware virtualization between the set
7947 	 * and the acquisition of the spinlock, we must also ping the
7948 	 * CPU after setting the request bit.
7949 	 *
7950 	 */
7951 
7952 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7953 
7954 	mutex_lock(&kvm_lock);
7955 	list_for_each_entry(kvm, &vm_list, vm_list) {
7956 		kvm_for_each_vcpu(i, vcpu, kvm) {
7957 			if (vcpu->cpu != cpu)
7958 				continue;
7959 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7960 			if (vcpu->cpu != raw_smp_processor_id())
7961 				send_ipi = 1;
7962 		}
7963 	}
7964 	mutex_unlock(&kvm_lock);
7965 
7966 	if (freq->old < freq->new && send_ipi) {
7967 		/*
7968 		 * We upscale the frequency.  Must make the guest
7969 		 * doesn't see old kvmclock values while running with
7970 		 * the new frequency, otherwise we risk the guest sees
7971 		 * time go backwards.
7972 		 *
7973 		 * In case we update the frequency for another cpu
7974 		 * (which might be in guest context) send an interrupt
7975 		 * to kick the cpu out of guest context.  Next time
7976 		 * guest context is entered kvmclock will be updated,
7977 		 * so the guest will not see stale values.
7978 		 */
7979 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7980 	}
7981 }
7982 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)7983 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7984 				     void *data)
7985 {
7986 	struct cpufreq_freqs *freq = data;
7987 	int cpu;
7988 
7989 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7990 		return 0;
7991 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7992 		return 0;
7993 
7994 	for_each_cpu(cpu, freq->policy->cpus)
7995 		__kvmclock_cpufreq_notifier(freq, cpu);
7996 
7997 	return 0;
7998 }
7999 
8000 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8001 	.notifier_call  = kvmclock_cpufreq_notifier
8002 };
8003 
kvmclock_cpu_online(unsigned int cpu)8004 static int kvmclock_cpu_online(unsigned int cpu)
8005 {
8006 	tsc_khz_changed(NULL);
8007 	return 0;
8008 }
8009 
kvm_timer_init(void)8010 static void kvm_timer_init(void)
8011 {
8012 	max_tsc_khz = tsc_khz;
8013 
8014 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8015 #ifdef CONFIG_CPU_FREQ
8016 		struct cpufreq_policy *policy;
8017 		int cpu;
8018 
8019 		cpu = get_cpu();
8020 		policy = cpufreq_cpu_get(cpu);
8021 		if (policy) {
8022 			if (policy->cpuinfo.max_freq)
8023 				max_tsc_khz = policy->cpuinfo.max_freq;
8024 			cpufreq_cpu_put(policy);
8025 		}
8026 		put_cpu();
8027 #endif
8028 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8029 					  CPUFREQ_TRANSITION_NOTIFIER);
8030 	}
8031 
8032 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8033 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8034 }
8035 
8036 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8037 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8038 
kvm_is_in_guest(void)8039 int kvm_is_in_guest(void)
8040 {
8041 	return __this_cpu_read(current_vcpu) != NULL;
8042 }
8043 
kvm_is_user_mode(void)8044 static int kvm_is_user_mode(void)
8045 {
8046 	int user_mode = 3;
8047 
8048 	if (__this_cpu_read(current_vcpu))
8049 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
8050 
8051 	return user_mode != 0;
8052 }
8053 
kvm_get_guest_ip(void)8054 static unsigned long kvm_get_guest_ip(void)
8055 {
8056 	unsigned long ip = 0;
8057 
8058 	if (__this_cpu_read(current_vcpu))
8059 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8060 
8061 	return ip;
8062 }
8063 
kvm_handle_intel_pt_intr(void)8064 static void kvm_handle_intel_pt_intr(void)
8065 {
8066 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8067 
8068 	kvm_make_request(KVM_REQ_PMI, vcpu);
8069 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8070 			(unsigned long *)&vcpu->arch.pmu.global_status);
8071 }
8072 
8073 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8074 	.is_in_guest		= kvm_is_in_guest,
8075 	.is_user_mode		= kvm_is_user_mode,
8076 	.get_guest_ip		= kvm_get_guest_ip,
8077 	.handle_intel_pt_intr	= NULL,
8078 };
8079 
8080 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)8081 static void pvclock_gtod_update_fn(struct work_struct *work)
8082 {
8083 	struct kvm *kvm;
8084 
8085 	struct kvm_vcpu *vcpu;
8086 	int i;
8087 
8088 	mutex_lock(&kvm_lock);
8089 	list_for_each_entry(kvm, &vm_list, vm_list)
8090 		kvm_for_each_vcpu(i, vcpu, kvm)
8091 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8092 	atomic_set(&kvm_guest_has_master_clock, 0);
8093 	mutex_unlock(&kvm_lock);
8094 }
8095 
8096 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8097 
8098 /*
8099  * Indirection to move queue_work() out of the tk_core.seq write held
8100  * region to prevent possible deadlocks against time accessors which
8101  * are invoked with work related locks held.
8102  */
pvclock_irq_work_fn(struct irq_work * w)8103 static void pvclock_irq_work_fn(struct irq_work *w)
8104 {
8105 	queue_work(system_long_wq, &pvclock_gtod_work);
8106 }
8107 
8108 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8109 
8110 /*
8111  * Notification about pvclock gtod data update.
8112  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)8113 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8114 			       void *priv)
8115 {
8116 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8117 	struct timekeeper *tk = priv;
8118 
8119 	update_pvclock_gtod(tk);
8120 
8121 	/*
8122 	 * Disable master clock if host does not trust, or does not use,
8123 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8124 	 * this is invoked with tk_core.seq write held.
8125 	 */
8126 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8127 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8128 		irq_work_queue(&pvclock_irq_work);
8129 	return 0;
8130 }
8131 
8132 static struct notifier_block pvclock_gtod_notifier = {
8133 	.notifier_call = pvclock_gtod_notify,
8134 };
8135 #endif
8136 
kvm_arch_init(void * opaque)8137 int kvm_arch_init(void *opaque)
8138 {
8139 	struct kvm_x86_init_ops *ops = opaque;
8140 	int r;
8141 
8142 	if (kvm_x86_ops.hardware_enable) {
8143 		printk(KERN_ERR "kvm: already loaded the other module\n");
8144 		r = -EEXIST;
8145 		goto out;
8146 	}
8147 
8148 	if (!ops->cpu_has_kvm_support()) {
8149 		pr_err_ratelimited("kvm: no hardware support\n");
8150 		r = -EOPNOTSUPP;
8151 		goto out;
8152 	}
8153 	if (ops->disabled_by_bios()) {
8154 		pr_err_ratelimited("kvm: disabled by bios\n");
8155 		r = -EOPNOTSUPP;
8156 		goto out;
8157 	}
8158 
8159 	/*
8160 	 * KVM explicitly assumes that the guest has an FPU and
8161 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8162 	 * vCPU's FPU state as a fxregs_state struct.
8163 	 */
8164 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8165 		printk(KERN_ERR "kvm: inadequate fpu\n");
8166 		r = -EOPNOTSUPP;
8167 		goto out;
8168 	}
8169 
8170 	r = -ENOMEM;
8171 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8172 					  __alignof__(struct fpu), SLAB_ACCOUNT,
8173 					  NULL);
8174 	if (!x86_fpu_cache) {
8175 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8176 		goto out;
8177 	}
8178 
8179 	x86_emulator_cache = kvm_alloc_emulator_cache();
8180 	if (!x86_emulator_cache) {
8181 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8182 		goto out_free_x86_fpu_cache;
8183 	}
8184 
8185 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8186 	if (!user_return_msrs) {
8187 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8188 		goto out_free_x86_emulator_cache;
8189 	}
8190 
8191 	r = kvm_mmu_vendor_module_init();
8192 	if (r)
8193 		goto out_free_percpu;
8194 
8195 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
8196 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
8197 			PT_PRESENT_MASK, 0, sme_me_mask);
8198 	kvm_timer_init();
8199 
8200 	if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
8201 		kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
8202 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
8203 
8204 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8205 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8206 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8207 	}
8208 
8209 	kvm_lapic_init();
8210 	if (pi_inject_timer == -1)
8211 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8212 #ifdef CONFIG_X86_64
8213 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8214 
8215 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8216 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8217 #endif
8218 
8219 	return 0;
8220 
8221 out_free_percpu:
8222 	free_percpu(user_return_msrs);
8223 out_free_x86_emulator_cache:
8224 	kmem_cache_destroy(x86_emulator_cache);
8225 out_free_x86_fpu_cache:
8226 	kmem_cache_destroy(x86_fpu_cache);
8227 out:
8228 	return r;
8229 }
8230 
kvm_arch_exit(void)8231 void kvm_arch_exit(void)
8232 {
8233 #ifdef CONFIG_X86_64
8234 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8235 		clear_hv_tscchange_cb();
8236 #endif
8237 	kvm_lapic_exit();
8238 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8239 	kvm_guest_cbs.handle_intel_pt_intr = NULL;
8240 
8241 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8242 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8243 					    CPUFREQ_TRANSITION_NOTIFIER);
8244 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8245 #ifdef CONFIG_X86_64
8246 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8247 	irq_work_sync(&pvclock_irq_work);
8248 	cancel_work_sync(&pvclock_gtod_work);
8249 #endif
8250 	kvm_x86_ops.hardware_enable = NULL;
8251 	kvm_mmu_vendor_module_exit();
8252 	free_percpu(user_return_msrs);
8253 	kmem_cache_destroy(x86_emulator_cache);
8254 	kmem_cache_destroy(x86_fpu_cache);
8255 }
8256 
kvm_vcpu_halt(struct kvm_vcpu * vcpu)8257 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8258 {
8259 	++vcpu->stat.halt_exits;
8260 	if (lapic_in_kernel(vcpu)) {
8261 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
8262 		return 1;
8263 	} else {
8264 		vcpu->run->exit_reason = KVM_EXIT_HLT;
8265 		return 0;
8266 	}
8267 }
8268 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8269 
kvm_emulate_halt(struct kvm_vcpu * vcpu)8270 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8271 {
8272 	int ret = kvm_skip_emulated_instruction(vcpu);
8273 	/*
8274 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8275 	 * KVM_EXIT_DEBUG here.
8276 	 */
8277 	return kvm_vcpu_halt(vcpu) && ret;
8278 }
8279 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8280 
8281 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)8282 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8283 			        unsigned long clock_type)
8284 {
8285 	struct kvm_clock_pairing clock_pairing;
8286 	struct timespec64 ts;
8287 	u64 cycle;
8288 	int ret;
8289 
8290 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8291 		return -KVM_EOPNOTSUPP;
8292 
8293 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
8294 		return -KVM_EOPNOTSUPP;
8295 
8296 	clock_pairing.sec = ts.tv_sec;
8297 	clock_pairing.nsec = ts.tv_nsec;
8298 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8299 	clock_pairing.flags = 0;
8300 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8301 
8302 	ret = 0;
8303 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8304 			    sizeof(struct kvm_clock_pairing)))
8305 		ret = -KVM_EFAULT;
8306 
8307 	return ret;
8308 }
8309 #endif
8310 
8311 /*
8312  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8313  *
8314  * @apicid - apicid of vcpu to be kicked.
8315  */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)8316 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8317 {
8318 	/*
8319 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
8320 	 * common code, e.g. for tracing. Defer initialization to the compiler.
8321 	 */
8322 	struct kvm_lapic_irq lapic_irq = {
8323 		.delivery_mode = APIC_DM_REMRD,
8324 		.dest_mode = APIC_DEST_PHYSICAL,
8325 		.shorthand = APIC_DEST_NOSHORT,
8326 		.dest_id = apicid,
8327 	};
8328 
8329 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8330 }
8331 
kvm_apicv_activated(struct kvm * kvm)8332 bool kvm_apicv_activated(struct kvm *kvm)
8333 {
8334 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8335 }
8336 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8337 
kvm_apicv_init(struct kvm * kvm,bool enable)8338 void kvm_apicv_init(struct kvm *kvm, bool enable)
8339 {
8340 	if (enable)
8341 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8342 			  &kvm->arch.apicv_inhibit_reasons);
8343 	else
8344 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8345 			&kvm->arch.apicv_inhibit_reasons);
8346 }
8347 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8348 
kvm_sched_yield(struct kvm * kvm,unsigned long dest_id)8349 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8350 {
8351 	struct kvm_vcpu *target = NULL;
8352 	struct kvm_apic_map *map;
8353 
8354 	rcu_read_lock();
8355 	map = rcu_dereference(kvm->arch.apic_map);
8356 
8357 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8358 		target = map->phys_map[dest_id]->vcpu;
8359 
8360 	rcu_read_unlock();
8361 
8362 	if (target && READ_ONCE(target->ready))
8363 		kvm_vcpu_yield_to(target);
8364 }
8365 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)8366 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8367 {
8368 	unsigned long nr, a0, a1, a2, a3, ret;
8369 	int op_64_bit;
8370 
8371 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
8372 		return kvm_hv_hypercall(vcpu);
8373 
8374 	nr = kvm_rax_read(vcpu);
8375 	a0 = kvm_rbx_read(vcpu);
8376 	a1 = kvm_rcx_read(vcpu);
8377 	a2 = kvm_rdx_read(vcpu);
8378 	a3 = kvm_rsi_read(vcpu);
8379 
8380 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8381 
8382 	op_64_bit = is_64_bit_mode(vcpu);
8383 	if (!op_64_bit) {
8384 		nr &= 0xFFFFFFFF;
8385 		a0 &= 0xFFFFFFFF;
8386 		a1 &= 0xFFFFFFFF;
8387 		a2 &= 0xFFFFFFFF;
8388 		a3 &= 0xFFFFFFFF;
8389 	}
8390 
8391 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8392 		ret = -KVM_EPERM;
8393 		goto out;
8394 	}
8395 
8396 	ret = -KVM_ENOSYS;
8397 
8398 	switch (nr) {
8399 	case KVM_HC_VAPIC_POLL_IRQ:
8400 		ret = 0;
8401 		break;
8402 	case KVM_HC_KICK_CPU:
8403 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8404 			break;
8405 
8406 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8407 		kvm_sched_yield(vcpu->kvm, a1);
8408 		ret = 0;
8409 		break;
8410 #ifdef CONFIG_X86_64
8411 	case KVM_HC_CLOCK_PAIRING:
8412 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8413 		break;
8414 #endif
8415 	case KVM_HC_SEND_IPI:
8416 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8417 			break;
8418 
8419 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8420 		break;
8421 	case KVM_HC_SCHED_YIELD:
8422 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8423 			break;
8424 
8425 		kvm_sched_yield(vcpu->kvm, a0);
8426 		ret = 0;
8427 		break;
8428 	default:
8429 		ret = -KVM_ENOSYS;
8430 		break;
8431 	}
8432 out:
8433 	if (!op_64_bit)
8434 		ret = (u32)ret;
8435 	kvm_rax_write(vcpu, ret);
8436 
8437 	++vcpu->stat.hypercalls;
8438 	return kvm_skip_emulated_instruction(vcpu);
8439 }
8440 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8441 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)8442 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8443 {
8444 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8445 	char instruction[3];
8446 	unsigned long rip = kvm_rip_read(vcpu);
8447 
8448 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
8449 
8450 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8451 		&ctxt->exception);
8452 }
8453 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)8454 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8455 {
8456 	return vcpu->run->request_interrupt_window &&
8457 		likely(!pic_in_kernel(vcpu->kvm));
8458 }
8459 
post_kvm_run_save(struct kvm_vcpu * vcpu)8460 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8461 {
8462 	struct kvm_run *kvm_run = vcpu->run;
8463 
8464 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8465 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8466 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8467 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8468 	kvm_run->ready_for_interrupt_injection =
8469 		pic_in_kernel(vcpu->kvm) ||
8470 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8471 }
8472 
update_cr8_intercept(struct kvm_vcpu * vcpu)8473 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8474 {
8475 	int max_irr, tpr;
8476 
8477 	if (!kvm_x86_ops.update_cr8_intercept)
8478 		return;
8479 
8480 	if (!lapic_in_kernel(vcpu))
8481 		return;
8482 
8483 	if (vcpu->arch.apicv_active)
8484 		return;
8485 
8486 	if (!vcpu->arch.apic->vapic_addr)
8487 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8488 	else
8489 		max_irr = -1;
8490 
8491 	if (max_irr != -1)
8492 		max_irr >>= 4;
8493 
8494 	tpr = kvm_lapic_get_cr8(vcpu);
8495 
8496 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8497 }
8498 
kvm_inject_exception(struct kvm_vcpu * vcpu)8499 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8500 {
8501 	trace_kvm_inj_exception(vcpu->arch.exception.nr,
8502 				vcpu->arch.exception.has_error_code,
8503 				vcpu->arch.exception.error_code,
8504 				vcpu->arch.exception.injected);
8505 
8506 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8507 		vcpu->arch.exception.error_code = false;
8508 	kvm_x86_ops.queue_exception(vcpu);
8509 }
8510 
inject_pending_event(struct kvm_vcpu * vcpu,bool * req_immediate_exit)8511 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8512 {
8513 	int r;
8514 	bool can_inject = true;
8515 
8516 	/* try to reinject previous events if any */
8517 
8518 	if (vcpu->arch.exception.injected) {
8519 		kvm_inject_exception(vcpu);
8520 		can_inject = false;
8521 	}
8522 	/*
8523 	 * Do not inject an NMI or interrupt if there is a pending
8524 	 * exception.  Exceptions and interrupts are recognized at
8525 	 * instruction boundaries, i.e. the start of an instruction.
8526 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8527 	 * NMIs and interrupts, i.e. traps are recognized before an
8528 	 * NMI/interrupt that's pending on the same instruction.
8529 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8530 	 * priority, but are only generated (pended) during instruction
8531 	 * execution, i.e. a pending fault-like exception means the
8532 	 * fault occurred on the *previous* instruction and must be
8533 	 * serviced prior to recognizing any new events in order to
8534 	 * fully complete the previous instruction.
8535 	 */
8536 	else if (!vcpu->arch.exception.pending) {
8537 		if (vcpu->arch.nmi_injected) {
8538 			kvm_x86_ops.set_nmi(vcpu);
8539 			can_inject = false;
8540 		} else if (vcpu->arch.interrupt.injected) {
8541 			kvm_x86_ops.set_irq(vcpu);
8542 			can_inject = false;
8543 		}
8544 	}
8545 
8546 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8547 		     vcpu->arch.exception.pending);
8548 
8549 	/*
8550 	 * Call check_nested_events() even if we reinjected a previous event
8551 	 * in order for caller to determine if it should require immediate-exit
8552 	 * from L2 to L1 due to pending L1 events which require exit
8553 	 * from L2 to L1.
8554 	 */
8555 	if (is_guest_mode(vcpu)) {
8556 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
8557 		if (r < 0)
8558 			goto busy;
8559 	}
8560 
8561 	/* try to inject new event if pending */
8562 	if (vcpu->arch.exception.pending) {
8563 		/*
8564 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
8565 		 * value pushed on the stack.  Trap-like exception and all #DBs
8566 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
8567 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
8568 		 *
8569 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
8570 		 * describe the behavior of General Detect #DBs, which are
8571 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
8572 		 */
8573 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8574 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8575 					     X86_EFLAGS_RF);
8576 
8577 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8578 			kvm_deliver_exception_payload(vcpu);
8579 			if (vcpu->arch.dr7 & DR7_GD) {
8580 				vcpu->arch.dr7 &= ~DR7_GD;
8581 				kvm_update_dr7(vcpu);
8582 			}
8583 		}
8584 
8585 		kvm_inject_exception(vcpu);
8586 
8587 		vcpu->arch.exception.pending = false;
8588 		vcpu->arch.exception.injected = true;
8589 
8590 		can_inject = false;
8591 	}
8592 
8593 	/*
8594 	 * Finally, inject interrupt events.  If an event cannot be injected
8595 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8596 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8597 	 * and can architecturally be injected, but we cannot do it right now:
8598 	 * an interrupt could have arrived just now and we have to inject it
8599 	 * as a vmexit, or there could already an event in the queue, which is
8600 	 * indicated by can_inject.  In that case we request an immediate exit
8601 	 * in order to make progress and get back here for another iteration.
8602 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8603 	 */
8604 	if (vcpu->arch.smi_pending) {
8605 		r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8606 		if (r < 0)
8607 			goto busy;
8608 		if (r) {
8609 			vcpu->arch.smi_pending = false;
8610 			++vcpu->arch.smi_count;
8611 			enter_smm(vcpu);
8612 			can_inject = false;
8613 		} else
8614 			kvm_x86_ops.enable_smi_window(vcpu);
8615 	}
8616 
8617 	if (vcpu->arch.nmi_pending) {
8618 		r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8619 		if (r < 0)
8620 			goto busy;
8621 		if (r) {
8622 			--vcpu->arch.nmi_pending;
8623 			vcpu->arch.nmi_injected = true;
8624 			kvm_x86_ops.set_nmi(vcpu);
8625 			can_inject = false;
8626 			WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8627 		}
8628 		if (vcpu->arch.nmi_pending)
8629 			kvm_x86_ops.enable_nmi_window(vcpu);
8630 	}
8631 
8632 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8633 		r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8634 		if (r < 0)
8635 			goto busy;
8636 		if (r) {
8637 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8638 			kvm_x86_ops.set_irq(vcpu);
8639 			WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8640 		}
8641 		if (kvm_cpu_has_injectable_intr(vcpu))
8642 			kvm_x86_ops.enable_irq_window(vcpu);
8643 	}
8644 
8645 	if (is_guest_mode(vcpu) &&
8646 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8647 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8648 		*req_immediate_exit = true;
8649 
8650 	WARN_ON(vcpu->arch.exception.pending);
8651 	return;
8652 
8653 busy:
8654 	*req_immediate_exit = true;
8655 	return;
8656 }
8657 
process_nmi(struct kvm_vcpu * vcpu)8658 static void process_nmi(struct kvm_vcpu *vcpu)
8659 {
8660 	unsigned limit = 2;
8661 
8662 	/*
8663 	 * x86 is limited to one NMI running, and one NMI pending after it.
8664 	 * If an NMI is already in progress, limit further NMIs to just one.
8665 	 * Otherwise, allow two (and we'll inject the first one immediately).
8666 	 */
8667 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8668 		limit = 1;
8669 
8670 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8671 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8672 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8673 }
8674 
enter_smm_get_segment_flags(struct kvm_segment * seg)8675 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8676 {
8677 	u32 flags = 0;
8678 	flags |= seg->g       << 23;
8679 	flags |= seg->db      << 22;
8680 	flags |= seg->l       << 21;
8681 	flags |= seg->avl     << 20;
8682 	flags |= seg->present << 15;
8683 	flags |= seg->dpl     << 13;
8684 	flags |= seg->s       << 12;
8685 	flags |= seg->type    << 8;
8686 	return flags;
8687 }
8688 
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)8689 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8690 {
8691 	struct kvm_segment seg;
8692 	int offset;
8693 
8694 	kvm_get_segment(vcpu, &seg, n);
8695 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8696 
8697 	if (n < 3)
8698 		offset = 0x7f84 + n * 12;
8699 	else
8700 		offset = 0x7f2c + (n - 3) * 12;
8701 
8702 	put_smstate(u32, buf, offset + 8, seg.base);
8703 	put_smstate(u32, buf, offset + 4, seg.limit);
8704 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8705 }
8706 
8707 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)8708 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8709 {
8710 	struct kvm_segment seg;
8711 	int offset;
8712 	u16 flags;
8713 
8714 	kvm_get_segment(vcpu, &seg, n);
8715 	offset = 0x7e00 + n * 16;
8716 
8717 	flags = enter_smm_get_segment_flags(&seg) >> 8;
8718 	put_smstate(u16, buf, offset, seg.selector);
8719 	put_smstate(u16, buf, offset + 2, flags);
8720 	put_smstate(u32, buf, offset + 4, seg.limit);
8721 	put_smstate(u64, buf, offset + 8, seg.base);
8722 }
8723 #endif
8724 
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)8725 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8726 {
8727 	struct desc_ptr dt;
8728 	struct kvm_segment seg;
8729 	unsigned long val;
8730 	int i;
8731 
8732 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8733 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8734 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8735 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8736 
8737 	for (i = 0; i < 8; i++)
8738 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8739 
8740 	kvm_get_dr(vcpu, 6, &val);
8741 	put_smstate(u32, buf, 0x7fcc, (u32)val);
8742 	kvm_get_dr(vcpu, 7, &val);
8743 	put_smstate(u32, buf, 0x7fc8, (u32)val);
8744 
8745 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8746 	put_smstate(u32, buf, 0x7fc4, seg.selector);
8747 	put_smstate(u32, buf, 0x7f64, seg.base);
8748 	put_smstate(u32, buf, 0x7f60, seg.limit);
8749 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8750 
8751 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8752 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8753 	put_smstate(u32, buf, 0x7f80, seg.base);
8754 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8755 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8756 
8757 	kvm_x86_ops.get_gdt(vcpu, &dt);
8758 	put_smstate(u32, buf, 0x7f74, dt.address);
8759 	put_smstate(u32, buf, 0x7f70, dt.size);
8760 
8761 	kvm_x86_ops.get_idt(vcpu, &dt);
8762 	put_smstate(u32, buf, 0x7f58, dt.address);
8763 	put_smstate(u32, buf, 0x7f54, dt.size);
8764 
8765 	for (i = 0; i < 6; i++)
8766 		enter_smm_save_seg_32(vcpu, buf, i);
8767 
8768 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8769 
8770 	/* revision id */
8771 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8772 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8773 }
8774 
8775 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)8776 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8777 {
8778 	struct desc_ptr dt;
8779 	struct kvm_segment seg;
8780 	unsigned long val;
8781 	int i;
8782 
8783 	for (i = 0; i < 16; i++)
8784 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8785 
8786 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8787 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8788 
8789 	kvm_get_dr(vcpu, 6, &val);
8790 	put_smstate(u64, buf, 0x7f68, val);
8791 	kvm_get_dr(vcpu, 7, &val);
8792 	put_smstate(u64, buf, 0x7f60, val);
8793 
8794 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8795 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8796 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8797 
8798 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8799 
8800 	/* revision id */
8801 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8802 
8803 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8804 
8805 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8806 	put_smstate(u16, buf, 0x7e90, seg.selector);
8807 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8808 	put_smstate(u32, buf, 0x7e94, seg.limit);
8809 	put_smstate(u64, buf, 0x7e98, seg.base);
8810 
8811 	kvm_x86_ops.get_idt(vcpu, &dt);
8812 	put_smstate(u32, buf, 0x7e84, dt.size);
8813 	put_smstate(u64, buf, 0x7e88, dt.address);
8814 
8815 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8816 	put_smstate(u16, buf, 0x7e70, seg.selector);
8817 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8818 	put_smstate(u32, buf, 0x7e74, seg.limit);
8819 	put_smstate(u64, buf, 0x7e78, seg.base);
8820 
8821 	kvm_x86_ops.get_gdt(vcpu, &dt);
8822 	put_smstate(u32, buf, 0x7e64, dt.size);
8823 	put_smstate(u64, buf, 0x7e68, dt.address);
8824 
8825 	for (i = 0; i < 6; i++)
8826 		enter_smm_save_seg_64(vcpu, buf, i);
8827 }
8828 #endif
8829 
enter_smm(struct kvm_vcpu * vcpu)8830 static void enter_smm(struct kvm_vcpu *vcpu)
8831 {
8832 	struct kvm_segment cs, ds;
8833 	struct desc_ptr dt;
8834 	char buf[512];
8835 	u32 cr0;
8836 
8837 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8838 	memset(buf, 0, 512);
8839 #ifdef CONFIG_X86_64
8840 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8841 		enter_smm_save_state_64(vcpu, buf);
8842 	else
8843 #endif
8844 		enter_smm_save_state_32(vcpu, buf);
8845 
8846 	/*
8847 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8848 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8849 	 * the SMM state-save area.
8850 	 */
8851 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
8852 
8853 	vcpu->arch.hflags |= HF_SMM_MASK;
8854 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8855 
8856 	if (kvm_x86_ops.get_nmi_mask(vcpu))
8857 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8858 	else
8859 		kvm_x86_ops.set_nmi_mask(vcpu, true);
8860 
8861 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8862 	kvm_rip_write(vcpu, 0x8000);
8863 
8864 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8865 	kvm_x86_ops.set_cr0(vcpu, cr0);
8866 	vcpu->arch.cr0 = cr0;
8867 
8868 	kvm_x86_ops.set_cr4(vcpu, 0);
8869 
8870 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8871 	dt.address = dt.size = 0;
8872 	kvm_x86_ops.set_idt(vcpu, &dt);
8873 
8874 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8875 
8876 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8877 	cs.base = vcpu->arch.smbase;
8878 
8879 	ds.selector = 0;
8880 	ds.base = 0;
8881 
8882 	cs.limit    = ds.limit = 0xffffffff;
8883 	cs.type     = ds.type = 0x3;
8884 	cs.dpl      = ds.dpl = 0;
8885 	cs.db       = ds.db = 0;
8886 	cs.s        = ds.s = 1;
8887 	cs.l        = ds.l = 0;
8888 	cs.g        = ds.g = 1;
8889 	cs.avl      = ds.avl = 0;
8890 	cs.present  = ds.present = 1;
8891 	cs.unusable = ds.unusable = 0;
8892 	cs.padding  = ds.padding = 0;
8893 
8894 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8895 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8896 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8897 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8898 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8899 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8900 
8901 #ifdef CONFIG_X86_64
8902 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8903 		kvm_x86_ops.set_efer(vcpu, 0);
8904 #endif
8905 
8906 	kvm_update_cpuid_runtime(vcpu);
8907 	kvm_mmu_reset_context(vcpu);
8908 }
8909 
process_smi(struct kvm_vcpu * vcpu)8910 static void process_smi(struct kvm_vcpu *vcpu)
8911 {
8912 	vcpu->arch.smi_pending = true;
8913 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8914 }
8915 
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)8916 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8917 				       unsigned long *vcpu_bitmap)
8918 {
8919 	cpumask_var_t cpus;
8920 
8921 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8922 
8923 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8924 				    NULL, vcpu_bitmap, cpus);
8925 
8926 	free_cpumask_var(cpus);
8927 }
8928 
kvm_make_scan_ioapic_request(struct kvm * kvm)8929 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8930 {
8931 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8932 }
8933 
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)8934 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8935 {
8936 	if (!lapic_in_kernel(vcpu))
8937 		return;
8938 
8939 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8940 	kvm_apic_update_apicv(vcpu);
8941 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8942 }
8943 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8944 
8945 /*
8946  * NOTE: Do not hold any lock prior to calling this.
8947  *
8948  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8949  * locked, because it calls __x86_set_memory_region() which does
8950  * synchronize_srcu(&kvm->srcu).
8951  */
kvm_request_apicv_update(struct kvm * kvm,bool activate,ulong bit)8952 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8953 {
8954 	struct kvm_vcpu *except;
8955 	unsigned long old, new, expected;
8956 
8957 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8958 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8959 		return;
8960 
8961 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8962 	do {
8963 		expected = new = old;
8964 		if (activate)
8965 			__clear_bit(bit, &new);
8966 		else
8967 			__set_bit(bit, &new);
8968 		if (new == old)
8969 			break;
8970 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8971 	} while (old != expected);
8972 
8973 	if (!!old == !!new)
8974 		return;
8975 
8976 	trace_kvm_apicv_update_request(activate, bit);
8977 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8978 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8979 
8980 	/*
8981 	 * Sending request to update APICV for all other vcpus,
8982 	 * while update the calling vcpu immediately instead of
8983 	 * waiting for another #VMEXIT to handle the request.
8984 	 */
8985 	except = kvm_get_running_vcpu();
8986 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8987 					 except);
8988 	if (except)
8989 		kvm_vcpu_update_apicv(except);
8990 }
8991 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8992 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)8993 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8994 {
8995 	if (!kvm_apic_present(vcpu))
8996 		return;
8997 
8998 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8999 
9000 	if (irqchip_split(vcpu->kvm))
9001 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9002 	else {
9003 		if (vcpu->arch.apicv_active)
9004 			kvm_x86_ops.sync_pir_to_irr(vcpu);
9005 		if (ioapic_in_kernel(vcpu->kvm))
9006 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9007 	}
9008 
9009 	if (is_guest_mode(vcpu))
9010 		vcpu->arch.load_eoi_exitmap_pending = true;
9011 	else
9012 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9013 }
9014 
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)9015 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9016 {
9017 	u64 eoi_exit_bitmap[4];
9018 
9019 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9020 		return;
9021 
9022 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
9023 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
9024 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
9025 }
9026 
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)9027 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9028 					    unsigned long start, unsigned long end)
9029 {
9030 	unsigned long apic_address;
9031 
9032 	/*
9033 	 * The physical address of apic access page is stored in the VMCS.
9034 	 * Update it when it becomes invalid.
9035 	 */
9036 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9037 	if (start <= apic_address && apic_address < end)
9038 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9039 }
9040 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)9041 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9042 {
9043 	if (kvm_x86_ops.guest_memory_reclaimed)
9044 		kvm_x86_ops.guest_memory_reclaimed(kvm);
9045 }
9046 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)9047 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9048 {
9049 	if (!lapic_in_kernel(vcpu))
9050 		return;
9051 
9052 	if (!kvm_x86_ops.set_apic_access_page_addr)
9053 		return;
9054 
9055 	kvm_x86_ops.set_apic_access_page_addr(vcpu);
9056 }
9057 
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)9058 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9059 {
9060 	smp_send_reschedule(vcpu->cpu);
9061 }
9062 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9063 
9064 /*
9065  * Returns 1 to let vcpu_run() continue the guest execution loop without
9066  * exiting to the userspace.  Otherwise, the value will be returned to the
9067  * userspace.
9068  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)9069 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9070 {
9071 	int r;
9072 	bool req_int_win =
9073 		dm_request_for_irq_injection(vcpu) &&
9074 		kvm_cpu_accept_dm_intr(vcpu);
9075 	fastpath_t exit_fastpath;
9076 
9077 	bool req_immediate_exit = false;
9078 
9079 	if (kvm_request_pending(vcpu)) {
9080 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9081 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9082 				r = 0;
9083 				goto out;
9084 			}
9085 		}
9086 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9087 			kvm_mmu_unload(vcpu);
9088 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9089 			__kvm_migrate_timers(vcpu);
9090 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9091 			kvm_gen_update_masterclock(vcpu->kvm);
9092 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9093 			kvm_gen_kvmclock_update(vcpu);
9094 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9095 			r = kvm_guest_time_update(vcpu);
9096 			if (unlikely(r))
9097 				goto out;
9098 		}
9099 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9100 			kvm_mmu_sync_roots(vcpu);
9101 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9102 			kvm_mmu_load_pgd(vcpu);
9103 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9104 			kvm_vcpu_flush_tlb_all(vcpu);
9105 
9106 			/* Flushing all ASIDs flushes the current ASID... */
9107 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9108 		}
9109 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9110 			kvm_vcpu_flush_tlb_current(vcpu);
9111 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9112 			kvm_vcpu_flush_tlb_guest(vcpu);
9113 
9114 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9115 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9116 			r = 0;
9117 			goto out;
9118 		}
9119 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9120 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9121 			vcpu->mmio_needed = 0;
9122 			r = 0;
9123 			goto out;
9124 		}
9125 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9126 			/* Page is swapped out. Do synthetic halt */
9127 			vcpu->arch.apf.halted = true;
9128 			r = 1;
9129 			goto out;
9130 		}
9131 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9132 			record_steal_time(vcpu);
9133 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9134 			process_smi(vcpu);
9135 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9136 			process_nmi(vcpu);
9137 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9138 			kvm_pmu_handle_event(vcpu);
9139 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9140 			kvm_pmu_deliver_pmi(vcpu);
9141 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9142 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9143 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9144 				     vcpu->arch.ioapic_handled_vectors)) {
9145 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9146 				vcpu->run->eoi.vector =
9147 						vcpu->arch.pending_ioapic_eoi;
9148 				r = 0;
9149 				goto out;
9150 			}
9151 		}
9152 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9153 			vcpu_scan_ioapic(vcpu);
9154 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9155 			vcpu_load_eoi_exitmap(vcpu);
9156 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9157 			kvm_vcpu_reload_apic_access_page(vcpu);
9158 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9159 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9160 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9161 			r = 0;
9162 			goto out;
9163 		}
9164 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9165 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9166 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9167 			r = 0;
9168 			goto out;
9169 		}
9170 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9171 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9172 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
9173 			r = 0;
9174 			goto out;
9175 		}
9176 
9177 		/*
9178 		 * KVM_REQ_HV_STIMER has to be processed after
9179 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9180 		 * depend on the guest clock being up-to-date
9181 		 */
9182 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9183 			kvm_hv_process_stimers(vcpu);
9184 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9185 			kvm_vcpu_update_apicv(vcpu);
9186 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9187 			kvm_check_async_pf_completion(vcpu);
9188 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9189 			kvm_x86_ops.msr_filter_changed(vcpu);
9190 	}
9191 
9192 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
9193 		++vcpu->stat.req_event;
9194 		kvm_apic_accept_events(vcpu);
9195 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9196 			r = 1;
9197 			goto out;
9198 		}
9199 
9200 		inject_pending_event(vcpu, &req_immediate_exit);
9201 		if (req_int_win)
9202 			kvm_x86_ops.enable_irq_window(vcpu);
9203 
9204 		if (kvm_lapic_enabled(vcpu)) {
9205 			update_cr8_intercept(vcpu);
9206 			kvm_lapic_sync_to_vapic(vcpu);
9207 		}
9208 	}
9209 
9210 	r = kvm_mmu_reload(vcpu);
9211 	if (unlikely(r)) {
9212 		goto cancel_injection;
9213 	}
9214 
9215 	preempt_disable();
9216 
9217 	kvm_x86_ops.prepare_guest_switch(vcpu);
9218 
9219 	/*
9220 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9221 	 * IPI are then delayed after guest entry, which ensures that they
9222 	 * result in virtual interrupt delivery.
9223 	 */
9224 	local_irq_disable();
9225 	vcpu->mode = IN_GUEST_MODE;
9226 
9227 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9228 
9229 	/*
9230 	 * 1) We should set ->mode before checking ->requests.  Please see
9231 	 * the comment in kvm_vcpu_exiting_guest_mode().
9232 	 *
9233 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9234 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9235 	 * (see vmx_deliver_posted_interrupt).
9236 	 *
9237 	 * 3) This also orders the write to mode from any reads to the page
9238 	 * tables done while the VCPU is running.  Please see the comment
9239 	 * in kvm_flush_remote_tlbs.
9240 	 */
9241 	smp_mb__after_srcu_read_unlock();
9242 
9243 	/*
9244 	 * This handles the case where a posted interrupt was
9245 	 * notified with kvm_vcpu_kick.
9246 	 */
9247 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9248 		kvm_x86_ops.sync_pir_to_irr(vcpu);
9249 
9250 	if (kvm_vcpu_exit_request(vcpu)) {
9251 		vcpu->mode = OUTSIDE_GUEST_MODE;
9252 		smp_wmb();
9253 		local_irq_enable();
9254 		preempt_enable();
9255 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9256 		r = 1;
9257 		goto cancel_injection;
9258 	}
9259 
9260 	if (req_immediate_exit) {
9261 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9262 		kvm_x86_ops.request_immediate_exit(vcpu);
9263 	}
9264 
9265 	trace_kvm_entry(vcpu);
9266 
9267 	fpregs_assert_state_consistent();
9268 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9269 		switch_fpu_return();
9270 
9271 	if (unlikely(vcpu->arch.switch_db_regs)) {
9272 		set_debugreg(0, 7);
9273 		set_debugreg(vcpu->arch.eff_db[0], 0);
9274 		set_debugreg(vcpu->arch.eff_db[1], 1);
9275 		set_debugreg(vcpu->arch.eff_db[2], 2);
9276 		set_debugreg(vcpu->arch.eff_db[3], 3);
9277 		set_debugreg(vcpu->arch.dr6, 6);
9278 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9279 	} else if (unlikely(hw_breakpoint_active())) {
9280 		set_debugreg(0, 7);
9281 	}
9282 
9283 	exit_fastpath = kvm_x86_ops.run(vcpu);
9284 
9285 	/*
9286 	 * Do this here before restoring debug registers on the host.  And
9287 	 * since we do this before handling the vmexit, a DR access vmexit
9288 	 * can (a) read the correct value of the debug registers, (b) set
9289 	 * KVM_DEBUGREG_WONT_EXIT again.
9290 	 */
9291 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9292 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9293 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
9294 		kvm_update_dr0123(vcpu);
9295 		kvm_update_dr7(vcpu);
9296 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9297 	}
9298 
9299 	/*
9300 	 * If the guest has used debug registers, at least dr7
9301 	 * will be disabled while returning to the host.
9302 	 * If we don't have active breakpoints in the host, we don't
9303 	 * care about the messed up debug address registers. But if
9304 	 * we have some of them active, restore the old state.
9305 	 */
9306 	if (hw_breakpoint_active())
9307 		hw_breakpoint_restore();
9308 
9309 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9310 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9311 
9312 	vcpu->mode = OUTSIDE_GUEST_MODE;
9313 	smp_wmb();
9314 
9315 	kvm_x86_ops.handle_exit_irqoff(vcpu);
9316 
9317 	/*
9318 	 * Consume any pending interrupts, including the possible source of
9319 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9320 	 * An instruction is required after local_irq_enable() to fully unblock
9321 	 * interrupts on processors that implement an interrupt shadow, the
9322 	 * stat.exits increment will do nicely.
9323 	 */
9324 	kvm_before_interrupt(vcpu);
9325 	local_irq_enable();
9326 	++vcpu->stat.exits;
9327 	local_irq_disable();
9328 	kvm_after_interrupt(vcpu);
9329 
9330 	/*
9331 	 * Wait until after servicing IRQs to account guest time so that any
9332 	 * ticks that occurred while running the guest are properly accounted
9333 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9334 	 * of accounting via context tracking, but the loss of accuracy is
9335 	 * acceptable for all known use cases.
9336 	 */
9337 	vtime_account_guest_exit();
9338 
9339 	if (lapic_in_kernel(vcpu)) {
9340 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9341 		if (delta != S64_MIN) {
9342 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9343 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9344 		}
9345 	}
9346 
9347 	local_irq_enable();
9348 	preempt_enable();
9349 
9350 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9351 
9352 	/*
9353 	 * Profile KVM exit RIPs:
9354 	 */
9355 	if (unlikely(prof_on == KVM_PROFILING)) {
9356 		unsigned long rip = kvm_rip_read(vcpu);
9357 		profile_hit(KVM_PROFILING, (void *)rip);
9358 	}
9359 
9360 	if (unlikely(vcpu->arch.tsc_always_catchup))
9361 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9362 
9363 	if (vcpu->arch.apic_attention)
9364 		kvm_lapic_sync_from_vapic(vcpu);
9365 
9366 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9367 	return r;
9368 
9369 cancel_injection:
9370 	if (req_immediate_exit)
9371 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9372 	kvm_x86_ops.cancel_injection(vcpu);
9373 	if (unlikely(vcpu->arch.apic_attention))
9374 		kvm_lapic_sync_from_vapic(vcpu);
9375 out:
9376 	return r;
9377 }
9378 
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)9379 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9380 {
9381 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9382 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9383 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9384 		kvm_vcpu_block(vcpu);
9385 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9386 
9387 		if (kvm_x86_ops.post_block)
9388 			kvm_x86_ops.post_block(vcpu);
9389 
9390 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9391 			return 1;
9392 	}
9393 
9394 	kvm_apic_accept_events(vcpu);
9395 	switch(vcpu->arch.mp_state) {
9396 	case KVM_MP_STATE_HALTED:
9397 		vcpu->arch.pv.pv_unhalted = false;
9398 		vcpu->arch.mp_state =
9399 			KVM_MP_STATE_RUNNABLE;
9400 		fallthrough;
9401 	case KVM_MP_STATE_RUNNABLE:
9402 		vcpu->arch.apf.halted = false;
9403 		break;
9404 	case KVM_MP_STATE_INIT_RECEIVED:
9405 		break;
9406 	default:
9407 		return -EINTR;
9408 	}
9409 	return 1;
9410 }
9411 
kvm_vcpu_running(struct kvm_vcpu * vcpu)9412 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9413 {
9414 	if (is_guest_mode(vcpu))
9415 		kvm_x86_ops.nested_ops->check_events(vcpu);
9416 
9417 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9418 		!vcpu->arch.apf.halted);
9419 }
9420 
vcpu_run(struct kvm_vcpu * vcpu)9421 static int vcpu_run(struct kvm_vcpu *vcpu)
9422 {
9423 	int r;
9424 	struct kvm *kvm = vcpu->kvm;
9425 
9426 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9427 	vcpu->arch.l1tf_flush_l1d = true;
9428 
9429 	for (;;) {
9430 		/*
9431 		 * If another guest vCPU requests a PV TLB flush in the middle
9432 		 * of instruction emulation, the rest of the emulation could
9433 		 * use a stale page translation. Assume that any code after
9434 		 * this point can start executing an instruction.
9435 		 */
9436 		vcpu->arch.at_instruction_boundary = false;
9437 		if (kvm_vcpu_running(vcpu)) {
9438 			r = vcpu_enter_guest(vcpu);
9439 		} else {
9440 			r = vcpu_block(kvm, vcpu);
9441 		}
9442 
9443 		if (r <= 0)
9444 			break;
9445 
9446 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9447 		if (kvm_cpu_has_pending_timer(vcpu))
9448 			kvm_inject_pending_timer_irqs(vcpu);
9449 
9450 		if (dm_request_for_irq_injection(vcpu) &&
9451 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9452 			r = 0;
9453 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9454 			++vcpu->stat.request_irq_exits;
9455 			break;
9456 		}
9457 
9458 		if (__xfer_to_guest_mode_work_pending()) {
9459 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9460 			r = xfer_to_guest_mode_handle_work(vcpu);
9461 			if (r)
9462 				return r;
9463 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9464 		}
9465 	}
9466 
9467 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9468 
9469 	return r;
9470 }
9471 
complete_emulated_io(struct kvm_vcpu * vcpu)9472 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9473 {
9474 	int r;
9475 
9476 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9477 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9478 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9479 	return r;
9480 }
9481 
complete_emulated_pio(struct kvm_vcpu * vcpu)9482 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9483 {
9484 	BUG_ON(!vcpu->arch.pio.count);
9485 
9486 	return complete_emulated_io(vcpu);
9487 }
9488 
9489 /*
9490  * Implements the following, as a state machine:
9491  *
9492  * read:
9493  *   for each fragment
9494  *     for each mmio piece in the fragment
9495  *       write gpa, len
9496  *       exit
9497  *       copy data
9498  *   execute insn
9499  *
9500  * write:
9501  *   for each fragment
9502  *     for each mmio piece in the fragment
9503  *       write gpa, len
9504  *       copy data
9505  *       exit
9506  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)9507 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9508 {
9509 	struct kvm_run *run = vcpu->run;
9510 	struct kvm_mmio_fragment *frag;
9511 	unsigned len;
9512 
9513 	BUG_ON(!vcpu->mmio_needed);
9514 
9515 	/* Complete previous fragment */
9516 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9517 	len = min(8u, frag->len);
9518 	if (!vcpu->mmio_is_write)
9519 		memcpy(frag->data, run->mmio.data, len);
9520 
9521 	if (frag->len <= 8) {
9522 		/* Switch to the next fragment. */
9523 		frag++;
9524 		vcpu->mmio_cur_fragment++;
9525 	} else {
9526 		/* Go forward to the next mmio piece. */
9527 		frag->data += len;
9528 		frag->gpa += len;
9529 		frag->len -= len;
9530 	}
9531 
9532 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9533 		vcpu->mmio_needed = 0;
9534 
9535 		/* FIXME: return into emulator if single-stepping.  */
9536 		if (vcpu->mmio_is_write)
9537 			return 1;
9538 		vcpu->mmio_read_completed = 1;
9539 		return complete_emulated_io(vcpu);
9540 	}
9541 
9542 	run->exit_reason = KVM_EXIT_MMIO;
9543 	run->mmio.phys_addr = frag->gpa;
9544 	if (vcpu->mmio_is_write)
9545 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9546 	run->mmio.len = min(8u, frag->len);
9547 	run->mmio.is_write = vcpu->mmio_is_write;
9548 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9549 	return 0;
9550 }
9551 
kvm_save_current_fpu(struct fpu * fpu)9552 static void kvm_save_current_fpu(struct fpu *fpu)
9553 {
9554 	/*
9555 	 * If the target FPU state is not resident in the CPU registers, just
9556 	 * memcpy() from current, else save CPU state directly to the target.
9557 	 */
9558 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9559 		memcpy(&fpu->state, &current->thread.fpu.state,
9560 		       fpu_kernel_xstate_size);
9561 	else
9562 		copy_fpregs_to_fpstate(fpu);
9563 }
9564 
9565 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)9566 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9567 {
9568 	fpregs_lock();
9569 
9570 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9571 
9572 	/* PKRU is separately restored in kvm_x86_ops.run.  */
9573 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9574 				~XFEATURE_MASK_PKRU);
9575 
9576 	fpregs_mark_activate();
9577 	fpregs_unlock();
9578 
9579 	trace_kvm_fpu(1);
9580 }
9581 
9582 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)9583 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9584 {
9585 	fpregs_lock();
9586 
9587 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
9588 
9589 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9590 
9591 	fpregs_mark_activate();
9592 	fpregs_unlock();
9593 
9594 	++vcpu->stat.fpu_reload;
9595 	trace_kvm_fpu(0);
9596 }
9597 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)9598 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9599 {
9600 	struct kvm_run *kvm_run = vcpu->run;
9601 	int r;
9602 
9603 	vcpu_load(vcpu);
9604 	kvm_sigset_activate(vcpu);
9605 	kvm_load_guest_fpu(vcpu);
9606 
9607 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9608 		if (kvm_run->immediate_exit) {
9609 			r = -EINTR;
9610 			goto out;
9611 		}
9612 		kvm_vcpu_block(vcpu);
9613 		kvm_apic_accept_events(vcpu);
9614 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9615 		r = -EAGAIN;
9616 		if (signal_pending(current)) {
9617 			r = -EINTR;
9618 			kvm_run->exit_reason = KVM_EXIT_INTR;
9619 			++vcpu->stat.signal_exits;
9620 		}
9621 		goto out;
9622 	}
9623 
9624 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9625 		r = -EINVAL;
9626 		goto out;
9627 	}
9628 
9629 	if (kvm_run->kvm_dirty_regs) {
9630 		r = sync_regs(vcpu);
9631 		if (r != 0)
9632 			goto out;
9633 	}
9634 
9635 	/* re-sync apic's tpr */
9636 	if (!lapic_in_kernel(vcpu)) {
9637 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9638 			r = -EINVAL;
9639 			goto out;
9640 		}
9641 	}
9642 
9643 	if (unlikely(vcpu->arch.complete_userspace_io)) {
9644 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9645 		vcpu->arch.complete_userspace_io = NULL;
9646 		r = cui(vcpu);
9647 		if (r <= 0)
9648 			goto out;
9649 	} else
9650 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9651 
9652 	if (kvm_run->immediate_exit)
9653 		r = -EINTR;
9654 	else
9655 		r = vcpu_run(vcpu);
9656 
9657 out:
9658 	kvm_put_guest_fpu(vcpu);
9659 	if (kvm_run->kvm_valid_regs)
9660 		store_regs(vcpu);
9661 	post_kvm_run_save(vcpu);
9662 	kvm_sigset_deactivate(vcpu);
9663 
9664 	vcpu_put(vcpu);
9665 	return r;
9666 }
9667 
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9668 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9669 {
9670 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9671 		/*
9672 		 * We are here if userspace calls get_regs() in the middle of
9673 		 * instruction emulation. Registers state needs to be copied
9674 		 * back from emulation context to vcpu. Userspace shouldn't do
9675 		 * that usually, but some bad designed PV devices (vmware
9676 		 * backdoor interface) need this to work
9677 		 */
9678 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9679 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9680 	}
9681 	regs->rax = kvm_rax_read(vcpu);
9682 	regs->rbx = kvm_rbx_read(vcpu);
9683 	regs->rcx = kvm_rcx_read(vcpu);
9684 	regs->rdx = kvm_rdx_read(vcpu);
9685 	regs->rsi = kvm_rsi_read(vcpu);
9686 	regs->rdi = kvm_rdi_read(vcpu);
9687 	regs->rsp = kvm_rsp_read(vcpu);
9688 	regs->rbp = kvm_rbp_read(vcpu);
9689 #ifdef CONFIG_X86_64
9690 	regs->r8 = kvm_r8_read(vcpu);
9691 	regs->r9 = kvm_r9_read(vcpu);
9692 	regs->r10 = kvm_r10_read(vcpu);
9693 	regs->r11 = kvm_r11_read(vcpu);
9694 	regs->r12 = kvm_r12_read(vcpu);
9695 	regs->r13 = kvm_r13_read(vcpu);
9696 	regs->r14 = kvm_r14_read(vcpu);
9697 	regs->r15 = kvm_r15_read(vcpu);
9698 #endif
9699 
9700 	regs->rip = kvm_rip_read(vcpu);
9701 	regs->rflags = kvm_get_rflags(vcpu);
9702 }
9703 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9704 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9705 {
9706 	vcpu_load(vcpu);
9707 	__get_regs(vcpu, regs);
9708 	vcpu_put(vcpu);
9709 	return 0;
9710 }
9711 
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9712 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9713 {
9714 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9715 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9716 
9717 	kvm_rax_write(vcpu, regs->rax);
9718 	kvm_rbx_write(vcpu, regs->rbx);
9719 	kvm_rcx_write(vcpu, regs->rcx);
9720 	kvm_rdx_write(vcpu, regs->rdx);
9721 	kvm_rsi_write(vcpu, regs->rsi);
9722 	kvm_rdi_write(vcpu, regs->rdi);
9723 	kvm_rsp_write(vcpu, regs->rsp);
9724 	kvm_rbp_write(vcpu, regs->rbp);
9725 #ifdef CONFIG_X86_64
9726 	kvm_r8_write(vcpu, regs->r8);
9727 	kvm_r9_write(vcpu, regs->r9);
9728 	kvm_r10_write(vcpu, regs->r10);
9729 	kvm_r11_write(vcpu, regs->r11);
9730 	kvm_r12_write(vcpu, regs->r12);
9731 	kvm_r13_write(vcpu, regs->r13);
9732 	kvm_r14_write(vcpu, regs->r14);
9733 	kvm_r15_write(vcpu, regs->r15);
9734 #endif
9735 
9736 	kvm_rip_write(vcpu, regs->rip);
9737 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9738 
9739 	vcpu->arch.exception.pending = false;
9740 
9741 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9742 }
9743 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9744 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9745 {
9746 	vcpu_load(vcpu);
9747 	__set_regs(vcpu, regs);
9748 	vcpu_put(vcpu);
9749 	return 0;
9750 }
9751 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)9752 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9753 {
9754 	struct kvm_segment cs;
9755 
9756 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9757 	*db = cs.db;
9758 	*l = cs.l;
9759 }
9760 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9761 
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9762 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9763 {
9764 	struct desc_ptr dt;
9765 
9766 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9767 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9768 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9769 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9770 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9771 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9772 
9773 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9774 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9775 
9776 	kvm_x86_ops.get_idt(vcpu, &dt);
9777 	sregs->idt.limit = dt.size;
9778 	sregs->idt.base = dt.address;
9779 	kvm_x86_ops.get_gdt(vcpu, &dt);
9780 	sregs->gdt.limit = dt.size;
9781 	sregs->gdt.base = dt.address;
9782 
9783 	sregs->cr0 = kvm_read_cr0(vcpu);
9784 	sregs->cr2 = vcpu->arch.cr2;
9785 	sregs->cr3 = kvm_read_cr3(vcpu);
9786 	sregs->cr4 = kvm_read_cr4(vcpu);
9787 	sregs->cr8 = kvm_get_cr8(vcpu);
9788 	sregs->efer = vcpu->arch.efer;
9789 	sregs->apic_base = kvm_get_apic_base(vcpu);
9790 
9791 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9792 
9793 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9794 		set_bit(vcpu->arch.interrupt.nr,
9795 			(unsigned long *)sregs->interrupt_bitmap);
9796 }
9797 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9798 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9799 				  struct kvm_sregs *sregs)
9800 {
9801 	vcpu_load(vcpu);
9802 	__get_sregs(vcpu, sregs);
9803 	vcpu_put(vcpu);
9804 	return 0;
9805 }
9806 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)9807 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9808 				    struct kvm_mp_state *mp_state)
9809 {
9810 	vcpu_load(vcpu);
9811 	if (kvm_mpx_supported())
9812 		kvm_load_guest_fpu(vcpu);
9813 
9814 	kvm_apic_accept_events(vcpu);
9815 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9816 					vcpu->arch.pv.pv_unhalted)
9817 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9818 	else
9819 		mp_state->mp_state = vcpu->arch.mp_state;
9820 
9821 	if (kvm_mpx_supported())
9822 		kvm_put_guest_fpu(vcpu);
9823 	vcpu_put(vcpu);
9824 	return 0;
9825 }
9826 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)9827 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9828 				    struct kvm_mp_state *mp_state)
9829 {
9830 	int ret = -EINVAL;
9831 
9832 	vcpu_load(vcpu);
9833 
9834 	if (!lapic_in_kernel(vcpu) &&
9835 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9836 		goto out;
9837 
9838 	/*
9839 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9840 	 * INIT state; latched init should be reported using
9841 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9842 	 */
9843 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9844 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9845 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9846 		goto out;
9847 
9848 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9849 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9850 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9851 	} else
9852 		vcpu->arch.mp_state = mp_state->mp_state;
9853 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9854 
9855 	ret = 0;
9856 out:
9857 	vcpu_put(vcpu);
9858 	return ret;
9859 }
9860 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)9861 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9862 		    int reason, bool has_error_code, u32 error_code)
9863 {
9864 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9865 	int ret;
9866 
9867 	init_emulate_ctxt(vcpu);
9868 
9869 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9870 				   has_error_code, error_code);
9871 	if (ret) {
9872 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9873 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9874 		vcpu->run->internal.ndata = 0;
9875 		return 0;
9876 	}
9877 
9878 	kvm_rip_write(vcpu, ctxt->eip);
9879 	kvm_set_rflags(vcpu, ctxt->eflags);
9880 	return 1;
9881 }
9882 EXPORT_SYMBOL_GPL(kvm_task_switch);
9883 
kvm_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9884 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9885 {
9886 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9887 		/*
9888 		 * When EFER.LME and CR0.PG are set, the processor is in
9889 		 * 64-bit mode (though maybe in a 32-bit code segment).
9890 		 * CR4.PAE and EFER.LMA must be set.
9891 		 */
9892 		if (!(sregs->cr4 & X86_CR4_PAE)
9893 		    || !(sregs->efer & EFER_LMA))
9894 			return -EINVAL;
9895 		if (sregs->cr3 & vcpu->arch.cr3_lm_rsvd_bits)
9896 			return -EINVAL;
9897 	} else {
9898 		/*
9899 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9900 		 * segment cannot be 64-bit.
9901 		 */
9902 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9903 			return -EINVAL;
9904 	}
9905 
9906 	return kvm_valid_cr4(vcpu, sregs->cr4);
9907 }
9908 
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9909 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9910 {
9911 	struct msr_data apic_base_msr;
9912 	int mmu_reset_needed = 0;
9913 	int cpuid_update_needed = 0;
9914 	int pending_vec, max_bits, idx;
9915 	struct desc_ptr dt;
9916 	int ret = -EINVAL;
9917 
9918 	if (kvm_valid_sregs(vcpu, sregs))
9919 		goto out;
9920 
9921 	apic_base_msr.data = sregs->apic_base;
9922 	apic_base_msr.host_initiated = true;
9923 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9924 		goto out;
9925 
9926 	dt.size = sregs->idt.limit;
9927 	dt.address = sregs->idt.base;
9928 	kvm_x86_ops.set_idt(vcpu, &dt);
9929 	dt.size = sregs->gdt.limit;
9930 	dt.address = sregs->gdt.base;
9931 	kvm_x86_ops.set_gdt(vcpu, &dt);
9932 
9933 	vcpu->arch.cr2 = sregs->cr2;
9934 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9935 	vcpu->arch.cr3 = sregs->cr3;
9936 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9937 
9938 	kvm_set_cr8(vcpu, sregs->cr8);
9939 
9940 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9941 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9942 
9943 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9944 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9945 	vcpu->arch.cr0 = sregs->cr0;
9946 
9947 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9948 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9949 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9950 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9951 	if (cpuid_update_needed)
9952 		kvm_update_cpuid_runtime(vcpu);
9953 
9954 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9955 	if (is_pae_paging(vcpu)) {
9956 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9957 		mmu_reset_needed = 1;
9958 	}
9959 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9960 
9961 	if (mmu_reset_needed)
9962 		kvm_mmu_reset_context(vcpu);
9963 
9964 	max_bits = KVM_NR_INTERRUPTS;
9965 	pending_vec = find_first_bit(
9966 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9967 	if (pending_vec < max_bits) {
9968 		kvm_queue_interrupt(vcpu, pending_vec, false);
9969 		pr_debug("Set back pending irq %d\n", pending_vec);
9970 	}
9971 
9972 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9973 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9974 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9975 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9976 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9977 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9978 
9979 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9980 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9981 
9982 	update_cr8_intercept(vcpu);
9983 
9984 	/* Older userspace won't unhalt the vcpu on reset. */
9985 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9986 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9987 	    !is_protmode(vcpu))
9988 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9989 
9990 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9991 
9992 	ret = 0;
9993 out:
9994 	return ret;
9995 }
9996 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9997 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9998 				  struct kvm_sregs *sregs)
9999 {
10000 	int ret;
10001 
10002 	vcpu_load(vcpu);
10003 	ret = __set_sregs(vcpu, sregs);
10004 	vcpu_put(vcpu);
10005 	return ret;
10006 }
10007 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)10008 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10009 					struct kvm_guest_debug *dbg)
10010 {
10011 	unsigned long rflags;
10012 	int i, r;
10013 
10014 	vcpu_load(vcpu);
10015 
10016 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10017 		r = -EBUSY;
10018 		if (vcpu->arch.exception.pending)
10019 			goto out;
10020 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10021 			kvm_queue_exception(vcpu, DB_VECTOR);
10022 		else
10023 			kvm_queue_exception(vcpu, BP_VECTOR);
10024 	}
10025 
10026 	/*
10027 	 * Read rflags as long as potentially injected trace flags are still
10028 	 * filtered out.
10029 	 */
10030 	rflags = kvm_get_rflags(vcpu);
10031 
10032 	vcpu->guest_debug = dbg->control;
10033 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10034 		vcpu->guest_debug = 0;
10035 
10036 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10037 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
10038 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10039 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10040 	} else {
10041 		for (i = 0; i < KVM_NR_DB_REGS; i++)
10042 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10043 	}
10044 	kvm_update_dr7(vcpu);
10045 
10046 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10047 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
10048 			get_segment_base(vcpu, VCPU_SREG_CS);
10049 
10050 	/*
10051 	 * Trigger an rflags update that will inject or remove the trace
10052 	 * flags.
10053 	 */
10054 	kvm_set_rflags(vcpu, rflags);
10055 
10056 	kvm_x86_ops.update_exception_bitmap(vcpu);
10057 
10058 	r = 0;
10059 
10060 out:
10061 	vcpu_put(vcpu);
10062 	return r;
10063 }
10064 
10065 /*
10066  * Translate a guest virtual address to a guest physical address.
10067  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)10068 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10069 				    struct kvm_translation *tr)
10070 {
10071 	unsigned long vaddr = tr->linear_address;
10072 	gpa_t gpa;
10073 	int idx;
10074 
10075 	vcpu_load(vcpu);
10076 
10077 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10078 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10079 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10080 	tr->physical_address = gpa;
10081 	tr->valid = gpa != UNMAPPED_GVA;
10082 	tr->writeable = 1;
10083 	tr->usermode = 0;
10084 
10085 	vcpu_put(vcpu);
10086 	return 0;
10087 }
10088 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)10089 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10090 {
10091 	struct fxregs_state *fxsave;
10092 
10093 	vcpu_load(vcpu);
10094 
10095 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10096 	memcpy(fpu->fpr, fxsave->st_space, 128);
10097 	fpu->fcw = fxsave->cwd;
10098 	fpu->fsw = fxsave->swd;
10099 	fpu->ftwx = fxsave->twd;
10100 	fpu->last_opcode = fxsave->fop;
10101 	fpu->last_ip = fxsave->rip;
10102 	fpu->last_dp = fxsave->rdp;
10103 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10104 
10105 	vcpu_put(vcpu);
10106 	return 0;
10107 }
10108 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)10109 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10110 {
10111 	struct fxregs_state *fxsave;
10112 
10113 	vcpu_load(vcpu);
10114 
10115 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10116 
10117 	memcpy(fxsave->st_space, fpu->fpr, 128);
10118 	fxsave->cwd = fpu->fcw;
10119 	fxsave->swd = fpu->fsw;
10120 	fxsave->twd = fpu->ftwx;
10121 	fxsave->fop = fpu->last_opcode;
10122 	fxsave->rip = fpu->last_ip;
10123 	fxsave->rdp = fpu->last_dp;
10124 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10125 
10126 	vcpu_put(vcpu);
10127 	return 0;
10128 }
10129 
store_regs(struct kvm_vcpu * vcpu)10130 static void store_regs(struct kvm_vcpu *vcpu)
10131 {
10132 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10133 
10134 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10135 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
10136 
10137 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10138 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10139 
10140 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10141 		kvm_vcpu_ioctl_x86_get_vcpu_events(
10142 				vcpu, &vcpu->run->s.regs.events);
10143 }
10144 
sync_regs(struct kvm_vcpu * vcpu)10145 static int sync_regs(struct kvm_vcpu *vcpu)
10146 {
10147 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10148 		return -EINVAL;
10149 
10150 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10151 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
10152 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10153 	}
10154 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10155 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10156 			return -EINVAL;
10157 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10158 	}
10159 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10160 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10161 				vcpu, &vcpu->run->s.regs.events))
10162 			return -EINVAL;
10163 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10164 	}
10165 
10166 	return 0;
10167 }
10168 
fx_init(struct kvm_vcpu * vcpu)10169 static void fx_init(struct kvm_vcpu *vcpu)
10170 {
10171 	fpstate_init(&vcpu->arch.guest_fpu->state);
10172 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10173 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10174 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
10175 
10176 	/*
10177 	 * Ensure guest xcr0 is valid for loading
10178 	 */
10179 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10180 
10181 	vcpu->arch.cr0 |= X86_CR0_ET;
10182 }
10183 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)10184 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10185 {
10186 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10187 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10188 			     "guest TSC will not be reliable\n");
10189 
10190 	return 0;
10191 }
10192 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)10193 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10194 {
10195 	struct page *page;
10196 	int r;
10197 
10198 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10199 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10200 	else
10201 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10202 
10203 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
10204 
10205 	r = kvm_mmu_create(vcpu);
10206 	if (r < 0)
10207 		return r;
10208 
10209 	if (irqchip_in_kernel(vcpu->kvm)) {
10210 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10211 		if (r < 0)
10212 			goto fail_mmu_destroy;
10213 		if (kvm_apicv_activated(vcpu->kvm))
10214 			vcpu->arch.apicv_active = true;
10215 	} else
10216 		static_key_slow_inc(&kvm_no_apic_vcpu);
10217 
10218 	r = -ENOMEM;
10219 
10220 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
10221 	if (!page)
10222 		goto fail_free_lapic;
10223 	vcpu->arch.pio_data = page_address(page);
10224 
10225 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10226 				       GFP_KERNEL_ACCOUNT);
10227 	if (!vcpu->arch.mce_banks)
10228 		goto fail_free_pio_data;
10229 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10230 
10231 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10232 				GFP_KERNEL_ACCOUNT))
10233 		goto fail_free_mce_banks;
10234 
10235 	if (!alloc_emulate_ctxt(vcpu))
10236 		goto free_wbinvd_dirty_mask;
10237 
10238 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10239 						GFP_KERNEL_ACCOUNT);
10240 	if (!vcpu->arch.user_fpu) {
10241 		pr_err("kvm: failed to allocate userspace's fpu\n");
10242 		goto free_emulate_ctxt;
10243 	}
10244 
10245 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10246 						 GFP_KERNEL_ACCOUNT);
10247 	if (!vcpu->arch.guest_fpu) {
10248 		pr_err("kvm: failed to allocate vcpu's fpu\n");
10249 		goto free_user_fpu;
10250 	}
10251 	fx_init(vcpu);
10252 
10253 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10254 	vcpu->arch.cr3_lm_rsvd_bits = rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
10255 
10256 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10257 
10258 	kvm_async_pf_hash_reset(vcpu);
10259 	kvm_pmu_init(vcpu);
10260 
10261 	vcpu->arch.pending_external_vector = -1;
10262 	vcpu->arch.preempted_in_kernel = false;
10263 
10264 	kvm_hv_vcpu_init(vcpu);
10265 
10266 	r = kvm_x86_ops.vcpu_create(vcpu);
10267 	if (r)
10268 		goto free_guest_fpu;
10269 
10270 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10271 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10272 	kvm_vcpu_mtrr_init(vcpu);
10273 	vcpu_load(vcpu);
10274 	kvm_vcpu_reset(vcpu, false);
10275 	kvm_init_mmu(vcpu, false);
10276 	vcpu_put(vcpu);
10277 	return 0;
10278 
10279 free_guest_fpu:
10280 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10281 free_user_fpu:
10282 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10283 free_emulate_ctxt:
10284 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10285 free_wbinvd_dirty_mask:
10286 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10287 fail_free_mce_banks:
10288 	kfree(vcpu->arch.mce_banks);
10289 fail_free_pio_data:
10290 	free_page((unsigned long)vcpu->arch.pio_data);
10291 fail_free_lapic:
10292 	kvm_free_lapic(vcpu);
10293 fail_mmu_destroy:
10294 	kvm_mmu_destroy(vcpu);
10295 	return r;
10296 }
10297 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)10298 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10299 {
10300 	struct kvm *kvm = vcpu->kvm;
10301 
10302 	kvm_hv_vcpu_postcreate(vcpu);
10303 
10304 	if (mutex_lock_killable(&vcpu->mutex))
10305 		return;
10306 	vcpu_load(vcpu);
10307 	kvm_synchronize_tsc(vcpu, 0);
10308 	vcpu_put(vcpu);
10309 
10310 	/* poll control enabled by default */
10311 	vcpu->arch.msr_kvm_poll_control = 1;
10312 
10313 	mutex_unlock(&vcpu->mutex);
10314 
10315 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10316 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10317 						KVMCLOCK_SYNC_PERIOD);
10318 }
10319 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)10320 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10321 {
10322 	int idx;
10323 
10324 	kvmclock_reset(vcpu);
10325 
10326 	kvm_x86_ops.vcpu_free(vcpu);
10327 
10328 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10329 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10330 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10331 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10332 
10333 	kvm_hv_vcpu_uninit(vcpu);
10334 	kvm_pmu_destroy(vcpu);
10335 	kfree(vcpu->arch.mce_banks);
10336 	kvm_free_lapic(vcpu);
10337 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10338 	kvm_mmu_destroy(vcpu);
10339 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10340 	free_page((unsigned long)vcpu->arch.pio_data);
10341 	kvfree(vcpu->arch.cpuid_entries);
10342 	if (!lapic_in_kernel(vcpu))
10343 		static_key_slow_dec(&kvm_no_apic_vcpu);
10344 }
10345 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)10346 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10347 {
10348 	kvm_lapic_reset(vcpu, init_event);
10349 
10350 	vcpu->arch.hflags = 0;
10351 
10352 	vcpu->arch.smi_pending = 0;
10353 	vcpu->arch.smi_count = 0;
10354 	atomic_set(&vcpu->arch.nmi_queued, 0);
10355 	vcpu->arch.nmi_pending = 0;
10356 	vcpu->arch.nmi_injected = false;
10357 	kvm_clear_interrupt_queue(vcpu);
10358 	kvm_clear_exception_queue(vcpu);
10359 
10360 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10361 	kvm_update_dr0123(vcpu);
10362 	vcpu->arch.dr6 = DR6_INIT;
10363 	vcpu->arch.dr7 = DR7_FIXED_1;
10364 	kvm_update_dr7(vcpu);
10365 
10366 	vcpu->arch.cr2 = 0;
10367 
10368 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10369 	vcpu->arch.apf.msr_en_val = 0;
10370 	vcpu->arch.apf.msr_int_val = 0;
10371 	vcpu->arch.st.msr_val = 0;
10372 
10373 	kvmclock_reset(vcpu);
10374 
10375 	kvm_clear_async_pf_completion_queue(vcpu);
10376 	kvm_async_pf_hash_reset(vcpu);
10377 	vcpu->arch.apf.halted = false;
10378 
10379 	if (kvm_mpx_supported()) {
10380 		void *mpx_state_buffer;
10381 
10382 		/*
10383 		 * To avoid have the INIT path from kvm_apic_has_events() that be
10384 		 * called with loaded FPU and does not let userspace fix the state.
10385 		 */
10386 		if (init_event)
10387 			kvm_put_guest_fpu(vcpu);
10388 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10389 					XFEATURE_BNDREGS);
10390 		if (mpx_state_buffer)
10391 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10392 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10393 					XFEATURE_BNDCSR);
10394 		if (mpx_state_buffer)
10395 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10396 		if (init_event)
10397 			kvm_load_guest_fpu(vcpu);
10398 	}
10399 
10400 	if (!init_event) {
10401 		kvm_pmu_reset(vcpu);
10402 		vcpu->arch.smbase = 0x30000;
10403 
10404 		vcpu->arch.msr_misc_features_enables = 0;
10405 
10406 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10407 	}
10408 
10409 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10410 	vcpu->arch.regs_avail = ~0;
10411 	vcpu->arch.regs_dirty = ~0;
10412 
10413 	vcpu->arch.ia32_xss = 0;
10414 
10415 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
10416 }
10417 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)10418 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10419 {
10420 	struct kvm_segment cs;
10421 
10422 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10423 	cs.selector = vector << 8;
10424 	cs.base = vector << 12;
10425 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10426 	kvm_rip_write(vcpu, 0);
10427 }
10428 
kvm_arch_hardware_enable(void)10429 int kvm_arch_hardware_enable(void)
10430 {
10431 	struct kvm *kvm;
10432 	struct kvm_vcpu *vcpu;
10433 	int i;
10434 	int ret;
10435 	u64 local_tsc;
10436 	u64 max_tsc = 0;
10437 	bool stable, backwards_tsc = false;
10438 
10439 	kvm_user_return_msr_cpu_online();
10440 	ret = kvm_x86_ops.hardware_enable();
10441 	if (ret != 0)
10442 		return ret;
10443 
10444 	local_tsc = rdtsc();
10445 	stable = !kvm_check_tsc_unstable();
10446 	list_for_each_entry(kvm, &vm_list, vm_list) {
10447 		kvm_for_each_vcpu(i, vcpu, kvm) {
10448 			if (!stable && vcpu->cpu == smp_processor_id())
10449 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10450 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10451 				backwards_tsc = true;
10452 				if (vcpu->arch.last_host_tsc > max_tsc)
10453 					max_tsc = vcpu->arch.last_host_tsc;
10454 			}
10455 		}
10456 	}
10457 
10458 	/*
10459 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10460 	 * platforms that reset TSC during suspend or hibernate actions, but
10461 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10462 	 * detect that condition here, which happens early in CPU bringup,
10463 	 * before any KVM threads can be running.  Unfortunately, we can't
10464 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10465 	 * enough into CPU bringup that we know how much real time has actually
10466 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10467 	 * variables that haven't been updated yet.
10468 	 *
10469 	 * So we simply find the maximum observed TSC above, then record the
10470 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10471 	 * the adjustment will be applied.  Note that we accumulate
10472 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10473 	 * gets a chance to run again.  In the event that no KVM threads get a
10474 	 * chance to run, we will miss the entire elapsed period, as we'll have
10475 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10476 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10477 	 * uniform across all VCPUs (not to mention the scenario is extremely
10478 	 * unlikely). It is possible that a second hibernate recovery happens
10479 	 * much faster than a first, causing the observed TSC here to be
10480 	 * smaller; this would require additional padding adjustment, which is
10481 	 * why we set last_host_tsc to the local tsc observed here.
10482 	 *
10483 	 * N.B. - this code below runs only on platforms with reliable TSC,
10484 	 * as that is the only way backwards_tsc is set above.  Also note
10485 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10486 	 * have the same delta_cyc adjustment applied if backwards_tsc
10487 	 * is detected.  Note further, this adjustment is only done once,
10488 	 * as we reset last_host_tsc on all VCPUs to stop this from being
10489 	 * called multiple times (one for each physical CPU bringup).
10490 	 *
10491 	 * Platforms with unreliable TSCs don't have to deal with this, they
10492 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
10493 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
10494 	 * guarantee that they stay in perfect synchronization.
10495 	 */
10496 	if (backwards_tsc) {
10497 		u64 delta_cyc = max_tsc - local_tsc;
10498 		list_for_each_entry(kvm, &vm_list, vm_list) {
10499 			kvm->arch.backwards_tsc_observed = true;
10500 			kvm_for_each_vcpu(i, vcpu, kvm) {
10501 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
10502 				vcpu->arch.last_host_tsc = local_tsc;
10503 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10504 			}
10505 
10506 			/*
10507 			 * We have to disable TSC offset matching.. if you were
10508 			 * booting a VM while issuing an S4 host suspend....
10509 			 * you may have some problem.  Solving this issue is
10510 			 * left as an exercise to the reader.
10511 			 */
10512 			kvm->arch.last_tsc_nsec = 0;
10513 			kvm->arch.last_tsc_write = 0;
10514 		}
10515 
10516 	}
10517 	return 0;
10518 }
10519 
kvm_arch_hardware_disable(void)10520 void kvm_arch_hardware_disable(void)
10521 {
10522 	kvm_x86_ops.hardware_disable();
10523 	drop_user_return_notifiers();
10524 }
10525 
kvm_arch_hardware_setup(void * opaque)10526 int kvm_arch_hardware_setup(void *opaque)
10527 {
10528 	struct kvm_x86_init_ops *ops = opaque;
10529 	int r;
10530 
10531 	rdmsrl_safe(MSR_EFER, &host_efer);
10532 
10533 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10534 		rdmsrl(MSR_IA32_XSS, host_xss);
10535 
10536 	r = ops->hardware_setup();
10537 	if (r != 0)
10538 		return r;
10539 
10540 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10541 
10542 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10543 		supported_xss = 0;
10544 
10545 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10546 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10547 #undef __kvm_cpu_cap_has
10548 
10549 	if (kvm_has_tsc_control) {
10550 		/*
10551 		 * Make sure the user can only configure tsc_khz values that
10552 		 * fit into a signed integer.
10553 		 * A min value is not calculated because it will always
10554 		 * be 1 on all machines.
10555 		 */
10556 		u64 max = min(0x7fffffffULL,
10557 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10558 		kvm_max_guest_tsc_khz = max;
10559 
10560 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10561 	}
10562 
10563 	kvm_init_msr_list();
10564 	return 0;
10565 }
10566 
kvm_arch_hardware_unsetup(void)10567 void kvm_arch_hardware_unsetup(void)
10568 {
10569 	kvm_x86_ops.hardware_unsetup();
10570 }
10571 
kvm_arch_check_processor_compat(void * opaque)10572 int kvm_arch_check_processor_compat(void *opaque)
10573 {
10574 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10575 	struct kvm_x86_init_ops *ops = opaque;
10576 
10577 	WARN_ON(!irqs_disabled());
10578 
10579 	if (__cr4_reserved_bits(cpu_has, c) !=
10580 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10581 		return -EIO;
10582 
10583 	return ops->check_processor_compatibility();
10584 }
10585 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)10586 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10587 {
10588 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10589 }
10590 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10591 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)10592 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10593 {
10594 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10595 }
10596 
10597 struct static_key kvm_no_apic_vcpu __read_mostly;
10598 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10599 
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)10600 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10601 {
10602 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10603 
10604 	vcpu->arch.l1tf_flush_l1d = true;
10605 	if (pmu->version && unlikely(pmu->event_count)) {
10606 		pmu->need_cleanup = true;
10607 		kvm_make_request(KVM_REQ_PMU, vcpu);
10608 	}
10609 	kvm_x86_ops.sched_in(vcpu, cpu);
10610 }
10611 
kvm_arch_free_vm(struct kvm * kvm)10612 void kvm_arch_free_vm(struct kvm *kvm)
10613 {
10614 	kfree(kvm->arch.hyperv.hv_pa_pg);
10615 	vfree(kvm);
10616 }
10617 
10618 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)10619 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10620 {
10621 	int ret;
10622 
10623 	if (type)
10624 		return -EINVAL;
10625 
10626 	ret = kvm_page_track_init(kvm);
10627 	if (ret)
10628 		return ret;
10629 
10630 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10631 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10632 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10633 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10634 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10635 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10636 
10637 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10638 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10639 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10640 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10641 		&kvm->arch.irq_sources_bitmap);
10642 
10643 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10644 	mutex_init(&kvm->arch.apic_map_lock);
10645 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10646 
10647 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10648 	pvclock_update_vm_gtod_copy(kvm);
10649 
10650 	kvm->arch.guest_can_read_msr_platform_info = true;
10651 
10652 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10653 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10654 
10655 	kvm_hv_init_vm(kvm);
10656 	kvm_mmu_init_vm(kvm);
10657 
10658 	return kvm_x86_ops.vm_init(kvm);
10659 }
10660 
kvm_arch_post_init_vm(struct kvm * kvm)10661 int kvm_arch_post_init_vm(struct kvm *kvm)
10662 {
10663 	return kvm_mmu_post_init_vm(kvm);
10664 }
10665 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)10666 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10667 {
10668 	vcpu_load(vcpu);
10669 	kvm_mmu_unload(vcpu);
10670 	vcpu_put(vcpu);
10671 }
10672 
kvm_free_vcpus(struct kvm * kvm)10673 static void kvm_free_vcpus(struct kvm *kvm)
10674 {
10675 	unsigned int i;
10676 	struct kvm_vcpu *vcpu;
10677 
10678 	/*
10679 	 * Unpin any mmu pages first.
10680 	 */
10681 	kvm_for_each_vcpu(i, vcpu, kvm) {
10682 		kvm_clear_async_pf_completion_queue(vcpu);
10683 		kvm_unload_vcpu_mmu(vcpu);
10684 	}
10685 	kvm_for_each_vcpu(i, vcpu, kvm)
10686 		kvm_vcpu_destroy(vcpu);
10687 
10688 	mutex_lock(&kvm->lock);
10689 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10690 		kvm->vcpus[i] = NULL;
10691 
10692 	atomic_set(&kvm->online_vcpus, 0);
10693 	mutex_unlock(&kvm->lock);
10694 }
10695 
kvm_arch_sync_events(struct kvm * kvm)10696 void kvm_arch_sync_events(struct kvm *kvm)
10697 {
10698 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10699 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10700 	kvm_free_pit(kvm);
10701 }
10702 
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)10703 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
10704 {
10705 	int i, r;
10706 	unsigned long hva, old_npages;
10707 	struct kvm_memslots *slots = kvm_memslots(kvm);
10708 	struct kvm_memory_slot *slot;
10709 
10710 	/* Called with kvm->slots_lock held.  */
10711 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10712 		return -EINVAL;
10713 
10714 	slot = id_to_memslot(slots, id);
10715 	if (size) {
10716 		if (slot && slot->npages)
10717 			return -EEXIST;
10718 
10719 		/*
10720 		 * MAP_SHARED to prevent internal slot pages from being moved
10721 		 * by fork()/COW.
10722 		 */
10723 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10724 			      MAP_SHARED | MAP_ANONYMOUS, 0);
10725 		if (IS_ERR((void *)hva))
10726 			return PTR_ERR((void *)hva);
10727 	} else {
10728 		if (!slot || !slot->npages)
10729 			return 0;
10730 
10731 		old_npages = slot->npages;
10732 		hva = 0;
10733 	}
10734 
10735 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10736 		struct kvm_userspace_memory_region m;
10737 
10738 		m.slot = id | (i << 16);
10739 		m.flags = 0;
10740 		m.guest_phys_addr = gpa;
10741 		m.userspace_addr = hva;
10742 		m.memory_size = size;
10743 		r = __kvm_set_memory_region(kvm, &m);
10744 		if (r < 0)
10745 			return r;
10746 	}
10747 
10748 	if (!size)
10749 		vm_munmap(hva, old_npages * PAGE_SIZE);
10750 
10751 	return 0;
10752 }
10753 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10754 
kvm_arch_pre_destroy_vm(struct kvm * kvm)10755 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10756 {
10757 	kvm_mmu_pre_destroy_vm(kvm);
10758 }
10759 
kvm_arch_destroy_vm(struct kvm * kvm)10760 void kvm_arch_destroy_vm(struct kvm *kvm)
10761 {
10762 	if (current->mm == kvm->mm) {
10763 		/*
10764 		 * Free memory regions allocated on behalf of userspace,
10765 		 * unless the the memory map has changed due to process exit
10766 		 * or fd copying.
10767 		 */
10768 		mutex_lock(&kvm->slots_lock);
10769 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10770 					0, 0);
10771 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10772 					0, 0);
10773 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10774 		mutex_unlock(&kvm->slots_lock);
10775 	}
10776 	if (kvm_x86_ops.vm_destroy)
10777 		kvm_x86_ops.vm_destroy(kvm);
10778 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10779 	kvm_pic_destroy(kvm);
10780 	kvm_ioapic_destroy(kvm);
10781 	kvm_free_vcpus(kvm);
10782 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10783 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10784 	kvm_mmu_uninit_vm(kvm);
10785 	kvm_page_track_cleanup(kvm);
10786 	kvm_hv_destroy_vm(kvm);
10787 }
10788 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)10789 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10790 {
10791 	int i;
10792 
10793 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10794 		kvfree(slot->arch.rmap[i]);
10795 		slot->arch.rmap[i] = NULL;
10796 
10797 		if (i == 0)
10798 			continue;
10799 
10800 		kvfree(slot->arch.lpage_info[i - 1]);
10801 		slot->arch.lpage_info[i - 1] = NULL;
10802 	}
10803 
10804 	kvm_page_track_free_memslot(slot);
10805 }
10806 
kvm_alloc_memslot_metadata(struct kvm_memory_slot * slot,unsigned long npages)10807 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10808 				      unsigned long npages)
10809 {
10810 	int i;
10811 
10812 	/*
10813 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10814 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10815 	 * the new memslot is successful.
10816 	 */
10817 	memset(&slot->arch, 0, sizeof(slot->arch));
10818 
10819 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10820 		struct kvm_lpage_info *linfo;
10821 		unsigned long ugfn;
10822 		int lpages;
10823 		int level = i + 1;
10824 
10825 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10826 				      slot->base_gfn, level) + 1;
10827 
10828 		slot->arch.rmap[i] =
10829 			__vcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10830 				 GFP_KERNEL_ACCOUNT);
10831 		if (!slot->arch.rmap[i])
10832 			goto out_free;
10833 		if (i == 0)
10834 			continue;
10835 
10836 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10837 		if (!linfo)
10838 			goto out_free;
10839 
10840 		slot->arch.lpage_info[i - 1] = linfo;
10841 
10842 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10843 			linfo[0].disallow_lpage = 1;
10844 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10845 			linfo[lpages - 1].disallow_lpage = 1;
10846 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10847 		/*
10848 		 * If the gfn and userspace address are not aligned wrt each
10849 		 * other, disable large page support for this slot.
10850 		 */
10851 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10852 			unsigned long j;
10853 
10854 			for (j = 0; j < lpages; ++j)
10855 				linfo[j].disallow_lpage = 1;
10856 		}
10857 	}
10858 
10859 	if (kvm_page_track_create_memslot(slot, npages))
10860 		goto out_free;
10861 
10862 	return 0;
10863 
10864 out_free:
10865 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10866 		kvfree(slot->arch.rmap[i]);
10867 		slot->arch.rmap[i] = NULL;
10868 		if (i == 0)
10869 			continue;
10870 
10871 		kvfree(slot->arch.lpage_info[i - 1]);
10872 		slot->arch.lpage_info[i - 1] = NULL;
10873 	}
10874 	return -ENOMEM;
10875 }
10876 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)10877 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10878 {
10879 	struct kvm_vcpu *vcpu;
10880 	int i;
10881 
10882 	/*
10883 	 * memslots->generation has been incremented.
10884 	 * mmio generation may have reached its maximum value.
10885 	 */
10886 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10887 
10888 	/* Force re-initialization of steal_time cache */
10889 	kvm_for_each_vcpu(i, vcpu, kvm)
10890 		kvm_vcpu_kick(vcpu);
10891 }
10892 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)10893 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10894 				struct kvm_memory_slot *memslot,
10895 				const struct kvm_userspace_memory_region *mem,
10896 				enum kvm_mr_change change)
10897 {
10898 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10899 		return kvm_alloc_memslot_metadata(memslot,
10900 						  mem->memory_size >> PAGE_SHIFT);
10901 	return 0;
10902 }
10903 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)10904 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10905 				     struct kvm_memory_slot *old,
10906 				     struct kvm_memory_slot *new,
10907 				     enum kvm_mr_change change)
10908 {
10909 	/*
10910 	 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10911 	 * See comments below.
10912 	 */
10913 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10914 		return;
10915 
10916 	/*
10917 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10918 	 * sptes have to be split.  If live migration is successful, the guest
10919 	 * in the source machine will be destroyed and large sptes will be
10920 	 * created in the destination. However, if the guest continues to run
10921 	 * in the source machine (for example if live migration fails), small
10922 	 * sptes will remain around and cause bad performance.
10923 	 *
10924 	 * Scan sptes if dirty logging has been stopped, dropping those
10925 	 * which can be collapsed into a single large-page spte.  Later
10926 	 * page faults will create the large-page sptes.
10927 	 *
10928 	 * There is no need to do this in any of the following cases:
10929 	 * CREATE:      No dirty mappings will already exist.
10930 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10931 	 *		kvm_arch_flush_shadow_memslot()
10932 	 */
10933 	if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10934 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10935 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10936 
10937 	/*
10938 	 * Enable or disable dirty logging for the slot.
10939 	 *
10940 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10941 	 * slot have been zapped so no dirty logging updates are needed for
10942 	 * the old slot.
10943 	 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10944 	 * any mappings that might be created in it will consume the
10945 	 * properties of the new slot and do not need to be updated here.
10946 	 *
10947 	 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10948 	 * called to enable/disable dirty logging.
10949 	 *
10950 	 * When disabling dirty logging with PML enabled, the D-bit is set
10951 	 * for sptes in the slot in order to prevent unnecessary GPA
10952 	 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10953 	 * This guarantees leaving PML enabled for the guest's lifetime
10954 	 * won't have any additional overhead from PML when the guest is
10955 	 * running with dirty logging disabled.
10956 	 *
10957 	 * When enabling dirty logging, large sptes are write-protected
10958 	 * so they can be split on first write.  New large sptes cannot
10959 	 * be created for this slot until the end of the logging.
10960 	 * See the comments in fast_page_fault().
10961 	 * For small sptes, nothing is done if the dirty log is in the
10962 	 * initial-all-set state.  Otherwise, depending on whether pml
10963 	 * is enabled the D-bit or the W-bit will be cleared.
10964 	 */
10965 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10966 		if (kvm_x86_ops.slot_enable_log_dirty) {
10967 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10968 		} else {
10969 			int level =
10970 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10971 				PG_LEVEL_2M : PG_LEVEL_4K;
10972 
10973 			/*
10974 			 * If we're with initial-all-set, we don't need
10975 			 * to write protect any small page because
10976 			 * they're reported as dirty already.  However
10977 			 * we still need to write-protect huge pages
10978 			 * so that the page split can happen lazily on
10979 			 * the first write to the huge page.
10980 			 */
10981 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10982 		}
10983 	} else {
10984 		if (kvm_x86_ops.slot_disable_log_dirty)
10985 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10986 	}
10987 }
10988 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)10989 void kvm_arch_commit_memory_region(struct kvm *kvm,
10990 				const struct kvm_userspace_memory_region *mem,
10991 				struct kvm_memory_slot *old,
10992 				const struct kvm_memory_slot *new,
10993 				enum kvm_mr_change change)
10994 {
10995 	if (!kvm->arch.n_requested_mmu_pages)
10996 		kvm_mmu_change_mmu_pages(kvm,
10997 				kvm_mmu_calculate_default_mmu_pages(kvm));
10998 
10999 	/*
11000 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
11001 	 */
11002 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
11003 
11004 	/* Free the arrays associated with the old memslot. */
11005 	if (change == KVM_MR_MOVE)
11006 		kvm_arch_free_memslot(kvm, old);
11007 }
11008 
kvm_arch_flush_shadow_all(struct kvm * kvm)11009 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11010 {
11011 	kvm_mmu_zap_all(kvm);
11012 }
11013 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)11014 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11015 				   struct kvm_memory_slot *slot)
11016 {
11017 	kvm_page_track_flush_slot(kvm, slot);
11018 }
11019 
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)11020 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11021 {
11022 	return (is_guest_mode(vcpu) &&
11023 			kvm_x86_ops.guest_apic_has_interrupt &&
11024 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
11025 }
11026 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11027 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11028 {
11029 	if (!list_empty_careful(&vcpu->async_pf.done))
11030 		return true;
11031 
11032 	if (kvm_apic_has_events(vcpu))
11033 		return true;
11034 
11035 	if (vcpu->arch.pv.pv_unhalted)
11036 		return true;
11037 
11038 	if (vcpu->arch.exception.pending)
11039 		return true;
11040 
11041 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11042 	    (vcpu->arch.nmi_pending &&
11043 	     kvm_x86_ops.nmi_allowed(vcpu, false)))
11044 		return true;
11045 
11046 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11047 	    (vcpu->arch.smi_pending &&
11048 	     kvm_x86_ops.smi_allowed(vcpu, false)))
11049 		return true;
11050 
11051 	if (kvm_arch_interrupt_allowed(vcpu) &&
11052 	    (kvm_cpu_has_interrupt(vcpu) ||
11053 	    kvm_guest_apic_has_interrupt(vcpu)))
11054 		return true;
11055 
11056 	if (kvm_hv_has_stimer_pending(vcpu))
11057 		return true;
11058 
11059 	if (is_guest_mode(vcpu) &&
11060 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
11061 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11062 		return true;
11063 
11064 	return false;
11065 }
11066 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11067 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11068 {
11069 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11070 }
11071 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11072 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11073 {
11074 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11075 		return true;
11076 
11077 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11078 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11079 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11080 		return true;
11081 
11082 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
11083 		return true;
11084 
11085 	return false;
11086 }
11087 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)11088 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11089 {
11090 	return vcpu->arch.preempted_in_kernel;
11091 }
11092 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)11093 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11094 {
11095 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11096 }
11097 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)11098 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11099 {
11100 	return kvm_x86_ops.interrupt_allowed(vcpu, false);
11101 }
11102 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)11103 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11104 {
11105 	if (is_64_bit_mode(vcpu))
11106 		return kvm_rip_read(vcpu);
11107 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11108 		     kvm_rip_read(vcpu));
11109 }
11110 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11111 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)11112 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11113 {
11114 	return kvm_get_linear_rip(vcpu) == linear_rip;
11115 }
11116 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11117 
kvm_get_rflags(struct kvm_vcpu * vcpu)11118 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11119 {
11120 	unsigned long rflags;
11121 
11122 	rflags = kvm_x86_ops.get_rflags(vcpu);
11123 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11124 		rflags &= ~X86_EFLAGS_TF;
11125 	return rflags;
11126 }
11127 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11128 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)11129 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11130 {
11131 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11132 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11133 		rflags |= X86_EFLAGS_TF;
11134 	kvm_x86_ops.set_rflags(vcpu, rflags);
11135 }
11136 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)11137 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11138 {
11139 	__kvm_set_rflags(vcpu, rflags);
11140 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11141 }
11142 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11143 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11144 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11145 {
11146 	int r;
11147 
11148 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11149 	      work->wakeup_all)
11150 		return;
11151 
11152 	r = kvm_mmu_reload(vcpu);
11153 	if (unlikely(r))
11154 		return;
11155 
11156 	if (!vcpu->arch.mmu->direct_map &&
11157 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11158 		return;
11159 
11160 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11161 }
11162 
kvm_async_pf_hash_fn(gfn_t gfn)11163 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11164 {
11165 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11166 
11167 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11168 }
11169 
kvm_async_pf_next_probe(u32 key)11170 static inline u32 kvm_async_pf_next_probe(u32 key)
11171 {
11172 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11173 }
11174 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11175 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11176 {
11177 	u32 key = kvm_async_pf_hash_fn(gfn);
11178 
11179 	while (vcpu->arch.apf.gfns[key] != ~0)
11180 		key = kvm_async_pf_next_probe(key);
11181 
11182 	vcpu->arch.apf.gfns[key] = gfn;
11183 }
11184 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)11185 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11186 {
11187 	int i;
11188 	u32 key = kvm_async_pf_hash_fn(gfn);
11189 
11190 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
11191 		     (vcpu->arch.apf.gfns[key] != gfn &&
11192 		      vcpu->arch.apf.gfns[key] != ~0); i++)
11193 		key = kvm_async_pf_next_probe(key);
11194 
11195 	return key;
11196 }
11197 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11198 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11199 {
11200 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11201 }
11202 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11203 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11204 {
11205 	u32 i, j, k;
11206 
11207 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11208 
11209 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11210 		return;
11211 
11212 	while (true) {
11213 		vcpu->arch.apf.gfns[i] = ~0;
11214 		do {
11215 			j = kvm_async_pf_next_probe(j);
11216 			if (vcpu->arch.apf.gfns[j] == ~0)
11217 				return;
11218 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11219 			/*
11220 			 * k lies cyclically in ]i,j]
11221 			 * |    i.k.j |
11222 			 * |....j i.k.| or  |.k..j i...|
11223 			 */
11224 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11225 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11226 		i = j;
11227 	}
11228 }
11229 
apf_put_user_notpresent(struct kvm_vcpu * vcpu)11230 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11231 {
11232 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11233 
11234 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11235 				      sizeof(reason));
11236 }
11237 
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)11238 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11239 {
11240 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11241 
11242 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11243 					     &token, offset, sizeof(token));
11244 }
11245 
apf_pageready_slot_free(struct kvm_vcpu * vcpu)11246 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11247 {
11248 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11249 	u32 val;
11250 
11251 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11252 					 &val, offset, sizeof(val)))
11253 		return false;
11254 
11255 	return !val;
11256 }
11257 
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)11258 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11259 {
11260 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11261 		return false;
11262 
11263 	if (!kvm_pv_async_pf_enabled(vcpu) ||
11264 	    (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
11265 		return false;
11266 
11267 	return true;
11268 }
11269 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)11270 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11271 {
11272 	if (unlikely(!lapic_in_kernel(vcpu) ||
11273 		     kvm_event_needs_reinjection(vcpu) ||
11274 		     vcpu->arch.exception.pending))
11275 		return false;
11276 
11277 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11278 		return false;
11279 
11280 	/*
11281 	 * If interrupts are off we cannot even use an artificial
11282 	 * halt state.
11283 	 */
11284 	return kvm_arch_interrupt_allowed(vcpu);
11285 }
11286 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11287 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11288 				     struct kvm_async_pf *work)
11289 {
11290 	struct x86_exception fault;
11291 
11292 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11293 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11294 
11295 	if (kvm_can_deliver_async_pf(vcpu) &&
11296 	    !apf_put_user_notpresent(vcpu)) {
11297 		fault.vector = PF_VECTOR;
11298 		fault.error_code_valid = true;
11299 		fault.error_code = 0;
11300 		fault.nested_page_fault = false;
11301 		fault.address = work->arch.token;
11302 		fault.async_page_fault = true;
11303 		kvm_inject_page_fault(vcpu, &fault);
11304 		return true;
11305 	} else {
11306 		/*
11307 		 * It is not possible to deliver a paravirtualized asynchronous
11308 		 * page fault, but putting the guest in an artificial halt state
11309 		 * can be beneficial nevertheless: if an interrupt arrives, we
11310 		 * can deliver it timely and perhaps the guest will schedule
11311 		 * another process.  When the instruction that triggered a page
11312 		 * fault is retried, hopefully the page will be ready in the host.
11313 		 */
11314 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11315 		return false;
11316 	}
11317 }
11318 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11319 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11320 				 struct kvm_async_pf *work)
11321 {
11322 	struct kvm_lapic_irq irq = {
11323 		.delivery_mode = APIC_DM_FIXED,
11324 		.vector = vcpu->arch.apf.vec
11325 	};
11326 
11327 	if (work->wakeup_all)
11328 		work->arch.token = ~0; /* broadcast wakeup */
11329 	else
11330 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11331 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11332 
11333 	if ((work->wakeup_all || work->notpresent_injected) &&
11334 	    kvm_pv_async_pf_enabled(vcpu) &&
11335 	    !apf_put_user_ready(vcpu, work->arch.token)) {
11336 		vcpu->arch.apf.pageready_pending = true;
11337 		kvm_apic_set_irq(vcpu, &irq, NULL);
11338 	}
11339 
11340 	vcpu->arch.apf.halted = false;
11341 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11342 }
11343 
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)11344 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11345 {
11346 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
11347 	if (!vcpu->arch.apf.pageready_pending)
11348 		kvm_vcpu_kick(vcpu);
11349 }
11350 
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)11351 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11352 {
11353 	if (!kvm_pv_async_pf_enabled(vcpu))
11354 		return true;
11355 	else
11356 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11357 }
11358 
kvm_arch_start_assignment(struct kvm * kvm)11359 void kvm_arch_start_assignment(struct kvm *kvm)
11360 {
11361 	atomic_inc(&kvm->arch.assigned_device_count);
11362 }
11363 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11364 
kvm_arch_end_assignment(struct kvm * kvm)11365 void kvm_arch_end_assignment(struct kvm *kvm)
11366 {
11367 	atomic_dec(&kvm->arch.assigned_device_count);
11368 }
11369 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11370 
kvm_arch_has_assigned_device(struct kvm * kvm)11371 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
11372 {
11373 	return arch_atomic_read(&kvm->arch.assigned_device_count);
11374 }
11375 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11376 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)11377 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11378 {
11379 	atomic_inc(&kvm->arch.noncoherent_dma_count);
11380 }
11381 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11382 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)11383 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11384 {
11385 	atomic_dec(&kvm->arch.noncoherent_dma_count);
11386 }
11387 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11388 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)11389 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11390 {
11391 	return atomic_read(&kvm->arch.noncoherent_dma_count);
11392 }
11393 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11394 
kvm_arch_has_irq_bypass(void)11395 bool kvm_arch_has_irq_bypass(void)
11396 {
11397 	return true;
11398 }
11399 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)11400 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11401 				      struct irq_bypass_producer *prod)
11402 {
11403 	struct kvm_kernel_irqfd *irqfd =
11404 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11405 	int ret;
11406 
11407 	irqfd->producer = prod;
11408 	kvm_arch_start_assignment(irqfd->kvm);
11409 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11410 					 prod->irq, irqfd->gsi, 1);
11411 
11412 	if (ret)
11413 		kvm_arch_end_assignment(irqfd->kvm);
11414 
11415 	return ret;
11416 }
11417 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)11418 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11419 				      struct irq_bypass_producer *prod)
11420 {
11421 	int ret;
11422 	struct kvm_kernel_irqfd *irqfd =
11423 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11424 
11425 	WARN_ON(irqfd->producer != prod);
11426 	irqfd->producer = NULL;
11427 
11428 	/*
11429 	 * When producer of consumer is unregistered, we change back to
11430 	 * remapped mode, so we can re-use the current implementation
11431 	 * when the irq is masked/disabled or the consumer side (KVM
11432 	 * int this case doesn't want to receive the interrupts.
11433 	*/
11434 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11435 	if (ret)
11436 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11437 		       " fails: %d\n", irqfd->consumer.token, ret);
11438 
11439 	kvm_arch_end_assignment(irqfd->kvm);
11440 }
11441 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)11442 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11443 				   uint32_t guest_irq, bool set)
11444 {
11445 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11446 }
11447 
kvm_vector_hashing_enabled(void)11448 bool kvm_vector_hashing_enabled(void)
11449 {
11450 	return vector_hashing;
11451 }
11452 
kvm_arch_no_poll(struct kvm_vcpu * vcpu)11453 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11454 {
11455 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11456 }
11457 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11458 
11459 
kvm_spec_ctrl_test_value(u64 value)11460 int kvm_spec_ctrl_test_value(u64 value)
11461 {
11462 	/*
11463 	 * test that setting IA32_SPEC_CTRL to given value
11464 	 * is allowed by the host processor
11465 	 */
11466 
11467 	u64 saved_value;
11468 	unsigned long flags;
11469 	int ret = 0;
11470 
11471 	local_irq_save(flags);
11472 
11473 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11474 		ret = 1;
11475 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11476 		ret = 1;
11477 	else
11478 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11479 
11480 	local_irq_restore(flags);
11481 
11482 	return ret;
11483 }
11484 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11485 
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)11486 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11487 {
11488 	struct x86_exception fault;
11489 	u32 access = error_code &
11490 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11491 
11492 	if (!(error_code & PFERR_PRESENT_MASK) ||
11493 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11494 		/*
11495 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11496 		 * tables probably do not match the TLB.  Just proceed
11497 		 * with the error code that the processor gave.
11498 		 */
11499 		fault.vector = PF_VECTOR;
11500 		fault.error_code_valid = true;
11501 		fault.error_code = error_code;
11502 		fault.nested_page_fault = false;
11503 		fault.address = gva;
11504 	}
11505 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11506 }
11507 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11508 
11509 /*
11510  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11511  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11512  * indicates whether exit to userspace is needed.
11513  */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)11514 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11515 			      struct x86_exception *e)
11516 {
11517 	if (r == X86EMUL_PROPAGATE_FAULT) {
11518 		kvm_inject_emulated_page_fault(vcpu, e);
11519 		return 1;
11520 	}
11521 
11522 	/*
11523 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11524 	 * while handling a VMX instruction KVM could've handled the request
11525 	 * correctly by exiting to userspace and performing I/O but there
11526 	 * doesn't seem to be a real use-case behind such requests, just return
11527 	 * KVM_EXIT_INTERNAL_ERROR for now.
11528 	 */
11529 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11530 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11531 	vcpu->run->internal.ndata = 0;
11532 
11533 	return 0;
11534 }
11535 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11536 
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)11537 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11538 {
11539 	bool pcid_enabled;
11540 	struct x86_exception e;
11541 	unsigned i;
11542 	unsigned long roots_to_free = 0;
11543 	struct {
11544 		u64 pcid;
11545 		u64 gla;
11546 	} operand;
11547 	int r;
11548 
11549 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11550 	if (r != X86EMUL_CONTINUE)
11551 		return kvm_handle_memory_failure(vcpu, r, &e);
11552 
11553 	if (operand.pcid >> 12 != 0) {
11554 		kvm_inject_gp(vcpu, 0);
11555 		return 1;
11556 	}
11557 
11558 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11559 
11560 	switch (type) {
11561 	case INVPCID_TYPE_INDIV_ADDR:
11562 		if ((!pcid_enabled && (operand.pcid != 0)) ||
11563 		    is_noncanonical_address(operand.gla, vcpu)) {
11564 			kvm_inject_gp(vcpu, 0);
11565 			return 1;
11566 		}
11567 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11568 		return kvm_skip_emulated_instruction(vcpu);
11569 
11570 	case INVPCID_TYPE_SINGLE_CTXT:
11571 		if (!pcid_enabled && (operand.pcid != 0)) {
11572 			kvm_inject_gp(vcpu, 0);
11573 			return 1;
11574 		}
11575 
11576 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11577 			kvm_mmu_sync_roots(vcpu);
11578 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11579 		}
11580 
11581 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11582 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11583 			    == operand.pcid)
11584 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11585 
11586 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11587 		/*
11588 		 * If neither the current cr3 nor any of the prev_roots use the
11589 		 * given PCID, then nothing needs to be done here because a
11590 		 * resync will happen anyway before switching to any other CR3.
11591 		 */
11592 
11593 		return kvm_skip_emulated_instruction(vcpu);
11594 
11595 	case INVPCID_TYPE_ALL_NON_GLOBAL:
11596 		/*
11597 		 * Currently, KVM doesn't mark global entries in the shadow
11598 		 * page tables, so a non-global flush just degenerates to a
11599 		 * global flush. If needed, we could optimize this later by
11600 		 * keeping track of global entries in shadow page tables.
11601 		 */
11602 
11603 		fallthrough;
11604 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
11605 		kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
11606 		return kvm_skip_emulated_instruction(vcpu);
11607 
11608 	default:
11609 		BUG(); /* We have already checked above that type <= 3 */
11610 	}
11611 }
11612 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11613 
11614 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11615 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11616 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11636 
kvm_x86_init(void)11637 static int __init kvm_x86_init(void)
11638 {
11639 	kvm_mmu_x86_module_init();
11640 	return 0;
11641 }
11642 module_init(kvm_x86_init);
11643 
kvm_x86_exit(void)11644 static void __exit kvm_x86_exit(void)
11645 {
11646 	/*
11647 	 * If module_init() is implemented, module_exit() must also be
11648 	 * implemented to allow module unload.
11649 	 */
11650 }
11651 module_exit(kvm_x86_exit);
11652