1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/guest.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_psci.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/sigcontext.h>
28
29 #include "trace.h"
30
31 struct kvm_stats_debugfs_item debugfs_entries[] = {
32 VCPU_STAT("halt_successful_poll", halt_successful_poll),
33 VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
34 VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
35 VCPU_STAT("halt_wakeup", halt_wakeup),
36 VCPU_STAT("hvc_exit_stat", hvc_exit_stat),
37 VCPU_STAT("wfe_exit_stat", wfe_exit_stat),
38 VCPU_STAT("wfi_exit_stat", wfi_exit_stat),
39 VCPU_STAT("mmio_exit_user", mmio_exit_user),
40 VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel),
41 VCPU_STAT("exits", exits),
42 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
43 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
44 { NULL }
45 };
46
core_reg_offset_is_vreg(u64 off)47 static bool core_reg_offset_is_vreg(u64 off)
48 {
49 return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
50 off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
51 }
52
core_reg_offset_from_id(u64 id)53 static u64 core_reg_offset_from_id(u64 id)
54 {
55 return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
56 }
57
core_reg_size_from_offset(const struct kvm_vcpu * vcpu,u64 off)58 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
59 {
60 int size;
61
62 switch (off) {
63 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
64 KVM_REG_ARM_CORE_REG(regs.regs[30]):
65 case KVM_REG_ARM_CORE_REG(regs.sp):
66 case KVM_REG_ARM_CORE_REG(regs.pc):
67 case KVM_REG_ARM_CORE_REG(regs.pstate):
68 case KVM_REG_ARM_CORE_REG(sp_el1):
69 case KVM_REG_ARM_CORE_REG(elr_el1):
70 case KVM_REG_ARM_CORE_REG(spsr[0]) ...
71 KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
72 size = sizeof(__u64);
73 break;
74
75 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
76 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
77 size = sizeof(__uint128_t);
78 break;
79
80 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
81 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
82 size = sizeof(__u32);
83 break;
84
85 default:
86 return -EINVAL;
87 }
88
89 if (!IS_ALIGNED(off, size / sizeof(__u32)))
90 return -EINVAL;
91
92 /*
93 * The KVM_REG_ARM64_SVE regs must be used instead of
94 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
95 * SVE-enabled vcpus:
96 */
97 if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
98 return -EINVAL;
99
100 return size;
101 }
102
core_reg_addr(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)103 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
104 {
105 u64 off = core_reg_offset_from_id(reg->id);
106 int size = core_reg_size_from_offset(vcpu, off);
107
108 if (size < 0)
109 return NULL;
110
111 if (KVM_REG_SIZE(reg->id) != size)
112 return NULL;
113
114 switch (off) {
115 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
116 KVM_REG_ARM_CORE_REG(regs.regs[30]):
117 off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
118 off /= 2;
119 return &vcpu->arch.ctxt.regs.regs[off];
120
121 case KVM_REG_ARM_CORE_REG(regs.sp):
122 return &vcpu->arch.ctxt.regs.sp;
123
124 case KVM_REG_ARM_CORE_REG(regs.pc):
125 return &vcpu->arch.ctxt.regs.pc;
126
127 case KVM_REG_ARM_CORE_REG(regs.pstate):
128 return &vcpu->arch.ctxt.regs.pstate;
129
130 case KVM_REG_ARM_CORE_REG(sp_el1):
131 return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
132
133 case KVM_REG_ARM_CORE_REG(elr_el1):
134 return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
135
136 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
137 return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
138
139 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
140 return &vcpu->arch.ctxt.spsr_abt;
141
142 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
143 return &vcpu->arch.ctxt.spsr_und;
144
145 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
146 return &vcpu->arch.ctxt.spsr_irq;
147
148 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
149 return &vcpu->arch.ctxt.spsr_fiq;
150
151 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
152 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
153 off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
154 off /= 4;
155 return &vcpu->arch.ctxt.fp_regs.vregs[off];
156
157 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
158 return &vcpu->arch.ctxt.fp_regs.fpsr;
159
160 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
161 return &vcpu->arch.ctxt.fp_regs.fpcr;
162
163 default:
164 return NULL;
165 }
166 }
167
get_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)168 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
169 {
170 /*
171 * Because the kvm_regs structure is a mix of 32, 64 and
172 * 128bit fields, we index it as if it was a 32bit
173 * array. Hence below, nr_regs is the number of entries, and
174 * off the index in the "array".
175 */
176 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
177 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
178 void *addr;
179 u32 off;
180
181 /* Our ID is an index into the kvm_regs struct. */
182 off = core_reg_offset_from_id(reg->id);
183 if (off >= nr_regs ||
184 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
185 return -ENOENT;
186
187 addr = core_reg_addr(vcpu, reg);
188 if (!addr)
189 return -EINVAL;
190
191 if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
192 return -EFAULT;
193
194 return 0;
195 }
196
set_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)197 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
198 {
199 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
200 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
201 __uint128_t tmp;
202 void *valp = &tmp, *addr;
203 u64 off;
204 int err = 0;
205
206 /* Our ID is an index into the kvm_regs struct. */
207 off = core_reg_offset_from_id(reg->id);
208 if (off >= nr_regs ||
209 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
210 return -ENOENT;
211
212 addr = core_reg_addr(vcpu, reg);
213 if (!addr)
214 return -EINVAL;
215
216 if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
217 return -EINVAL;
218
219 if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
220 err = -EFAULT;
221 goto out;
222 }
223
224 if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
225 u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
226 switch (mode) {
227 case PSR_AA32_MODE_USR:
228 if (!kvm_supports_32bit_el0())
229 return -EINVAL;
230 break;
231 case PSR_AA32_MODE_FIQ:
232 case PSR_AA32_MODE_IRQ:
233 case PSR_AA32_MODE_SVC:
234 case PSR_AA32_MODE_ABT:
235 case PSR_AA32_MODE_UND:
236 if (!vcpu_el1_is_32bit(vcpu))
237 return -EINVAL;
238 break;
239 case PSR_MODE_EL0t:
240 case PSR_MODE_EL1t:
241 case PSR_MODE_EL1h:
242 if (vcpu_el1_is_32bit(vcpu))
243 return -EINVAL;
244 break;
245 default:
246 err = -EINVAL;
247 goto out;
248 }
249 }
250
251 memcpy(addr, valp, KVM_REG_SIZE(reg->id));
252
253 if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
254 int i, nr_reg;
255
256 switch (*vcpu_cpsr(vcpu)) {
257 /*
258 * Either we are dealing with user mode, and only the
259 * first 15 registers (+ PC) must be narrowed to 32bit.
260 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
261 */
262 case PSR_AA32_MODE_USR:
263 case PSR_AA32_MODE_SYS:
264 nr_reg = 15;
265 break;
266
267 /*
268 * Otherwide, this is a priviledged mode, and *all* the
269 * registers must be narrowed to 32bit.
270 */
271 default:
272 nr_reg = 31;
273 break;
274 }
275
276 for (i = 0; i < nr_reg; i++)
277 vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
278
279 *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
280 }
281 out:
282 return err;
283 }
284
285 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
286 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
287 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
288
get_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)289 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
290 {
291 unsigned int max_vq, vq;
292 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
293
294 if (!vcpu_has_sve(vcpu))
295 return -ENOENT;
296
297 if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
298 return -EINVAL;
299
300 memset(vqs, 0, sizeof(vqs));
301
302 max_vq = vcpu_sve_max_vq(vcpu);
303 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
304 if (sve_vq_available(vq))
305 vqs[vq_word(vq)] |= vq_mask(vq);
306
307 if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
308 return -EFAULT;
309
310 return 0;
311 }
312
set_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)313 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
314 {
315 unsigned int max_vq, vq;
316 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
317
318 if (!vcpu_has_sve(vcpu))
319 return -ENOENT;
320
321 if (kvm_arm_vcpu_sve_finalized(vcpu))
322 return -EPERM; /* too late! */
323
324 if (WARN_ON(vcpu->arch.sve_state))
325 return -EINVAL;
326
327 if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
328 return -EFAULT;
329
330 max_vq = 0;
331 for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
332 if (vq_present(vqs, vq))
333 max_vq = vq;
334
335 if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
336 return -EINVAL;
337
338 /*
339 * Vector lengths supported by the host can't currently be
340 * hidden from the guest individually: instead we can only set a
341 * maximum via ZCR_EL2.LEN. So, make sure the available vector
342 * lengths match the set requested exactly up to the requested
343 * maximum:
344 */
345 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
346 if (vq_present(vqs, vq) != sve_vq_available(vq))
347 return -EINVAL;
348
349 /* Can't run with no vector lengths at all: */
350 if (max_vq < SVE_VQ_MIN)
351 return -EINVAL;
352
353 /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
354 vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
355
356 return 0;
357 }
358
359 #define SVE_REG_SLICE_SHIFT 0
360 #define SVE_REG_SLICE_BITS 5
361 #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
362 #define SVE_REG_ID_BITS 5
363
364 #define SVE_REG_SLICE_MASK \
365 GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
366 SVE_REG_SLICE_SHIFT)
367 #define SVE_REG_ID_MASK \
368 GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
369
370 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
371
372 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
373 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
374
375 /*
376 * Number of register slices required to cover each whole SVE register.
377 * NOTE: Only the first slice every exists, for now.
378 * If you are tempted to modify this, you must also rework sve_reg_to_region()
379 * to match:
380 */
381 #define vcpu_sve_slices(vcpu) 1
382
383 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
384 struct sve_state_reg_region {
385 unsigned int koffset; /* offset into sve_state in kernel memory */
386 unsigned int klen; /* length in kernel memory */
387 unsigned int upad; /* extra trailing padding in user memory */
388 };
389
390 /*
391 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
392 * register copy
393 */
sve_reg_to_region(struct sve_state_reg_region * region,struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)394 static int sve_reg_to_region(struct sve_state_reg_region *region,
395 struct kvm_vcpu *vcpu,
396 const struct kvm_one_reg *reg)
397 {
398 /* reg ID ranges for Z- registers */
399 const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
400 const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
401 SVE_NUM_SLICES - 1);
402
403 /* reg ID ranges for P- registers and FFR (which are contiguous) */
404 const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
405 const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
406
407 unsigned int vq;
408 unsigned int reg_num;
409
410 unsigned int reqoffset, reqlen; /* User-requested offset and length */
411 unsigned int maxlen; /* Maximum permitted length */
412
413 size_t sve_state_size;
414
415 const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
416 SVE_NUM_SLICES - 1);
417
418 /* Verify that the P-regs and FFR really do have contiguous IDs: */
419 BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
420
421 /* Verify that we match the UAPI header: */
422 BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
423
424 reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
425
426 if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
427 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
428 return -ENOENT;
429
430 vq = vcpu_sve_max_vq(vcpu);
431
432 reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
433 SVE_SIG_REGS_OFFSET;
434 reqlen = KVM_SVE_ZREG_SIZE;
435 maxlen = SVE_SIG_ZREG_SIZE(vq);
436 } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
437 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
438 return -ENOENT;
439
440 vq = vcpu_sve_max_vq(vcpu);
441
442 reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
443 SVE_SIG_REGS_OFFSET;
444 reqlen = KVM_SVE_PREG_SIZE;
445 maxlen = SVE_SIG_PREG_SIZE(vq);
446 } else {
447 return -EINVAL;
448 }
449
450 sve_state_size = vcpu_sve_state_size(vcpu);
451 if (WARN_ON(!sve_state_size))
452 return -EINVAL;
453
454 region->koffset = array_index_nospec(reqoffset, sve_state_size);
455 region->klen = min(maxlen, reqlen);
456 region->upad = reqlen - region->klen;
457
458 return 0;
459 }
460
get_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)461 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
462 {
463 int ret;
464 struct sve_state_reg_region region;
465 char __user *uptr = (char __user *)reg->addr;
466
467 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
468 if (reg->id == KVM_REG_ARM64_SVE_VLS)
469 return get_sve_vls(vcpu, reg);
470
471 /* Try to interpret reg ID as an architectural SVE register... */
472 ret = sve_reg_to_region(®ion, vcpu, reg);
473 if (ret)
474 return ret;
475
476 if (!kvm_arm_vcpu_sve_finalized(vcpu))
477 return -EPERM;
478
479 if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
480 region.klen) ||
481 clear_user(uptr + region.klen, region.upad))
482 return -EFAULT;
483
484 return 0;
485 }
486
set_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)487 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
488 {
489 int ret;
490 struct sve_state_reg_region region;
491 const char __user *uptr = (const char __user *)reg->addr;
492
493 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
494 if (reg->id == KVM_REG_ARM64_SVE_VLS)
495 return set_sve_vls(vcpu, reg);
496
497 /* Try to interpret reg ID as an architectural SVE register... */
498 ret = sve_reg_to_region(®ion, vcpu, reg);
499 if (ret)
500 return ret;
501
502 if (!kvm_arm_vcpu_sve_finalized(vcpu))
503 return -EPERM;
504
505 if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
506 region.klen))
507 return -EFAULT;
508
509 return 0;
510 }
511
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)512 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
513 {
514 return -EINVAL;
515 }
516
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)517 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
518 {
519 return -EINVAL;
520 }
521
copy_core_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)522 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
523 u64 __user *uindices)
524 {
525 unsigned int i;
526 int n = 0;
527
528 for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
529 u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
530 int size = core_reg_size_from_offset(vcpu, i);
531
532 if (size < 0)
533 continue;
534
535 switch (size) {
536 case sizeof(__u32):
537 reg |= KVM_REG_SIZE_U32;
538 break;
539
540 case sizeof(__u64):
541 reg |= KVM_REG_SIZE_U64;
542 break;
543
544 case sizeof(__uint128_t):
545 reg |= KVM_REG_SIZE_U128;
546 break;
547
548 default:
549 WARN_ON(1);
550 continue;
551 }
552
553 if (uindices) {
554 if (put_user(reg, uindices))
555 return -EFAULT;
556 uindices++;
557 }
558
559 n++;
560 }
561
562 return n;
563 }
564
num_core_regs(const struct kvm_vcpu * vcpu)565 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
566 {
567 return copy_core_reg_indices(vcpu, NULL);
568 }
569
570 /**
571 * ARM64 versions of the TIMER registers, always available on arm64
572 */
573
574 #define NUM_TIMER_REGS 3
575
is_timer_reg(u64 index)576 static bool is_timer_reg(u64 index)
577 {
578 switch (index) {
579 case KVM_REG_ARM_TIMER_CTL:
580 case KVM_REG_ARM_TIMER_CNT:
581 case KVM_REG_ARM_TIMER_CVAL:
582 return true;
583 }
584 return false;
585 }
586
copy_timer_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)587 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
588 {
589 if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
590 return -EFAULT;
591 uindices++;
592 if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
593 return -EFAULT;
594 uindices++;
595 if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
596 return -EFAULT;
597
598 return 0;
599 }
600
set_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)601 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
602 {
603 void __user *uaddr = (void __user *)(long)reg->addr;
604 u64 val;
605 int ret;
606
607 ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
608 if (ret != 0)
609 return -EFAULT;
610
611 return kvm_arm_timer_set_reg(vcpu, reg->id, val);
612 }
613
get_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)614 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
615 {
616 void __user *uaddr = (void __user *)(long)reg->addr;
617 u64 val;
618
619 val = kvm_arm_timer_get_reg(vcpu, reg->id);
620 return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
621 }
622
num_sve_regs(const struct kvm_vcpu * vcpu)623 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
624 {
625 const unsigned int slices = vcpu_sve_slices(vcpu);
626
627 if (!vcpu_has_sve(vcpu))
628 return 0;
629
630 /* Policed by KVM_GET_REG_LIST: */
631 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
632
633 return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
634 + 1; /* KVM_REG_ARM64_SVE_VLS */
635 }
636
copy_sve_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)637 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
638 u64 __user *uindices)
639 {
640 const unsigned int slices = vcpu_sve_slices(vcpu);
641 u64 reg;
642 unsigned int i, n;
643 int num_regs = 0;
644
645 if (!vcpu_has_sve(vcpu))
646 return 0;
647
648 /* Policed by KVM_GET_REG_LIST: */
649 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
650
651 /*
652 * Enumerate this first, so that userspace can save/restore in
653 * the order reported by KVM_GET_REG_LIST:
654 */
655 reg = KVM_REG_ARM64_SVE_VLS;
656 if (put_user(reg, uindices++))
657 return -EFAULT;
658 ++num_regs;
659
660 for (i = 0; i < slices; i++) {
661 for (n = 0; n < SVE_NUM_ZREGS; n++) {
662 reg = KVM_REG_ARM64_SVE_ZREG(n, i);
663 if (put_user(reg, uindices++))
664 return -EFAULT;
665 num_regs++;
666 }
667
668 for (n = 0; n < SVE_NUM_PREGS; n++) {
669 reg = KVM_REG_ARM64_SVE_PREG(n, i);
670 if (put_user(reg, uindices++))
671 return -EFAULT;
672 num_regs++;
673 }
674
675 reg = KVM_REG_ARM64_SVE_FFR(i);
676 if (put_user(reg, uindices++))
677 return -EFAULT;
678 num_regs++;
679 }
680
681 return num_regs;
682 }
683
684 /**
685 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
686 *
687 * This is for all registers.
688 */
kvm_arm_num_regs(struct kvm_vcpu * vcpu)689 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
690 {
691 unsigned long res = 0;
692
693 res += num_core_regs(vcpu);
694 res += num_sve_regs(vcpu);
695 res += kvm_arm_num_sys_reg_descs(vcpu);
696 res += kvm_arm_get_fw_num_regs(vcpu);
697 res += NUM_TIMER_REGS;
698
699 return res;
700 }
701
702 /**
703 * kvm_arm_copy_reg_indices - get indices of all registers.
704 *
705 * We do core registers right here, then we append system regs.
706 */
kvm_arm_copy_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)707 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
708 {
709 int ret;
710
711 ret = copy_core_reg_indices(vcpu, uindices);
712 if (ret < 0)
713 return ret;
714 uindices += ret;
715
716 ret = copy_sve_reg_indices(vcpu, uindices);
717 if (ret < 0)
718 return ret;
719 uindices += ret;
720
721 ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
722 if (ret < 0)
723 return ret;
724 uindices += kvm_arm_get_fw_num_regs(vcpu);
725
726 ret = copy_timer_indices(vcpu, uindices);
727 if (ret < 0)
728 return ret;
729 uindices += NUM_TIMER_REGS;
730
731 return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
732 }
733
kvm_arm_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)734 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
735 {
736 /* We currently use nothing arch-specific in upper 32 bits */
737 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
738 return -EINVAL;
739
740 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
741 case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
742 case KVM_REG_ARM_FW: return kvm_arm_get_fw_reg(vcpu, reg);
743 case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
744 }
745
746 if (is_timer_reg(reg->id))
747 return get_timer_reg(vcpu, reg);
748
749 return kvm_arm_sys_reg_get_reg(vcpu, reg);
750 }
751
kvm_arm_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)752 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
753 {
754 /* We currently use nothing arch-specific in upper 32 bits */
755 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
756 return -EINVAL;
757
758 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
759 case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
760 case KVM_REG_ARM_FW: return kvm_arm_set_fw_reg(vcpu, reg);
761 case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
762 }
763
764 if (is_timer_reg(reg->id))
765 return set_timer_reg(vcpu, reg);
766
767 return kvm_arm_sys_reg_set_reg(vcpu, reg);
768 }
769
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)770 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
771 struct kvm_sregs *sregs)
772 {
773 return -EINVAL;
774 }
775
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)776 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
777 struct kvm_sregs *sregs)
778 {
779 return -EINVAL;
780 }
781
__kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)782 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
783 struct kvm_vcpu_events *events)
784 {
785 events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
786 events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
787
788 if (events->exception.serror_pending && events->exception.serror_has_esr)
789 events->exception.serror_esr = vcpu_get_vsesr(vcpu);
790
791 /*
792 * We never return a pending ext_dabt here because we deliver it to
793 * the virtual CPU directly when setting the event and it's no longer
794 * 'pending' at this point.
795 */
796
797 return 0;
798 }
799
__kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)800 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
801 struct kvm_vcpu_events *events)
802 {
803 bool serror_pending = events->exception.serror_pending;
804 bool has_esr = events->exception.serror_has_esr;
805 bool ext_dabt_pending = events->exception.ext_dabt_pending;
806
807 if (serror_pending && has_esr) {
808 if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
809 return -EINVAL;
810
811 if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
812 kvm_set_sei_esr(vcpu, events->exception.serror_esr);
813 else
814 return -EINVAL;
815 } else if (serror_pending) {
816 kvm_inject_vabt(vcpu);
817 }
818
819 if (ext_dabt_pending)
820 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
821
822 return 0;
823 }
824
kvm_target_cpu(void)825 int __attribute_const__ kvm_target_cpu(void)
826 {
827 unsigned long implementor = read_cpuid_implementor();
828 unsigned long part_number = read_cpuid_part_number();
829
830 switch (implementor) {
831 case ARM_CPU_IMP_ARM:
832 switch (part_number) {
833 case ARM_CPU_PART_AEM_V8:
834 return KVM_ARM_TARGET_AEM_V8;
835 case ARM_CPU_PART_FOUNDATION:
836 return KVM_ARM_TARGET_FOUNDATION_V8;
837 case ARM_CPU_PART_CORTEX_A53:
838 return KVM_ARM_TARGET_CORTEX_A53;
839 case ARM_CPU_PART_CORTEX_A57:
840 return KVM_ARM_TARGET_CORTEX_A57;
841 }
842 break;
843 case ARM_CPU_IMP_APM:
844 switch (part_number) {
845 case APM_CPU_PART_POTENZA:
846 return KVM_ARM_TARGET_XGENE_POTENZA;
847 }
848 break;
849 }
850
851 /* Return a default generic target */
852 return KVM_ARM_TARGET_GENERIC_V8;
853 }
854
kvm_vcpu_preferred_target(struct kvm_vcpu_init * init)855 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
856 {
857 int target = kvm_target_cpu();
858
859 if (target < 0)
860 return -ENODEV;
861
862 memset(init, 0, sizeof(*init));
863
864 /*
865 * For now, we don't return any features.
866 * In future, we might use features to return target
867 * specific features available for the preferred
868 * target type.
869 */
870 init->target = (__u32)target;
871
872 return 0;
873 }
874
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)875 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
876 {
877 return -EINVAL;
878 }
879
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)880 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
881 {
882 return -EINVAL;
883 }
884
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)885 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
886 struct kvm_translation *tr)
887 {
888 return -EINVAL;
889 }
890
891 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
892 KVM_GUESTDBG_USE_SW_BP | \
893 KVM_GUESTDBG_USE_HW | \
894 KVM_GUESTDBG_SINGLESTEP)
895
896 /**
897 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
898 * @kvm: pointer to the KVM struct
899 * @kvm_guest_debug: the ioctl data buffer
900 *
901 * This sets up and enables the VM for guest debugging. Userspace
902 * passes in a control flag to enable different debug types and
903 * potentially other architecture specific information in the rest of
904 * the structure.
905 */
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)906 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
907 struct kvm_guest_debug *dbg)
908 {
909 int ret = 0;
910
911 trace_kvm_set_guest_debug(vcpu, dbg->control);
912
913 if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
914 ret = -EINVAL;
915 goto out;
916 }
917
918 if (dbg->control & KVM_GUESTDBG_ENABLE) {
919 vcpu->guest_debug = dbg->control;
920
921 /* Hardware assisted Break and Watch points */
922 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
923 vcpu->arch.external_debug_state = dbg->arch;
924 }
925
926 } else {
927 /* If not enabled clear all flags */
928 vcpu->guest_debug = 0;
929 }
930
931 out:
932 return ret;
933 }
934
kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)935 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
936 struct kvm_device_attr *attr)
937 {
938 int ret;
939
940 switch (attr->group) {
941 case KVM_ARM_VCPU_PMU_V3_CTRL:
942 ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
943 break;
944 case KVM_ARM_VCPU_TIMER_CTRL:
945 ret = kvm_arm_timer_set_attr(vcpu, attr);
946 break;
947 case KVM_ARM_VCPU_PVTIME_CTRL:
948 ret = kvm_arm_pvtime_set_attr(vcpu, attr);
949 break;
950 default:
951 ret = -ENXIO;
952 break;
953 }
954
955 return ret;
956 }
957
kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)958 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
959 struct kvm_device_attr *attr)
960 {
961 int ret;
962
963 switch (attr->group) {
964 case KVM_ARM_VCPU_PMU_V3_CTRL:
965 ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
966 break;
967 case KVM_ARM_VCPU_TIMER_CTRL:
968 ret = kvm_arm_timer_get_attr(vcpu, attr);
969 break;
970 case KVM_ARM_VCPU_PVTIME_CTRL:
971 ret = kvm_arm_pvtime_get_attr(vcpu, attr);
972 break;
973 default:
974 ret = -ENXIO;
975 break;
976 }
977
978 return ret;
979 }
980
kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)981 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
982 struct kvm_device_attr *attr)
983 {
984 int ret;
985
986 switch (attr->group) {
987 case KVM_ARM_VCPU_PMU_V3_CTRL:
988 ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
989 break;
990 case KVM_ARM_VCPU_TIMER_CTRL:
991 ret = kvm_arm_timer_has_attr(vcpu, attr);
992 break;
993 case KVM_ARM_VCPU_PVTIME_CTRL:
994 ret = kvm_arm_pvtime_has_attr(vcpu, attr);
995 break;
996 default:
997 ret = -ENXIO;
998 break;
999 }
1000
1001 return ret;
1002 }
1003