• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  (c) 2005-2016 Advanced Micro Devices, Inc.
4  *
5  *  Written by Jacob Shin - AMD, Inc.
6  *  Maintained by: Borislav Petkov <bp@alien8.de>
7  *
8  *  All MC4_MISCi registers are shared between cores on a node.
9  */
10 #include <linux/interrupt.h>
11 #include <linux/notifier.h>
12 #include <linux/kobject.h>
13 #include <linux/percpu.h>
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sysfs.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/cpu.h>
20 #include <linux/smp.h>
21 #include <linux/string.h>
22 
23 #include <asm/amd_nb.h>
24 #include <asm/traps.h>
25 #include <asm/apic.h>
26 #include <asm/mce.h>
27 #include <asm/msr.h>
28 #include <asm/trace/irq_vectors.h>
29 
30 #include "internal.h"
31 
32 #define NR_BLOCKS         5
33 #define THRESHOLD_MAX     0xFFF
34 #define INT_TYPE_APIC     0x00020000
35 #define MASK_VALID_HI     0x80000000
36 #define MASK_CNTP_HI      0x40000000
37 #define MASK_LOCKED_HI    0x20000000
38 #define MASK_LVTOFF_HI    0x00F00000
39 #define MASK_COUNT_EN_HI  0x00080000
40 #define MASK_INT_TYPE_HI  0x00060000
41 #define MASK_OVERFLOW_HI  0x00010000
42 #define MASK_ERR_COUNT_HI 0x00000FFF
43 #define MASK_BLKPTR_LO    0xFF000000
44 #define MCG_XBLK_ADDR     0xC0000400
45 
46 /* Deferred error settings */
47 #define MSR_CU_DEF_ERR		0xC0000410
48 #define MASK_DEF_LVTOFF		0x000000F0
49 #define MASK_DEF_INT_TYPE	0x00000006
50 #define DEF_LVT_OFF		0x2
51 #define DEF_INT_TYPE_APIC	0x2
52 
53 /* Scalable MCA: */
54 
55 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
56 #define SMCA_THR_LVT_OFF	0xF000
57 
58 static bool thresholding_irq_en;
59 
60 static const char * const th_names[] = {
61 	"load_store",
62 	"insn_fetch",
63 	"combined_unit",
64 	"decode_unit",
65 	"northbridge",
66 	"execution_unit",
67 };
68 
69 static const char * const smca_umc_block_names[] = {
70 	"dram_ecc",
71 	"misc_umc"
72 };
73 
74 struct smca_bank_name {
75 	const char *name;	/* Short name for sysfs */
76 	const char *long_name;	/* Long name for pretty-printing */
77 };
78 
79 static struct smca_bank_name smca_names[] = {
80 	[SMCA_LS]	= { "load_store",	"Load Store Unit" },
81 	[SMCA_LS_V2]	= { "load_store",	"Load Store Unit" },
82 	[SMCA_IF]	= { "insn_fetch",	"Instruction Fetch Unit" },
83 	[SMCA_L2_CACHE]	= { "l2_cache",		"L2 Cache" },
84 	[SMCA_DE]	= { "decode_unit",	"Decode Unit" },
85 	[SMCA_RESERVED]	= { "reserved",		"Reserved" },
86 	[SMCA_EX]	= { "execution_unit",	"Execution Unit" },
87 	[SMCA_FP]	= { "floating_point",	"Floating Point Unit" },
88 	[SMCA_L3_CACHE]	= { "l3_cache",		"L3 Cache" },
89 	[SMCA_CS]	= { "coherent_slave",	"Coherent Slave" },
90 	[SMCA_CS_V2]	= { "coherent_slave",	"Coherent Slave" },
91 	[SMCA_PIE]	= { "pie",		"Power, Interrupts, etc." },
92 	[SMCA_UMC]	= { "umc",		"Unified Memory Controller" },
93 	[SMCA_PB]	= { "param_block",	"Parameter Block" },
94 	[SMCA_PSP]	= { "psp",		"Platform Security Processor" },
95 	[SMCA_PSP_V2]	= { "psp",		"Platform Security Processor" },
96 	[SMCA_SMU]	= { "smu",		"System Management Unit" },
97 	[SMCA_SMU_V2]	= { "smu",		"System Management Unit" },
98 	[SMCA_MP5]	= { "mp5",		"Microprocessor 5 Unit" },
99 	[SMCA_NBIO]	= { "nbio",		"Northbridge IO Unit" },
100 	[SMCA_PCIE]	= { "pcie",		"PCI Express Unit" },
101 };
102 
smca_get_name(enum smca_bank_types t)103 static const char *smca_get_name(enum smca_bank_types t)
104 {
105 	if (t >= N_SMCA_BANK_TYPES)
106 		return NULL;
107 
108 	return smca_names[t].name;
109 }
110 
smca_get_long_name(enum smca_bank_types t)111 const char *smca_get_long_name(enum smca_bank_types t)
112 {
113 	if (t >= N_SMCA_BANK_TYPES)
114 		return NULL;
115 
116 	return smca_names[t].long_name;
117 }
118 EXPORT_SYMBOL_GPL(smca_get_long_name);
119 
smca_get_bank_type(unsigned int bank)120 static enum smca_bank_types smca_get_bank_type(unsigned int bank)
121 {
122 	struct smca_bank *b;
123 
124 	if (bank >= MAX_NR_BANKS)
125 		return N_SMCA_BANK_TYPES;
126 
127 	b = &smca_banks[bank];
128 	if (!b->hwid)
129 		return N_SMCA_BANK_TYPES;
130 
131 	return b->hwid->bank_type;
132 }
133 
134 static struct smca_hwid smca_hwid_mcatypes[] = {
135 	/* { bank_type, hwid_mcatype } */
136 
137 	/* Reserved type */
138 	{ SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0)	},
139 
140 	/* ZN Core (HWID=0xB0) MCA types */
141 	{ SMCA_LS,	 HWID_MCATYPE(0xB0, 0x0)	},
142 	{ SMCA_LS_V2,	 HWID_MCATYPE(0xB0, 0x10)	},
143 	{ SMCA_IF,	 HWID_MCATYPE(0xB0, 0x1)	},
144 	{ SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2)	},
145 	{ SMCA_DE,	 HWID_MCATYPE(0xB0, 0x3)	},
146 	/* HWID 0xB0 MCATYPE 0x4 is Reserved */
147 	{ SMCA_EX,	 HWID_MCATYPE(0xB0, 0x5)	},
148 	{ SMCA_FP,	 HWID_MCATYPE(0xB0, 0x6)	},
149 	{ SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7)	},
150 
151 	/* Data Fabric MCA types */
152 	{ SMCA_CS,	 HWID_MCATYPE(0x2E, 0x0)	},
153 	{ SMCA_PIE,	 HWID_MCATYPE(0x2E, 0x1)	},
154 	{ SMCA_CS_V2,	 HWID_MCATYPE(0x2E, 0x2)	},
155 
156 	/* Unified Memory Controller MCA type */
157 	{ SMCA_UMC,	 HWID_MCATYPE(0x96, 0x0)	},
158 
159 	/* Parameter Block MCA type */
160 	{ SMCA_PB,	 HWID_MCATYPE(0x05, 0x0)	},
161 
162 	/* Platform Security Processor MCA type */
163 	{ SMCA_PSP,	 HWID_MCATYPE(0xFF, 0x0)	},
164 	{ SMCA_PSP_V2,	 HWID_MCATYPE(0xFF, 0x1)	},
165 
166 	/* System Management Unit MCA type */
167 	{ SMCA_SMU,	 HWID_MCATYPE(0x01, 0x0)	},
168 	{ SMCA_SMU_V2,	 HWID_MCATYPE(0x01, 0x1)	},
169 
170 	/* Microprocessor 5 Unit MCA type */
171 	{ SMCA_MP5,	 HWID_MCATYPE(0x01, 0x2)	},
172 
173 	/* Northbridge IO Unit MCA type */
174 	{ SMCA_NBIO,	 HWID_MCATYPE(0x18, 0x0)	},
175 
176 	/* PCI Express Unit MCA type */
177 	{ SMCA_PCIE,	 HWID_MCATYPE(0x46, 0x0)	},
178 };
179 
180 struct smca_bank smca_banks[MAX_NR_BANKS];
181 EXPORT_SYMBOL_GPL(smca_banks);
182 
183 /*
184  * In SMCA enabled processors, we can have multiple banks for a given IP type.
185  * So to define a unique name for each bank, we use a temp c-string to append
186  * the MCA_IPID[InstanceId] to type's name in get_name().
187  *
188  * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
189  * is greater than 8 plus 1 (for underscore) plus length of longest type name.
190  */
191 #define MAX_MCATYPE_NAME_LEN	30
192 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
193 
194 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
195 
196 /*
197  * A list of the banks enabled on each logical CPU. Controls which respective
198  * descriptors to initialize later in mce_threshold_create_device().
199  */
200 static DEFINE_PER_CPU(u64, bank_map);
201 
202 /* Map of banks that have more than MCA_MISC0 available. */
203 static DEFINE_PER_CPU(u64, smca_misc_banks_map);
204 
205 static void amd_threshold_interrupt(void);
206 static void amd_deferred_error_interrupt(void);
207 
default_deferred_error_interrupt(void)208 static void default_deferred_error_interrupt(void)
209 {
210 	pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
211 }
212 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
213 
smca_set_misc_banks_map(unsigned int bank,unsigned int cpu)214 static void smca_set_misc_banks_map(unsigned int bank, unsigned int cpu)
215 {
216 	u32 low, high;
217 
218 	/*
219 	 * For SMCA enabled processors, BLKPTR field of the first MISC register
220 	 * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
221 	 */
222 	if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
223 		return;
224 
225 	if (!(low & MCI_CONFIG_MCAX))
226 		return;
227 
228 	if (rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high))
229 		return;
230 
231 	if (low & MASK_BLKPTR_LO)
232 		per_cpu(smca_misc_banks_map, cpu) |= BIT_ULL(bank);
233 
234 }
235 
smca_configure(unsigned int bank,unsigned int cpu)236 static void smca_configure(unsigned int bank, unsigned int cpu)
237 {
238 	unsigned int i, hwid_mcatype;
239 	struct smca_hwid *s_hwid;
240 	u32 high, low;
241 	u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
242 
243 	/* Set appropriate bits in MCA_CONFIG */
244 	if (!rdmsr_safe(smca_config, &low, &high)) {
245 		/*
246 		 * OS is required to set the MCAX bit to acknowledge that it is
247 		 * now using the new MSR ranges and new registers under each
248 		 * bank. It also means that the OS will configure deferred
249 		 * errors in the new MCx_CONFIG register. If the bit is not set,
250 		 * uncorrectable errors will cause a system panic.
251 		 *
252 		 * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
253 		 */
254 		high |= BIT(0);
255 
256 		/*
257 		 * SMCA sets the Deferred Error Interrupt type per bank.
258 		 *
259 		 * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
260 		 * if the DeferredIntType bit field is available.
261 		 *
262 		 * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
263 		 * high portion of the MSR). OS should set this to 0x1 to enable
264 		 * APIC based interrupt. First, check that no interrupt has been
265 		 * set.
266 		 */
267 		if ((low & BIT(5)) && !((high >> 5) & 0x3))
268 			high |= BIT(5);
269 
270 		wrmsr(smca_config, low, high);
271 	}
272 
273 	smca_set_misc_banks_map(bank, cpu);
274 
275 	/* Return early if this bank was already initialized. */
276 	if (smca_banks[bank].hwid && smca_banks[bank].hwid->hwid_mcatype != 0)
277 		return;
278 
279 	if (rdmsr_safe(MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
280 		pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
281 		return;
282 	}
283 
284 	hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
285 				    (high & MCI_IPID_MCATYPE) >> 16);
286 
287 	for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
288 		s_hwid = &smca_hwid_mcatypes[i];
289 		if (hwid_mcatype == s_hwid->hwid_mcatype) {
290 			smca_banks[bank].hwid = s_hwid;
291 			smca_banks[bank].id = low;
292 			smca_banks[bank].sysfs_id = s_hwid->count++;
293 			break;
294 		}
295 	}
296 }
297 
298 struct thresh_restart {
299 	struct threshold_block	*b;
300 	int			reset;
301 	int			set_lvt_off;
302 	int			lvt_off;
303 	u16			old_limit;
304 };
305 
is_shared_bank(int bank)306 static inline bool is_shared_bank(int bank)
307 {
308 	/*
309 	 * Scalable MCA provides for only one core to have access to the MSRs of
310 	 * a shared bank.
311 	 */
312 	if (mce_flags.smca)
313 		return false;
314 
315 	/* Bank 4 is for northbridge reporting and is thus shared */
316 	return (bank == 4);
317 }
318 
bank4_names(const struct threshold_block * b)319 static const char *bank4_names(const struct threshold_block *b)
320 {
321 	switch (b->address) {
322 	/* MSR4_MISC0 */
323 	case 0x00000413:
324 		return "dram";
325 
326 	case 0xc0000408:
327 		return "ht_links";
328 
329 	case 0xc0000409:
330 		return "l3_cache";
331 
332 	default:
333 		WARN(1, "Funny MSR: 0x%08x\n", b->address);
334 		return "";
335 	}
336 };
337 
338 
lvt_interrupt_supported(unsigned int bank,u32 msr_high_bits)339 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
340 {
341 	/*
342 	 * bank 4 supports APIC LVT interrupts implicitly since forever.
343 	 */
344 	if (bank == 4)
345 		return true;
346 
347 	/*
348 	 * IntP: interrupt present; if this bit is set, the thresholding
349 	 * bank can generate APIC LVT interrupts
350 	 */
351 	return msr_high_bits & BIT(28);
352 }
353 
lvt_off_valid(struct threshold_block * b,int apic,u32 lo,u32 hi)354 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
355 {
356 	int msr = (hi & MASK_LVTOFF_HI) >> 20;
357 
358 	if (apic < 0) {
359 		pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
360 		       "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
361 		       b->bank, b->block, b->address, hi, lo);
362 		return 0;
363 	}
364 
365 	if (apic != msr) {
366 		/*
367 		 * On SMCA CPUs, LVT offset is programmed at a different MSR, and
368 		 * the BIOS provides the value. The original field where LVT offset
369 		 * was set is reserved. Return early here:
370 		 */
371 		if (mce_flags.smca)
372 			return 0;
373 
374 		pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
375 		       "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
376 		       b->cpu, apic, b->bank, b->block, b->address, hi, lo);
377 		return 0;
378 	}
379 
380 	return 1;
381 };
382 
383 /* Reprogram MCx_MISC MSR behind this threshold bank. */
threshold_restart_bank(void * _tr)384 static void threshold_restart_bank(void *_tr)
385 {
386 	struct thresh_restart *tr = _tr;
387 	u32 hi, lo;
388 
389 	/* sysfs write might race against an offline operation */
390 	if (!this_cpu_read(threshold_banks) && !tr->set_lvt_off)
391 		return;
392 
393 	rdmsr(tr->b->address, lo, hi);
394 
395 	if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
396 		tr->reset = 1;	/* limit cannot be lower than err count */
397 
398 	if (tr->reset) {		/* reset err count and overflow bit */
399 		hi =
400 		    (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
401 		    (THRESHOLD_MAX - tr->b->threshold_limit);
402 	} else if (tr->old_limit) {	/* change limit w/o reset */
403 		int new_count = (hi & THRESHOLD_MAX) +
404 		    (tr->old_limit - tr->b->threshold_limit);
405 
406 		hi = (hi & ~MASK_ERR_COUNT_HI) |
407 		    (new_count & THRESHOLD_MAX);
408 	}
409 
410 	/* clear IntType */
411 	hi &= ~MASK_INT_TYPE_HI;
412 
413 	if (!tr->b->interrupt_capable)
414 		goto done;
415 
416 	if (tr->set_lvt_off) {
417 		if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
418 			/* set new lvt offset */
419 			hi &= ~MASK_LVTOFF_HI;
420 			hi |= tr->lvt_off << 20;
421 		}
422 	}
423 
424 	if (tr->b->interrupt_enable)
425 		hi |= INT_TYPE_APIC;
426 
427  done:
428 
429 	hi |= MASK_COUNT_EN_HI;
430 	wrmsr(tr->b->address, lo, hi);
431 }
432 
mce_threshold_block_init(struct threshold_block * b,int offset)433 static void mce_threshold_block_init(struct threshold_block *b, int offset)
434 {
435 	struct thresh_restart tr = {
436 		.b			= b,
437 		.set_lvt_off		= 1,
438 		.lvt_off		= offset,
439 	};
440 
441 	b->threshold_limit		= THRESHOLD_MAX;
442 	threshold_restart_bank(&tr);
443 };
444 
setup_APIC_mce_threshold(int reserved,int new)445 static int setup_APIC_mce_threshold(int reserved, int new)
446 {
447 	if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
448 					      APIC_EILVT_MSG_FIX, 0))
449 		return new;
450 
451 	return reserved;
452 }
453 
setup_APIC_deferred_error(int reserved,int new)454 static int setup_APIC_deferred_error(int reserved, int new)
455 {
456 	if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
457 					      APIC_EILVT_MSG_FIX, 0))
458 		return new;
459 
460 	return reserved;
461 }
462 
deferred_error_interrupt_enable(struct cpuinfo_x86 * c)463 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
464 {
465 	u32 low = 0, high = 0;
466 	int def_offset = -1, def_new;
467 
468 	if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
469 		return;
470 
471 	def_new = (low & MASK_DEF_LVTOFF) >> 4;
472 	if (!(low & MASK_DEF_LVTOFF)) {
473 		pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
474 		def_new = DEF_LVT_OFF;
475 		low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
476 	}
477 
478 	def_offset = setup_APIC_deferred_error(def_offset, def_new);
479 	if ((def_offset == def_new) &&
480 	    (deferred_error_int_vector != amd_deferred_error_interrupt))
481 		deferred_error_int_vector = amd_deferred_error_interrupt;
482 
483 	if (!mce_flags.smca)
484 		low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
485 
486 	wrmsr(MSR_CU_DEF_ERR, low, high);
487 }
488 
smca_get_block_address(unsigned int bank,unsigned int block,unsigned int cpu)489 static u32 smca_get_block_address(unsigned int bank, unsigned int block,
490 				  unsigned int cpu)
491 {
492 	if (!block)
493 		return MSR_AMD64_SMCA_MCx_MISC(bank);
494 
495 	if (!(per_cpu(smca_misc_banks_map, cpu) & BIT_ULL(bank)))
496 		return 0;
497 
498 	return MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
499 }
500 
get_block_address(u32 current_addr,u32 low,u32 high,unsigned int bank,unsigned int block,unsigned int cpu)501 static u32 get_block_address(u32 current_addr, u32 low, u32 high,
502 			     unsigned int bank, unsigned int block,
503 			     unsigned int cpu)
504 {
505 	u32 addr = 0, offset = 0;
506 
507 	if ((bank >= per_cpu(mce_num_banks, cpu)) || (block >= NR_BLOCKS))
508 		return addr;
509 
510 	if (mce_flags.smca)
511 		return smca_get_block_address(bank, block, cpu);
512 
513 	/* Fall back to method we used for older processors: */
514 	switch (block) {
515 	case 0:
516 		addr = mca_msr_reg(bank, MCA_MISC);
517 		break;
518 	case 1:
519 		offset = ((low & MASK_BLKPTR_LO) >> 21);
520 		if (offset)
521 			addr = MCG_XBLK_ADDR + offset;
522 		break;
523 	default:
524 		addr = ++current_addr;
525 	}
526 	return addr;
527 }
528 
529 static int
prepare_threshold_block(unsigned int bank,unsigned int block,u32 addr,int offset,u32 misc_high)530 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
531 			int offset, u32 misc_high)
532 {
533 	unsigned int cpu = smp_processor_id();
534 	u32 smca_low, smca_high;
535 	struct threshold_block b;
536 	int new;
537 
538 	if (!block)
539 		per_cpu(bank_map, cpu) |= BIT_ULL(bank);
540 
541 	memset(&b, 0, sizeof(b));
542 	b.cpu			= cpu;
543 	b.bank			= bank;
544 	b.block			= block;
545 	b.address		= addr;
546 	b.interrupt_capable	= lvt_interrupt_supported(bank, misc_high);
547 
548 	if (!b.interrupt_capable)
549 		goto done;
550 
551 	b.interrupt_enable = 1;
552 
553 	if (!mce_flags.smca) {
554 		new = (misc_high & MASK_LVTOFF_HI) >> 20;
555 		goto set_offset;
556 	}
557 
558 	/* Gather LVT offset for thresholding: */
559 	if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
560 		goto out;
561 
562 	new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
563 
564 set_offset:
565 	offset = setup_APIC_mce_threshold(offset, new);
566 	if (offset == new)
567 		thresholding_irq_en = true;
568 
569 done:
570 	mce_threshold_block_init(&b, offset);
571 
572 out:
573 	return offset;
574 }
575 
amd_filter_mce(struct mce * m)576 bool amd_filter_mce(struct mce *m)
577 {
578 	enum smca_bank_types bank_type = smca_get_bank_type(m->bank);
579 	struct cpuinfo_x86 *c = &boot_cpu_data;
580 
581 	/* See Family 17h Models 10h-2Fh Erratum #1114. */
582 	if (c->x86 == 0x17 &&
583 	    c->x86_model >= 0x10 && c->x86_model <= 0x2F &&
584 	    bank_type == SMCA_IF && XEC(m->status, 0x3f) == 10)
585 		return true;
586 
587 	/* NB GART TLB error reporting is disabled by default. */
588 	if (c->x86 < 0x17) {
589 		if (m->bank == 4 && XEC(m->status, 0x1f) == 0x5)
590 			return true;
591 	}
592 
593 	return false;
594 }
595 
596 /*
597  * Turn off thresholding banks for the following conditions:
598  * - MC4_MISC thresholding is not supported on Family 0x15.
599  * - Prevent possible spurious interrupts from the IF bank on Family 0x17
600  *   Models 0x10-0x2F due to Erratum #1114.
601  */
disable_err_thresholding(struct cpuinfo_x86 * c,unsigned int bank)602 static void disable_err_thresholding(struct cpuinfo_x86 *c, unsigned int bank)
603 {
604 	int i, num_msrs;
605 	u64 hwcr;
606 	bool need_toggle;
607 	u32 msrs[NR_BLOCKS];
608 
609 	if (c->x86 == 0x15 && bank == 4) {
610 		msrs[0] = 0x00000413; /* MC4_MISC0 */
611 		msrs[1] = 0xc0000408; /* MC4_MISC1 */
612 		num_msrs = 2;
613 	} else if (c->x86 == 0x17 &&
614 		   (c->x86_model >= 0x10 && c->x86_model <= 0x2F)) {
615 
616 		if (smca_get_bank_type(bank) != SMCA_IF)
617 			return;
618 
619 		msrs[0] = MSR_AMD64_SMCA_MCx_MISC(bank);
620 		num_msrs = 1;
621 	} else {
622 		return;
623 	}
624 
625 	rdmsrl(MSR_K7_HWCR, hwcr);
626 
627 	/* McStatusWrEn has to be set */
628 	need_toggle = !(hwcr & BIT(18));
629 	if (need_toggle)
630 		wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
631 
632 	/* Clear CntP bit safely */
633 	for (i = 0; i < num_msrs; i++)
634 		msr_clear_bit(msrs[i], 62);
635 
636 	/* restore old settings */
637 	if (need_toggle)
638 		wrmsrl(MSR_K7_HWCR, hwcr);
639 }
640 
641 /* cpu init entry point, called from mce.c with preempt off */
mce_amd_feature_init(struct cpuinfo_x86 * c)642 void mce_amd_feature_init(struct cpuinfo_x86 *c)
643 {
644 	unsigned int bank, block, cpu = smp_processor_id();
645 	u32 low = 0, high = 0, address = 0;
646 	int offset = -1;
647 
648 
649 	for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) {
650 		if (mce_flags.smca)
651 			smca_configure(bank, cpu);
652 
653 		disable_err_thresholding(c, bank);
654 
655 		for (block = 0; block < NR_BLOCKS; ++block) {
656 			address = get_block_address(address, low, high, bank, block, cpu);
657 			if (!address)
658 				break;
659 
660 			if (rdmsr_safe(address, &low, &high))
661 				break;
662 
663 			if (!(high & MASK_VALID_HI))
664 				continue;
665 
666 			if (!(high & MASK_CNTP_HI)  ||
667 			     (high & MASK_LOCKED_HI))
668 				continue;
669 
670 			offset = prepare_threshold_block(bank, block, address, offset, high);
671 		}
672 	}
673 
674 	if (mce_flags.succor)
675 		deferred_error_interrupt_enable(c);
676 }
677 
umc_normaddr_to_sysaddr(u64 norm_addr,u16 nid,u8 umc,u64 * sys_addr)678 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
679 {
680 	u64 dram_base_addr, dram_limit_addr, dram_hole_base;
681 	/* We start from the normalized address */
682 	u64 ret_addr = norm_addr;
683 
684 	u32 tmp;
685 
686 	u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
687 	u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
688 	u8 intlv_addr_sel, intlv_addr_bit;
689 	u8 num_intlv_bits, hashed_bit;
690 	u8 lgcy_mmio_hole_en, base = 0;
691 	u8 cs_mask, cs_id = 0;
692 	bool hash_enabled = false;
693 
694 	/* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
695 	if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
696 		goto out_err;
697 
698 	/* Remove HiAddrOffset from normalized address, if enabled: */
699 	if (tmp & BIT(0)) {
700 		u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
701 
702 		if (norm_addr >= hi_addr_offset) {
703 			ret_addr -= hi_addr_offset;
704 			base = 1;
705 		}
706 	}
707 
708 	/* Read D18F0x110 (DramBaseAddress). */
709 	if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
710 		goto out_err;
711 
712 	/* Check if address range is valid. */
713 	if (!(tmp & BIT(0))) {
714 		pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
715 			__func__, tmp);
716 		goto out_err;
717 	}
718 
719 	lgcy_mmio_hole_en = tmp & BIT(1);
720 	intlv_num_chan	  = (tmp >> 4) & 0xF;
721 	intlv_addr_sel	  = (tmp >> 8) & 0x7;
722 	dram_base_addr	  = (tmp & GENMASK_ULL(31, 12)) << 16;
723 
724 	/* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
725 	if (intlv_addr_sel > 3) {
726 		pr_err("%s: Invalid interleave address select %d.\n",
727 			__func__, intlv_addr_sel);
728 		goto out_err;
729 	}
730 
731 	/* Read D18F0x114 (DramLimitAddress). */
732 	if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
733 		goto out_err;
734 
735 	intlv_num_sockets = (tmp >> 8) & 0x1;
736 	intlv_num_dies	  = (tmp >> 10) & 0x3;
737 	dram_limit_addr	  = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
738 
739 	intlv_addr_bit = intlv_addr_sel + 8;
740 
741 	/* Re-use intlv_num_chan by setting it equal to log2(#channels) */
742 	switch (intlv_num_chan) {
743 	case 0:	intlv_num_chan = 0; break;
744 	case 1: intlv_num_chan = 1; break;
745 	case 3: intlv_num_chan = 2; break;
746 	case 5:	intlv_num_chan = 3; break;
747 	case 7:	intlv_num_chan = 4; break;
748 
749 	case 8: intlv_num_chan = 1;
750 		hash_enabled = true;
751 		break;
752 	default:
753 		pr_err("%s: Invalid number of interleaved channels %d.\n",
754 			__func__, intlv_num_chan);
755 		goto out_err;
756 	}
757 
758 	num_intlv_bits = intlv_num_chan;
759 
760 	if (intlv_num_dies > 2) {
761 		pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
762 			__func__, intlv_num_dies);
763 		goto out_err;
764 	}
765 
766 	num_intlv_bits += intlv_num_dies;
767 
768 	/* Add a bit if sockets are interleaved. */
769 	num_intlv_bits += intlv_num_sockets;
770 
771 	/* Assert num_intlv_bits <= 4 */
772 	if (num_intlv_bits > 4) {
773 		pr_err("%s: Invalid interleave bits %d.\n",
774 			__func__, num_intlv_bits);
775 		goto out_err;
776 	}
777 
778 	if (num_intlv_bits > 0) {
779 		u64 temp_addr_x, temp_addr_i, temp_addr_y;
780 		u8 die_id_bit, sock_id_bit, cs_fabric_id;
781 
782 		/*
783 		 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
784 		 * This is the fabric id for this coherent slave. Use
785 		 * umc/channel# as instance id of the coherent slave
786 		 * for FICAA.
787 		 */
788 		if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
789 			goto out_err;
790 
791 		cs_fabric_id = (tmp >> 8) & 0xFF;
792 		die_id_bit   = 0;
793 
794 		/* If interleaved over more than 1 channel: */
795 		if (intlv_num_chan) {
796 			die_id_bit = intlv_num_chan;
797 			cs_mask	   = (1 << die_id_bit) - 1;
798 			cs_id	   = cs_fabric_id & cs_mask;
799 		}
800 
801 		sock_id_bit = die_id_bit;
802 
803 		/* Read D18F1x208 (SystemFabricIdMask). */
804 		if (intlv_num_dies || intlv_num_sockets)
805 			if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
806 				goto out_err;
807 
808 		/* If interleaved over more than 1 die. */
809 		if (intlv_num_dies) {
810 			sock_id_bit  = die_id_bit + intlv_num_dies;
811 			die_id_shift = (tmp >> 24) & 0xF;
812 			die_id_mask  = (tmp >> 8) & 0xFF;
813 
814 			cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
815 		}
816 
817 		/* If interleaved over more than 1 socket. */
818 		if (intlv_num_sockets) {
819 			socket_id_shift	= (tmp >> 28) & 0xF;
820 			socket_id_mask	= (tmp >> 16) & 0xFF;
821 
822 			cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
823 		}
824 
825 		/*
826 		 * The pre-interleaved address consists of XXXXXXIIIYYYYY
827 		 * where III is the ID for this CS, and XXXXXXYYYYY are the
828 		 * address bits from the post-interleaved address.
829 		 * "num_intlv_bits" has been calculated to tell us how many "I"
830 		 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
831 		 * there are (where "I" starts).
832 		 */
833 		temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
834 		temp_addr_i = (cs_id << intlv_addr_bit);
835 		temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
836 		ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
837 	}
838 
839 	/* Add dram base address */
840 	ret_addr += dram_base_addr;
841 
842 	/* If legacy MMIO hole enabled */
843 	if (lgcy_mmio_hole_en) {
844 		if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
845 			goto out_err;
846 
847 		dram_hole_base = tmp & GENMASK(31, 24);
848 		if (ret_addr >= dram_hole_base)
849 			ret_addr += (BIT_ULL(32) - dram_hole_base);
850 	}
851 
852 	if (hash_enabled) {
853 		/* Save some parentheses and grab ls-bit at the end. */
854 		hashed_bit =	(ret_addr >> 12) ^
855 				(ret_addr >> 18) ^
856 				(ret_addr >> 21) ^
857 				(ret_addr >> 30) ^
858 				cs_id;
859 
860 		hashed_bit &= BIT(0);
861 
862 		if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
863 			ret_addr ^= BIT(intlv_addr_bit);
864 	}
865 
866 	/* Is calculated system address is above DRAM limit address? */
867 	if (ret_addr > dram_limit_addr)
868 		goto out_err;
869 
870 	*sys_addr = ret_addr;
871 	return 0;
872 
873 out_err:
874 	return -EINVAL;
875 }
876 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
877 
amd_mce_is_memory_error(struct mce * m)878 bool amd_mce_is_memory_error(struct mce *m)
879 {
880 	/* ErrCodeExt[20:16] */
881 	u8 xec = (m->status >> 16) & 0x1f;
882 
883 	if (mce_flags.smca)
884 		return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
885 
886 	return m->bank == 4 && xec == 0x8;
887 }
888 
__log_error(unsigned int bank,u64 status,u64 addr,u64 misc)889 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
890 {
891 	struct mce m;
892 
893 	mce_setup(&m);
894 
895 	m.status = status;
896 	m.misc   = misc;
897 	m.bank   = bank;
898 	m.tsc	 = rdtsc();
899 
900 	if (m.status & MCI_STATUS_ADDRV) {
901 		m.addr = addr;
902 
903 		/*
904 		 * Extract [55:<lsb>] where lsb is the least significant
905 		 * *valid* bit of the address bits.
906 		 */
907 		if (mce_flags.smca) {
908 			u8 lsb = (m.addr >> 56) & 0x3f;
909 
910 			m.addr &= GENMASK_ULL(55, lsb);
911 		}
912 	}
913 
914 	if (mce_flags.smca) {
915 		rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
916 
917 		if (m.status & MCI_STATUS_SYNDV)
918 			rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
919 	}
920 
921 	mce_log(&m);
922 }
923 
DEFINE_IDTENTRY_SYSVEC(sysvec_deferred_error)924 DEFINE_IDTENTRY_SYSVEC(sysvec_deferred_error)
925 {
926 	trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
927 	inc_irq_stat(irq_deferred_error_count);
928 	deferred_error_int_vector();
929 	trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
930 	ack_APIC_irq();
931 }
932 
933 /*
934  * Returns true if the logged error is deferred. False, otherwise.
935  */
936 static inline bool
_log_error_bank(unsigned int bank,u32 msr_stat,u32 msr_addr,u64 misc)937 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
938 {
939 	u64 status, addr = 0;
940 
941 	rdmsrl(msr_stat, status);
942 	if (!(status & MCI_STATUS_VAL))
943 		return false;
944 
945 	if (status & MCI_STATUS_ADDRV)
946 		rdmsrl(msr_addr, addr);
947 
948 	__log_error(bank, status, addr, misc);
949 
950 	wrmsrl(msr_stat, 0);
951 
952 	return status & MCI_STATUS_DEFERRED;
953 }
954 
_log_error_deferred(unsigned int bank,u32 misc)955 static bool _log_error_deferred(unsigned int bank, u32 misc)
956 {
957 	if (!_log_error_bank(bank, mca_msr_reg(bank, MCA_STATUS),
958 			     mca_msr_reg(bank, MCA_ADDR), misc))
959 		return false;
960 
961 	/*
962 	 * Non-SMCA systems don't have MCA_DESTAT/MCA_DEADDR registers.
963 	 * Return true here to avoid accessing these registers.
964 	 */
965 	if (!mce_flags.smca)
966 		return true;
967 
968 	/* Clear MCA_DESTAT if the deferred error was logged from MCA_STATUS. */
969 	wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
970 	return true;
971 }
972 
973 /*
974  * We have three scenarios for checking for Deferred errors:
975  *
976  * 1) Non-SMCA systems check MCA_STATUS and log error if found.
977  * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
978  *    clear MCA_DESTAT.
979  * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
980  *    log it.
981  */
log_error_deferred(unsigned int bank)982 static void log_error_deferred(unsigned int bank)
983 {
984 	if (_log_error_deferred(bank, 0))
985 		return;
986 
987 	/*
988 	 * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
989 	 * for a valid error.
990 	 */
991 	_log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
992 			      MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
993 }
994 
995 /* APIC interrupt handler for deferred errors */
amd_deferred_error_interrupt(void)996 static void amd_deferred_error_interrupt(void)
997 {
998 	unsigned int bank;
999 
1000 	for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank)
1001 		log_error_deferred(bank);
1002 }
1003 
log_error_thresholding(unsigned int bank,u64 misc)1004 static void log_error_thresholding(unsigned int bank, u64 misc)
1005 {
1006 	_log_error_deferred(bank, misc);
1007 }
1008 
log_and_reset_block(struct threshold_block * block)1009 static void log_and_reset_block(struct threshold_block *block)
1010 {
1011 	struct thresh_restart tr;
1012 	u32 low = 0, high = 0;
1013 
1014 	if (!block)
1015 		return;
1016 
1017 	if (rdmsr_safe(block->address, &low, &high))
1018 		return;
1019 
1020 	if (!(high & MASK_OVERFLOW_HI))
1021 		return;
1022 
1023 	/* Log the MCE which caused the threshold event. */
1024 	log_error_thresholding(block->bank, ((u64)high << 32) | low);
1025 
1026 	/* Reset threshold block after logging error. */
1027 	memset(&tr, 0, sizeof(tr));
1028 	tr.b = block;
1029 	threshold_restart_bank(&tr);
1030 }
1031 
1032 /*
1033  * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
1034  * goes off when error_count reaches threshold_limit.
1035  */
amd_threshold_interrupt(void)1036 static void amd_threshold_interrupt(void)
1037 {
1038 	struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
1039 	struct threshold_bank **bp = this_cpu_read(threshold_banks);
1040 	unsigned int bank, cpu = smp_processor_id();
1041 
1042 	/*
1043 	 * Validate that the threshold bank has been initialized already. The
1044 	 * handler is installed at boot time, but on a hotplug event the
1045 	 * interrupt might fire before the data has been initialized.
1046 	 */
1047 	if (!bp)
1048 		return;
1049 
1050 	for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) {
1051 		if (!(per_cpu(bank_map, cpu) & BIT_ULL(bank)))
1052 			continue;
1053 
1054 		first_block = bp[bank]->blocks;
1055 		if (!first_block)
1056 			continue;
1057 
1058 		/*
1059 		 * The first block is also the head of the list. Check it first
1060 		 * before iterating over the rest.
1061 		 */
1062 		log_and_reset_block(first_block);
1063 		list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
1064 			log_and_reset_block(block);
1065 	}
1066 }
1067 
1068 /*
1069  * Sysfs Interface
1070  */
1071 
1072 struct threshold_attr {
1073 	struct attribute attr;
1074 	ssize_t (*show) (struct threshold_block *, char *);
1075 	ssize_t (*store) (struct threshold_block *, const char *, size_t count);
1076 };
1077 
1078 #define SHOW_FIELDS(name)						\
1079 static ssize_t show_ ## name(struct threshold_block *b, char *buf)	\
1080 {									\
1081 	return sprintf(buf, "%lu\n", (unsigned long) b->name);		\
1082 }
1083 SHOW_FIELDS(interrupt_enable)
SHOW_FIELDS(threshold_limit)1084 SHOW_FIELDS(threshold_limit)
1085 
1086 static ssize_t
1087 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
1088 {
1089 	struct thresh_restart tr;
1090 	unsigned long new;
1091 
1092 	if (!b->interrupt_capable)
1093 		return -EINVAL;
1094 
1095 	if (kstrtoul(buf, 0, &new) < 0)
1096 		return -EINVAL;
1097 
1098 	b->interrupt_enable = !!new;
1099 
1100 	memset(&tr, 0, sizeof(tr));
1101 	tr.b		= b;
1102 
1103 	if (smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1))
1104 		return -ENODEV;
1105 
1106 	return size;
1107 }
1108 
1109 static ssize_t
store_threshold_limit(struct threshold_block * b,const char * buf,size_t size)1110 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
1111 {
1112 	struct thresh_restart tr;
1113 	unsigned long new;
1114 
1115 	if (kstrtoul(buf, 0, &new) < 0)
1116 		return -EINVAL;
1117 
1118 	if (new > THRESHOLD_MAX)
1119 		new = THRESHOLD_MAX;
1120 	if (new < 1)
1121 		new = 1;
1122 
1123 	memset(&tr, 0, sizeof(tr));
1124 	tr.old_limit = b->threshold_limit;
1125 	b->threshold_limit = new;
1126 	tr.b = b;
1127 
1128 	if (smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1))
1129 		return -ENODEV;
1130 
1131 	return size;
1132 }
1133 
show_error_count(struct threshold_block * b,char * buf)1134 static ssize_t show_error_count(struct threshold_block *b, char *buf)
1135 {
1136 	u32 lo, hi;
1137 
1138 	/* CPU might be offline by now */
1139 	if (rdmsr_on_cpu(b->cpu, b->address, &lo, &hi))
1140 		return -ENODEV;
1141 
1142 	return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1143 				     (THRESHOLD_MAX - b->threshold_limit)));
1144 }
1145 
1146 static struct threshold_attr error_count = {
1147 	.attr = {.name = __stringify(error_count), .mode = 0444 },
1148 	.show = show_error_count,
1149 };
1150 
1151 #define RW_ATTR(val)							\
1152 static struct threshold_attr val = {					\
1153 	.attr	= {.name = __stringify(val), .mode = 0644 },		\
1154 	.show	= show_## val,						\
1155 	.store	= store_## val,						\
1156 };
1157 
1158 RW_ATTR(interrupt_enable);
1159 RW_ATTR(threshold_limit);
1160 
1161 static struct attribute *default_attrs[] = {
1162 	&threshold_limit.attr,
1163 	&error_count.attr,
1164 	NULL,	/* possibly interrupt_enable if supported, see below */
1165 	NULL,
1166 };
1167 
1168 #define to_block(k)	container_of(k, struct threshold_block, kobj)
1169 #define to_attr(a)	container_of(a, struct threshold_attr, attr)
1170 
show(struct kobject * kobj,struct attribute * attr,char * buf)1171 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1172 {
1173 	struct threshold_block *b = to_block(kobj);
1174 	struct threshold_attr *a = to_attr(attr);
1175 	ssize_t ret;
1176 
1177 	ret = a->show ? a->show(b, buf) : -EIO;
1178 
1179 	return ret;
1180 }
1181 
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1182 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1183 		     const char *buf, size_t count)
1184 {
1185 	struct threshold_block *b = to_block(kobj);
1186 	struct threshold_attr *a = to_attr(attr);
1187 	ssize_t ret;
1188 
1189 	ret = a->store ? a->store(b, buf, count) : -EIO;
1190 
1191 	return ret;
1192 }
1193 
1194 static const struct sysfs_ops threshold_ops = {
1195 	.show			= show,
1196 	.store			= store,
1197 };
1198 
1199 static void threshold_block_release(struct kobject *kobj);
1200 
1201 static struct kobj_type threshold_ktype = {
1202 	.sysfs_ops		= &threshold_ops,
1203 	.default_attrs		= default_attrs,
1204 	.release		= threshold_block_release,
1205 };
1206 
get_name(unsigned int bank,struct threshold_block * b)1207 static const char *get_name(unsigned int bank, struct threshold_block *b)
1208 {
1209 	enum smca_bank_types bank_type;
1210 
1211 	if (!mce_flags.smca) {
1212 		if (b && bank == 4)
1213 			return bank4_names(b);
1214 
1215 		return th_names[bank];
1216 	}
1217 
1218 	bank_type = smca_get_bank_type(bank);
1219 	if (bank_type >= N_SMCA_BANK_TYPES)
1220 		return NULL;
1221 
1222 	if (b && bank_type == SMCA_UMC) {
1223 		if (b->block < ARRAY_SIZE(smca_umc_block_names))
1224 			return smca_umc_block_names[b->block];
1225 		return NULL;
1226 	}
1227 
1228 	if (smca_banks[bank].hwid->count == 1)
1229 		return smca_get_name(bank_type);
1230 
1231 	snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1232 		 "%s_%x", smca_get_name(bank_type),
1233 			  smca_banks[bank].sysfs_id);
1234 	return buf_mcatype;
1235 }
1236 
allocate_threshold_blocks(unsigned int cpu,struct threshold_bank * tb,unsigned int bank,unsigned int block,u32 address)1237 static int allocate_threshold_blocks(unsigned int cpu, struct threshold_bank *tb,
1238 				     unsigned int bank, unsigned int block,
1239 				     u32 address)
1240 {
1241 	struct threshold_block *b = NULL;
1242 	u32 low, high;
1243 	int err;
1244 
1245 	if ((bank >= this_cpu_read(mce_num_banks)) || (block >= NR_BLOCKS))
1246 		return 0;
1247 
1248 	if (rdmsr_safe(address, &low, &high))
1249 		return 0;
1250 
1251 	if (!(high & MASK_VALID_HI)) {
1252 		if (block)
1253 			goto recurse;
1254 		else
1255 			return 0;
1256 	}
1257 
1258 	if (!(high & MASK_CNTP_HI)  ||
1259 	     (high & MASK_LOCKED_HI))
1260 		goto recurse;
1261 
1262 	b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1263 	if (!b)
1264 		return -ENOMEM;
1265 
1266 	b->block		= block;
1267 	b->bank			= bank;
1268 	b->cpu			= cpu;
1269 	b->address		= address;
1270 	b->interrupt_enable	= 0;
1271 	b->interrupt_capable	= lvt_interrupt_supported(bank, high);
1272 	b->threshold_limit	= THRESHOLD_MAX;
1273 
1274 	if (b->interrupt_capable) {
1275 		threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1276 		b->interrupt_enable = 1;
1277 	} else {
1278 		threshold_ktype.default_attrs[2] = NULL;
1279 	}
1280 
1281 	INIT_LIST_HEAD(&b->miscj);
1282 
1283 	/* This is safe as @tb is not visible yet */
1284 	if (tb->blocks)
1285 		list_add(&b->miscj, &tb->blocks->miscj);
1286 	else
1287 		tb->blocks = b;
1288 
1289 	err = kobject_init_and_add(&b->kobj, &threshold_ktype, tb->kobj, get_name(bank, b));
1290 	if (err)
1291 		goto out_free;
1292 recurse:
1293 	address = get_block_address(address, low, high, bank, ++block, cpu);
1294 	if (!address)
1295 		return 0;
1296 
1297 	err = allocate_threshold_blocks(cpu, tb, bank, block, address);
1298 	if (err)
1299 		goto out_free;
1300 
1301 	if (b)
1302 		kobject_uevent(&b->kobj, KOBJ_ADD);
1303 
1304 	return 0;
1305 
1306 out_free:
1307 	if (b) {
1308 		list_del(&b->miscj);
1309 		kobject_put(&b->kobj);
1310 	}
1311 	return err;
1312 }
1313 
__threshold_add_blocks(struct threshold_bank * b)1314 static int __threshold_add_blocks(struct threshold_bank *b)
1315 {
1316 	struct list_head *head = &b->blocks->miscj;
1317 	struct threshold_block *pos = NULL;
1318 	struct threshold_block *tmp = NULL;
1319 	int err = 0;
1320 
1321 	err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1322 	if (err)
1323 		return err;
1324 
1325 	list_for_each_entry_safe(pos, tmp, head, miscj) {
1326 
1327 		err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1328 		if (err) {
1329 			list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1330 				kobject_del(&pos->kobj);
1331 
1332 			return err;
1333 		}
1334 	}
1335 	return err;
1336 }
1337 
threshold_create_bank(struct threshold_bank ** bp,unsigned int cpu,unsigned int bank)1338 static int threshold_create_bank(struct threshold_bank **bp, unsigned int cpu,
1339 				 unsigned int bank)
1340 {
1341 	struct device *dev = this_cpu_read(mce_device);
1342 	struct amd_northbridge *nb = NULL;
1343 	struct threshold_bank *b = NULL;
1344 	const char *name = get_name(bank, NULL);
1345 	int err = 0;
1346 
1347 	if (!dev)
1348 		return -ENODEV;
1349 
1350 	if (is_shared_bank(bank)) {
1351 		nb = node_to_amd_nb(amd_get_nb_id(cpu));
1352 
1353 		/* threshold descriptor already initialized on this node? */
1354 		if (nb && nb->bank4) {
1355 			/* yes, use it */
1356 			b = nb->bank4;
1357 			err = kobject_add(b->kobj, &dev->kobj, name);
1358 			if (err)
1359 				goto out;
1360 
1361 			bp[bank] = b;
1362 			refcount_inc(&b->cpus);
1363 
1364 			err = __threshold_add_blocks(b);
1365 
1366 			goto out;
1367 		}
1368 	}
1369 
1370 	b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1371 	if (!b) {
1372 		err = -ENOMEM;
1373 		goto out;
1374 	}
1375 
1376 	/* Associate the bank with the per-CPU MCE device */
1377 	b->kobj = kobject_create_and_add(name, &dev->kobj);
1378 	if (!b->kobj) {
1379 		err = -EINVAL;
1380 		goto out_free;
1381 	}
1382 
1383 	if (is_shared_bank(bank)) {
1384 		b->shared = 1;
1385 		refcount_set(&b->cpus, 1);
1386 
1387 		/* nb is already initialized, see above */
1388 		if (nb) {
1389 			WARN_ON(nb->bank4);
1390 			nb->bank4 = b;
1391 		}
1392 	}
1393 
1394 	err = allocate_threshold_blocks(cpu, b, bank, 0, mca_msr_reg(bank, MCA_MISC));
1395 	if (err)
1396 		goto out_kobj;
1397 
1398 	bp[bank] = b;
1399 	return 0;
1400 
1401 out_kobj:
1402 	kobject_put(b->kobj);
1403 out_free:
1404 	kfree(b);
1405 out:
1406 	return err;
1407 }
1408 
threshold_block_release(struct kobject * kobj)1409 static void threshold_block_release(struct kobject *kobj)
1410 {
1411 	kfree(to_block(kobj));
1412 }
1413 
deallocate_threshold_blocks(struct threshold_bank * bank)1414 static void deallocate_threshold_blocks(struct threshold_bank *bank)
1415 {
1416 	struct threshold_block *pos, *tmp;
1417 
1418 	list_for_each_entry_safe(pos, tmp, &bank->blocks->miscj, miscj) {
1419 		list_del(&pos->miscj);
1420 		kobject_put(&pos->kobj);
1421 	}
1422 
1423 	kobject_put(&bank->blocks->kobj);
1424 }
1425 
__threshold_remove_blocks(struct threshold_bank * b)1426 static void __threshold_remove_blocks(struct threshold_bank *b)
1427 {
1428 	struct threshold_block *pos = NULL;
1429 	struct threshold_block *tmp = NULL;
1430 
1431 	kobject_del(b->kobj);
1432 
1433 	list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1434 		kobject_del(&pos->kobj);
1435 }
1436 
threshold_remove_bank(struct threshold_bank * bank)1437 static void threshold_remove_bank(struct threshold_bank *bank)
1438 {
1439 	struct amd_northbridge *nb;
1440 
1441 	if (!bank->blocks)
1442 		goto out_free;
1443 
1444 	if (!bank->shared)
1445 		goto out_dealloc;
1446 
1447 	if (!refcount_dec_and_test(&bank->cpus)) {
1448 		__threshold_remove_blocks(bank);
1449 		return;
1450 	} else {
1451 		/*
1452 		 * The last CPU on this node using the shared bank is going
1453 		 * away, remove that bank now.
1454 		 */
1455 		nb = node_to_amd_nb(amd_get_nb_id(smp_processor_id()));
1456 		nb->bank4 = NULL;
1457 	}
1458 
1459 out_dealloc:
1460 	deallocate_threshold_blocks(bank);
1461 
1462 out_free:
1463 	kobject_put(bank->kobj);
1464 	kfree(bank);
1465 }
1466 
__threshold_remove_device(struct threshold_bank ** bp)1467 static void __threshold_remove_device(struct threshold_bank **bp)
1468 {
1469 	unsigned int bank, numbanks = this_cpu_read(mce_num_banks);
1470 
1471 	for (bank = 0; bank < numbanks; bank++) {
1472 		if (!bp[bank])
1473 			continue;
1474 
1475 		threshold_remove_bank(bp[bank]);
1476 		bp[bank] = NULL;
1477 	}
1478 	kfree(bp);
1479 }
1480 
mce_threshold_remove_device(unsigned int cpu)1481 int mce_threshold_remove_device(unsigned int cpu)
1482 {
1483 	struct threshold_bank **bp = this_cpu_read(threshold_banks);
1484 
1485 	if (!bp)
1486 		return 0;
1487 
1488 	/*
1489 	 * Clear the pointer before cleaning up, so that the interrupt won't
1490 	 * touch anything of this.
1491 	 */
1492 	this_cpu_write(threshold_banks, NULL);
1493 
1494 	__threshold_remove_device(bp);
1495 	return 0;
1496 }
1497 
1498 /**
1499  * mce_threshold_create_device - Create the per-CPU MCE threshold device
1500  * @cpu:	The plugged in CPU
1501  *
1502  * Create directories and files for all valid threshold banks.
1503  *
1504  * This is invoked from the CPU hotplug callback which was installed in
1505  * mcheck_init_device(). The invocation happens in context of the hotplug
1506  * thread running on @cpu.  The callback is invoked on all CPUs which are
1507  * online when the callback is installed or during a real hotplug event.
1508  */
mce_threshold_create_device(unsigned int cpu)1509 int mce_threshold_create_device(unsigned int cpu)
1510 {
1511 	unsigned int numbanks, bank;
1512 	struct threshold_bank **bp;
1513 	int err;
1514 
1515 	if (!mce_flags.amd_threshold)
1516 		return 0;
1517 
1518 	bp = this_cpu_read(threshold_banks);
1519 	if (bp)
1520 		return 0;
1521 
1522 	numbanks = this_cpu_read(mce_num_banks);
1523 	bp = kcalloc(numbanks, sizeof(*bp), GFP_KERNEL);
1524 	if (!bp)
1525 		return -ENOMEM;
1526 
1527 	for (bank = 0; bank < numbanks; ++bank) {
1528 		if (!(this_cpu_read(bank_map) & BIT_ULL(bank)))
1529 			continue;
1530 		err = threshold_create_bank(bp, cpu, bank);
1531 		if (err) {
1532 			__threshold_remove_device(bp);
1533 			return err;
1534 		}
1535 	}
1536 	this_cpu_write(threshold_banks, bp);
1537 
1538 	if (thresholding_irq_en)
1539 		mce_threshold_vector = amd_threshold_interrupt;
1540 	return 0;
1541 }
1542