1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 #include "cgroup.h"
37
38 #include <linux/ctype.h>
39 #include <symbol/kallsyms.h>
40 #include <linux/mman.h>
41 #include <linux/string.h>
42 #include <linux/zalloc.h>
43
44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45
machine__kernel_dso(struct machine * machine)46 static struct dso *machine__kernel_dso(struct machine *machine)
47 {
48 return machine->vmlinux_map->dso;
49 }
50
dsos__init(struct dsos * dsos)51 static void dsos__init(struct dsos *dsos)
52 {
53 INIT_LIST_HEAD(&dsos->head);
54 dsos->root = RB_ROOT;
55 init_rwsem(&dsos->lock);
56 }
57
machine__threads_init(struct machine * machine)58 static void machine__threads_init(struct machine *machine)
59 {
60 int i;
61
62 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63 struct threads *threads = &machine->threads[i];
64 threads->entries = RB_ROOT_CACHED;
65 init_rwsem(&threads->lock);
66 threads->nr = 0;
67 INIT_LIST_HEAD(&threads->dead);
68 threads->last_match = NULL;
69 }
70 }
71
machine__set_mmap_name(struct machine * machine)72 static int machine__set_mmap_name(struct machine *machine)
73 {
74 if (machine__is_host(machine))
75 machine->mmap_name = strdup("[kernel.kallsyms]");
76 else if (machine__is_default_guest(machine))
77 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79 machine->pid) < 0)
80 machine->mmap_name = NULL;
81
82 return machine->mmap_name ? 0 : -ENOMEM;
83 }
84
machine__init(struct machine * machine,const char * root_dir,pid_t pid)85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86 {
87 int err = -ENOMEM;
88
89 memset(machine, 0, sizeof(*machine));
90 maps__init(&machine->kmaps, machine);
91 RB_CLEAR_NODE(&machine->rb_node);
92 dsos__init(&machine->dsos);
93
94 machine__threads_init(machine);
95
96 machine->vdso_info = NULL;
97 machine->env = NULL;
98
99 machine->pid = pid;
100
101 machine->id_hdr_size = 0;
102 machine->kptr_restrict_warned = false;
103 machine->comm_exec = false;
104 machine->kernel_start = 0;
105 machine->vmlinux_map = NULL;
106
107 machine->root_dir = strdup(root_dir);
108 if (machine->root_dir == NULL)
109 return -ENOMEM;
110
111 if (machine__set_mmap_name(machine))
112 goto out;
113
114 if (pid != HOST_KERNEL_ID) {
115 struct thread *thread = machine__findnew_thread(machine, -1,
116 pid);
117 char comm[64];
118
119 if (thread == NULL)
120 goto out;
121
122 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123 thread__set_comm(thread, comm, 0);
124 thread__put(thread);
125 }
126
127 machine->current_tid = NULL;
128 err = 0;
129
130 out:
131 if (err) {
132 zfree(&machine->root_dir);
133 zfree(&machine->mmap_name);
134 }
135 return 0;
136 }
137
machine__new_host(void)138 struct machine *machine__new_host(void)
139 {
140 struct machine *machine = malloc(sizeof(*machine));
141
142 if (machine != NULL) {
143 machine__init(machine, "", HOST_KERNEL_ID);
144
145 if (machine__create_kernel_maps(machine) < 0)
146 goto out_delete;
147 }
148
149 return machine;
150 out_delete:
151 free(machine);
152 return NULL;
153 }
154
machine__new_kallsyms(void)155 struct machine *machine__new_kallsyms(void)
156 {
157 struct machine *machine = machine__new_host();
158 /*
159 * FIXME:
160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 * ask for not using the kcore parsing code, once this one is fixed
162 * to create a map per module.
163 */
164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 machine__delete(machine);
166 machine = NULL;
167 }
168
169 return machine;
170 }
171
dsos__purge(struct dsos * dsos)172 static void dsos__purge(struct dsos *dsos)
173 {
174 struct dso *pos, *n;
175
176 down_write(&dsos->lock);
177
178 list_for_each_entry_safe(pos, n, &dsos->head, node) {
179 RB_CLEAR_NODE(&pos->rb_node);
180 pos->root = NULL;
181 list_del_init(&pos->node);
182 dso__put(pos);
183 }
184
185 up_write(&dsos->lock);
186 }
187
dsos__exit(struct dsos * dsos)188 static void dsos__exit(struct dsos *dsos)
189 {
190 dsos__purge(dsos);
191 exit_rwsem(&dsos->lock);
192 }
193
machine__delete_threads(struct machine * machine)194 void machine__delete_threads(struct machine *machine)
195 {
196 struct rb_node *nd;
197 int i;
198
199 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200 struct threads *threads = &machine->threads[i];
201 down_write(&threads->lock);
202 nd = rb_first_cached(&threads->entries);
203 while (nd) {
204 struct thread *t = rb_entry(nd, struct thread, rb_node);
205
206 nd = rb_next(nd);
207 __machine__remove_thread(machine, t, false);
208 }
209 up_write(&threads->lock);
210 }
211 }
212
machine__exit(struct machine * machine)213 void machine__exit(struct machine *machine)
214 {
215 int i;
216
217 if (machine == NULL)
218 return;
219
220 machine__destroy_kernel_maps(machine);
221 maps__exit(&machine->kmaps);
222 dsos__exit(&machine->dsos);
223 machine__exit_vdso(machine);
224 zfree(&machine->root_dir);
225 zfree(&machine->mmap_name);
226 zfree(&machine->current_tid);
227
228 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 struct threads *threads = &machine->threads[i];
230 struct thread *thread, *n;
231 /*
232 * Forget about the dead, at this point whatever threads were
233 * left in the dead lists better have a reference count taken
234 * by who is using them, and then, when they drop those references
235 * and it finally hits zero, thread__put() will check and see that
236 * its not in the dead threads list and will not try to remove it
237 * from there, just calling thread__delete() straight away.
238 */
239 list_for_each_entry_safe(thread, n, &threads->dead, node)
240 list_del_init(&thread->node);
241
242 exit_rwsem(&threads->lock);
243 }
244 }
245
machine__delete(struct machine * machine)246 void machine__delete(struct machine *machine)
247 {
248 if (machine) {
249 machine__exit(machine);
250 free(machine);
251 }
252 }
253
machines__init(struct machines * machines)254 void machines__init(struct machines *machines)
255 {
256 machine__init(&machines->host, "", HOST_KERNEL_ID);
257 machines->guests = RB_ROOT_CACHED;
258 }
259
machines__exit(struct machines * machines)260 void machines__exit(struct machines *machines)
261 {
262 machine__exit(&machines->host);
263 /* XXX exit guest */
264 }
265
machines__add(struct machines * machines,pid_t pid,const char * root_dir)266 struct machine *machines__add(struct machines *machines, pid_t pid,
267 const char *root_dir)
268 {
269 struct rb_node **p = &machines->guests.rb_root.rb_node;
270 struct rb_node *parent = NULL;
271 struct machine *pos, *machine = malloc(sizeof(*machine));
272 bool leftmost = true;
273
274 if (machine == NULL)
275 return NULL;
276
277 if (machine__init(machine, root_dir, pid) != 0) {
278 free(machine);
279 return NULL;
280 }
281
282 while (*p != NULL) {
283 parent = *p;
284 pos = rb_entry(parent, struct machine, rb_node);
285 if (pid < pos->pid)
286 p = &(*p)->rb_left;
287 else {
288 p = &(*p)->rb_right;
289 leftmost = false;
290 }
291 }
292
293 rb_link_node(&machine->rb_node, parent, p);
294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295
296 return machine;
297 }
298
machines__set_comm_exec(struct machines * machines,bool comm_exec)299 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300 {
301 struct rb_node *nd;
302
303 machines->host.comm_exec = comm_exec;
304
305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 struct machine *machine = rb_entry(nd, struct machine, rb_node);
307
308 machine->comm_exec = comm_exec;
309 }
310 }
311
machines__find(struct machines * machines,pid_t pid)312 struct machine *machines__find(struct machines *machines, pid_t pid)
313 {
314 struct rb_node **p = &machines->guests.rb_root.rb_node;
315 struct rb_node *parent = NULL;
316 struct machine *machine;
317 struct machine *default_machine = NULL;
318
319 if (pid == HOST_KERNEL_ID)
320 return &machines->host;
321
322 while (*p != NULL) {
323 parent = *p;
324 machine = rb_entry(parent, struct machine, rb_node);
325 if (pid < machine->pid)
326 p = &(*p)->rb_left;
327 else if (pid > machine->pid)
328 p = &(*p)->rb_right;
329 else
330 return machine;
331 if (!machine->pid)
332 default_machine = machine;
333 }
334
335 return default_machine;
336 }
337
machines__findnew(struct machines * machines,pid_t pid)338 struct machine *machines__findnew(struct machines *machines, pid_t pid)
339 {
340 char path[PATH_MAX];
341 const char *root_dir = "";
342 struct machine *machine = machines__find(machines, pid);
343
344 if (machine && (machine->pid == pid))
345 goto out;
346
347 if ((pid != HOST_KERNEL_ID) &&
348 (pid != DEFAULT_GUEST_KERNEL_ID) &&
349 (symbol_conf.guestmount)) {
350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351 if (access(path, R_OK)) {
352 static struct strlist *seen;
353
354 if (!seen)
355 seen = strlist__new(NULL, NULL);
356
357 if (!strlist__has_entry(seen, path)) {
358 pr_err("Can't access file %s\n", path);
359 strlist__add(seen, path);
360 }
361 machine = NULL;
362 goto out;
363 }
364 root_dir = path;
365 }
366
367 machine = machines__add(machines, pid, root_dir);
368 out:
369 return machine;
370 }
371
machines__process_guests(struct machines * machines,machine__process_t process,void * data)372 void machines__process_guests(struct machines *machines,
373 machine__process_t process, void *data)
374 {
375 struct rb_node *nd;
376
377 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
378 struct machine *pos = rb_entry(nd, struct machine, rb_node);
379 process(pos, data);
380 }
381 }
382
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)383 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
384 {
385 struct rb_node *node;
386 struct machine *machine;
387
388 machines->host.id_hdr_size = id_hdr_size;
389
390 for (node = rb_first_cached(&machines->guests); node;
391 node = rb_next(node)) {
392 machine = rb_entry(node, struct machine, rb_node);
393 machine->id_hdr_size = id_hdr_size;
394 }
395
396 return;
397 }
398
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)399 static void machine__update_thread_pid(struct machine *machine,
400 struct thread *th, pid_t pid)
401 {
402 struct thread *leader;
403
404 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
405 return;
406
407 th->pid_ = pid;
408
409 if (th->pid_ == th->tid)
410 return;
411
412 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
413 if (!leader)
414 goto out_err;
415
416 if (!leader->maps)
417 leader->maps = maps__new(machine);
418
419 if (!leader->maps)
420 goto out_err;
421
422 if (th->maps == leader->maps)
423 return;
424
425 if (th->maps) {
426 /*
427 * Maps are created from MMAP events which provide the pid and
428 * tid. Consequently there never should be any maps on a thread
429 * with an unknown pid. Just print an error if there are.
430 */
431 if (!maps__empty(th->maps))
432 pr_err("Discarding thread maps for %d:%d\n",
433 th->pid_, th->tid);
434 maps__put(th->maps);
435 }
436
437 th->maps = maps__get(leader->maps);
438 out_put:
439 thread__put(leader);
440 return;
441 out_err:
442 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
443 goto out_put;
444 }
445
446 /*
447 * Front-end cache - TID lookups come in blocks,
448 * so most of the time we dont have to look up
449 * the full rbtree:
450 */
451 static struct thread*
__threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)452 __threads__get_last_match(struct threads *threads, struct machine *machine,
453 int pid, int tid)
454 {
455 struct thread *th;
456
457 th = threads->last_match;
458 if (th != NULL) {
459 if (th->tid == tid) {
460 machine__update_thread_pid(machine, th, pid);
461 return thread__get(th);
462 }
463
464 threads->last_match = NULL;
465 }
466
467 return NULL;
468 }
469
470 static struct thread*
threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)471 threads__get_last_match(struct threads *threads, struct machine *machine,
472 int pid, int tid)
473 {
474 struct thread *th = NULL;
475
476 if (perf_singlethreaded)
477 th = __threads__get_last_match(threads, machine, pid, tid);
478
479 return th;
480 }
481
482 static void
__threads__set_last_match(struct threads * threads,struct thread * th)483 __threads__set_last_match(struct threads *threads, struct thread *th)
484 {
485 threads->last_match = th;
486 }
487
488 static void
threads__set_last_match(struct threads * threads,struct thread * th)489 threads__set_last_match(struct threads *threads, struct thread *th)
490 {
491 if (perf_singlethreaded)
492 __threads__set_last_match(threads, th);
493 }
494
495 /*
496 * Caller must eventually drop thread->refcnt returned with a successful
497 * lookup/new thread inserted.
498 */
____machine__findnew_thread(struct machine * machine,struct threads * threads,pid_t pid,pid_t tid,bool create)499 static struct thread *____machine__findnew_thread(struct machine *machine,
500 struct threads *threads,
501 pid_t pid, pid_t tid,
502 bool create)
503 {
504 struct rb_node **p = &threads->entries.rb_root.rb_node;
505 struct rb_node *parent = NULL;
506 struct thread *th;
507 bool leftmost = true;
508
509 th = threads__get_last_match(threads, machine, pid, tid);
510 if (th)
511 return th;
512
513 while (*p != NULL) {
514 parent = *p;
515 th = rb_entry(parent, struct thread, rb_node);
516
517 if (th->tid == tid) {
518 threads__set_last_match(threads, th);
519 machine__update_thread_pid(machine, th, pid);
520 return thread__get(th);
521 }
522
523 if (tid < th->tid)
524 p = &(*p)->rb_left;
525 else {
526 p = &(*p)->rb_right;
527 leftmost = false;
528 }
529 }
530
531 if (!create)
532 return NULL;
533
534 th = thread__new(pid, tid);
535 if (th != NULL) {
536 rb_link_node(&th->rb_node, parent, p);
537 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
538
539 /*
540 * We have to initialize maps separately after rb tree is updated.
541 *
542 * The reason is that we call machine__findnew_thread
543 * within thread__init_maps to find the thread
544 * leader and that would screwed the rb tree.
545 */
546 if (thread__init_maps(th, machine)) {
547 rb_erase_cached(&th->rb_node, &threads->entries);
548 RB_CLEAR_NODE(&th->rb_node);
549 thread__put(th);
550 return NULL;
551 }
552 /*
553 * It is now in the rbtree, get a ref
554 */
555 thread__get(th);
556 threads__set_last_match(threads, th);
557 ++threads->nr;
558 }
559
560 return th;
561 }
562
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
564 {
565 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566 }
567
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
569 pid_t tid)
570 {
571 struct threads *threads = machine__threads(machine, tid);
572 struct thread *th;
573
574 down_write(&threads->lock);
575 th = __machine__findnew_thread(machine, pid, tid);
576 up_write(&threads->lock);
577 return th;
578 }
579
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)580 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
581 pid_t tid)
582 {
583 struct threads *threads = machine__threads(machine, tid);
584 struct thread *th;
585
586 down_read(&threads->lock);
587 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
588 up_read(&threads->lock);
589 return th;
590 }
591
machine__thread_exec_comm(struct machine * machine,struct thread * thread)592 struct comm *machine__thread_exec_comm(struct machine *machine,
593 struct thread *thread)
594 {
595 if (machine->comm_exec)
596 return thread__exec_comm(thread);
597 else
598 return thread__comm(thread);
599 }
600
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)601 int machine__process_comm_event(struct machine *machine, union perf_event *event,
602 struct perf_sample *sample)
603 {
604 struct thread *thread = machine__findnew_thread(machine,
605 event->comm.pid,
606 event->comm.tid);
607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608 int err = 0;
609
610 if (exec)
611 machine->comm_exec = true;
612
613 if (dump_trace)
614 perf_event__fprintf_comm(event, stdout);
615
616 if (thread == NULL ||
617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619 err = -1;
620 }
621
622 thread__put(thread);
623
624 return err;
625 }
626
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)627 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628 union perf_event *event,
629 struct perf_sample *sample __maybe_unused)
630 {
631 struct thread *thread = machine__findnew_thread(machine,
632 event->namespaces.pid,
633 event->namespaces.tid);
634 int err = 0;
635
636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637 "\nWARNING: kernel seems to support more namespaces than perf"
638 " tool.\nTry updating the perf tool..\n\n");
639
640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641 "\nWARNING: perf tool seems to support more namespaces than"
642 " the kernel.\nTry updating the kernel..\n\n");
643
644 if (dump_trace)
645 perf_event__fprintf_namespaces(event, stdout);
646
647 if (thread == NULL ||
648 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650 err = -1;
651 }
652
653 thread__put(thread);
654
655 return err;
656 }
657
machine__process_cgroup_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)658 int machine__process_cgroup_event(struct machine *machine,
659 union perf_event *event,
660 struct perf_sample *sample __maybe_unused)
661 {
662 struct cgroup *cgrp;
663
664 if (dump_trace)
665 perf_event__fprintf_cgroup(event, stdout);
666
667 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
668 if (cgrp == NULL)
669 return -ENOMEM;
670
671 return 0;
672 }
673
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)674 int machine__process_lost_event(struct machine *machine __maybe_unused,
675 union perf_event *event, struct perf_sample *sample __maybe_unused)
676 {
677 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678 event->lost.id, event->lost.lost);
679 return 0;
680 }
681
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
683 union perf_event *event, struct perf_sample *sample)
684 {
685 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
686 sample->id, event->lost_samples.lost);
687 return 0;
688 }
689
machine__findnew_module_dso(struct machine * machine,struct kmod_path * m,const char * filename)690 static struct dso *machine__findnew_module_dso(struct machine *machine,
691 struct kmod_path *m,
692 const char *filename)
693 {
694 struct dso *dso;
695
696 down_write(&machine->dsos.lock);
697
698 dso = __dsos__find(&machine->dsos, m->name, true);
699 if (!dso) {
700 dso = __dsos__addnew(&machine->dsos, m->name);
701 if (dso == NULL)
702 goto out_unlock;
703
704 dso__set_module_info(dso, m, machine);
705 dso__set_long_name(dso, strdup(filename), true);
706 dso->kernel = DSO_SPACE__KERNEL;
707 }
708
709 dso__get(dso);
710 out_unlock:
711 up_write(&machine->dsos.lock);
712 return dso;
713 }
714
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)715 int machine__process_aux_event(struct machine *machine __maybe_unused,
716 union perf_event *event)
717 {
718 if (dump_trace)
719 perf_event__fprintf_aux(event, stdout);
720 return 0;
721 }
722
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)723 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
724 union perf_event *event)
725 {
726 if (dump_trace)
727 perf_event__fprintf_itrace_start(event, stdout);
728 return 0;
729 }
730
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)731 int machine__process_switch_event(struct machine *machine __maybe_unused,
732 union perf_event *event)
733 {
734 if (dump_trace)
735 perf_event__fprintf_switch(event, stdout);
736 return 0;
737 }
738
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)739 static int machine__process_ksymbol_register(struct machine *machine,
740 union perf_event *event,
741 struct perf_sample *sample __maybe_unused)
742 {
743 struct symbol *sym;
744 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
745
746 if (!map) {
747 struct dso *dso = dso__new(event->ksymbol.name);
748
749 if (dso) {
750 dso->kernel = DSO_SPACE__KERNEL;
751 map = map__new2(0, dso);
752 }
753
754 if (!dso || !map) {
755 dso__put(dso);
756 return -ENOMEM;
757 }
758
759 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
760 map->dso->binary_type = DSO_BINARY_TYPE__OOL;
761 map->dso->data.file_size = event->ksymbol.len;
762 dso__set_loaded(map->dso);
763 }
764
765 map->start = event->ksymbol.addr;
766 map->end = map->start + event->ksymbol.len;
767 maps__insert(&machine->kmaps, map);
768 dso__set_loaded(dso);
769
770 if (is_bpf_image(event->ksymbol.name)) {
771 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
772 dso__set_long_name(dso, "", false);
773 }
774 }
775
776 sym = symbol__new(map->map_ip(map, map->start),
777 event->ksymbol.len,
778 0, 0, event->ksymbol.name);
779 if (!sym)
780 return -ENOMEM;
781 dso__insert_symbol(map->dso, sym);
782 return 0;
783 }
784
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)785 static int machine__process_ksymbol_unregister(struct machine *machine,
786 union perf_event *event,
787 struct perf_sample *sample __maybe_unused)
788 {
789 struct symbol *sym;
790 struct map *map;
791
792 map = maps__find(&machine->kmaps, event->ksymbol.addr);
793 if (!map)
794 return 0;
795
796 if (map != machine->vmlinux_map)
797 maps__remove(&machine->kmaps, map);
798 else {
799 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
800 if (sym)
801 dso__delete_symbol(map->dso, sym);
802 }
803
804 return 0;
805 }
806
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)807 int machine__process_ksymbol(struct machine *machine __maybe_unused,
808 union perf_event *event,
809 struct perf_sample *sample)
810 {
811 if (dump_trace)
812 perf_event__fprintf_ksymbol(event, stdout);
813
814 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
815 return machine__process_ksymbol_unregister(machine, event,
816 sample);
817 return machine__process_ksymbol_register(machine, event, sample);
818 }
819
machine__process_text_poke(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)820 int machine__process_text_poke(struct machine *machine, union perf_event *event,
821 struct perf_sample *sample __maybe_unused)
822 {
823 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
824 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
825
826 if (dump_trace)
827 perf_event__fprintf_text_poke(event, machine, stdout);
828
829 if (!event->text_poke.new_len)
830 return 0;
831
832 if (cpumode != PERF_RECORD_MISC_KERNEL) {
833 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
834 return 0;
835 }
836
837 if (map && map->dso) {
838 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
839 int ret;
840
841 /*
842 * Kernel maps might be changed when loading symbols so loading
843 * must be done prior to using kernel maps.
844 */
845 map__load(map);
846 ret = dso__data_write_cache_addr(map->dso, map, machine,
847 event->text_poke.addr,
848 new_bytes,
849 event->text_poke.new_len);
850 if (ret != event->text_poke.new_len)
851 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
852 event->text_poke.addr);
853 } else {
854 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
855 event->text_poke.addr);
856 }
857
858 return 0;
859 }
860
machine__addnew_module_map(struct machine * machine,u64 start,const char * filename)861 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
862 const char *filename)
863 {
864 struct map *map = NULL;
865 struct kmod_path m;
866 struct dso *dso;
867
868 if (kmod_path__parse_name(&m, filename))
869 return NULL;
870
871 dso = machine__findnew_module_dso(machine, &m, filename);
872 if (dso == NULL)
873 goto out;
874
875 map = map__new2(start, dso);
876 if (map == NULL)
877 goto out;
878
879 maps__insert(&machine->kmaps, map);
880
881 /* Put the map here because maps__insert alread got it */
882 map__put(map);
883 out:
884 /* put the dso here, corresponding to machine__findnew_module_dso */
885 dso__put(dso);
886 zfree(&m.name);
887 return map;
888 }
889
machines__fprintf_dsos(struct machines * machines,FILE * fp)890 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
891 {
892 struct rb_node *nd;
893 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
894
895 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
896 struct machine *pos = rb_entry(nd, struct machine, rb_node);
897 ret += __dsos__fprintf(&pos->dsos.head, fp);
898 }
899
900 return ret;
901 }
902
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)903 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
904 bool (skip)(struct dso *dso, int parm), int parm)
905 {
906 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
907 }
908
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)909 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
910 bool (skip)(struct dso *dso, int parm), int parm)
911 {
912 struct rb_node *nd;
913 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
914
915 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
916 struct machine *pos = rb_entry(nd, struct machine, rb_node);
917 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
918 }
919 return ret;
920 }
921
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)922 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
923 {
924 int i;
925 size_t printed = 0;
926 struct dso *kdso = machine__kernel_dso(machine);
927
928 if (kdso->has_build_id) {
929 char filename[PATH_MAX];
930 if (dso__build_id_filename(kdso, filename, sizeof(filename),
931 false))
932 printed += fprintf(fp, "[0] %s\n", filename);
933 }
934
935 for (i = 0; i < vmlinux_path__nr_entries; ++i)
936 printed += fprintf(fp, "[%d] %s\n",
937 i + kdso->has_build_id, vmlinux_path[i]);
938
939 return printed;
940 }
941
machine__fprintf(struct machine * machine,FILE * fp)942 size_t machine__fprintf(struct machine *machine, FILE *fp)
943 {
944 struct rb_node *nd;
945 size_t ret;
946 int i;
947
948 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
949 struct threads *threads = &machine->threads[i];
950
951 down_read(&threads->lock);
952
953 ret = fprintf(fp, "Threads: %u\n", threads->nr);
954
955 for (nd = rb_first_cached(&threads->entries); nd;
956 nd = rb_next(nd)) {
957 struct thread *pos = rb_entry(nd, struct thread, rb_node);
958
959 ret += thread__fprintf(pos, fp);
960 }
961
962 up_read(&threads->lock);
963 }
964 return ret;
965 }
966
machine__get_kernel(struct machine * machine)967 static struct dso *machine__get_kernel(struct machine *machine)
968 {
969 const char *vmlinux_name = machine->mmap_name;
970 struct dso *kernel;
971
972 if (machine__is_host(machine)) {
973 if (symbol_conf.vmlinux_name)
974 vmlinux_name = symbol_conf.vmlinux_name;
975
976 kernel = machine__findnew_kernel(machine, vmlinux_name,
977 "[kernel]", DSO_SPACE__KERNEL);
978 } else {
979 if (symbol_conf.default_guest_vmlinux_name)
980 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
981
982 kernel = machine__findnew_kernel(machine, vmlinux_name,
983 "[guest.kernel]",
984 DSO_SPACE__KERNEL_GUEST);
985 }
986
987 if (kernel != NULL && (!kernel->has_build_id))
988 dso__read_running_kernel_build_id(kernel, machine);
989
990 return kernel;
991 }
992
993 struct process_args {
994 u64 start;
995 };
996
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)997 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
998 size_t bufsz)
999 {
1000 if (machine__is_default_guest(machine))
1001 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1002 else
1003 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1004 }
1005
1006 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1007
1008 /* Figure out the start address of kernel map from /proc/kallsyms.
1009 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1010 * symbol_name if it's not that important.
1011 */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)1012 static int machine__get_running_kernel_start(struct machine *machine,
1013 const char **symbol_name,
1014 u64 *start, u64 *end)
1015 {
1016 char filename[PATH_MAX];
1017 int i, err = -1;
1018 const char *name;
1019 u64 addr = 0;
1020
1021 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1022
1023 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1024 return 0;
1025
1026 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1027 err = kallsyms__get_function_start(filename, name, &addr);
1028 if (!err)
1029 break;
1030 }
1031
1032 if (err)
1033 return -1;
1034
1035 if (symbol_name)
1036 *symbol_name = name;
1037
1038 *start = addr;
1039
1040 err = kallsyms__get_function_start(filename, "_etext", &addr);
1041 if (!err)
1042 *end = addr;
1043
1044 return 0;
1045 }
1046
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)1047 int machine__create_extra_kernel_map(struct machine *machine,
1048 struct dso *kernel,
1049 struct extra_kernel_map *xm)
1050 {
1051 struct kmap *kmap;
1052 struct map *map;
1053
1054 map = map__new2(xm->start, kernel);
1055 if (!map)
1056 return -1;
1057
1058 map->end = xm->end;
1059 map->pgoff = xm->pgoff;
1060
1061 kmap = map__kmap(map);
1062
1063 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1064
1065 maps__insert(&machine->kmaps, map);
1066
1067 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1068 kmap->name, map->start, map->end);
1069
1070 map__put(map);
1071
1072 return 0;
1073 }
1074
find_entry_trampoline(struct dso * dso)1075 static u64 find_entry_trampoline(struct dso *dso)
1076 {
1077 /* Duplicates are removed so lookup all aliases */
1078 const char *syms[] = {
1079 "_entry_trampoline",
1080 "__entry_trampoline_start",
1081 "entry_SYSCALL_64_trampoline",
1082 };
1083 struct symbol *sym = dso__first_symbol(dso);
1084 unsigned int i;
1085
1086 for (; sym; sym = dso__next_symbol(sym)) {
1087 if (sym->binding != STB_GLOBAL)
1088 continue;
1089 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1090 if (!strcmp(sym->name, syms[i]))
1091 return sym->start;
1092 }
1093 }
1094
1095 return 0;
1096 }
1097
1098 /*
1099 * These values can be used for kernels that do not have symbols for the entry
1100 * trampolines in kallsyms.
1101 */
1102 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1103 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1104 #define X86_64_ENTRY_TRAMPOLINE 0x6000
1105
1106 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1107 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1108 struct dso *kernel)
1109 {
1110 struct maps *kmaps = &machine->kmaps;
1111 int nr_cpus_avail, cpu;
1112 bool found = false;
1113 struct map *map;
1114 u64 pgoff;
1115
1116 /*
1117 * In the vmlinux case, pgoff is a virtual address which must now be
1118 * mapped to a vmlinux offset.
1119 */
1120 maps__for_each_entry(kmaps, map) {
1121 struct kmap *kmap = __map__kmap(map);
1122 struct map *dest_map;
1123
1124 if (!kmap || !is_entry_trampoline(kmap->name))
1125 continue;
1126
1127 dest_map = maps__find(kmaps, map->pgoff);
1128 if (dest_map != map)
1129 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1130 found = true;
1131 }
1132 if (found || machine->trampolines_mapped)
1133 return 0;
1134
1135 pgoff = find_entry_trampoline(kernel);
1136 if (!pgoff)
1137 return 0;
1138
1139 nr_cpus_avail = machine__nr_cpus_avail(machine);
1140
1141 /* Add a 1 page map for each CPU's entry trampoline */
1142 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1143 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1144 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1145 X86_64_ENTRY_TRAMPOLINE;
1146 struct extra_kernel_map xm = {
1147 .start = va,
1148 .end = va + page_size,
1149 .pgoff = pgoff,
1150 };
1151
1152 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1153
1154 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1155 return -1;
1156 }
1157
1158 machine->trampolines_mapped = nr_cpus_avail;
1159
1160 return 0;
1161 }
1162
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1163 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1164 struct dso *kernel __maybe_unused)
1165 {
1166 return 0;
1167 }
1168
1169 static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1170 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1171 {
1172 /* In case of renewal the kernel map, destroy previous one */
1173 machine__destroy_kernel_maps(machine);
1174
1175 machine->vmlinux_map = map__new2(0, kernel);
1176 if (machine->vmlinux_map == NULL)
1177 return -1;
1178
1179 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1180 maps__insert(&machine->kmaps, machine->vmlinux_map);
1181 return 0;
1182 }
1183
machine__destroy_kernel_maps(struct machine * machine)1184 void machine__destroy_kernel_maps(struct machine *machine)
1185 {
1186 struct kmap *kmap;
1187 struct map *map = machine__kernel_map(machine);
1188
1189 if (map == NULL)
1190 return;
1191
1192 kmap = map__kmap(map);
1193 maps__remove(&machine->kmaps, map);
1194 if (kmap && kmap->ref_reloc_sym) {
1195 zfree((char **)&kmap->ref_reloc_sym->name);
1196 zfree(&kmap->ref_reloc_sym);
1197 }
1198
1199 map__zput(machine->vmlinux_map);
1200 }
1201
machines__create_guest_kernel_maps(struct machines * machines)1202 int machines__create_guest_kernel_maps(struct machines *machines)
1203 {
1204 int ret = 0;
1205 struct dirent **namelist = NULL;
1206 int i, items = 0;
1207 char path[PATH_MAX];
1208 pid_t pid;
1209 char *endp;
1210
1211 if (symbol_conf.default_guest_vmlinux_name ||
1212 symbol_conf.default_guest_modules ||
1213 symbol_conf.default_guest_kallsyms) {
1214 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1215 }
1216
1217 if (symbol_conf.guestmount) {
1218 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1219 if (items <= 0)
1220 return -ENOENT;
1221 for (i = 0; i < items; i++) {
1222 if (!isdigit(namelist[i]->d_name[0])) {
1223 /* Filter out . and .. */
1224 continue;
1225 }
1226 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1227 if ((*endp != '\0') ||
1228 (endp == namelist[i]->d_name) ||
1229 (errno == ERANGE)) {
1230 pr_debug("invalid directory (%s). Skipping.\n",
1231 namelist[i]->d_name);
1232 continue;
1233 }
1234 sprintf(path, "%s/%s/proc/kallsyms",
1235 symbol_conf.guestmount,
1236 namelist[i]->d_name);
1237 ret = access(path, R_OK);
1238 if (ret) {
1239 pr_debug("Can't access file %s\n", path);
1240 goto failure;
1241 }
1242 machines__create_kernel_maps(machines, pid);
1243 }
1244 failure:
1245 free(namelist);
1246 }
1247
1248 return ret;
1249 }
1250
machines__destroy_kernel_maps(struct machines * machines)1251 void machines__destroy_kernel_maps(struct machines *machines)
1252 {
1253 struct rb_node *next = rb_first_cached(&machines->guests);
1254
1255 machine__destroy_kernel_maps(&machines->host);
1256
1257 while (next) {
1258 struct machine *pos = rb_entry(next, struct machine, rb_node);
1259
1260 next = rb_next(&pos->rb_node);
1261 rb_erase_cached(&pos->rb_node, &machines->guests);
1262 machine__delete(pos);
1263 }
1264 }
1265
machines__create_kernel_maps(struct machines * machines,pid_t pid)1266 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1267 {
1268 struct machine *machine = machines__findnew(machines, pid);
1269
1270 if (machine == NULL)
1271 return -1;
1272
1273 return machine__create_kernel_maps(machine);
1274 }
1275
machine__load_kallsyms(struct machine * machine,const char * filename)1276 int machine__load_kallsyms(struct machine *machine, const char *filename)
1277 {
1278 struct map *map = machine__kernel_map(machine);
1279 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1280
1281 if (ret > 0) {
1282 dso__set_loaded(map->dso);
1283 /*
1284 * Since /proc/kallsyms will have multiple sessions for the
1285 * kernel, with modules between them, fixup the end of all
1286 * sections.
1287 */
1288 maps__fixup_end(&machine->kmaps);
1289 }
1290
1291 return ret;
1292 }
1293
machine__load_vmlinux_path(struct machine * machine)1294 int machine__load_vmlinux_path(struct machine *machine)
1295 {
1296 struct map *map = machine__kernel_map(machine);
1297 int ret = dso__load_vmlinux_path(map->dso, map);
1298
1299 if (ret > 0)
1300 dso__set_loaded(map->dso);
1301
1302 return ret;
1303 }
1304
get_kernel_version(const char * root_dir)1305 static char *get_kernel_version(const char *root_dir)
1306 {
1307 char version[PATH_MAX];
1308 FILE *file;
1309 char *name, *tmp;
1310 const char *prefix = "Linux version ";
1311
1312 sprintf(version, "%s/proc/version", root_dir);
1313 file = fopen(version, "r");
1314 if (!file)
1315 return NULL;
1316
1317 tmp = fgets(version, sizeof(version), file);
1318 fclose(file);
1319 if (!tmp)
1320 return NULL;
1321
1322 name = strstr(version, prefix);
1323 if (!name)
1324 return NULL;
1325 name += strlen(prefix);
1326 tmp = strchr(name, ' ');
1327 if (tmp)
1328 *tmp = '\0';
1329
1330 return strdup(name);
1331 }
1332
is_kmod_dso(struct dso * dso)1333 static bool is_kmod_dso(struct dso *dso)
1334 {
1335 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1336 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1337 }
1338
maps__set_module_path(struct maps * maps,const char * path,struct kmod_path * m)1339 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1340 {
1341 char *long_name;
1342 struct map *map = maps__find_by_name(maps, m->name);
1343
1344 if (map == NULL)
1345 return 0;
1346
1347 long_name = strdup(path);
1348 if (long_name == NULL)
1349 return -ENOMEM;
1350
1351 dso__set_long_name(map->dso, long_name, true);
1352 dso__kernel_module_get_build_id(map->dso, "");
1353
1354 /*
1355 * Full name could reveal us kmod compression, so
1356 * we need to update the symtab_type if needed.
1357 */
1358 if (m->comp && is_kmod_dso(map->dso)) {
1359 map->dso->symtab_type++;
1360 map->dso->comp = m->comp;
1361 }
1362
1363 return 0;
1364 }
1365
maps__set_modules_path_dir(struct maps * maps,const char * dir_name,int depth)1366 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1367 {
1368 struct dirent *dent;
1369 DIR *dir = opendir(dir_name);
1370 int ret = 0;
1371
1372 if (!dir) {
1373 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1374 return -1;
1375 }
1376
1377 while ((dent = readdir(dir)) != NULL) {
1378 char path[PATH_MAX];
1379 struct stat st;
1380
1381 /*sshfs might return bad dent->d_type, so we have to stat*/
1382 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1383 if (stat(path, &st))
1384 continue;
1385
1386 if (S_ISDIR(st.st_mode)) {
1387 if (!strcmp(dent->d_name, ".") ||
1388 !strcmp(dent->d_name, ".."))
1389 continue;
1390
1391 /* Do not follow top-level source and build symlinks */
1392 if (depth == 0) {
1393 if (!strcmp(dent->d_name, "source") ||
1394 !strcmp(dent->d_name, "build"))
1395 continue;
1396 }
1397
1398 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1399 if (ret < 0)
1400 goto out;
1401 } else {
1402 struct kmod_path m;
1403
1404 ret = kmod_path__parse_name(&m, dent->d_name);
1405 if (ret)
1406 goto out;
1407
1408 if (m.kmod)
1409 ret = maps__set_module_path(maps, path, &m);
1410
1411 zfree(&m.name);
1412
1413 if (ret)
1414 goto out;
1415 }
1416 }
1417
1418 out:
1419 closedir(dir);
1420 return ret;
1421 }
1422
machine__set_modules_path(struct machine * machine)1423 static int machine__set_modules_path(struct machine *machine)
1424 {
1425 char *version;
1426 char modules_path[PATH_MAX];
1427
1428 version = get_kernel_version(machine->root_dir);
1429 if (!version)
1430 return -1;
1431
1432 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1433 machine->root_dir, version);
1434 free(version);
1435
1436 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1437 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1438 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1439 u64 *size __maybe_unused,
1440 const char *name __maybe_unused)
1441 {
1442 return 0;
1443 }
1444
machine__create_module(void * arg,const char * name,u64 start,u64 size)1445 static int machine__create_module(void *arg, const char *name, u64 start,
1446 u64 size)
1447 {
1448 struct machine *machine = arg;
1449 struct map *map;
1450
1451 if (arch__fix_module_text_start(&start, &size, name) < 0)
1452 return -1;
1453
1454 map = machine__addnew_module_map(machine, start, name);
1455 if (map == NULL)
1456 return -1;
1457 map->end = start + size;
1458
1459 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1460
1461 return 0;
1462 }
1463
machine__create_modules(struct machine * machine)1464 static int machine__create_modules(struct machine *machine)
1465 {
1466 const char *modules;
1467 char path[PATH_MAX];
1468
1469 if (machine__is_default_guest(machine)) {
1470 modules = symbol_conf.default_guest_modules;
1471 } else {
1472 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1473 modules = path;
1474 }
1475
1476 if (symbol__restricted_filename(modules, "/proc/modules"))
1477 return -1;
1478
1479 if (modules__parse(modules, machine, machine__create_module))
1480 return -1;
1481
1482 if (!machine__set_modules_path(machine))
1483 return 0;
1484
1485 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1486
1487 return 0;
1488 }
1489
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1490 static void machine__set_kernel_mmap(struct machine *machine,
1491 u64 start, u64 end)
1492 {
1493 machine->vmlinux_map->start = start;
1494 machine->vmlinux_map->end = end;
1495 /*
1496 * Be a bit paranoid here, some perf.data file came with
1497 * a zero sized synthesized MMAP event for the kernel.
1498 */
1499 if (start == 0 && end == 0)
1500 machine->vmlinux_map->end = ~0ULL;
1501 }
1502
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1503 static void machine__update_kernel_mmap(struct machine *machine,
1504 u64 start, u64 end)
1505 {
1506 struct map *map = machine__kernel_map(machine);
1507
1508 map__get(map);
1509 maps__remove(&machine->kmaps, map);
1510
1511 machine__set_kernel_mmap(machine, start, end);
1512
1513 maps__insert(&machine->kmaps, map);
1514 map__put(map);
1515 }
1516
machine__create_kernel_maps(struct machine * machine)1517 int machine__create_kernel_maps(struct machine *machine)
1518 {
1519 struct dso *kernel = machine__get_kernel(machine);
1520 const char *name = NULL;
1521 struct map *map;
1522 u64 start = 0, end = ~0ULL;
1523 int ret;
1524
1525 if (kernel == NULL)
1526 return -1;
1527
1528 ret = __machine__create_kernel_maps(machine, kernel);
1529 if (ret < 0)
1530 goto out_put;
1531
1532 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1533 if (machine__is_host(machine))
1534 pr_debug("Problems creating module maps, "
1535 "continuing anyway...\n");
1536 else
1537 pr_debug("Problems creating module maps for guest %d, "
1538 "continuing anyway...\n", machine->pid);
1539 }
1540
1541 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1542 if (name &&
1543 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1544 machine__destroy_kernel_maps(machine);
1545 ret = -1;
1546 goto out_put;
1547 }
1548
1549 /*
1550 * we have a real start address now, so re-order the kmaps
1551 * assume it's the last in the kmaps
1552 */
1553 machine__update_kernel_mmap(machine, start, end);
1554 }
1555
1556 if (machine__create_extra_kernel_maps(machine, kernel))
1557 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1558
1559 if (end == ~0ULL) {
1560 /* update end address of the kernel map using adjacent module address */
1561 map = map__next(machine__kernel_map(machine));
1562 if (map)
1563 machine__set_kernel_mmap(machine, start, map->start);
1564 }
1565
1566 out_put:
1567 dso__put(kernel);
1568 return ret;
1569 }
1570
machine__uses_kcore(struct machine * machine)1571 static bool machine__uses_kcore(struct machine *machine)
1572 {
1573 struct dso *dso;
1574
1575 list_for_each_entry(dso, &machine->dsos.head, node) {
1576 if (dso__is_kcore(dso))
1577 return true;
1578 }
1579
1580 return false;
1581 }
1582
perf_event__is_extra_kernel_mmap(struct machine * machine,union perf_event * event)1583 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1584 union perf_event *event)
1585 {
1586 return machine__is(machine, "x86_64") &&
1587 is_entry_trampoline(event->mmap.filename);
1588 }
1589
machine__process_extra_kernel_map(struct machine * machine,union perf_event * event)1590 static int machine__process_extra_kernel_map(struct machine *machine,
1591 union perf_event *event)
1592 {
1593 struct dso *kernel = machine__kernel_dso(machine);
1594 struct extra_kernel_map xm = {
1595 .start = event->mmap.start,
1596 .end = event->mmap.start + event->mmap.len,
1597 .pgoff = event->mmap.pgoff,
1598 };
1599
1600 if (kernel == NULL)
1601 return -1;
1602
1603 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1604
1605 return machine__create_extra_kernel_map(machine, kernel, &xm);
1606 }
1607
machine__process_kernel_mmap_event(struct machine * machine,union perf_event * event)1608 static int machine__process_kernel_mmap_event(struct machine *machine,
1609 union perf_event *event)
1610 {
1611 struct map *map;
1612 enum dso_space_type dso_space;
1613 bool is_kernel_mmap;
1614
1615 /* If we have maps from kcore then we do not need or want any others */
1616 if (machine__uses_kcore(machine))
1617 return 0;
1618
1619 if (machine__is_host(machine))
1620 dso_space = DSO_SPACE__KERNEL;
1621 else
1622 dso_space = DSO_SPACE__KERNEL_GUEST;
1623
1624 is_kernel_mmap = memcmp(event->mmap.filename,
1625 machine->mmap_name,
1626 strlen(machine->mmap_name) - 1) == 0;
1627 if (event->mmap.filename[0] == '/' ||
1628 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1629 map = machine__addnew_module_map(machine, event->mmap.start,
1630 event->mmap.filename);
1631 if (map == NULL)
1632 goto out_problem;
1633
1634 map->end = map->start + event->mmap.len;
1635 } else if (is_kernel_mmap) {
1636 const char *symbol_name = (event->mmap.filename +
1637 strlen(machine->mmap_name));
1638 /*
1639 * Should be there already, from the build-id table in
1640 * the header.
1641 */
1642 struct dso *kernel = NULL;
1643 struct dso *dso;
1644
1645 down_read(&machine->dsos.lock);
1646
1647 list_for_each_entry(dso, &machine->dsos.head, node) {
1648
1649 /*
1650 * The cpumode passed to is_kernel_module is not the
1651 * cpumode of *this* event. If we insist on passing
1652 * correct cpumode to is_kernel_module, we should
1653 * record the cpumode when we adding this dso to the
1654 * linked list.
1655 *
1656 * However we don't really need passing correct
1657 * cpumode. We know the correct cpumode must be kernel
1658 * mode (if not, we should not link it onto kernel_dsos
1659 * list).
1660 *
1661 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1662 * is_kernel_module() treats it as a kernel cpumode.
1663 */
1664
1665 if (!dso->kernel ||
1666 is_kernel_module(dso->long_name,
1667 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1668 continue;
1669
1670
1671 kernel = dso;
1672 break;
1673 }
1674
1675 up_read(&machine->dsos.lock);
1676
1677 if (kernel == NULL)
1678 kernel = machine__findnew_dso(machine, machine->mmap_name);
1679 if (kernel == NULL)
1680 goto out_problem;
1681
1682 kernel->kernel = dso_space;
1683 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1684 dso__put(kernel);
1685 goto out_problem;
1686 }
1687
1688 if (strstr(kernel->long_name, "vmlinux"))
1689 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1690
1691 machine__update_kernel_mmap(machine, event->mmap.start,
1692 event->mmap.start + event->mmap.len);
1693
1694 /*
1695 * Avoid using a zero address (kptr_restrict) for the ref reloc
1696 * symbol. Effectively having zero here means that at record
1697 * time /proc/sys/kernel/kptr_restrict was non zero.
1698 */
1699 if (event->mmap.pgoff != 0) {
1700 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1701 symbol_name,
1702 event->mmap.pgoff);
1703 }
1704
1705 if (machine__is_default_guest(machine)) {
1706 /*
1707 * preload dso of guest kernel and modules
1708 */
1709 dso__load(kernel, machine__kernel_map(machine));
1710 }
1711 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1712 return machine__process_extra_kernel_map(machine, event);
1713 }
1714 return 0;
1715 out_problem:
1716 return -1;
1717 }
1718
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1719 int machine__process_mmap2_event(struct machine *machine,
1720 union perf_event *event,
1721 struct perf_sample *sample)
1722 {
1723 struct thread *thread;
1724 struct map *map;
1725 struct dso_id dso_id = {
1726 .maj = event->mmap2.maj,
1727 .min = event->mmap2.min,
1728 .ino = event->mmap2.ino,
1729 .ino_generation = event->mmap2.ino_generation,
1730 };
1731 int ret = 0;
1732
1733 if (dump_trace)
1734 perf_event__fprintf_mmap2(event, stdout);
1735
1736 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1737 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1738 ret = machine__process_kernel_mmap_event(machine, event);
1739 if (ret < 0)
1740 goto out_problem;
1741 return 0;
1742 }
1743
1744 thread = machine__findnew_thread(machine, event->mmap2.pid,
1745 event->mmap2.tid);
1746 if (thread == NULL)
1747 goto out_problem;
1748
1749 map = map__new(machine, event->mmap2.start,
1750 event->mmap2.len, event->mmap2.pgoff,
1751 &dso_id, event->mmap2.prot,
1752 event->mmap2.flags,
1753 event->mmap2.filename, thread);
1754
1755 if (map == NULL)
1756 goto out_problem_map;
1757
1758 ret = thread__insert_map(thread, map);
1759 if (ret)
1760 goto out_problem_insert;
1761
1762 thread__put(thread);
1763 map__put(map);
1764 return 0;
1765
1766 out_problem_insert:
1767 map__put(map);
1768 out_problem_map:
1769 thread__put(thread);
1770 out_problem:
1771 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1772 return 0;
1773 }
1774
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1775 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1776 struct perf_sample *sample)
1777 {
1778 struct thread *thread;
1779 struct map *map;
1780 u32 prot = 0;
1781 int ret = 0;
1782
1783 if (dump_trace)
1784 perf_event__fprintf_mmap(event, stdout);
1785
1786 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1787 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1788 ret = machine__process_kernel_mmap_event(machine, event);
1789 if (ret < 0)
1790 goto out_problem;
1791 return 0;
1792 }
1793
1794 thread = machine__findnew_thread(machine, event->mmap.pid,
1795 event->mmap.tid);
1796 if (thread == NULL)
1797 goto out_problem;
1798
1799 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1800 prot = PROT_EXEC;
1801
1802 map = map__new(machine, event->mmap.start,
1803 event->mmap.len, event->mmap.pgoff,
1804 NULL, prot, 0, event->mmap.filename, thread);
1805
1806 if (map == NULL)
1807 goto out_problem_map;
1808
1809 ret = thread__insert_map(thread, map);
1810 if (ret)
1811 goto out_problem_insert;
1812
1813 thread__put(thread);
1814 map__put(map);
1815 return 0;
1816
1817 out_problem_insert:
1818 map__put(map);
1819 out_problem_map:
1820 thread__put(thread);
1821 out_problem:
1822 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1823 return 0;
1824 }
1825
__machine__remove_thread(struct machine * machine,struct thread * th,bool lock)1826 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1827 {
1828 struct threads *threads = machine__threads(machine, th->tid);
1829
1830 if (threads->last_match == th)
1831 threads__set_last_match(threads, NULL);
1832
1833 if (lock)
1834 down_write(&threads->lock);
1835
1836 BUG_ON(refcount_read(&th->refcnt) == 0);
1837
1838 rb_erase_cached(&th->rb_node, &threads->entries);
1839 RB_CLEAR_NODE(&th->rb_node);
1840 --threads->nr;
1841 /*
1842 * Move it first to the dead_threads list, then drop the reference,
1843 * if this is the last reference, then the thread__delete destructor
1844 * will be called and we will remove it from the dead_threads list.
1845 */
1846 list_add_tail(&th->node, &threads->dead);
1847
1848 /*
1849 * We need to do the put here because if this is the last refcount,
1850 * then we will be touching the threads->dead head when removing the
1851 * thread.
1852 */
1853 thread__put(th);
1854
1855 if (lock)
1856 up_write(&threads->lock);
1857 }
1858
machine__remove_thread(struct machine * machine,struct thread * th)1859 void machine__remove_thread(struct machine *machine, struct thread *th)
1860 {
1861 return __machine__remove_thread(machine, th, true);
1862 }
1863
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1864 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1865 struct perf_sample *sample)
1866 {
1867 struct thread *thread = machine__find_thread(machine,
1868 event->fork.pid,
1869 event->fork.tid);
1870 struct thread *parent = machine__findnew_thread(machine,
1871 event->fork.ppid,
1872 event->fork.ptid);
1873 bool do_maps_clone = true;
1874 int err = 0;
1875
1876 if (dump_trace)
1877 perf_event__fprintf_task(event, stdout);
1878
1879 /*
1880 * There may be an existing thread that is not actually the parent,
1881 * either because we are processing events out of order, or because the
1882 * (fork) event that would have removed the thread was lost. Assume the
1883 * latter case and continue on as best we can.
1884 */
1885 if (parent->pid_ != (pid_t)event->fork.ppid) {
1886 dump_printf("removing erroneous parent thread %d/%d\n",
1887 parent->pid_, parent->tid);
1888 machine__remove_thread(machine, parent);
1889 thread__put(parent);
1890 parent = machine__findnew_thread(machine, event->fork.ppid,
1891 event->fork.ptid);
1892 }
1893
1894 /* if a thread currently exists for the thread id remove it */
1895 if (thread != NULL) {
1896 machine__remove_thread(machine, thread);
1897 thread__put(thread);
1898 }
1899
1900 thread = machine__findnew_thread(machine, event->fork.pid,
1901 event->fork.tid);
1902 /*
1903 * When synthesizing FORK events, we are trying to create thread
1904 * objects for the already running tasks on the machine.
1905 *
1906 * Normally, for a kernel FORK event, we want to clone the parent's
1907 * maps because that is what the kernel just did.
1908 *
1909 * But when synthesizing, this should not be done. If we do, we end up
1910 * with overlapping maps as we process the sythesized MMAP2 events that
1911 * get delivered shortly thereafter.
1912 *
1913 * Use the FORK event misc flags in an internal way to signal this
1914 * situation, so we can elide the map clone when appropriate.
1915 */
1916 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1917 do_maps_clone = false;
1918
1919 if (thread == NULL || parent == NULL ||
1920 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1921 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1922 err = -1;
1923 }
1924 thread__put(thread);
1925 thread__put(parent);
1926
1927 return err;
1928 }
1929
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1930 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1931 struct perf_sample *sample __maybe_unused)
1932 {
1933 struct thread *thread = machine__find_thread(machine,
1934 event->fork.pid,
1935 event->fork.tid);
1936
1937 if (dump_trace)
1938 perf_event__fprintf_task(event, stdout);
1939
1940 if (thread != NULL) {
1941 thread__exited(thread);
1942 thread__put(thread);
1943 }
1944
1945 return 0;
1946 }
1947
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1948 int machine__process_event(struct machine *machine, union perf_event *event,
1949 struct perf_sample *sample)
1950 {
1951 int ret;
1952
1953 switch (event->header.type) {
1954 case PERF_RECORD_COMM:
1955 ret = machine__process_comm_event(machine, event, sample); break;
1956 case PERF_RECORD_MMAP:
1957 ret = machine__process_mmap_event(machine, event, sample); break;
1958 case PERF_RECORD_NAMESPACES:
1959 ret = machine__process_namespaces_event(machine, event, sample); break;
1960 case PERF_RECORD_CGROUP:
1961 ret = machine__process_cgroup_event(machine, event, sample); break;
1962 case PERF_RECORD_MMAP2:
1963 ret = machine__process_mmap2_event(machine, event, sample); break;
1964 case PERF_RECORD_FORK:
1965 ret = machine__process_fork_event(machine, event, sample); break;
1966 case PERF_RECORD_EXIT:
1967 ret = machine__process_exit_event(machine, event, sample); break;
1968 case PERF_RECORD_LOST:
1969 ret = machine__process_lost_event(machine, event, sample); break;
1970 case PERF_RECORD_AUX:
1971 ret = machine__process_aux_event(machine, event); break;
1972 case PERF_RECORD_ITRACE_START:
1973 ret = machine__process_itrace_start_event(machine, event); break;
1974 case PERF_RECORD_LOST_SAMPLES:
1975 ret = machine__process_lost_samples_event(machine, event, sample); break;
1976 case PERF_RECORD_SWITCH:
1977 case PERF_RECORD_SWITCH_CPU_WIDE:
1978 ret = machine__process_switch_event(machine, event); break;
1979 case PERF_RECORD_KSYMBOL:
1980 ret = machine__process_ksymbol(machine, event, sample); break;
1981 case PERF_RECORD_BPF_EVENT:
1982 ret = machine__process_bpf(machine, event, sample); break;
1983 case PERF_RECORD_TEXT_POKE:
1984 ret = machine__process_text_poke(machine, event, sample); break;
1985 default:
1986 ret = -1;
1987 break;
1988 }
1989
1990 return ret;
1991 }
1992
symbol__match_regex(struct symbol * sym,regex_t * regex)1993 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1994 {
1995 if (!regexec(regex, sym->name, 0, NULL, 0))
1996 return 1;
1997 return 0;
1998 }
1999
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)2000 static void ip__resolve_ams(struct thread *thread,
2001 struct addr_map_symbol *ams,
2002 u64 ip)
2003 {
2004 struct addr_location al;
2005
2006 memset(&al, 0, sizeof(al));
2007 /*
2008 * We cannot use the header.misc hint to determine whether a
2009 * branch stack address is user, kernel, guest, hypervisor.
2010 * Branches may straddle the kernel/user/hypervisor boundaries.
2011 * Thus, we have to try consecutively until we find a match
2012 * or else, the symbol is unknown
2013 */
2014 thread__find_cpumode_addr_location(thread, ip, &al);
2015
2016 ams->addr = ip;
2017 ams->al_addr = al.addr;
2018 ams->ms.maps = al.maps;
2019 ams->ms.sym = al.sym;
2020 ams->ms.map = al.map;
2021 ams->phys_addr = 0;
2022 }
2023
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr)2024 static void ip__resolve_data(struct thread *thread,
2025 u8 m, struct addr_map_symbol *ams,
2026 u64 addr, u64 phys_addr)
2027 {
2028 struct addr_location al;
2029
2030 memset(&al, 0, sizeof(al));
2031
2032 thread__find_symbol(thread, m, addr, &al);
2033
2034 ams->addr = addr;
2035 ams->al_addr = al.addr;
2036 ams->ms.maps = al.maps;
2037 ams->ms.sym = al.sym;
2038 ams->ms.map = al.map;
2039 ams->phys_addr = phys_addr;
2040 }
2041
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)2042 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2043 struct addr_location *al)
2044 {
2045 struct mem_info *mi = mem_info__new();
2046
2047 if (!mi)
2048 return NULL;
2049
2050 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2051 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2052 sample->addr, sample->phys_addr);
2053 mi->data_src.val = sample->data_src;
2054
2055 return mi;
2056 }
2057
callchain_srcline(struct map_symbol * ms,u64 ip)2058 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2059 {
2060 struct map *map = ms->map;
2061 char *srcline = NULL;
2062
2063 if (!map || callchain_param.key == CCKEY_FUNCTION)
2064 return srcline;
2065
2066 srcline = srcline__tree_find(&map->dso->srclines, ip);
2067 if (!srcline) {
2068 bool show_sym = false;
2069 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2070
2071 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2072 ms->sym, show_sym, show_addr, ip);
2073 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2074 }
2075
2076 return srcline;
2077 }
2078
2079 struct iterations {
2080 int nr_loop_iter;
2081 u64 cycles;
2082 };
2083
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from)2084 static int add_callchain_ip(struct thread *thread,
2085 struct callchain_cursor *cursor,
2086 struct symbol **parent,
2087 struct addr_location *root_al,
2088 u8 *cpumode,
2089 u64 ip,
2090 bool branch,
2091 struct branch_flags *flags,
2092 struct iterations *iter,
2093 u64 branch_from)
2094 {
2095 struct map_symbol ms;
2096 struct addr_location al;
2097 int nr_loop_iter = 0;
2098 u64 iter_cycles = 0;
2099 const char *srcline = NULL;
2100
2101 al.filtered = 0;
2102 al.sym = NULL;
2103 al.srcline = NULL;
2104 if (!cpumode) {
2105 thread__find_cpumode_addr_location(thread, ip, &al);
2106 } else {
2107 if (ip >= PERF_CONTEXT_MAX) {
2108 switch (ip) {
2109 case PERF_CONTEXT_HV:
2110 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2111 break;
2112 case PERF_CONTEXT_KERNEL:
2113 *cpumode = PERF_RECORD_MISC_KERNEL;
2114 break;
2115 case PERF_CONTEXT_USER:
2116 *cpumode = PERF_RECORD_MISC_USER;
2117 break;
2118 default:
2119 pr_debug("invalid callchain context: "
2120 "%"PRId64"\n", (s64) ip);
2121 /*
2122 * It seems the callchain is corrupted.
2123 * Discard all.
2124 */
2125 callchain_cursor_reset(cursor);
2126 return 1;
2127 }
2128 return 0;
2129 }
2130 thread__find_symbol(thread, *cpumode, ip, &al);
2131 }
2132
2133 if (al.sym != NULL) {
2134 if (perf_hpp_list.parent && !*parent &&
2135 symbol__match_regex(al.sym, &parent_regex))
2136 *parent = al.sym;
2137 else if (have_ignore_callees && root_al &&
2138 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2139 /* Treat this symbol as the root,
2140 forgetting its callees. */
2141 *root_al = al;
2142 callchain_cursor_reset(cursor);
2143 }
2144 }
2145
2146 if (symbol_conf.hide_unresolved && al.sym == NULL)
2147 return 0;
2148
2149 if (iter) {
2150 nr_loop_iter = iter->nr_loop_iter;
2151 iter_cycles = iter->cycles;
2152 }
2153
2154 ms.maps = al.maps;
2155 ms.map = al.map;
2156 ms.sym = al.sym;
2157 srcline = callchain_srcline(&ms, al.addr);
2158 return callchain_cursor_append(cursor, ip, &ms,
2159 branch, flags, nr_loop_iter,
2160 iter_cycles, branch_from, srcline);
2161 }
2162
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2163 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2164 struct addr_location *al)
2165 {
2166 unsigned int i;
2167 const struct branch_stack *bs = sample->branch_stack;
2168 struct branch_entry *entries = perf_sample__branch_entries(sample);
2169 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2170
2171 if (!bi)
2172 return NULL;
2173
2174 for (i = 0; i < bs->nr; i++) {
2175 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2176 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2177 bi[i].flags = entries[i].flags;
2178 }
2179 return bi;
2180 }
2181
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2182 static void save_iterations(struct iterations *iter,
2183 struct branch_entry *be, int nr)
2184 {
2185 int i;
2186
2187 iter->nr_loop_iter++;
2188 iter->cycles = 0;
2189
2190 for (i = 0; i < nr; i++)
2191 iter->cycles += be[i].flags.cycles;
2192 }
2193
2194 #define CHASHSZ 127
2195 #define CHASHBITS 7
2196 #define NO_ENTRY 0xff
2197
2198 #define PERF_MAX_BRANCH_DEPTH 127
2199
2200 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2201 static int remove_loops(struct branch_entry *l, int nr,
2202 struct iterations *iter)
2203 {
2204 int i, j, off;
2205 unsigned char chash[CHASHSZ];
2206
2207 memset(chash, NO_ENTRY, sizeof(chash));
2208
2209 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2210
2211 for (i = 0; i < nr; i++) {
2212 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2213
2214 /* no collision handling for now */
2215 if (chash[h] == NO_ENTRY) {
2216 chash[h] = i;
2217 } else if (l[chash[h]].from == l[i].from) {
2218 bool is_loop = true;
2219 /* check if it is a real loop */
2220 off = 0;
2221 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2222 if (l[j].from != l[i + off].from) {
2223 is_loop = false;
2224 break;
2225 }
2226 if (is_loop) {
2227 j = nr - (i + off);
2228 if (j > 0) {
2229 save_iterations(iter + i + off,
2230 l + i, off);
2231
2232 memmove(iter + i, iter + i + off,
2233 j * sizeof(*iter));
2234
2235 memmove(l + i, l + i + off,
2236 j * sizeof(*l));
2237 }
2238
2239 nr -= off;
2240 }
2241 }
2242 }
2243 return nr;
2244 }
2245
lbr_callchain_add_kernel_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 branch_from,bool callee,int end)2246 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2247 struct callchain_cursor *cursor,
2248 struct perf_sample *sample,
2249 struct symbol **parent,
2250 struct addr_location *root_al,
2251 u64 branch_from,
2252 bool callee, int end)
2253 {
2254 struct ip_callchain *chain = sample->callchain;
2255 u8 cpumode = PERF_RECORD_MISC_USER;
2256 int err, i;
2257
2258 if (callee) {
2259 for (i = 0; i < end + 1; i++) {
2260 err = add_callchain_ip(thread, cursor, parent,
2261 root_al, &cpumode, chain->ips[i],
2262 false, NULL, NULL, branch_from);
2263 if (err)
2264 return err;
2265 }
2266 return 0;
2267 }
2268
2269 for (i = end; i >= 0; i--) {
2270 err = add_callchain_ip(thread, cursor, parent,
2271 root_al, &cpumode, chain->ips[i],
2272 false, NULL, NULL, branch_from);
2273 if (err)
2274 return err;
2275 }
2276
2277 return 0;
2278 }
2279
save_lbr_cursor_node(struct thread * thread,struct callchain_cursor * cursor,int idx)2280 static void save_lbr_cursor_node(struct thread *thread,
2281 struct callchain_cursor *cursor,
2282 int idx)
2283 {
2284 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2285
2286 if (!lbr_stitch)
2287 return;
2288
2289 if (cursor->pos == cursor->nr) {
2290 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2291 return;
2292 }
2293
2294 if (!cursor->curr)
2295 cursor->curr = cursor->first;
2296 else
2297 cursor->curr = cursor->curr->next;
2298 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2299 sizeof(struct callchain_cursor_node));
2300
2301 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2302 cursor->pos++;
2303 }
2304
lbr_callchain_add_lbr_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 * branch_from,bool callee)2305 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2306 struct callchain_cursor *cursor,
2307 struct perf_sample *sample,
2308 struct symbol **parent,
2309 struct addr_location *root_al,
2310 u64 *branch_from,
2311 bool callee)
2312 {
2313 struct branch_stack *lbr_stack = sample->branch_stack;
2314 struct branch_entry *entries = perf_sample__branch_entries(sample);
2315 u8 cpumode = PERF_RECORD_MISC_USER;
2316 int lbr_nr = lbr_stack->nr;
2317 struct branch_flags *flags;
2318 int err, i;
2319 u64 ip;
2320
2321 /*
2322 * The curr and pos are not used in writing session. They are cleared
2323 * in callchain_cursor_commit() when the writing session is closed.
2324 * Using curr and pos to track the current cursor node.
2325 */
2326 if (thread->lbr_stitch) {
2327 cursor->curr = NULL;
2328 cursor->pos = cursor->nr;
2329 if (cursor->nr) {
2330 cursor->curr = cursor->first;
2331 for (i = 0; i < (int)(cursor->nr - 1); i++)
2332 cursor->curr = cursor->curr->next;
2333 }
2334 }
2335
2336 if (callee) {
2337 /* Add LBR ip from first entries.to */
2338 ip = entries[0].to;
2339 flags = &entries[0].flags;
2340 *branch_from = entries[0].from;
2341 err = add_callchain_ip(thread, cursor, parent,
2342 root_al, &cpumode, ip,
2343 true, flags, NULL,
2344 *branch_from);
2345 if (err)
2346 return err;
2347
2348 /*
2349 * The number of cursor node increases.
2350 * Move the current cursor node.
2351 * But does not need to save current cursor node for entry 0.
2352 * It's impossible to stitch the whole LBRs of previous sample.
2353 */
2354 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2355 if (!cursor->curr)
2356 cursor->curr = cursor->first;
2357 else
2358 cursor->curr = cursor->curr->next;
2359 cursor->pos++;
2360 }
2361
2362 /* Add LBR ip from entries.from one by one. */
2363 for (i = 0; i < lbr_nr; i++) {
2364 ip = entries[i].from;
2365 flags = &entries[i].flags;
2366 err = add_callchain_ip(thread, cursor, parent,
2367 root_al, &cpumode, ip,
2368 true, flags, NULL,
2369 *branch_from);
2370 if (err)
2371 return err;
2372 save_lbr_cursor_node(thread, cursor, i);
2373 }
2374 return 0;
2375 }
2376
2377 /* Add LBR ip from entries.from one by one. */
2378 for (i = lbr_nr - 1; i >= 0; i--) {
2379 ip = entries[i].from;
2380 flags = &entries[i].flags;
2381 err = add_callchain_ip(thread, cursor, parent,
2382 root_al, &cpumode, ip,
2383 true, flags, NULL,
2384 *branch_from);
2385 if (err)
2386 return err;
2387 save_lbr_cursor_node(thread, cursor, i);
2388 }
2389
2390 if (lbr_nr > 0) {
2391 /* Add LBR ip from first entries.to */
2392 ip = entries[0].to;
2393 flags = &entries[0].flags;
2394 *branch_from = entries[0].from;
2395 err = add_callchain_ip(thread, cursor, parent,
2396 root_al, &cpumode, ip,
2397 true, flags, NULL,
2398 *branch_from);
2399 if (err)
2400 return err;
2401 }
2402
2403 return 0;
2404 }
2405
lbr_callchain_add_stitched_lbr_ip(struct thread * thread,struct callchain_cursor * cursor)2406 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2407 struct callchain_cursor *cursor)
2408 {
2409 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2410 struct callchain_cursor_node *cnode;
2411 struct stitch_list *stitch_node;
2412 int err;
2413
2414 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2415 cnode = &stitch_node->cursor;
2416
2417 err = callchain_cursor_append(cursor, cnode->ip,
2418 &cnode->ms,
2419 cnode->branch,
2420 &cnode->branch_flags,
2421 cnode->nr_loop_iter,
2422 cnode->iter_cycles,
2423 cnode->branch_from,
2424 cnode->srcline);
2425 if (err)
2426 return err;
2427 }
2428 return 0;
2429 }
2430
get_stitch_node(struct thread * thread)2431 static struct stitch_list *get_stitch_node(struct thread *thread)
2432 {
2433 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2434 struct stitch_list *stitch_node;
2435
2436 if (!list_empty(&lbr_stitch->free_lists)) {
2437 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2438 struct stitch_list, node);
2439 list_del(&stitch_node->node);
2440
2441 return stitch_node;
2442 }
2443
2444 return malloc(sizeof(struct stitch_list));
2445 }
2446
has_stitched_lbr(struct thread * thread,struct perf_sample * cur,struct perf_sample * prev,unsigned int max_lbr,bool callee)2447 static bool has_stitched_lbr(struct thread *thread,
2448 struct perf_sample *cur,
2449 struct perf_sample *prev,
2450 unsigned int max_lbr,
2451 bool callee)
2452 {
2453 struct branch_stack *cur_stack = cur->branch_stack;
2454 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2455 struct branch_stack *prev_stack = prev->branch_stack;
2456 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2457 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2458 int i, j, nr_identical_branches = 0;
2459 struct stitch_list *stitch_node;
2460 u64 cur_base, distance;
2461
2462 if (!cur_stack || !prev_stack)
2463 return false;
2464
2465 /* Find the physical index of the base-of-stack for current sample. */
2466 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2467
2468 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2469 (max_lbr + prev_stack->hw_idx - cur_base);
2470 /* Previous sample has shorter stack. Nothing can be stitched. */
2471 if (distance + 1 > prev_stack->nr)
2472 return false;
2473
2474 /*
2475 * Check if there are identical LBRs between two samples.
2476 * Identicall LBRs must have same from, to and flags values. Also,
2477 * they have to be saved in the same LBR registers (same physical
2478 * index).
2479 *
2480 * Starts from the base-of-stack of current sample.
2481 */
2482 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2483 if ((prev_entries[i].from != cur_entries[j].from) ||
2484 (prev_entries[i].to != cur_entries[j].to) ||
2485 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2486 break;
2487 nr_identical_branches++;
2488 }
2489
2490 if (!nr_identical_branches)
2491 return false;
2492
2493 /*
2494 * Save the LBRs between the base-of-stack of previous sample
2495 * and the base-of-stack of current sample into lbr_stitch->lists.
2496 * These LBRs will be stitched later.
2497 */
2498 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2499
2500 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2501 continue;
2502
2503 stitch_node = get_stitch_node(thread);
2504 if (!stitch_node)
2505 return false;
2506
2507 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2508 sizeof(struct callchain_cursor_node));
2509
2510 if (callee)
2511 list_add(&stitch_node->node, &lbr_stitch->lists);
2512 else
2513 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2514 }
2515
2516 return true;
2517 }
2518
alloc_lbr_stitch(struct thread * thread,unsigned int max_lbr)2519 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2520 {
2521 if (thread->lbr_stitch)
2522 return true;
2523
2524 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2525 if (!thread->lbr_stitch)
2526 goto err;
2527
2528 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2529 if (!thread->lbr_stitch->prev_lbr_cursor)
2530 goto free_lbr_stitch;
2531
2532 INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2533 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2534
2535 return true;
2536
2537 free_lbr_stitch:
2538 zfree(&thread->lbr_stitch);
2539 err:
2540 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2541 thread->lbr_stitch_enable = false;
2542 return false;
2543 }
2544
2545 /*
2546 * Recolve LBR callstack chain sample
2547 * Return:
2548 * 1 on success get LBR callchain information
2549 * 0 no available LBR callchain information, should try fp
2550 * negative error code on other errors.
2551 */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,unsigned int max_lbr)2552 static int resolve_lbr_callchain_sample(struct thread *thread,
2553 struct callchain_cursor *cursor,
2554 struct perf_sample *sample,
2555 struct symbol **parent,
2556 struct addr_location *root_al,
2557 int max_stack,
2558 unsigned int max_lbr)
2559 {
2560 bool callee = (callchain_param.order == ORDER_CALLEE);
2561 struct ip_callchain *chain = sample->callchain;
2562 int chain_nr = min(max_stack, (int)chain->nr), i;
2563 struct lbr_stitch *lbr_stitch;
2564 bool stitched_lbr = false;
2565 u64 branch_from = 0;
2566 int err;
2567
2568 for (i = 0; i < chain_nr; i++) {
2569 if (chain->ips[i] == PERF_CONTEXT_USER)
2570 break;
2571 }
2572
2573 /* LBR only affects the user callchain */
2574 if (i == chain_nr)
2575 return 0;
2576
2577 if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2578 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2579 lbr_stitch = thread->lbr_stitch;
2580
2581 stitched_lbr = has_stitched_lbr(thread, sample,
2582 &lbr_stitch->prev_sample,
2583 max_lbr, callee);
2584
2585 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2586 list_replace_init(&lbr_stitch->lists,
2587 &lbr_stitch->free_lists);
2588 }
2589 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2590 }
2591
2592 if (callee) {
2593 /* Add kernel ip */
2594 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2595 parent, root_al, branch_from,
2596 true, i);
2597 if (err)
2598 goto error;
2599
2600 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2601 root_al, &branch_from, true);
2602 if (err)
2603 goto error;
2604
2605 if (stitched_lbr) {
2606 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2607 if (err)
2608 goto error;
2609 }
2610
2611 } else {
2612 if (stitched_lbr) {
2613 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2614 if (err)
2615 goto error;
2616 }
2617 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2618 root_al, &branch_from, false);
2619 if (err)
2620 goto error;
2621
2622 /* Add kernel ip */
2623 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2624 parent, root_al, branch_from,
2625 false, i);
2626 if (err)
2627 goto error;
2628 }
2629 return 1;
2630
2631 error:
2632 return (err < 0) ? err : 0;
2633 }
2634
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent)2635 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2636 struct callchain_cursor *cursor,
2637 struct symbol **parent,
2638 struct addr_location *root_al,
2639 u8 *cpumode, int ent)
2640 {
2641 int err = 0;
2642
2643 while (--ent >= 0) {
2644 u64 ip = chain->ips[ent];
2645
2646 if (ip >= PERF_CONTEXT_MAX) {
2647 err = add_callchain_ip(thread, cursor, parent,
2648 root_al, cpumode, ip,
2649 false, NULL, NULL, 0);
2650 break;
2651 }
2652 }
2653 return err;
2654 }
2655
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2656 static int thread__resolve_callchain_sample(struct thread *thread,
2657 struct callchain_cursor *cursor,
2658 struct evsel *evsel,
2659 struct perf_sample *sample,
2660 struct symbol **parent,
2661 struct addr_location *root_al,
2662 int max_stack)
2663 {
2664 struct branch_stack *branch = sample->branch_stack;
2665 struct branch_entry *entries = perf_sample__branch_entries(sample);
2666 struct ip_callchain *chain = sample->callchain;
2667 int chain_nr = 0;
2668 u8 cpumode = PERF_RECORD_MISC_USER;
2669 int i, j, err, nr_entries;
2670 int skip_idx = -1;
2671 int first_call = 0;
2672
2673 if (chain)
2674 chain_nr = chain->nr;
2675
2676 if (evsel__has_branch_callstack(evsel)) {
2677 struct perf_env *env = evsel__env(evsel);
2678
2679 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2680 root_al, max_stack,
2681 !env ? 0 : env->max_branches);
2682 if (err)
2683 return (err < 0) ? err : 0;
2684 }
2685
2686 /*
2687 * Based on DWARF debug information, some architectures skip
2688 * a callchain entry saved by the kernel.
2689 */
2690 skip_idx = arch_skip_callchain_idx(thread, chain);
2691
2692 /*
2693 * Add branches to call stack for easier browsing. This gives
2694 * more context for a sample than just the callers.
2695 *
2696 * This uses individual histograms of paths compared to the
2697 * aggregated histograms the normal LBR mode uses.
2698 *
2699 * Limitations for now:
2700 * - No extra filters
2701 * - No annotations (should annotate somehow)
2702 */
2703
2704 if (branch && callchain_param.branch_callstack) {
2705 int nr = min(max_stack, (int)branch->nr);
2706 struct branch_entry be[nr];
2707 struct iterations iter[nr];
2708
2709 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2710 pr_warning("corrupted branch chain. skipping...\n");
2711 goto check_calls;
2712 }
2713
2714 for (i = 0; i < nr; i++) {
2715 if (callchain_param.order == ORDER_CALLEE) {
2716 be[i] = entries[i];
2717
2718 if (chain == NULL)
2719 continue;
2720
2721 /*
2722 * Check for overlap into the callchain.
2723 * The return address is one off compared to
2724 * the branch entry. To adjust for this
2725 * assume the calling instruction is not longer
2726 * than 8 bytes.
2727 */
2728 if (i == skip_idx ||
2729 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2730 first_call++;
2731 else if (be[i].from < chain->ips[first_call] &&
2732 be[i].from >= chain->ips[first_call] - 8)
2733 first_call++;
2734 } else
2735 be[i] = entries[branch->nr - i - 1];
2736 }
2737
2738 memset(iter, 0, sizeof(struct iterations) * nr);
2739 nr = remove_loops(be, nr, iter);
2740
2741 for (i = 0; i < nr; i++) {
2742 err = add_callchain_ip(thread, cursor, parent,
2743 root_al,
2744 NULL, be[i].to,
2745 true, &be[i].flags,
2746 NULL, be[i].from);
2747
2748 if (!err)
2749 err = add_callchain_ip(thread, cursor, parent, root_al,
2750 NULL, be[i].from,
2751 true, &be[i].flags,
2752 &iter[i], 0);
2753 if (err == -EINVAL)
2754 break;
2755 if (err)
2756 return err;
2757 }
2758
2759 if (chain_nr == 0)
2760 return 0;
2761
2762 chain_nr -= nr;
2763 }
2764
2765 check_calls:
2766 if (chain && callchain_param.order != ORDER_CALLEE) {
2767 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2768 &cpumode, chain->nr - first_call);
2769 if (err)
2770 return (err < 0) ? err : 0;
2771 }
2772 for (i = first_call, nr_entries = 0;
2773 i < chain_nr && nr_entries < max_stack; i++) {
2774 u64 ip;
2775
2776 if (callchain_param.order == ORDER_CALLEE)
2777 j = i;
2778 else
2779 j = chain->nr - i - 1;
2780
2781 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2782 if (j == skip_idx)
2783 continue;
2784 #endif
2785 ip = chain->ips[j];
2786 if (ip < PERF_CONTEXT_MAX)
2787 ++nr_entries;
2788 else if (callchain_param.order != ORDER_CALLEE) {
2789 err = find_prev_cpumode(chain, thread, cursor, parent,
2790 root_al, &cpumode, j);
2791 if (err)
2792 return (err < 0) ? err : 0;
2793 continue;
2794 }
2795
2796 err = add_callchain_ip(thread, cursor, parent,
2797 root_al, &cpumode, ip,
2798 false, NULL, NULL, 0);
2799
2800 if (err)
2801 return (err < 0) ? err : 0;
2802 }
2803
2804 return 0;
2805 }
2806
append_inlines(struct callchain_cursor * cursor,struct map_symbol * ms,u64 ip)2807 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2808 {
2809 struct symbol *sym = ms->sym;
2810 struct map *map = ms->map;
2811 struct inline_node *inline_node;
2812 struct inline_list *ilist;
2813 u64 addr;
2814 int ret = 1;
2815
2816 if (!symbol_conf.inline_name || !map || !sym)
2817 return ret;
2818
2819 addr = map__map_ip(map, ip);
2820 addr = map__rip_2objdump(map, addr);
2821
2822 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2823 if (!inline_node) {
2824 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2825 if (!inline_node)
2826 return ret;
2827 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2828 }
2829
2830 list_for_each_entry(ilist, &inline_node->val, list) {
2831 struct map_symbol ilist_ms = {
2832 .maps = ms->maps,
2833 .map = map,
2834 .sym = ilist->symbol,
2835 };
2836 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2837 NULL, 0, 0, 0, ilist->srcline);
2838
2839 if (ret != 0)
2840 return ret;
2841 }
2842
2843 return ret;
2844 }
2845
unwind_entry(struct unwind_entry * entry,void * arg)2846 static int unwind_entry(struct unwind_entry *entry, void *arg)
2847 {
2848 struct callchain_cursor *cursor = arg;
2849 const char *srcline = NULL;
2850 u64 addr = entry->ip;
2851
2852 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2853 return 0;
2854
2855 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2856 return 0;
2857
2858 /*
2859 * Convert entry->ip from a virtual address to an offset in
2860 * its corresponding binary.
2861 */
2862 if (entry->ms.map)
2863 addr = map__map_ip(entry->ms.map, entry->ip);
2864
2865 srcline = callchain_srcline(&entry->ms, addr);
2866 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2867 false, NULL, 0, 0, 0, srcline);
2868 }
2869
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack)2870 static int thread__resolve_callchain_unwind(struct thread *thread,
2871 struct callchain_cursor *cursor,
2872 struct evsel *evsel,
2873 struct perf_sample *sample,
2874 int max_stack)
2875 {
2876 /* Can we do dwarf post unwind? */
2877 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2878 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2879 return 0;
2880
2881 /* Bail out if nothing was captured. */
2882 if ((!sample->user_regs.regs) ||
2883 (!sample->user_stack.size))
2884 return 0;
2885
2886 return unwind__get_entries(unwind_entry, cursor,
2887 thread, sample, max_stack);
2888 }
2889
thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2890 int thread__resolve_callchain(struct thread *thread,
2891 struct callchain_cursor *cursor,
2892 struct evsel *evsel,
2893 struct perf_sample *sample,
2894 struct symbol **parent,
2895 struct addr_location *root_al,
2896 int max_stack)
2897 {
2898 int ret = 0;
2899
2900 callchain_cursor_reset(cursor);
2901
2902 if (callchain_param.order == ORDER_CALLEE) {
2903 ret = thread__resolve_callchain_sample(thread, cursor,
2904 evsel, sample,
2905 parent, root_al,
2906 max_stack);
2907 if (ret)
2908 return ret;
2909 ret = thread__resolve_callchain_unwind(thread, cursor,
2910 evsel, sample,
2911 max_stack);
2912 } else {
2913 ret = thread__resolve_callchain_unwind(thread, cursor,
2914 evsel, sample,
2915 max_stack);
2916 if (ret)
2917 return ret;
2918 ret = thread__resolve_callchain_sample(thread, cursor,
2919 evsel, sample,
2920 parent, root_al,
2921 max_stack);
2922 }
2923
2924 return ret;
2925 }
2926
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)2927 int machine__for_each_thread(struct machine *machine,
2928 int (*fn)(struct thread *thread, void *p),
2929 void *priv)
2930 {
2931 struct threads *threads;
2932 struct rb_node *nd;
2933 struct thread *thread;
2934 int rc = 0;
2935 int i;
2936
2937 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2938 threads = &machine->threads[i];
2939 for (nd = rb_first_cached(&threads->entries); nd;
2940 nd = rb_next(nd)) {
2941 thread = rb_entry(nd, struct thread, rb_node);
2942 rc = fn(thread, priv);
2943 if (rc != 0)
2944 return rc;
2945 }
2946
2947 list_for_each_entry(thread, &threads->dead, node) {
2948 rc = fn(thread, priv);
2949 if (rc != 0)
2950 return rc;
2951 }
2952 }
2953 return rc;
2954 }
2955
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)2956 int machines__for_each_thread(struct machines *machines,
2957 int (*fn)(struct thread *thread, void *p),
2958 void *priv)
2959 {
2960 struct rb_node *nd;
2961 int rc = 0;
2962
2963 rc = machine__for_each_thread(&machines->host, fn, priv);
2964 if (rc != 0)
2965 return rc;
2966
2967 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2968 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2969
2970 rc = machine__for_each_thread(machine, fn, priv);
2971 if (rc != 0)
2972 return rc;
2973 }
2974 return rc;
2975 }
2976
machine__get_current_tid(struct machine * machine,int cpu)2977 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2978 {
2979 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
2980
2981 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2982 return -1;
2983
2984 return machine->current_tid[cpu];
2985 }
2986
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)2987 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2988 pid_t tid)
2989 {
2990 struct thread *thread;
2991 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
2992
2993 if (cpu < 0)
2994 return -EINVAL;
2995
2996 if (!machine->current_tid) {
2997 int i;
2998
2999 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3000 if (!machine->current_tid)
3001 return -ENOMEM;
3002 for (i = 0; i < nr_cpus; i++)
3003 machine->current_tid[i] = -1;
3004 }
3005
3006 if (cpu >= nr_cpus) {
3007 pr_err("Requested CPU %d too large. ", cpu);
3008 pr_err("Consider raising MAX_NR_CPUS\n");
3009 return -EINVAL;
3010 }
3011
3012 machine->current_tid[cpu] = tid;
3013
3014 thread = machine__findnew_thread(machine, pid, tid);
3015 if (!thread)
3016 return -ENOMEM;
3017
3018 thread->cpu = cpu;
3019 thread__put(thread);
3020
3021 return 0;
3022 }
3023
3024 /*
3025 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3026 * normalized arch is needed.
3027 */
machine__is(struct machine * machine,const char * arch)3028 bool machine__is(struct machine *machine, const char *arch)
3029 {
3030 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3031 }
3032
machine__nr_cpus_avail(struct machine * machine)3033 int machine__nr_cpus_avail(struct machine *machine)
3034 {
3035 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3036 }
3037
machine__get_kernel_start(struct machine * machine)3038 int machine__get_kernel_start(struct machine *machine)
3039 {
3040 struct map *map = machine__kernel_map(machine);
3041 int err = 0;
3042
3043 /*
3044 * The only addresses above 2^63 are kernel addresses of a 64-bit
3045 * kernel. Note that addresses are unsigned so that on a 32-bit system
3046 * all addresses including kernel addresses are less than 2^32. In
3047 * that case (32-bit system), if the kernel mapping is unknown, all
3048 * addresses will be assumed to be in user space - see
3049 * machine__kernel_ip().
3050 */
3051 machine->kernel_start = 1ULL << 63;
3052 if (map) {
3053 err = map__load(map);
3054 /*
3055 * On x86_64, PTI entry trampolines are less than the
3056 * start of kernel text, but still above 2^63. So leave
3057 * kernel_start = 1ULL << 63 for x86_64.
3058 */
3059 if (!err && !machine__is(machine, "x86_64"))
3060 machine->kernel_start = map->start;
3061 }
3062 return err;
3063 }
3064
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)3065 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3066 {
3067 u8 addr_cpumode = cpumode;
3068 bool kernel_ip;
3069
3070 if (!machine->single_address_space)
3071 goto out;
3072
3073 kernel_ip = machine__kernel_ip(machine, addr);
3074 switch (cpumode) {
3075 case PERF_RECORD_MISC_KERNEL:
3076 case PERF_RECORD_MISC_USER:
3077 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3078 PERF_RECORD_MISC_USER;
3079 break;
3080 case PERF_RECORD_MISC_GUEST_KERNEL:
3081 case PERF_RECORD_MISC_GUEST_USER:
3082 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3083 PERF_RECORD_MISC_GUEST_USER;
3084 break;
3085 default:
3086 break;
3087 }
3088 out:
3089 return addr_cpumode;
3090 }
3091
machine__findnew_dso_id(struct machine * machine,const char * filename,struct dso_id * id)3092 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3093 {
3094 return dsos__findnew_id(&machine->dsos, filename, id);
3095 }
3096
machine__findnew_dso(struct machine * machine,const char * filename)3097 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3098 {
3099 return machine__findnew_dso_id(machine, filename, NULL);
3100 }
3101
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)3102 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3103 {
3104 struct machine *machine = vmachine;
3105 struct map *map;
3106 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3107
3108 if (sym == NULL)
3109 return NULL;
3110
3111 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3112 *addrp = map->unmap_ip(map, sym->start);
3113 return sym->name;
3114 }
3115
machine__for_each_dso(struct machine * machine,machine__dso_t fn,void * priv)3116 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3117 {
3118 struct dso *pos;
3119 int err = 0;
3120
3121 list_for_each_entry(pos, &machine->dsos.head, node) {
3122 if (fn(pos, machine, priv))
3123 err = -1;
3124 }
3125 return err;
3126 }
3127