1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Machine check handler.
4 *
5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6 * Rest from unknown author(s).
7 * 2004 Andi Kleen. Rewrote most of it.
8 * Copyright 2008 Intel Corporation
9 * Author: Andi Kleen
10 */
11
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 #include <linux/kexec.h>
48
49 #include <asm/intel-family.h>
50 #include <asm/processor.h>
51 #include <asm/traps.h>
52 #include <asm/tlbflush.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/reboot.h>
56
57 #include "internal.h"
58
59 /* sysfs synchronization */
60 static DEFINE_MUTEX(mce_sysfs_mutex);
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/mce.h>
64
65 #define SPINUNIT 100 /* 100ns */
66
67 DEFINE_PER_CPU(unsigned, mce_exception_count);
68
69 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
70
71 struct mce_bank {
72 u64 ctl; /* subevents to enable */
73 bool init; /* initialise bank? */
74 };
75 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
76
77 #define ATTR_LEN 16
78 /* One object for each MCE bank, shared by all CPUs */
79 struct mce_bank_dev {
80 struct device_attribute attr; /* device attribute */
81 char attrname[ATTR_LEN]; /* attribute name */
82 u8 bank; /* bank number */
83 };
84 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
85
86 struct mce_vendor_flags mce_flags __read_mostly;
87
88 struct mca_config mca_cfg __read_mostly = {
89 .bootlog = -1,
90 /*
91 * Tolerant levels:
92 * 0: always panic on uncorrected errors, log corrected errors
93 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
94 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
95 * 3: never panic or SIGBUS, log all errors (for testing only)
96 */
97 .tolerant = 1,
98 .monarch_timeout = -1
99 };
100
101 static DEFINE_PER_CPU(struct mce, mces_seen);
102 static unsigned long mce_need_notify;
103 static int cpu_missing;
104
105 /*
106 * MCA banks polled by the period polling timer for corrected events.
107 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
108 */
109 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
110 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
111 };
112
113 /*
114 * MCA banks controlled through firmware first for corrected errors.
115 * This is a global list of banks for which we won't enable CMCI and we
116 * won't poll. Firmware controls these banks and is responsible for
117 * reporting corrected errors through GHES. Uncorrected/recoverable
118 * errors are still notified through a machine check.
119 */
120 mce_banks_t mce_banks_ce_disabled;
121
122 static struct work_struct mce_work;
123 static struct irq_work mce_irq_work;
124
125 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
126
127 /*
128 * CPU/chipset specific EDAC code can register a notifier call here to print
129 * MCE errors in a human-readable form.
130 */
131 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
132
133 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)134 noinstr void mce_setup(struct mce *m)
135 {
136 memset(m, 0, sizeof(struct mce));
137 m->cpu = m->extcpu = smp_processor_id();
138 /* need the internal __ version to avoid deadlocks */
139 m->time = __ktime_get_real_seconds();
140 m->cpuvendor = boot_cpu_data.x86_vendor;
141 m->cpuid = cpuid_eax(1);
142 m->socketid = cpu_data(m->extcpu).phys_proc_id;
143 m->apicid = cpu_data(m->extcpu).initial_apicid;
144 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
145
146 if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
147 m->ppin = __rdmsr(MSR_PPIN);
148 else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
149 m->ppin = __rdmsr(MSR_AMD_PPIN);
150
151 m->microcode = boot_cpu_data.microcode;
152 }
153
154 DEFINE_PER_CPU(struct mce, injectm);
155 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
156
mce_log(struct mce * m)157 void mce_log(struct mce *m)
158 {
159 if (!mce_gen_pool_add(m))
160 irq_work_queue(&mce_irq_work);
161 }
162 EXPORT_SYMBOL_GPL(mce_log);
163
mce_register_decode_chain(struct notifier_block * nb)164 void mce_register_decode_chain(struct notifier_block *nb)
165 {
166 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
167 nb->priority > MCE_PRIO_HIGHEST))
168 return;
169
170 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
171 }
172 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
173
mce_unregister_decode_chain(struct notifier_block * nb)174 void mce_unregister_decode_chain(struct notifier_block *nb)
175 {
176 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
177 }
178 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
179
mca_msr_reg(int bank,enum mca_msr reg)180 u32 mca_msr_reg(int bank, enum mca_msr reg)
181 {
182 if (mce_flags.smca) {
183 switch (reg) {
184 case MCA_CTL: return MSR_AMD64_SMCA_MCx_CTL(bank);
185 case MCA_ADDR: return MSR_AMD64_SMCA_MCx_ADDR(bank);
186 case MCA_MISC: return MSR_AMD64_SMCA_MCx_MISC(bank);
187 case MCA_STATUS: return MSR_AMD64_SMCA_MCx_STATUS(bank);
188 }
189 }
190
191 switch (reg) {
192 case MCA_CTL: return MSR_IA32_MCx_CTL(bank);
193 case MCA_ADDR: return MSR_IA32_MCx_ADDR(bank);
194 case MCA_MISC: return MSR_IA32_MCx_MISC(bank);
195 case MCA_STATUS: return MSR_IA32_MCx_STATUS(bank);
196 }
197
198 return 0;
199 }
200
__print_mce(struct mce * m)201 static void __print_mce(struct mce *m)
202 {
203 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
204 m->extcpu,
205 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
206 m->mcgstatus, m->bank, m->status);
207
208 if (m->ip) {
209 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
210 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
211 m->cs, m->ip);
212
213 if (m->cs == __KERNEL_CS)
214 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
215 pr_cont("\n");
216 }
217
218 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
219 if (m->addr)
220 pr_cont("ADDR %llx ", m->addr);
221 if (m->misc)
222 pr_cont("MISC %llx ", m->misc);
223 if (m->ppin)
224 pr_cont("PPIN %llx ", m->ppin);
225
226 if (mce_flags.smca) {
227 if (m->synd)
228 pr_cont("SYND %llx ", m->synd);
229 if (m->ipid)
230 pr_cont("IPID %llx ", m->ipid);
231 }
232
233 pr_cont("\n");
234
235 /*
236 * Note this output is parsed by external tools and old fields
237 * should not be changed.
238 */
239 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
240 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
241 m->microcode);
242 }
243
print_mce(struct mce * m)244 static void print_mce(struct mce *m)
245 {
246 __print_mce(m);
247
248 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
249 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
250 }
251
252 #define PANIC_TIMEOUT 5 /* 5 seconds */
253
254 static atomic_t mce_panicked;
255
256 static int fake_panic;
257 static atomic_t mce_fake_panicked;
258
259 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)260 static void wait_for_panic(void)
261 {
262 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
263
264 preempt_disable();
265 local_irq_enable();
266 while (timeout-- > 0)
267 udelay(1);
268 if (panic_timeout == 0)
269 panic_timeout = mca_cfg.panic_timeout;
270 panic("Panicing machine check CPU died");
271 }
272
mce_panic(const char * msg,struct mce * final,char * exp)273 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
274 {
275 struct llist_node *pending;
276 struct mce_evt_llist *l;
277 int apei_err = 0;
278 struct page *p;
279
280 /*
281 * Allow instrumentation around external facilities usage. Not that it
282 * matters a whole lot since the machine is going to panic anyway.
283 */
284 instrumentation_begin();
285
286 if (!fake_panic) {
287 /*
288 * Make sure only one CPU runs in machine check panic
289 */
290 if (atomic_inc_return(&mce_panicked) > 1)
291 wait_for_panic();
292 barrier();
293
294 bust_spinlocks(1);
295 console_verbose();
296 } else {
297 /* Don't log too much for fake panic */
298 if (atomic_inc_return(&mce_fake_panicked) > 1)
299 goto out;
300 }
301 pending = mce_gen_pool_prepare_records();
302 /* First print corrected ones that are still unlogged */
303 llist_for_each_entry(l, pending, llnode) {
304 struct mce *m = &l->mce;
305 if (!(m->status & MCI_STATUS_UC)) {
306 print_mce(m);
307 if (!apei_err)
308 apei_err = apei_write_mce(m);
309 }
310 }
311 /* Now print uncorrected but with the final one last */
312 llist_for_each_entry(l, pending, llnode) {
313 struct mce *m = &l->mce;
314 if (!(m->status & MCI_STATUS_UC))
315 continue;
316 if (!final || mce_cmp(m, final)) {
317 print_mce(m);
318 if (!apei_err)
319 apei_err = apei_write_mce(m);
320 }
321 }
322 if (final) {
323 print_mce(final);
324 if (!apei_err)
325 apei_err = apei_write_mce(final);
326 }
327 if (cpu_missing)
328 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
329 if (exp)
330 pr_emerg(HW_ERR "Machine check: %s\n", exp);
331 if (!fake_panic) {
332 if (panic_timeout == 0)
333 panic_timeout = mca_cfg.panic_timeout;
334
335 /*
336 * Kdump skips the poisoned page in order to avoid
337 * touching the error bits again. Poison the page even
338 * if the error is fatal and the machine is about to
339 * panic.
340 */
341 if (kexec_crash_loaded()) {
342 if (final && (final->status & MCI_STATUS_ADDRV)) {
343 p = pfn_to_online_page(final->addr >> PAGE_SHIFT);
344 if (p)
345 SetPageHWPoison(p);
346 }
347 }
348 panic(msg);
349 } else
350 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
351
352 out:
353 instrumentation_end();
354 }
355
356 /* Support code for software error injection */
357
msr_to_offset(u32 msr)358 static int msr_to_offset(u32 msr)
359 {
360 unsigned bank = __this_cpu_read(injectm.bank);
361
362 if (msr == mca_cfg.rip_msr)
363 return offsetof(struct mce, ip);
364 if (msr == mca_msr_reg(bank, MCA_STATUS))
365 return offsetof(struct mce, status);
366 if (msr == mca_msr_reg(bank, MCA_ADDR))
367 return offsetof(struct mce, addr);
368 if (msr == mca_msr_reg(bank, MCA_MISC))
369 return offsetof(struct mce, misc);
370 if (msr == MSR_IA32_MCG_STATUS)
371 return offsetof(struct mce, mcgstatus);
372 return -1;
373 }
374
ex_handler_rdmsr_fault(const struct exception_table_entry * fixup,struct pt_regs * regs,int trapnr,unsigned long error_code,unsigned long fault_addr)375 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup,
376 struct pt_regs *regs, int trapnr,
377 unsigned long error_code,
378 unsigned long fault_addr)
379 {
380 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
381 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
382
383 show_stack_regs(regs);
384
385 panic("MCA architectural violation!\n");
386
387 while (true)
388 cpu_relax();
389
390 return true;
391 }
392
393 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)394 static noinstr u64 mce_rdmsrl(u32 msr)
395 {
396 DECLARE_ARGS(val, low, high);
397
398 if (__this_cpu_read(injectm.finished)) {
399 int offset;
400 u64 ret;
401
402 instrumentation_begin();
403
404 offset = msr_to_offset(msr);
405 if (offset < 0)
406 ret = 0;
407 else
408 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
409
410 instrumentation_end();
411
412 return ret;
413 }
414
415 /*
416 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
417 * architectural violation and needs to be reported to hw vendor. Panic
418 * the box to not allow any further progress.
419 */
420 asm volatile("1: rdmsr\n"
421 "2:\n"
422 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault)
423 : EAX_EDX_RET(val, low, high) : "c" (msr));
424
425
426 return EAX_EDX_VAL(val, low, high);
427 }
428
ex_handler_wrmsr_fault(const struct exception_table_entry * fixup,struct pt_regs * regs,int trapnr,unsigned long error_code,unsigned long fault_addr)429 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup,
430 struct pt_regs *regs, int trapnr,
431 unsigned long error_code,
432 unsigned long fault_addr)
433 {
434 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
435 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
436 regs->ip, (void *)regs->ip);
437
438 show_stack_regs(regs);
439
440 panic("MCA architectural violation!\n");
441
442 while (true)
443 cpu_relax();
444
445 return true;
446 }
447
mce_wrmsrl(u32 msr,u64 v)448 static noinstr void mce_wrmsrl(u32 msr, u64 v)
449 {
450 u32 low, high;
451
452 if (__this_cpu_read(injectm.finished)) {
453 int offset;
454
455 instrumentation_begin();
456
457 offset = msr_to_offset(msr);
458 if (offset >= 0)
459 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
460
461 instrumentation_end();
462
463 return;
464 }
465
466 low = (u32)v;
467 high = (u32)(v >> 32);
468
469 /* See comment in mce_rdmsrl() */
470 asm volatile("1: wrmsr\n"
471 "2:\n"
472 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault)
473 : : "c" (msr), "a"(low), "d" (high) : "memory");
474 }
475
476 /*
477 * Collect all global (w.r.t. this processor) status about this machine
478 * check into our "mce" struct so that we can use it later to assess
479 * the severity of the problem as we read per-bank specific details.
480 */
mce_gather_info(struct mce * m,struct pt_regs * regs)481 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
482 {
483 mce_setup(m);
484
485 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
486 if (regs) {
487 /*
488 * Get the address of the instruction at the time of
489 * the machine check error.
490 */
491 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
492 m->ip = regs->ip;
493 m->cs = regs->cs;
494
495 /*
496 * When in VM86 mode make the cs look like ring 3
497 * always. This is a lie, but it's better than passing
498 * the additional vm86 bit around everywhere.
499 */
500 if (v8086_mode(regs))
501 m->cs |= 3;
502 }
503 /* Use accurate RIP reporting if available. */
504 if (mca_cfg.rip_msr)
505 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
506 }
507 }
508
mce_available(struct cpuinfo_x86 * c)509 int mce_available(struct cpuinfo_x86 *c)
510 {
511 if (mca_cfg.disabled)
512 return 0;
513 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
514 }
515
mce_schedule_work(void)516 static void mce_schedule_work(void)
517 {
518 if (!mce_gen_pool_empty())
519 schedule_work(&mce_work);
520 }
521
mce_irq_work_cb(struct irq_work * entry)522 static void mce_irq_work_cb(struct irq_work *entry)
523 {
524 mce_schedule_work();
525 }
526
527 /*
528 * Check if the address reported by the CPU is in a format we can parse.
529 * It would be possible to add code for most other cases, but all would
530 * be somewhat complicated (e.g. segment offset would require an instruction
531 * parser). So only support physical addresses up to page granuality for now.
532 */
mce_usable_address(struct mce * m)533 int mce_usable_address(struct mce *m)
534 {
535 if (!(m->status & MCI_STATUS_ADDRV))
536 return 0;
537
538 /* Checks after this one are Intel/Zhaoxin-specific: */
539 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
540 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
541 return 1;
542
543 if (!(m->status & MCI_STATUS_MISCV))
544 return 0;
545
546 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
547 return 0;
548
549 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
550 return 0;
551
552 return 1;
553 }
554 EXPORT_SYMBOL_GPL(mce_usable_address);
555
mce_is_memory_error(struct mce * m)556 bool mce_is_memory_error(struct mce *m)
557 {
558 switch (m->cpuvendor) {
559 case X86_VENDOR_AMD:
560 case X86_VENDOR_HYGON:
561 return amd_mce_is_memory_error(m);
562
563 case X86_VENDOR_INTEL:
564 case X86_VENDOR_ZHAOXIN:
565 /*
566 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
567 *
568 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
569 * indicating a memory error. Bit 8 is used for indicating a
570 * cache hierarchy error. The combination of bit 2 and bit 3
571 * is used for indicating a `generic' cache hierarchy error
572 * But we can't just blindly check the above bits, because if
573 * bit 11 is set, then it is a bus/interconnect error - and
574 * either way the above bits just gives more detail on what
575 * bus/interconnect error happened. Note that bit 12 can be
576 * ignored, as it's the "filter" bit.
577 */
578 return (m->status & 0xef80) == BIT(7) ||
579 (m->status & 0xef00) == BIT(8) ||
580 (m->status & 0xeffc) == 0xc;
581
582 default:
583 return false;
584 }
585 }
586 EXPORT_SYMBOL_GPL(mce_is_memory_error);
587
whole_page(struct mce * m)588 static bool whole_page(struct mce *m)
589 {
590 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
591 return true;
592
593 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
594 }
595
mce_is_correctable(struct mce * m)596 bool mce_is_correctable(struct mce *m)
597 {
598 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
599 return false;
600
601 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
602 return false;
603
604 if (m->status & MCI_STATUS_UC)
605 return false;
606
607 return true;
608 }
609 EXPORT_SYMBOL_GPL(mce_is_correctable);
610
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)611 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
612 void *data)
613 {
614 struct mce *m = (struct mce *)data;
615
616 if (!m)
617 return NOTIFY_DONE;
618
619 /* Emit the trace record: */
620 trace_mce_record(m);
621
622 set_bit(0, &mce_need_notify);
623
624 mce_notify_irq();
625
626 return NOTIFY_DONE;
627 }
628
629 static struct notifier_block early_nb = {
630 .notifier_call = mce_early_notifier,
631 .priority = MCE_PRIO_EARLY,
632 };
633
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)634 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
635 void *data)
636 {
637 struct mce *mce = (struct mce *)data;
638 unsigned long pfn;
639
640 if (!mce || !mce_usable_address(mce))
641 return NOTIFY_DONE;
642
643 if (mce->severity != MCE_AO_SEVERITY &&
644 mce->severity != MCE_DEFERRED_SEVERITY)
645 return NOTIFY_DONE;
646
647 pfn = mce->addr >> PAGE_SHIFT;
648 if (!memory_failure(pfn, 0)) {
649 set_mce_nospec(pfn, whole_page(mce));
650 mce->kflags |= MCE_HANDLED_UC;
651 }
652
653 return NOTIFY_OK;
654 }
655
656 static struct notifier_block mce_uc_nb = {
657 .notifier_call = uc_decode_notifier,
658 .priority = MCE_PRIO_UC,
659 };
660
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)661 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
662 void *data)
663 {
664 struct mce *m = (struct mce *)data;
665
666 if (!m)
667 return NOTIFY_DONE;
668
669 if (mca_cfg.print_all || !m->kflags)
670 __print_mce(m);
671
672 return NOTIFY_DONE;
673 }
674
675 static struct notifier_block mce_default_nb = {
676 .notifier_call = mce_default_notifier,
677 /* lowest prio, we want it to run last. */
678 .priority = MCE_PRIO_LOWEST,
679 };
680
681 /*
682 * Read ADDR and MISC registers.
683 */
mce_read_aux(struct mce * m,int i)684 static noinstr void mce_read_aux(struct mce *m, int i)
685 {
686 if (m->status & MCI_STATUS_MISCV)
687 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
688
689 if (m->status & MCI_STATUS_ADDRV) {
690 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
691
692 /*
693 * Mask the reported address by the reported granularity.
694 */
695 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
696 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
697 m->addr >>= shift;
698 m->addr <<= shift;
699 }
700
701 /*
702 * Extract [55:<lsb>] where lsb is the least significant
703 * *valid* bit of the address bits.
704 */
705 if (mce_flags.smca) {
706 u8 lsb = (m->addr >> 56) & 0x3f;
707
708 m->addr &= GENMASK_ULL(55, lsb);
709 }
710 }
711
712 if (mce_flags.smca) {
713 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
714
715 if (m->status & MCI_STATUS_SYNDV)
716 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
717 }
718 }
719
720 DEFINE_PER_CPU(unsigned, mce_poll_count);
721
722 /*
723 * Poll for corrected events or events that happened before reset.
724 * Those are just logged through /dev/mcelog.
725 *
726 * This is executed in standard interrupt context.
727 *
728 * Note: spec recommends to panic for fatal unsignalled
729 * errors here. However this would be quite problematic --
730 * we would need to reimplement the Monarch handling and
731 * it would mess up the exclusion between exception handler
732 * and poll handler -- * so we skip this for now.
733 * These cases should not happen anyways, or only when the CPU
734 * is already totally * confused. In this case it's likely it will
735 * not fully execute the machine check handler either.
736 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)737 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
738 {
739 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
740 bool error_seen = false;
741 struct mce m;
742 int i;
743
744 this_cpu_inc(mce_poll_count);
745
746 mce_gather_info(&m, NULL);
747
748 if (flags & MCP_TIMESTAMP)
749 m.tsc = rdtsc();
750
751 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
752 if (!mce_banks[i].ctl || !test_bit(i, *b))
753 continue;
754
755 m.misc = 0;
756 m.addr = 0;
757 m.bank = i;
758
759 barrier();
760 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
761
762 /* If this entry is not valid, ignore it */
763 if (!(m.status & MCI_STATUS_VAL))
764 continue;
765
766 /*
767 * If we are logging everything (at CPU online) or this
768 * is a corrected error, then we must log it.
769 */
770 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
771 goto log_it;
772
773 /*
774 * Newer Intel systems that support software error
775 * recovery need to make additional checks. Other
776 * CPUs should skip over uncorrected errors, but log
777 * everything else.
778 */
779 if (!mca_cfg.ser) {
780 if (m.status & MCI_STATUS_UC)
781 continue;
782 goto log_it;
783 }
784
785 /* Log "not enabled" (speculative) errors */
786 if (!(m.status & MCI_STATUS_EN))
787 goto log_it;
788
789 /*
790 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
791 * UC == 1 && PCC == 0 && S == 0
792 */
793 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
794 goto log_it;
795
796 /*
797 * Skip anything else. Presumption is that our read of this
798 * bank is racing with a machine check. Leave the log alone
799 * for do_machine_check() to deal with it.
800 */
801 continue;
802
803 log_it:
804 error_seen = true;
805
806 if (flags & MCP_DONTLOG)
807 goto clear_it;
808
809 mce_read_aux(&m, i);
810 m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
811 /*
812 * Don't get the IP here because it's unlikely to
813 * have anything to do with the actual error location.
814 */
815
816 if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
817 goto clear_it;
818
819 if (flags & MCP_QUEUE_LOG)
820 mce_gen_pool_add(&m);
821 else
822 mce_log(&m);
823
824 clear_it:
825 /*
826 * Clear state for this bank.
827 */
828 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
829 }
830
831 /*
832 * Don't clear MCG_STATUS here because it's only defined for
833 * exceptions.
834 */
835
836 sync_core();
837
838 return error_seen;
839 }
840 EXPORT_SYMBOL_GPL(machine_check_poll);
841
842 /*
843 * Do a quick check if any of the events requires a panic.
844 * This decides if we keep the events around or clear them.
845 */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)846 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
847 struct pt_regs *regs)
848 {
849 char *tmp = *msg;
850 int i;
851
852 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
853 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
854 if (!(m->status & MCI_STATUS_VAL))
855 continue;
856
857 __set_bit(i, validp);
858 if (quirk_no_way_out)
859 quirk_no_way_out(i, m, regs);
860
861 m->bank = i;
862 if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
863 mce_read_aux(m, i);
864 *msg = tmp;
865 return 1;
866 }
867 }
868 return 0;
869 }
870
871 /*
872 * Variable to establish order between CPUs while scanning.
873 * Each CPU spins initially until executing is equal its number.
874 */
875 static atomic_t mce_executing;
876
877 /*
878 * Defines order of CPUs on entry. First CPU becomes Monarch.
879 */
880 static atomic_t mce_callin;
881
882 /*
883 * Check if a timeout waiting for other CPUs happened.
884 */
mce_timed_out(u64 * t,const char * msg)885 static int mce_timed_out(u64 *t, const char *msg)
886 {
887 /*
888 * The others already did panic for some reason.
889 * Bail out like in a timeout.
890 * rmb() to tell the compiler that system_state
891 * might have been modified by someone else.
892 */
893 rmb();
894 if (atomic_read(&mce_panicked))
895 wait_for_panic();
896 if (!mca_cfg.monarch_timeout)
897 goto out;
898 if ((s64)*t < SPINUNIT) {
899 if (mca_cfg.tolerant <= 1)
900 mce_panic(msg, NULL, NULL);
901 cpu_missing = 1;
902 return 1;
903 }
904 *t -= SPINUNIT;
905 out:
906 touch_nmi_watchdog();
907 return 0;
908 }
909
910 /*
911 * The Monarch's reign. The Monarch is the CPU who entered
912 * the machine check handler first. It waits for the others to
913 * raise the exception too and then grades them. When any
914 * error is fatal panic. Only then let the others continue.
915 *
916 * The other CPUs entering the MCE handler will be controlled by the
917 * Monarch. They are called Subjects.
918 *
919 * This way we prevent any potential data corruption in a unrecoverable case
920 * and also makes sure always all CPU's errors are examined.
921 *
922 * Also this detects the case of a machine check event coming from outer
923 * space (not detected by any CPUs) In this case some external agent wants
924 * us to shut down, so panic too.
925 *
926 * The other CPUs might still decide to panic if the handler happens
927 * in a unrecoverable place, but in this case the system is in a semi-stable
928 * state and won't corrupt anything by itself. It's ok to let the others
929 * continue for a bit first.
930 *
931 * All the spin loops have timeouts; when a timeout happens a CPU
932 * typically elects itself to be Monarch.
933 */
mce_reign(void)934 static void mce_reign(void)
935 {
936 int cpu;
937 struct mce *m = NULL;
938 int global_worst = 0;
939 char *msg = NULL;
940
941 /*
942 * This CPU is the Monarch and the other CPUs have run
943 * through their handlers.
944 * Grade the severity of the errors of all the CPUs.
945 */
946 for_each_possible_cpu(cpu) {
947 struct mce *mtmp = &per_cpu(mces_seen, cpu);
948
949 if (mtmp->severity > global_worst) {
950 global_worst = mtmp->severity;
951 m = &per_cpu(mces_seen, cpu);
952 }
953 }
954
955 /*
956 * Cannot recover? Panic here then.
957 * This dumps all the mces in the log buffer and stops the
958 * other CPUs.
959 */
960 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
961 /* call mce_severity() to get "msg" for panic */
962 mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
963 mce_panic("Fatal machine check", m, msg);
964 }
965
966 /*
967 * For UC somewhere we let the CPU who detects it handle it.
968 * Also must let continue the others, otherwise the handling
969 * CPU could deadlock on a lock.
970 */
971
972 /*
973 * No machine check event found. Must be some external
974 * source or one CPU is hung. Panic.
975 */
976 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
977 mce_panic("Fatal machine check from unknown source", NULL, NULL);
978
979 /*
980 * Now clear all the mces_seen so that they don't reappear on
981 * the next mce.
982 */
983 for_each_possible_cpu(cpu)
984 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
985 }
986
987 static atomic_t global_nwo;
988
989 /*
990 * Start of Monarch synchronization. This waits until all CPUs have
991 * entered the exception handler and then determines if any of them
992 * saw a fatal event that requires panic. Then it executes them
993 * in the entry order.
994 * TBD double check parallel CPU hotunplug
995 */
mce_start(int * no_way_out)996 static int mce_start(int *no_way_out)
997 {
998 int order;
999 int cpus = num_online_cpus();
1000 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1001
1002 if (!timeout)
1003 return -1;
1004
1005 atomic_add(*no_way_out, &global_nwo);
1006 /*
1007 * Rely on the implied barrier below, such that global_nwo
1008 * is updated before mce_callin.
1009 */
1010 order = atomic_inc_return(&mce_callin);
1011
1012 /*
1013 * Wait for everyone.
1014 */
1015 while (atomic_read(&mce_callin) != cpus) {
1016 if (mce_timed_out(&timeout,
1017 "Timeout: Not all CPUs entered broadcast exception handler")) {
1018 atomic_set(&global_nwo, 0);
1019 return -1;
1020 }
1021 ndelay(SPINUNIT);
1022 }
1023
1024 /*
1025 * mce_callin should be read before global_nwo
1026 */
1027 smp_rmb();
1028
1029 if (order == 1) {
1030 /*
1031 * Monarch: Starts executing now, the others wait.
1032 */
1033 atomic_set(&mce_executing, 1);
1034 } else {
1035 /*
1036 * Subject: Now start the scanning loop one by one in
1037 * the original callin order.
1038 * This way when there are any shared banks it will be
1039 * only seen by one CPU before cleared, avoiding duplicates.
1040 */
1041 while (atomic_read(&mce_executing) < order) {
1042 if (mce_timed_out(&timeout,
1043 "Timeout: Subject CPUs unable to finish machine check processing")) {
1044 atomic_set(&global_nwo, 0);
1045 return -1;
1046 }
1047 ndelay(SPINUNIT);
1048 }
1049 }
1050
1051 /*
1052 * Cache the global no_way_out state.
1053 */
1054 *no_way_out = atomic_read(&global_nwo);
1055
1056 return order;
1057 }
1058
1059 /*
1060 * Synchronize between CPUs after main scanning loop.
1061 * This invokes the bulk of the Monarch processing.
1062 */
mce_end(int order)1063 static noinstr int mce_end(int order)
1064 {
1065 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1066 int ret = -1;
1067
1068 /* Allow instrumentation around external facilities. */
1069 instrumentation_begin();
1070
1071 if (!timeout)
1072 goto reset;
1073 if (order < 0)
1074 goto reset;
1075
1076 /*
1077 * Allow others to run.
1078 */
1079 atomic_inc(&mce_executing);
1080
1081 if (order == 1) {
1082 /* CHECKME: Can this race with a parallel hotplug? */
1083 int cpus = num_online_cpus();
1084
1085 /*
1086 * Monarch: Wait for everyone to go through their scanning
1087 * loops.
1088 */
1089 while (atomic_read(&mce_executing) <= cpus) {
1090 if (mce_timed_out(&timeout,
1091 "Timeout: Monarch CPU unable to finish machine check processing"))
1092 goto reset;
1093 ndelay(SPINUNIT);
1094 }
1095
1096 mce_reign();
1097 barrier();
1098 ret = 0;
1099 } else {
1100 /*
1101 * Subject: Wait for Monarch to finish.
1102 */
1103 while (atomic_read(&mce_executing) != 0) {
1104 if (mce_timed_out(&timeout,
1105 "Timeout: Monarch CPU did not finish machine check processing"))
1106 goto reset;
1107 ndelay(SPINUNIT);
1108 }
1109
1110 /*
1111 * Don't reset anything. That's done by the Monarch.
1112 */
1113 ret = 0;
1114 goto out;
1115 }
1116
1117 /*
1118 * Reset all global state.
1119 */
1120 reset:
1121 atomic_set(&global_nwo, 0);
1122 atomic_set(&mce_callin, 0);
1123 barrier();
1124
1125 /*
1126 * Let others run again.
1127 */
1128 atomic_set(&mce_executing, 0);
1129
1130 out:
1131 instrumentation_end();
1132
1133 return ret;
1134 }
1135
mce_clear_state(unsigned long * toclear)1136 static void mce_clear_state(unsigned long *toclear)
1137 {
1138 int i;
1139
1140 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1141 if (test_bit(i, toclear))
1142 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1143 }
1144 }
1145
1146 /*
1147 * Cases where we avoid rendezvous handler timeout:
1148 * 1) If this CPU is offline.
1149 *
1150 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1151 * skip those CPUs which remain looping in the 1st kernel - see
1152 * crash_nmi_callback().
1153 *
1154 * Note: there still is a small window between kexec-ing and the new,
1155 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1156 * might not get handled properly.
1157 */
mce_check_crashing_cpu(void)1158 static noinstr bool mce_check_crashing_cpu(void)
1159 {
1160 unsigned int cpu = smp_processor_id();
1161
1162 if (arch_cpu_is_offline(cpu) ||
1163 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1164 u64 mcgstatus;
1165
1166 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1167
1168 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1169 if (mcgstatus & MCG_STATUS_LMCES)
1170 return false;
1171 }
1172
1173 if (mcgstatus & MCG_STATUS_RIPV) {
1174 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1175 return true;
1176 }
1177 }
1178 return false;
1179 }
1180
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1181 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1182 unsigned long *toclear, unsigned long *valid_banks,
1183 int no_way_out, int *worst)
1184 {
1185 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1186 struct mca_config *cfg = &mca_cfg;
1187 int severity, i;
1188
1189 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1190 __clear_bit(i, toclear);
1191 if (!test_bit(i, valid_banks))
1192 continue;
1193
1194 if (!mce_banks[i].ctl)
1195 continue;
1196
1197 m->misc = 0;
1198 m->addr = 0;
1199 m->bank = i;
1200
1201 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1202 if (!(m->status & MCI_STATUS_VAL))
1203 continue;
1204
1205 /*
1206 * Corrected or non-signaled errors are handled by
1207 * machine_check_poll(). Leave them alone, unless this panics.
1208 */
1209 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1210 !no_way_out)
1211 continue;
1212
1213 /* Set taint even when machine check was not enabled. */
1214 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1215
1216 severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1217
1218 /*
1219 * When machine check was for corrected/deferred handler don't
1220 * touch, unless we're panicking.
1221 */
1222 if ((severity == MCE_KEEP_SEVERITY ||
1223 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1224 continue;
1225
1226 __set_bit(i, toclear);
1227
1228 /* Machine check event was not enabled. Clear, but ignore. */
1229 if (severity == MCE_NO_SEVERITY)
1230 continue;
1231
1232 mce_read_aux(m, i);
1233
1234 /* assuming valid severity level != 0 */
1235 m->severity = severity;
1236
1237 mce_log(m);
1238
1239 if (severity > *worst) {
1240 *final = *m;
1241 *worst = severity;
1242 }
1243 }
1244
1245 /* mce_clear_state will clear *final, save locally for use later */
1246 *m = *final;
1247 }
1248
kill_me_now(struct callback_head * ch)1249 static void kill_me_now(struct callback_head *ch)
1250 {
1251 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1252
1253 p->mce_count = 0;
1254 force_sig(SIGBUS);
1255 }
1256
kill_me_maybe(struct callback_head * cb)1257 static void kill_me_maybe(struct callback_head *cb)
1258 {
1259 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1260 int flags = MF_ACTION_REQUIRED;
1261
1262 p->mce_count = 0;
1263 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1264
1265 if (!p->mce_ripv)
1266 flags |= MF_MUST_KILL;
1267
1268 if (!memory_failure(p->mce_addr >> PAGE_SHIFT, flags) &&
1269 !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) {
1270 set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1271 sync_core();
1272 return;
1273 }
1274
1275 if (p->mce_vaddr != (void __user *)-1l) {
1276 force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT);
1277 } else {
1278 pr_err("Memory error not recovered");
1279 kill_me_now(cb);
1280 }
1281 }
1282
queue_task_work(struct mce * m,char * msg,int kill_current_task)1283 static void queue_task_work(struct mce *m, char *msg, int kill_current_task)
1284 {
1285 int count = ++current->mce_count;
1286
1287 /* First call, save all the details */
1288 if (count == 1) {
1289 current->mce_addr = m->addr;
1290 current->mce_kflags = m->kflags;
1291 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1292 current->mce_whole_page = whole_page(m);
1293
1294 if (kill_current_task)
1295 current->mce_kill_me.func = kill_me_now;
1296 else
1297 current->mce_kill_me.func = kill_me_maybe;
1298 }
1299
1300 /* Ten is likely overkill. Don't expect more than two faults before task_work() */
1301 if (count > 10)
1302 mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1303
1304 /* Second or later call, make sure page address matches the one from first call */
1305 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1306 mce_panic("Consecutive machine checks to different user pages", m, msg);
1307
1308 /* Do not call task_work_add() more than once */
1309 if (count > 1)
1310 return;
1311
1312 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
1313 }
1314
1315 /*
1316 * The actual machine check handler. This only handles real
1317 * exceptions when something got corrupted coming in through int 18.
1318 *
1319 * This is executed in NMI context not subject to normal locking rules. This
1320 * implies that most kernel services cannot be safely used. Don't even
1321 * think about putting a printk in there!
1322 *
1323 * On Intel systems this is entered on all CPUs in parallel through
1324 * MCE broadcast. However some CPUs might be broken beyond repair,
1325 * so be always careful when synchronizing with others.
1326 *
1327 * Tracing and kprobes are disabled: if we interrupted a kernel context
1328 * with IF=1, we need to minimize stack usage. There are also recursion
1329 * issues: if the machine check was due to a failure of the memory
1330 * backing the user stack, tracing that reads the user stack will cause
1331 * potentially infinite recursion.
1332 */
do_machine_check(struct pt_regs * regs)1333 noinstr void do_machine_check(struct pt_regs *regs)
1334 {
1335 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1336 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1337 struct mca_config *cfg = &mca_cfg;
1338 struct mce m, *final;
1339 char *msg = NULL;
1340 int worst = 0;
1341
1342 /*
1343 * Establish sequential order between the CPUs entering the machine
1344 * check handler.
1345 */
1346 int order = -1;
1347
1348 /*
1349 * If no_way_out gets set, there is no safe way to recover from this
1350 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1351 */
1352 int no_way_out = 0;
1353
1354 /*
1355 * If kill_it gets set, there might be a way to recover from this
1356 * error.
1357 */
1358 int kill_it = 0;
1359
1360 /*
1361 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1362 * on Intel.
1363 */
1364 int lmce = 1;
1365
1366 this_cpu_inc(mce_exception_count);
1367
1368 mce_gather_info(&m, regs);
1369 m.tsc = rdtsc();
1370
1371 final = this_cpu_ptr(&mces_seen);
1372 *final = m;
1373
1374 memset(valid_banks, 0, sizeof(valid_banks));
1375 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1376
1377 barrier();
1378
1379 /*
1380 * When no restart IP might need to kill or panic.
1381 * Assume the worst for now, but if we find the
1382 * severity is MCE_AR_SEVERITY we have other options.
1383 */
1384 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1385 kill_it = 1;
1386
1387 /*
1388 * Check if this MCE is signaled to only this logical processor,
1389 * on Intel, Zhaoxin only.
1390 */
1391 if (m.cpuvendor == X86_VENDOR_INTEL ||
1392 m.cpuvendor == X86_VENDOR_ZHAOXIN)
1393 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1394
1395 /*
1396 * Local machine check may already know that we have to panic.
1397 * Broadcast machine check begins rendezvous in mce_start()
1398 * Go through all banks in exclusion of the other CPUs. This way we
1399 * don't report duplicated events on shared banks because the first one
1400 * to see it will clear it.
1401 */
1402 if (lmce) {
1403 if (no_way_out)
1404 mce_panic("Fatal local machine check", &m, msg);
1405 } else {
1406 order = mce_start(&no_way_out);
1407 }
1408
1409 __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1410
1411 if (!no_way_out)
1412 mce_clear_state(toclear);
1413
1414 /*
1415 * Do most of the synchronization with other CPUs.
1416 * When there's any problem use only local no_way_out state.
1417 */
1418 if (!lmce) {
1419 if (mce_end(order) < 0) {
1420 if (!no_way_out)
1421 no_way_out = worst >= MCE_PANIC_SEVERITY;
1422 }
1423 } else {
1424 /*
1425 * If there was a fatal machine check we should have
1426 * already called mce_panic earlier in this function.
1427 * Since we re-read the banks, we might have found
1428 * something new. Check again to see if we found a
1429 * fatal error. We call "mce_severity()" again to
1430 * make sure we have the right "msg".
1431 */
1432 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1433 mce_severity(&m, regs, cfg->tolerant, &msg, true);
1434 mce_panic("Local fatal machine check!", &m, msg);
1435 }
1436 }
1437
1438 /*
1439 * If tolerant is at an insane level we drop requests to kill
1440 * processes and continue even when there is no way out.
1441 */
1442 if (cfg->tolerant == 3)
1443 kill_it = 0;
1444 else if (no_way_out)
1445 mce_panic("Fatal machine check on current CPU", &m, msg);
1446
1447 if (worst > 0)
1448 irq_work_queue(&mce_irq_work);
1449
1450 if (worst != MCE_AR_SEVERITY && !kill_it)
1451 goto out;
1452
1453 /*
1454 * Enable instrumentation around the external facilities like
1455 * task_work_add() (via queue_task_work()), fixup_exception() etc.
1456 * For now, that is. Fixing this properly would need a lot more involved
1457 * reorganization.
1458 */
1459 instrumentation_begin();
1460
1461 /* Fault was in user mode and we need to take some action */
1462 if ((m.cs & 3) == 3) {
1463 /* If this triggers there is no way to recover. Die hard. */
1464 BUG_ON(!on_thread_stack() || !user_mode(regs));
1465
1466 queue_task_work(&m, msg, kill_it);
1467
1468 } else {
1469 /*
1470 * Handle an MCE which has happened in kernel space but from
1471 * which the kernel can recover: ex_has_fault_handler() has
1472 * already verified that the rIP at which the error happened is
1473 * a rIP from which the kernel can recover (by jumping to
1474 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1475 * corresponding exception handler which would do that is the
1476 * proper one.
1477 */
1478 if (m.kflags & MCE_IN_KERNEL_RECOV) {
1479 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1480 mce_panic("Failed kernel mode recovery", &m, msg);
1481 }
1482
1483 if (m.kflags & MCE_IN_KERNEL_COPYIN)
1484 queue_task_work(&m, msg, kill_it);
1485 }
1486
1487 instrumentation_end();
1488
1489 out:
1490 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1491 }
1492 EXPORT_SYMBOL_GPL(do_machine_check);
1493
1494 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1495 int memory_failure(unsigned long pfn, int flags)
1496 {
1497 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1498 BUG_ON(flags & MF_ACTION_REQUIRED);
1499 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1500 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1501 pfn);
1502
1503 return 0;
1504 }
1505 #endif
1506
1507 /*
1508 * Periodic polling timer for "silent" machine check errors. If the
1509 * poller finds an MCE, poll 2x faster. When the poller finds no more
1510 * errors, poll 2x slower (up to check_interval seconds).
1511 */
1512 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1513
1514 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1515 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1516
mce_adjust_timer_default(unsigned long interval)1517 static unsigned long mce_adjust_timer_default(unsigned long interval)
1518 {
1519 return interval;
1520 }
1521
1522 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1523
__start_timer(struct timer_list * t,unsigned long interval)1524 static void __start_timer(struct timer_list *t, unsigned long interval)
1525 {
1526 unsigned long when = jiffies + interval;
1527 unsigned long flags;
1528
1529 local_irq_save(flags);
1530
1531 if (!timer_pending(t) || time_before(when, t->expires))
1532 mod_timer(t, round_jiffies(when));
1533
1534 local_irq_restore(flags);
1535 }
1536
mce_timer_fn(struct timer_list * t)1537 static void mce_timer_fn(struct timer_list *t)
1538 {
1539 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1540 unsigned long iv;
1541
1542 WARN_ON(cpu_t != t);
1543
1544 iv = __this_cpu_read(mce_next_interval);
1545
1546 if (mce_available(this_cpu_ptr(&cpu_info))) {
1547 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1548
1549 if (mce_intel_cmci_poll()) {
1550 iv = mce_adjust_timer(iv);
1551 goto done;
1552 }
1553 }
1554
1555 /*
1556 * Alert userspace if needed. If we logged an MCE, reduce the polling
1557 * interval, otherwise increase the polling interval.
1558 */
1559 if (mce_notify_irq())
1560 iv = max(iv / 2, (unsigned long) HZ/100);
1561 else
1562 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1563
1564 done:
1565 __this_cpu_write(mce_next_interval, iv);
1566 __start_timer(t, iv);
1567 }
1568
1569 /*
1570 * Ensure that the timer is firing in @interval from now.
1571 */
mce_timer_kick(unsigned long interval)1572 void mce_timer_kick(unsigned long interval)
1573 {
1574 struct timer_list *t = this_cpu_ptr(&mce_timer);
1575 unsigned long iv = __this_cpu_read(mce_next_interval);
1576
1577 __start_timer(t, interval);
1578
1579 if (interval < iv)
1580 __this_cpu_write(mce_next_interval, interval);
1581 }
1582
1583 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1584 static void mce_timer_delete_all(void)
1585 {
1586 int cpu;
1587
1588 for_each_online_cpu(cpu)
1589 del_timer_sync(&per_cpu(mce_timer, cpu));
1590 }
1591
1592 /*
1593 * Notify the user(s) about new machine check events.
1594 * Can be called from interrupt context, but not from machine check/NMI
1595 * context.
1596 */
mce_notify_irq(void)1597 int mce_notify_irq(void)
1598 {
1599 /* Not more than two messages every minute */
1600 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1601
1602 if (test_and_clear_bit(0, &mce_need_notify)) {
1603 mce_work_trigger();
1604
1605 if (__ratelimit(&ratelimit))
1606 pr_info(HW_ERR "Machine check events logged\n");
1607
1608 return 1;
1609 }
1610 return 0;
1611 }
1612 EXPORT_SYMBOL_GPL(mce_notify_irq);
1613
__mcheck_cpu_mce_banks_init(void)1614 static void __mcheck_cpu_mce_banks_init(void)
1615 {
1616 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1617 u8 n_banks = this_cpu_read(mce_num_banks);
1618 int i;
1619
1620 for (i = 0; i < n_banks; i++) {
1621 struct mce_bank *b = &mce_banks[i];
1622
1623 /*
1624 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1625 * the required vendor quirks before
1626 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1627 */
1628 b->ctl = -1ULL;
1629 b->init = 1;
1630 }
1631 }
1632
1633 /*
1634 * Initialize Machine Checks for a CPU.
1635 */
__mcheck_cpu_cap_init(void)1636 static void __mcheck_cpu_cap_init(void)
1637 {
1638 u64 cap;
1639 u8 b;
1640
1641 rdmsrl(MSR_IA32_MCG_CAP, cap);
1642
1643 b = cap & MCG_BANKCNT_MASK;
1644
1645 if (b > MAX_NR_BANKS) {
1646 pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1647 smp_processor_id(), MAX_NR_BANKS, b);
1648 b = MAX_NR_BANKS;
1649 }
1650
1651 this_cpu_write(mce_num_banks, b);
1652
1653 __mcheck_cpu_mce_banks_init();
1654
1655 /* Use accurate RIP reporting if available. */
1656 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1657 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1658
1659 if (cap & MCG_SER_P)
1660 mca_cfg.ser = 1;
1661 }
1662
__mcheck_cpu_init_generic(void)1663 static void __mcheck_cpu_init_generic(void)
1664 {
1665 enum mcp_flags m_fl = 0;
1666 mce_banks_t all_banks;
1667 u64 cap;
1668
1669 if (!mca_cfg.bootlog)
1670 m_fl = MCP_DONTLOG;
1671
1672 /*
1673 * Log the machine checks left over from the previous reset. Log them
1674 * only, do not start processing them. That will happen in mcheck_late_init()
1675 * when all consumers have been registered on the notifier chain.
1676 */
1677 bitmap_fill(all_banks, MAX_NR_BANKS);
1678 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1679
1680 cr4_set_bits(X86_CR4_MCE);
1681
1682 rdmsrl(MSR_IA32_MCG_CAP, cap);
1683 if (cap & MCG_CTL_P)
1684 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1685 }
1686
__mcheck_cpu_init_clear_banks(void)1687 static void __mcheck_cpu_init_clear_banks(void)
1688 {
1689 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1690 int i;
1691
1692 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1693 struct mce_bank *b = &mce_banks[i];
1694
1695 if (!b->init)
1696 continue;
1697 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1698 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1699 }
1700 }
1701
1702 /*
1703 * Do a final check to see if there are any unused/RAZ banks.
1704 *
1705 * This must be done after the banks have been initialized and any quirks have
1706 * been applied.
1707 *
1708 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1709 * Otherwise, a user who disables a bank will not be able to re-enable it
1710 * without a system reboot.
1711 */
__mcheck_cpu_check_banks(void)1712 static void __mcheck_cpu_check_banks(void)
1713 {
1714 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1715 u64 msrval;
1716 int i;
1717
1718 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1719 struct mce_bank *b = &mce_banks[i];
1720
1721 if (!b->init)
1722 continue;
1723
1724 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1725 b->init = !!msrval;
1726 }
1727 }
1728
1729 /*
1730 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1731 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1732 * Vol 3B Table 15-20). But this confuses both the code that determines
1733 * whether the machine check occurred in kernel or user mode, and also
1734 * the severity assessment code. Pretend that EIPV was set, and take the
1735 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1736 */
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)1737 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1738 {
1739 if (bank != 0)
1740 return;
1741 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1742 return;
1743 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1744 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1745 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1746 MCACOD)) !=
1747 (MCI_STATUS_UC|MCI_STATUS_EN|
1748 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1749 MCI_STATUS_AR|MCACOD_INSTR))
1750 return;
1751
1752 m->mcgstatus |= MCG_STATUS_EIPV;
1753 m->ip = regs->ip;
1754 m->cs = regs->cs;
1755 }
1756
1757 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1758 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1759 {
1760 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1761 struct mca_config *cfg = &mca_cfg;
1762
1763 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1764 pr_info("unknown CPU type - not enabling MCE support\n");
1765 return -EOPNOTSUPP;
1766 }
1767
1768 /* This should be disabled by the BIOS, but isn't always */
1769 if (c->x86_vendor == X86_VENDOR_AMD) {
1770 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1771 /*
1772 * disable GART TBL walk error reporting, which
1773 * trips off incorrectly with the IOMMU & 3ware
1774 * & Cerberus:
1775 */
1776 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1777 }
1778 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1779 /*
1780 * Lots of broken BIOS around that don't clear them
1781 * by default and leave crap in there. Don't log:
1782 */
1783 cfg->bootlog = 0;
1784 }
1785 /*
1786 * Various K7s with broken bank 0 around. Always disable
1787 * by default.
1788 */
1789 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1790 mce_banks[0].ctl = 0;
1791
1792 /*
1793 * overflow_recov is supported for F15h Models 00h-0fh
1794 * even though we don't have a CPUID bit for it.
1795 */
1796 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1797 mce_flags.overflow_recov = 1;
1798
1799 }
1800
1801 if (c->x86_vendor == X86_VENDOR_INTEL) {
1802 /*
1803 * SDM documents that on family 6 bank 0 should not be written
1804 * because it aliases to another special BIOS controlled
1805 * register.
1806 * But it's not aliased anymore on model 0x1a+
1807 * Don't ignore bank 0 completely because there could be a
1808 * valid event later, merely don't write CTL0.
1809 */
1810
1811 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1812 mce_banks[0].init = 0;
1813
1814 /*
1815 * All newer Intel systems support MCE broadcasting. Enable
1816 * synchronization with a one second timeout.
1817 */
1818 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1819 cfg->monarch_timeout < 0)
1820 cfg->monarch_timeout = USEC_PER_SEC;
1821
1822 /*
1823 * There are also broken BIOSes on some Pentium M and
1824 * earlier systems:
1825 */
1826 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1827 cfg->bootlog = 0;
1828
1829 if (c->x86 == 6 && c->x86_model == 45)
1830 quirk_no_way_out = quirk_sandybridge_ifu;
1831 }
1832
1833 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1834 /*
1835 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1836 * synchronization with a one second timeout.
1837 */
1838 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1839 if (cfg->monarch_timeout < 0)
1840 cfg->monarch_timeout = USEC_PER_SEC;
1841 }
1842 }
1843
1844 if (cfg->monarch_timeout < 0)
1845 cfg->monarch_timeout = 0;
1846 if (cfg->bootlog != 0)
1847 cfg->panic_timeout = 30;
1848
1849 return 0;
1850 }
1851
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1852 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1853 {
1854 if (c->x86 != 5)
1855 return 0;
1856
1857 switch (c->x86_vendor) {
1858 case X86_VENDOR_INTEL:
1859 intel_p5_mcheck_init(c);
1860 return 1;
1861 break;
1862 case X86_VENDOR_CENTAUR:
1863 winchip_mcheck_init(c);
1864 return 1;
1865 break;
1866 default:
1867 return 0;
1868 }
1869
1870 return 0;
1871 }
1872
1873 /*
1874 * Init basic CPU features needed for early decoding of MCEs.
1875 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1876 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1877 {
1878 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1879 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1880 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1881 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1882 mce_flags.amd_threshold = 1;
1883 }
1884 }
1885
mce_centaur_feature_init(struct cpuinfo_x86 * c)1886 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1887 {
1888 struct mca_config *cfg = &mca_cfg;
1889
1890 /*
1891 * All newer Centaur CPUs support MCE broadcasting. Enable
1892 * synchronization with a one second timeout.
1893 */
1894 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1895 c->x86 > 6) {
1896 if (cfg->monarch_timeout < 0)
1897 cfg->monarch_timeout = USEC_PER_SEC;
1898 }
1899 }
1900
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)1901 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1902 {
1903 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1904
1905 /*
1906 * These CPUs have MCA bank 8 which reports only one error type called
1907 * SVAD (System View Address Decoder). The reporting of that error is
1908 * controlled by IA32_MC8.CTL.0.
1909 *
1910 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1911 * virtual machines start and result in a system panic. Always disable
1912 * bank 8 SVAD error by default.
1913 */
1914 if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1915 (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1916 if (this_cpu_read(mce_num_banks) > 8)
1917 mce_banks[8].ctl = 0;
1918 }
1919
1920 intel_init_cmci();
1921 intel_init_lmce();
1922 mce_adjust_timer = cmci_intel_adjust_timer;
1923 }
1924
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)1925 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1926 {
1927 intel_clear_lmce();
1928 }
1929
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1930 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1931 {
1932 switch (c->x86_vendor) {
1933 case X86_VENDOR_INTEL:
1934 mce_intel_feature_init(c);
1935 mce_adjust_timer = cmci_intel_adjust_timer;
1936 break;
1937
1938 case X86_VENDOR_AMD: {
1939 mce_amd_feature_init(c);
1940 break;
1941 }
1942
1943 case X86_VENDOR_HYGON:
1944 mce_hygon_feature_init(c);
1945 break;
1946
1947 case X86_VENDOR_CENTAUR:
1948 mce_centaur_feature_init(c);
1949 break;
1950
1951 case X86_VENDOR_ZHAOXIN:
1952 mce_zhaoxin_feature_init(c);
1953 break;
1954
1955 default:
1956 break;
1957 }
1958 }
1959
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)1960 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1961 {
1962 switch (c->x86_vendor) {
1963 case X86_VENDOR_INTEL:
1964 mce_intel_feature_clear(c);
1965 break;
1966
1967 case X86_VENDOR_ZHAOXIN:
1968 mce_zhaoxin_feature_clear(c);
1969 break;
1970
1971 default:
1972 break;
1973 }
1974 }
1975
mce_start_timer(struct timer_list * t)1976 static void mce_start_timer(struct timer_list *t)
1977 {
1978 unsigned long iv = check_interval * HZ;
1979
1980 if (mca_cfg.ignore_ce || !iv)
1981 return;
1982
1983 this_cpu_write(mce_next_interval, iv);
1984 __start_timer(t, iv);
1985 }
1986
__mcheck_cpu_setup_timer(void)1987 static void __mcheck_cpu_setup_timer(void)
1988 {
1989 struct timer_list *t = this_cpu_ptr(&mce_timer);
1990
1991 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1992 }
1993
__mcheck_cpu_init_timer(void)1994 static void __mcheck_cpu_init_timer(void)
1995 {
1996 struct timer_list *t = this_cpu_ptr(&mce_timer);
1997
1998 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1999 mce_start_timer(t);
2000 }
2001
filter_mce(struct mce * m)2002 bool filter_mce(struct mce *m)
2003 {
2004 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2005 return amd_filter_mce(m);
2006 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2007 return intel_filter_mce(m);
2008
2009 return false;
2010 }
2011
2012 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)2013 static noinstr void unexpected_machine_check(struct pt_regs *regs)
2014 {
2015 instrumentation_begin();
2016 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
2017 smp_processor_id());
2018 instrumentation_end();
2019 }
2020
2021 /* Call the installed machine check handler for this CPU setup. */
2022 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check;
2023
exc_machine_check_kernel(struct pt_regs * regs)2024 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2025 {
2026 irqentry_state_t irq_state;
2027
2028 WARN_ON_ONCE(user_mode(regs));
2029
2030 /*
2031 * Only required when from kernel mode. See
2032 * mce_check_crashing_cpu() for details.
2033 */
2034 if (machine_check_vector == do_machine_check &&
2035 mce_check_crashing_cpu())
2036 return;
2037
2038 irq_state = irqentry_nmi_enter(regs);
2039 /*
2040 * The call targets are marked noinstr, but objtool can't figure
2041 * that out because it's an indirect call. Annotate it.
2042 */
2043 instrumentation_begin();
2044 trace_hardirqs_off_finish();
2045 machine_check_vector(regs);
2046 if (regs->flags & X86_EFLAGS_IF)
2047 trace_hardirqs_on_prepare();
2048 instrumentation_end();
2049 irqentry_nmi_exit(regs, irq_state);
2050 }
2051
exc_machine_check_user(struct pt_regs * regs)2052 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2053 {
2054 irqentry_enter_from_user_mode(regs);
2055 instrumentation_begin();
2056 machine_check_vector(regs);
2057 instrumentation_end();
2058 irqentry_exit_to_user_mode(regs);
2059 }
2060
2061 #ifdef CONFIG_X86_64
2062 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2063 DEFINE_IDTENTRY_MCE(exc_machine_check)
2064 {
2065 unsigned long dr7;
2066
2067 dr7 = local_db_save();
2068 exc_machine_check_kernel(regs);
2069 local_db_restore(dr7);
2070 }
2071
2072 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2073 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2074 {
2075 unsigned long dr7;
2076
2077 dr7 = local_db_save();
2078 exc_machine_check_user(regs);
2079 local_db_restore(dr7);
2080 }
2081 #else
2082 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2083 DEFINE_IDTENTRY_RAW(exc_machine_check)
2084 {
2085 unsigned long dr7;
2086
2087 dr7 = local_db_save();
2088 if (user_mode(regs))
2089 exc_machine_check_user(regs);
2090 else
2091 exc_machine_check_kernel(regs);
2092 local_db_restore(dr7);
2093 }
2094 #endif
2095
2096 /*
2097 * Called for each booted CPU to set up machine checks.
2098 * Must be called with preempt off:
2099 */
mcheck_cpu_init(struct cpuinfo_x86 * c)2100 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2101 {
2102 if (mca_cfg.disabled)
2103 return;
2104
2105 if (__mcheck_cpu_ancient_init(c))
2106 return;
2107
2108 if (!mce_available(c))
2109 return;
2110
2111 __mcheck_cpu_cap_init();
2112
2113 if (__mcheck_cpu_apply_quirks(c) < 0) {
2114 mca_cfg.disabled = 1;
2115 return;
2116 }
2117
2118 if (mce_gen_pool_init()) {
2119 mca_cfg.disabled = 1;
2120 pr_emerg("Couldn't allocate MCE records pool!\n");
2121 return;
2122 }
2123
2124 machine_check_vector = do_machine_check;
2125
2126 __mcheck_cpu_init_early(c);
2127 __mcheck_cpu_init_generic();
2128 __mcheck_cpu_init_vendor(c);
2129 __mcheck_cpu_init_clear_banks();
2130 __mcheck_cpu_check_banks();
2131 __mcheck_cpu_setup_timer();
2132 }
2133
2134 /*
2135 * Called for each booted CPU to clear some machine checks opt-ins
2136 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2137 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2138 {
2139 if (mca_cfg.disabled)
2140 return;
2141
2142 if (!mce_available(c))
2143 return;
2144
2145 /*
2146 * Possibly to clear general settings generic to x86
2147 * __mcheck_cpu_clear_generic(c);
2148 */
2149 __mcheck_cpu_clear_vendor(c);
2150
2151 }
2152
__mce_disable_bank(void * arg)2153 static void __mce_disable_bank(void *arg)
2154 {
2155 int bank = *((int *)arg);
2156 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2157 cmci_disable_bank(bank);
2158 }
2159
mce_disable_bank(int bank)2160 void mce_disable_bank(int bank)
2161 {
2162 if (bank >= this_cpu_read(mce_num_banks)) {
2163 pr_warn(FW_BUG
2164 "Ignoring request to disable invalid MCA bank %d.\n",
2165 bank);
2166 return;
2167 }
2168 set_bit(bank, mce_banks_ce_disabled);
2169 on_each_cpu(__mce_disable_bank, &bank, 1);
2170 }
2171
2172 /*
2173 * mce=off Disables machine check
2174 * mce=no_cmci Disables CMCI
2175 * mce=no_lmce Disables LMCE
2176 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2177 * mce=print_all Print all machine check logs to console
2178 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2179 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2180 * monarchtimeout is how long to wait for other CPUs on machine
2181 * check, or 0 to not wait
2182 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2183 and older.
2184 * mce=nobootlog Don't log MCEs from before booting.
2185 * mce=bios_cmci_threshold Don't program the CMCI threshold
2186 * mce=recovery force enable copy_mc_fragile()
2187 */
mcheck_enable(char * str)2188 static int __init mcheck_enable(char *str)
2189 {
2190 struct mca_config *cfg = &mca_cfg;
2191
2192 if (*str == 0) {
2193 enable_p5_mce();
2194 return 1;
2195 }
2196 if (*str == '=')
2197 str++;
2198 if (!strcmp(str, "off"))
2199 cfg->disabled = 1;
2200 else if (!strcmp(str, "no_cmci"))
2201 cfg->cmci_disabled = true;
2202 else if (!strcmp(str, "no_lmce"))
2203 cfg->lmce_disabled = 1;
2204 else if (!strcmp(str, "dont_log_ce"))
2205 cfg->dont_log_ce = true;
2206 else if (!strcmp(str, "print_all"))
2207 cfg->print_all = true;
2208 else if (!strcmp(str, "ignore_ce"))
2209 cfg->ignore_ce = true;
2210 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2211 cfg->bootlog = (str[0] == 'b');
2212 else if (!strcmp(str, "bios_cmci_threshold"))
2213 cfg->bios_cmci_threshold = 1;
2214 else if (!strcmp(str, "recovery"))
2215 cfg->recovery = 1;
2216 else if (isdigit(str[0])) {
2217 if (get_option(&str, &cfg->tolerant) == 2)
2218 get_option(&str, &(cfg->monarch_timeout));
2219 } else {
2220 pr_info("mce argument %s ignored. Please use /sys\n", str);
2221 return 0;
2222 }
2223 return 1;
2224 }
2225 __setup("mce", mcheck_enable);
2226
mcheck_init(void)2227 int __init mcheck_init(void)
2228 {
2229 mcheck_intel_therm_init();
2230 mce_register_decode_chain(&early_nb);
2231 mce_register_decode_chain(&mce_uc_nb);
2232 mce_register_decode_chain(&mce_default_nb);
2233 mcheck_vendor_init_severity();
2234
2235 INIT_WORK(&mce_work, mce_gen_pool_process);
2236 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2237
2238 return 0;
2239 }
2240
2241 /*
2242 * mce_syscore: PM support
2243 */
2244
2245 /*
2246 * Disable machine checks on suspend and shutdown. We can't really handle
2247 * them later.
2248 */
mce_disable_error_reporting(void)2249 static void mce_disable_error_reporting(void)
2250 {
2251 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2252 int i;
2253
2254 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2255 struct mce_bank *b = &mce_banks[i];
2256
2257 if (b->init)
2258 wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2259 }
2260 return;
2261 }
2262
vendor_disable_error_reporting(void)2263 static void vendor_disable_error_reporting(void)
2264 {
2265 /*
2266 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2267 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2268 * is bad, since it will inhibit reporting for all shared resources on
2269 * the socket like the last level cache (LLC), the integrated memory
2270 * controller (iMC), etc.
2271 */
2272 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2273 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2274 boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2275 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2276 return;
2277
2278 mce_disable_error_reporting();
2279 }
2280
mce_syscore_suspend(void)2281 static int mce_syscore_suspend(void)
2282 {
2283 vendor_disable_error_reporting();
2284 return 0;
2285 }
2286
mce_syscore_shutdown(void)2287 static void mce_syscore_shutdown(void)
2288 {
2289 vendor_disable_error_reporting();
2290 }
2291
2292 /*
2293 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2294 * Only one CPU is active at this time, the others get re-added later using
2295 * CPU hotplug:
2296 */
mce_syscore_resume(void)2297 static void mce_syscore_resume(void)
2298 {
2299 __mcheck_cpu_init_generic();
2300 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2301 __mcheck_cpu_init_clear_banks();
2302 }
2303
2304 static struct syscore_ops mce_syscore_ops = {
2305 .suspend = mce_syscore_suspend,
2306 .shutdown = mce_syscore_shutdown,
2307 .resume = mce_syscore_resume,
2308 };
2309
2310 /*
2311 * mce_device: Sysfs support
2312 */
2313
mce_cpu_restart(void * data)2314 static void mce_cpu_restart(void *data)
2315 {
2316 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2317 return;
2318 __mcheck_cpu_init_generic();
2319 __mcheck_cpu_init_clear_banks();
2320 __mcheck_cpu_init_timer();
2321 }
2322
2323 /* Reinit MCEs after user configuration changes */
mce_restart(void)2324 static void mce_restart(void)
2325 {
2326 mce_timer_delete_all();
2327 on_each_cpu(mce_cpu_restart, NULL, 1);
2328 mce_schedule_work();
2329 }
2330
2331 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2332 static void mce_disable_cmci(void *data)
2333 {
2334 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2335 return;
2336 cmci_clear();
2337 }
2338
mce_enable_ce(void * all)2339 static void mce_enable_ce(void *all)
2340 {
2341 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2342 return;
2343 cmci_reenable();
2344 cmci_recheck();
2345 if (all)
2346 __mcheck_cpu_init_timer();
2347 }
2348
2349 static struct bus_type mce_subsys = {
2350 .name = "machinecheck",
2351 .dev_name = "machinecheck",
2352 };
2353
2354 DEFINE_PER_CPU(struct device *, mce_device);
2355
attr_to_bank(struct device_attribute * attr)2356 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2357 {
2358 return container_of(attr, struct mce_bank_dev, attr);
2359 }
2360
show_bank(struct device * s,struct device_attribute * attr,char * buf)2361 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2362 char *buf)
2363 {
2364 u8 bank = attr_to_bank(attr)->bank;
2365 struct mce_bank *b;
2366
2367 if (bank >= per_cpu(mce_num_banks, s->id))
2368 return -EINVAL;
2369
2370 b = &per_cpu(mce_banks_array, s->id)[bank];
2371
2372 if (!b->init)
2373 return -ENODEV;
2374
2375 return sprintf(buf, "%llx\n", b->ctl);
2376 }
2377
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2378 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2379 const char *buf, size_t size)
2380 {
2381 u8 bank = attr_to_bank(attr)->bank;
2382 struct mce_bank *b;
2383 u64 new;
2384
2385 if (kstrtou64(buf, 0, &new) < 0)
2386 return -EINVAL;
2387
2388 if (bank >= per_cpu(mce_num_banks, s->id))
2389 return -EINVAL;
2390
2391 b = &per_cpu(mce_banks_array, s->id)[bank];
2392
2393 if (!b->init)
2394 return -ENODEV;
2395
2396 b->ctl = new;
2397 mce_restart();
2398
2399 return size;
2400 }
2401
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2402 static ssize_t set_ignore_ce(struct device *s,
2403 struct device_attribute *attr,
2404 const char *buf, size_t size)
2405 {
2406 u64 new;
2407
2408 if (kstrtou64(buf, 0, &new) < 0)
2409 return -EINVAL;
2410
2411 mutex_lock(&mce_sysfs_mutex);
2412 if (mca_cfg.ignore_ce ^ !!new) {
2413 if (new) {
2414 /* disable ce features */
2415 mce_timer_delete_all();
2416 on_each_cpu(mce_disable_cmci, NULL, 1);
2417 mca_cfg.ignore_ce = true;
2418 } else {
2419 /* enable ce features */
2420 mca_cfg.ignore_ce = false;
2421 on_each_cpu(mce_enable_ce, (void *)1, 1);
2422 }
2423 }
2424 mutex_unlock(&mce_sysfs_mutex);
2425
2426 return size;
2427 }
2428
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2429 static ssize_t set_cmci_disabled(struct device *s,
2430 struct device_attribute *attr,
2431 const char *buf, size_t size)
2432 {
2433 u64 new;
2434
2435 if (kstrtou64(buf, 0, &new) < 0)
2436 return -EINVAL;
2437
2438 mutex_lock(&mce_sysfs_mutex);
2439 if (mca_cfg.cmci_disabled ^ !!new) {
2440 if (new) {
2441 /* disable cmci */
2442 on_each_cpu(mce_disable_cmci, NULL, 1);
2443 mca_cfg.cmci_disabled = true;
2444 } else {
2445 /* enable cmci */
2446 mca_cfg.cmci_disabled = false;
2447 on_each_cpu(mce_enable_ce, NULL, 1);
2448 }
2449 }
2450 mutex_unlock(&mce_sysfs_mutex);
2451
2452 return size;
2453 }
2454
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2455 static ssize_t store_int_with_restart(struct device *s,
2456 struct device_attribute *attr,
2457 const char *buf, size_t size)
2458 {
2459 unsigned long old_check_interval = check_interval;
2460 ssize_t ret = device_store_ulong(s, attr, buf, size);
2461
2462 if (check_interval == old_check_interval)
2463 return ret;
2464
2465 mutex_lock(&mce_sysfs_mutex);
2466 mce_restart();
2467 mutex_unlock(&mce_sysfs_mutex);
2468
2469 return ret;
2470 }
2471
2472 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2473 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2474 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2475 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2476
2477 static struct dev_ext_attribute dev_attr_check_interval = {
2478 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2479 &check_interval
2480 };
2481
2482 static struct dev_ext_attribute dev_attr_ignore_ce = {
2483 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2484 &mca_cfg.ignore_ce
2485 };
2486
2487 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2488 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2489 &mca_cfg.cmci_disabled
2490 };
2491
2492 static struct device_attribute *mce_device_attrs[] = {
2493 &dev_attr_tolerant.attr,
2494 &dev_attr_check_interval.attr,
2495 #ifdef CONFIG_X86_MCELOG_LEGACY
2496 &dev_attr_trigger,
2497 #endif
2498 &dev_attr_monarch_timeout.attr,
2499 &dev_attr_dont_log_ce.attr,
2500 &dev_attr_print_all.attr,
2501 &dev_attr_ignore_ce.attr,
2502 &dev_attr_cmci_disabled.attr,
2503 NULL
2504 };
2505
2506 static cpumask_var_t mce_device_initialized;
2507
mce_device_release(struct device * dev)2508 static void mce_device_release(struct device *dev)
2509 {
2510 kfree(dev);
2511 }
2512
2513 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2514 static int mce_device_create(unsigned int cpu)
2515 {
2516 struct device *dev;
2517 int err;
2518 int i, j;
2519
2520 if (!mce_available(&boot_cpu_data))
2521 return -EIO;
2522
2523 dev = per_cpu(mce_device, cpu);
2524 if (dev)
2525 return 0;
2526
2527 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2528 if (!dev)
2529 return -ENOMEM;
2530 dev->id = cpu;
2531 dev->bus = &mce_subsys;
2532 dev->release = &mce_device_release;
2533
2534 err = device_register(dev);
2535 if (err) {
2536 put_device(dev);
2537 return err;
2538 }
2539
2540 for (i = 0; mce_device_attrs[i]; i++) {
2541 err = device_create_file(dev, mce_device_attrs[i]);
2542 if (err)
2543 goto error;
2544 }
2545 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2546 err = device_create_file(dev, &mce_bank_devs[j].attr);
2547 if (err)
2548 goto error2;
2549 }
2550 cpumask_set_cpu(cpu, mce_device_initialized);
2551 per_cpu(mce_device, cpu) = dev;
2552
2553 return 0;
2554 error2:
2555 while (--j >= 0)
2556 device_remove_file(dev, &mce_bank_devs[j].attr);
2557 error:
2558 while (--i >= 0)
2559 device_remove_file(dev, mce_device_attrs[i]);
2560
2561 device_unregister(dev);
2562
2563 return err;
2564 }
2565
mce_device_remove(unsigned int cpu)2566 static void mce_device_remove(unsigned int cpu)
2567 {
2568 struct device *dev = per_cpu(mce_device, cpu);
2569 int i;
2570
2571 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2572 return;
2573
2574 for (i = 0; mce_device_attrs[i]; i++)
2575 device_remove_file(dev, mce_device_attrs[i]);
2576
2577 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2578 device_remove_file(dev, &mce_bank_devs[i].attr);
2579
2580 device_unregister(dev);
2581 cpumask_clear_cpu(cpu, mce_device_initialized);
2582 per_cpu(mce_device, cpu) = NULL;
2583 }
2584
2585 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2586 static void mce_disable_cpu(void)
2587 {
2588 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2589 return;
2590
2591 if (!cpuhp_tasks_frozen)
2592 cmci_clear();
2593
2594 vendor_disable_error_reporting();
2595 }
2596
mce_reenable_cpu(void)2597 static void mce_reenable_cpu(void)
2598 {
2599 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2600 int i;
2601
2602 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2603 return;
2604
2605 if (!cpuhp_tasks_frozen)
2606 cmci_reenable();
2607 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2608 struct mce_bank *b = &mce_banks[i];
2609
2610 if (b->init)
2611 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2612 }
2613 }
2614
mce_cpu_dead(unsigned int cpu)2615 static int mce_cpu_dead(unsigned int cpu)
2616 {
2617 mce_intel_hcpu_update(cpu);
2618
2619 /* intentionally ignoring frozen here */
2620 if (!cpuhp_tasks_frozen)
2621 cmci_rediscover();
2622 return 0;
2623 }
2624
mce_cpu_online(unsigned int cpu)2625 static int mce_cpu_online(unsigned int cpu)
2626 {
2627 struct timer_list *t = this_cpu_ptr(&mce_timer);
2628 int ret;
2629
2630 mce_device_create(cpu);
2631
2632 ret = mce_threshold_create_device(cpu);
2633 if (ret) {
2634 mce_device_remove(cpu);
2635 return ret;
2636 }
2637 mce_reenable_cpu();
2638 mce_start_timer(t);
2639 return 0;
2640 }
2641
mce_cpu_pre_down(unsigned int cpu)2642 static int mce_cpu_pre_down(unsigned int cpu)
2643 {
2644 struct timer_list *t = this_cpu_ptr(&mce_timer);
2645
2646 mce_disable_cpu();
2647 del_timer_sync(t);
2648 mce_threshold_remove_device(cpu);
2649 mce_device_remove(cpu);
2650 return 0;
2651 }
2652
mce_init_banks(void)2653 static __init void mce_init_banks(void)
2654 {
2655 int i;
2656
2657 for (i = 0; i < MAX_NR_BANKS; i++) {
2658 struct mce_bank_dev *b = &mce_bank_devs[i];
2659 struct device_attribute *a = &b->attr;
2660
2661 b->bank = i;
2662
2663 sysfs_attr_init(&a->attr);
2664 a->attr.name = b->attrname;
2665 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2666
2667 a->attr.mode = 0644;
2668 a->show = show_bank;
2669 a->store = set_bank;
2670 }
2671 }
2672
2673 /*
2674 * When running on XEN, this initcall is ordered against the XEN mcelog
2675 * initcall:
2676 *
2677 * device_initcall(xen_late_init_mcelog);
2678 * device_initcall_sync(mcheck_init_device);
2679 */
mcheck_init_device(void)2680 static __init int mcheck_init_device(void)
2681 {
2682 int err;
2683
2684 /*
2685 * Check if we have a spare virtual bit. This will only become
2686 * a problem if/when we move beyond 5-level page tables.
2687 */
2688 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2689
2690 if (!mce_available(&boot_cpu_data)) {
2691 err = -EIO;
2692 goto err_out;
2693 }
2694
2695 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2696 err = -ENOMEM;
2697 goto err_out;
2698 }
2699
2700 mce_init_banks();
2701
2702 err = subsys_system_register(&mce_subsys, NULL);
2703 if (err)
2704 goto err_out_mem;
2705
2706 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2707 mce_cpu_dead);
2708 if (err)
2709 goto err_out_mem;
2710
2711 /*
2712 * Invokes mce_cpu_online() on all CPUs which are online when
2713 * the state is installed.
2714 */
2715 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2716 mce_cpu_online, mce_cpu_pre_down);
2717 if (err < 0)
2718 goto err_out_online;
2719
2720 register_syscore_ops(&mce_syscore_ops);
2721
2722 return 0;
2723
2724 err_out_online:
2725 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2726
2727 err_out_mem:
2728 free_cpumask_var(mce_device_initialized);
2729
2730 err_out:
2731 pr_err("Unable to init MCE device (rc: %d)\n", err);
2732
2733 return err;
2734 }
2735 device_initcall_sync(mcheck_init_device);
2736
2737 /*
2738 * Old style boot options parsing. Only for compatibility.
2739 */
mcheck_disable(char * str)2740 static int __init mcheck_disable(char *str)
2741 {
2742 mca_cfg.disabled = 1;
2743 return 1;
2744 }
2745 __setup("nomce", mcheck_disable);
2746
2747 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2748 struct dentry *mce_get_debugfs_dir(void)
2749 {
2750 static struct dentry *dmce;
2751
2752 if (!dmce)
2753 dmce = debugfs_create_dir("mce", NULL);
2754
2755 return dmce;
2756 }
2757
mce_reset(void)2758 static void mce_reset(void)
2759 {
2760 cpu_missing = 0;
2761 atomic_set(&mce_fake_panicked, 0);
2762 atomic_set(&mce_executing, 0);
2763 atomic_set(&mce_callin, 0);
2764 atomic_set(&global_nwo, 0);
2765 }
2766
fake_panic_get(void * data,u64 * val)2767 static int fake_panic_get(void *data, u64 *val)
2768 {
2769 *val = fake_panic;
2770 return 0;
2771 }
2772
fake_panic_set(void * data,u64 val)2773 static int fake_panic_set(void *data, u64 val)
2774 {
2775 mce_reset();
2776 fake_panic = val;
2777 return 0;
2778 }
2779
2780 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2781 "%llu\n");
2782
mcheck_debugfs_init(void)2783 static void __init mcheck_debugfs_init(void)
2784 {
2785 struct dentry *dmce;
2786
2787 dmce = mce_get_debugfs_dir();
2788 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2789 &fake_panic_fops);
2790 }
2791 #else
mcheck_debugfs_init(void)2792 static void __init mcheck_debugfs_init(void) { }
2793 #endif
2794
mcheck_late_init(void)2795 static int __init mcheck_late_init(void)
2796 {
2797 if (mca_cfg.recovery)
2798 enable_copy_mc_fragile();
2799
2800 mcheck_debugfs_init();
2801
2802 /*
2803 * Flush out everything that has been logged during early boot, now that
2804 * everything has been initialized (workqueues, decoders, ...).
2805 */
2806 mce_schedule_work();
2807
2808 return 0;
2809 }
2810 late_initcall(mcheck_late_init);
2811