1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70 #include <trace/hooks/mm.h>
71
72 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
73 EXPORT_SYMBOL(memory_cgrp_subsys);
74
75 struct mem_cgroup *root_mem_cgroup __read_mostly;
76 EXPORT_SYMBOL_GPL(root_mem_cgroup);
77
78 /* Active memory cgroup to use from an interrupt context */
79 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
80
81 /* Socket memory accounting disabled? */
82 static bool cgroup_memory_nosocket;
83
84 /* Kernel memory accounting disabled? */
85 static bool cgroup_memory_nokmem;
86
87 /* Whether the swap controller is active */
88 #ifdef CONFIG_MEMCG_SWAP
89 bool cgroup_memory_noswap __read_mostly;
90 #else
91 #define cgroup_memory_noswap 1
92 #endif
93
94 #ifdef CONFIG_CGROUP_WRITEBACK
95 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
96 #endif
97
98 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)99 static bool do_memsw_account(void)
100 {
101 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
102 }
103
104 #define THRESHOLDS_EVENTS_TARGET 128
105 #define SOFTLIMIT_EVENTS_TARGET 1024
106
107 /*
108 * Cgroups above their limits are maintained in a RB-Tree, independent of
109 * their hierarchy representation
110 */
111
112 struct mem_cgroup_tree_per_node {
113 struct rb_root rb_root;
114 struct rb_node *rb_rightmost;
115 spinlock_t lock;
116 };
117
118 struct mem_cgroup_tree {
119 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
120 };
121
122 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
123
124 /* for OOM */
125 struct mem_cgroup_eventfd_list {
126 struct list_head list;
127 struct eventfd_ctx *eventfd;
128 };
129
130 /*
131 * cgroup_event represents events which userspace want to receive.
132 */
133 struct mem_cgroup_event {
134 /*
135 * memcg which the event belongs to.
136 */
137 struct mem_cgroup *memcg;
138 /*
139 * eventfd to signal userspace about the event.
140 */
141 struct eventfd_ctx *eventfd;
142 /*
143 * Each of these stored in a list by the cgroup.
144 */
145 struct list_head list;
146 /*
147 * register_event() callback will be used to add new userspace
148 * waiter for changes related to this event. Use eventfd_signal()
149 * on eventfd to send notification to userspace.
150 */
151 int (*register_event)(struct mem_cgroup *memcg,
152 struct eventfd_ctx *eventfd, const char *args);
153 /*
154 * unregister_event() callback will be called when userspace closes
155 * the eventfd or on cgroup removing. This callback must be set,
156 * if you want provide notification functionality.
157 */
158 void (*unregister_event)(struct mem_cgroup *memcg,
159 struct eventfd_ctx *eventfd);
160 /*
161 * All fields below needed to unregister event when
162 * userspace closes eventfd.
163 */
164 poll_table pt;
165 wait_queue_head_t *wqh;
166 wait_queue_entry_t wait;
167 struct work_struct remove;
168 };
169
170 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
171 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
172
173 /* Stuffs for move charges at task migration. */
174 /*
175 * Types of charges to be moved.
176 */
177 #define MOVE_ANON 0x1U
178 #define MOVE_FILE 0x2U
179 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
180
181 /* "mc" and its members are protected by cgroup_mutex */
182 static struct move_charge_struct {
183 spinlock_t lock; /* for from, to */
184 struct mm_struct *mm;
185 struct mem_cgroup *from;
186 struct mem_cgroup *to;
187 unsigned long flags;
188 unsigned long precharge;
189 unsigned long moved_charge;
190 unsigned long moved_swap;
191 struct task_struct *moving_task; /* a task moving charges */
192 wait_queue_head_t waitq; /* a waitq for other context */
193 } mc = {
194 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
195 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 };
197
198 /*
199 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
200 * limit reclaim to prevent infinite loops, if they ever occur.
201 */
202 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
203 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
204
205 /* for encoding cft->private value on file */
206 enum res_type {
207 _MEM,
208 _MEMSWAP,
209 _OOM_TYPE,
210 _KMEM,
211 _TCP,
212 };
213
214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val) ((val) & 0xffff)
217 /* Used for OOM nofiier */
218 #define OOM_CONTROL (0)
219
220 /*
221 * Iteration constructs for visiting all cgroups (under a tree). If
222 * loops are exited prematurely (break), mem_cgroup_iter_break() must
223 * be used for reference counting.
224 */
225 #define for_each_mem_cgroup_tree(iter, root) \
226 for (iter = mem_cgroup_iter(root, NULL, NULL); \
227 iter != NULL; \
228 iter = mem_cgroup_iter(root, iter, NULL))
229
230 #define for_each_mem_cgroup(iter) \
231 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(NULL, iter, NULL))
234
task_is_dying(void)235 static inline bool task_is_dying(void)
236 {
237 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
238 (current->flags & PF_EXITING);
239 }
240
241 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)242 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
243 {
244 if (!memcg)
245 memcg = root_mem_cgroup;
246 return &memcg->vmpressure;
247 }
248
vmpressure_to_css(struct vmpressure * vmpr)249 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
250 {
251 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
252 }
253
254 #ifdef CONFIG_MEMCG_KMEM
255 static DEFINE_SPINLOCK(objcg_lock);
256
obj_cgroup_release(struct percpu_ref * ref)257 static void obj_cgroup_release(struct percpu_ref *ref)
258 {
259 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
260 struct mem_cgroup *memcg;
261 unsigned int nr_bytes;
262 unsigned int nr_pages;
263 unsigned long flags;
264
265 /*
266 * At this point all allocated objects are freed, and
267 * objcg->nr_charged_bytes can't have an arbitrary byte value.
268 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
269 *
270 * The following sequence can lead to it:
271 * 1) CPU0: objcg == stock->cached_objcg
272 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
273 * PAGE_SIZE bytes are charged
274 * 3) CPU1: a process from another memcg is allocating something,
275 * the stock if flushed,
276 * objcg->nr_charged_bytes = PAGE_SIZE - 92
277 * 5) CPU0: we do release this object,
278 * 92 bytes are added to stock->nr_bytes
279 * 6) CPU0: stock is flushed,
280 * 92 bytes are added to objcg->nr_charged_bytes
281 *
282 * In the result, nr_charged_bytes == PAGE_SIZE.
283 * This page will be uncharged in obj_cgroup_release().
284 */
285 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
286 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
287 nr_pages = nr_bytes >> PAGE_SHIFT;
288
289 spin_lock_irqsave(&objcg_lock, flags);
290 memcg = obj_cgroup_memcg(objcg);
291 if (nr_pages)
292 __memcg_kmem_uncharge(memcg, nr_pages);
293 list_del(&objcg->list);
294 mem_cgroup_put(memcg);
295 spin_unlock_irqrestore(&objcg_lock, flags);
296
297 percpu_ref_exit(ref);
298 kfree_rcu(objcg, rcu);
299 }
300
obj_cgroup_alloc(void)301 static struct obj_cgroup *obj_cgroup_alloc(void)
302 {
303 struct obj_cgroup *objcg;
304 int ret;
305
306 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
307 if (!objcg)
308 return NULL;
309
310 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
311 GFP_KERNEL);
312 if (ret) {
313 kfree(objcg);
314 return NULL;
315 }
316 INIT_LIST_HEAD(&objcg->list);
317 return objcg;
318 }
319
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)320 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
321 struct mem_cgroup *parent)
322 {
323 struct obj_cgroup *objcg, *iter;
324
325 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
326
327 spin_lock_irq(&objcg_lock);
328
329 /* Move active objcg to the parent's list */
330 xchg(&objcg->memcg, parent);
331 css_get(&parent->css);
332 list_add(&objcg->list, &parent->objcg_list);
333
334 /* Move already reparented objcgs to the parent's list */
335 list_for_each_entry(iter, &memcg->objcg_list, list) {
336 css_get(&parent->css);
337 xchg(&iter->memcg, parent);
338 css_put(&memcg->css);
339 }
340 list_splice(&memcg->objcg_list, &parent->objcg_list);
341
342 spin_unlock_irq(&objcg_lock);
343
344 percpu_ref_kill(&objcg->refcnt);
345 }
346
347 /*
348 * This will be used as a shrinker list's index.
349 * The main reason for not using cgroup id for this:
350 * this works better in sparse environments, where we have a lot of memcgs,
351 * but only a few kmem-limited. Or also, if we have, for instance, 200
352 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
353 * 200 entry array for that.
354 *
355 * The current size of the caches array is stored in memcg_nr_cache_ids. It
356 * will double each time we have to increase it.
357 */
358 static DEFINE_IDA(memcg_cache_ida);
359 int memcg_nr_cache_ids;
360
361 /* Protects memcg_nr_cache_ids */
362 static DECLARE_RWSEM(memcg_cache_ids_sem);
363
memcg_get_cache_ids(void)364 void memcg_get_cache_ids(void)
365 {
366 down_read(&memcg_cache_ids_sem);
367 }
368
memcg_put_cache_ids(void)369 void memcg_put_cache_ids(void)
370 {
371 up_read(&memcg_cache_ids_sem);
372 }
373
374 /*
375 * MIN_SIZE is different than 1, because we would like to avoid going through
376 * the alloc/free process all the time. In a small machine, 4 kmem-limited
377 * cgroups is a reasonable guess. In the future, it could be a parameter or
378 * tunable, but that is strictly not necessary.
379 *
380 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
381 * this constant directly from cgroup, but it is understandable that this is
382 * better kept as an internal representation in cgroup.c. In any case, the
383 * cgrp_id space is not getting any smaller, and we don't have to necessarily
384 * increase ours as well if it increases.
385 */
386 #define MEMCG_CACHES_MIN_SIZE 4
387 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
388
389 /*
390 * A lot of the calls to the cache allocation functions are expected to be
391 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
392 * conditional to this static branch, we'll have to allow modules that does
393 * kmem_cache_alloc and the such to see this symbol as well
394 */
395 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
396 EXPORT_SYMBOL(memcg_kmem_enabled_key);
397 #endif
398
399 static int memcg_shrinker_map_size;
400 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
401
memcg_free_shrinker_map_rcu(struct rcu_head * head)402 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
403 {
404 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
405 }
406
memcg_expand_one_shrinker_map(struct mem_cgroup * memcg,int size,int old_size)407 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
408 int size, int old_size)
409 {
410 struct memcg_shrinker_map *new, *old;
411 int nid;
412
413 lockdep_assert_held(&memcg_shrinker_map_mutex);
414
415 for_each_node(nid) {
416 old = rcu_dereference_protected(
417 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
418 /* Not yet online memcg */
419 if (!old)
420 return 0;
421
422 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
423 if (!new)
424 return -ENOMEM;
425
426 /* Set all old bits, clear all new bits */
427 memset(new->map, (int)0xff, old_size);
428 memset((void *)new->map + old_size, 0, size - old_size);
429
430 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
431 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
432 }
433
434 return 0;
435 }
436
memcg_free_shrinker_maps(struct mem_cgroup * memcg)437 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
438 {
439 struct mem_cgroup_per_node *pn;
440 struct memcg_shrinker_map *map;
441 int nid;
442
443 if (mem_cgroup_is_root(memcg))
444 return;
445
446 for_each_node(nid) {
447 pn = mem_cgroup_nodeinfo(memcg, nid);
448 map = rcu_dereference_protected(pn->shrinker_map, true);
449 if (map)
450 kvfree(map);
451 rcu_assign_pointer(pn->shrinker_map, NULL);
452 }
453 }
454
memcg_alloc_shrinker_maps(struct mem_cgroup * memcg)455 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
456 {
457 struct memcg_shrinker_map *map;
458 int nid, size, ret = 0;
459
460 if (mem_cgroup_is_root(memcg))
461 return 0;
462
463 mutex_lock(&memcg_shrinker_map_mutex);
464 size = memcg_shrinker_map_size;
465 for_each_node(nid) {
466 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
467 if (!map) {
468 memcg_free_shrinker_maps(memcg);
469 ret = -ENOMEM;
470 break;
471 }
472 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
473 }
474 mutex_unlock(&memcg_shrinker_map_mutex);
475
476 return ret;
477 }
478
memcg_expand_shrinker_maps(int new_id)479 int memcg_expand_shrinker_maps(int new_id)
480 {
481 int size, old_size, ret = 0;
482 struct mem_cgroup *memcg;
483
484 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
485 old_size = memcg_shrinker_map_size;
486 if (size <= old_size)
487 return 0;
488
489 mutex_lock(&memcg_shrinker_map_mutex);
490 if (!root_mem_cgroup)
491 goto unlock;
492
493 for_each_mem_cgroup(memcg) {
494 if (mem_cgroup_is_root(memcg))
495 continue;
496 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
497 if (ret) {
498 mem_cgroup_iter_break(NULL, memcg);
499 goto unlock;
500 }
501 }
502 unlock:
503 if (!ret)
504 memcg_shrinker_map_size = size;
505 mutex_unlock(&memcg_shrinker_map_mutex);
506 return ret;
507 }
508
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)509 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
510 {
511 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
512 struct memcg_shrinker_map *map;
513
514 rcu_read_lock();
515 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
516 /* Pairs with smp mb in shrink_slab() */
517 smp_mb__before_atomic();
518 set_bit(shrinker_id, map->map);
519 rcu_read_unlock();
520 }
521 }
522
523 /**
524 * mem_cgroup_css_from_page - css of the memcg associated with a page
525 * @page: page of interest
526 *
527 * If memcg is bound to the default hierarchy, css of the memcg associated
528 * with @page is returned. The returned css remains associated with @page
529 * until it is released.
530 *
531 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
532 * is returned.
533 */
mem_cgroup_css_from_page(struct page * page)534 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
535 {
536 struct mem_cgroup *memcg;
537
538 memcg = page->mem_cgroup;
539
540 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
541 memcg = root_mem_cgroup;
542
543 return &memcg->css;
544 }
545
546 /**
547 * page_cgroup_ino - return inode number of the memcg a page is charged to
548 * @page: the page
549 *
550 * Look up the closest online ancestor of the memory cgroup @page is charged to
551 * and return its inode number or 0 if @page is not charged to any cgroup. It
552 * is safe to call this function without holding a reference to @page.
553 *
554 * Note, this function is inherently racy, because there is nothing to prevent
555 * the cgroup inode from getting torn down and potentially reallocated a moment
556 * after page_cgroup_ino() returns, so it only should be used by callers that
557 * do not care (such as procfs interfaces).
558 */
page_cgroup_ino(struct page * page)559 ino_t page_cgroup_ino(struct page *page)
560 {
561 struct mem_cgroup *memcg;
562 unsigned long ino = 0;
563
564 rcu_read_lock();
565 memcg = page->mem_cgroup;
566
567 /*
568 * The lowest bit set means that memcg isn't a valid
569 * memcg pointer, but a obj_cgroups pointer.
570 * In this case the page is shared and doesn't belong
571 * to any specific memory cgroup.
572 */
573 if ((unsigned long) memcg & 0x1UL)
574 memcg = NULL;
575
576 while (memcg && !(memcg->css.flags & CSS_ONLINE))
577 memcg = parent_mem_cgroup(memcg);
578 if (memcg)
579 ino = cgroup_ino(memcg->css.cgroup);
580 rcu_read_unlock();
581 return ino;
582 }
583
584 static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup * memcg,struct page * page)585 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
586 {
587 int nid = page_to_nid(page);
588
589 return memcg->nodeinfo[nid];
590 }
591
592 static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)593 soft_limit_tree_node(int nid)
594 {
595 return soft_limit_tree.rb_tree_per_node[nid];
596 }
597
598 static struct mem_cgroup_tree_per_node *
soft_limit_tree_from_page(struct page * page)599 soft_limit_tree_from_page(struct page *page)
600 {
601 int nid = page_to_nid(page);
602
603 return soft_limit_tree.rb_tree_per_node[nid];
604 }
605
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)606 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
607 struct mem_cgroup_tree_per_node *mctz,
608 unsigned long new_usage_in_excess)
609 {
610 struct rb_node **p = &mctz->rb_root.rb_node;
611 struct rb_node *parent = NULL;
612 struct mem_cgroup_per_node *mz_node;
613 bool rightmost = true;
614
615 if (mz->on_tree)
616 return;
617
618 mz->usage_in_excess = new_usage_in_excess;
619 if (!mz->usage_in_excess)
620 return;
621 while (*p) {
622 parent = *p;
623 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
624 tree_node);
625 if (mz->usage_in_excess < mz_node->usage_in_excess) {
626 p = &(*p)->rb_left;
627 rightmost = false;
628 }
629
630 /*
631 * We can't avoid mem cgroups that are over their soft
632 * limit by the same amount
633 */
634 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
635 p = &(*p)->rb_right;
636 }
637
638 if (rightmost)
639 mctz->rb_rightmost = &mz->tree_node;
640
641 rb_link_node(&mz->tree_node, parent, p);
642 rb_insert_color(&mz->tree_node, &mctz->rb_root);
643 mz->on_tree = true;
644 }
645
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)646 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
647 struct mem_cgroup_tree_per_node *mctz)
648 {
649 if (!mz->on_tree)
650 return;
651
652 if (&mz->tree_node == mctz->rb_rightmost)
653 mctz->rb_rightmost = rb_prev(&mz->tree_node);
654
655 rb_erase(&mz->tree_node, &mctz->rb_root);
656 mz->on_tree = false;
657 }
658
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)659 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
660 struct mem_cgroup_tree_per_node *mctz)
661 {
662 unsigned long flags;
663
664 spin_lock_irqsave(&mctz->lock, flags);
665 __mem_cgroup_remove_exceeded(mz, mctz);
666 spin_unlock_irqrestore(&mctz->lock, flags);
667 }
668
soft_limit_excess(struct mem_cgroup * memcg)669 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
670 {
671 unsigned long nr_pages = page_counter_read(&memcg->memory);
672 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
673 unsigned long excess = 0;
674
675 if (nr_pages > soft_limit)
676 excess = nr_pages - soft_limit;
677
678 return excess;
679 }
680
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)681 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
682 {
683 unsigned long excess;
684 struct mem_cgroup_per_node *mz;
685 struct mem_cgroup_tree_per_node *mctz;
686
687 mctz = soft_limit_tree_from_page(page);
688 if (!mctz)
689 return;
690 /*
691 * Necessary to update all ancestors when hierarchy is used.
692 * because their event counter is not touched.
693 */
694 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
695 mz = mem_cgroup_page_nodeinfo(memcg, page);
696 excess = soft_limit_excess(memcg);
697 /*
698 * We have to update the tree if mz is on RB-tree or
699 * mem is over its softlimit.
700 */
701 if (excess || mz->on_tree) {
702 unsigned long flags;
703
704 spin_lock_irqsave(&mctz->lock, flags);
705 /* if on-tree, remove it */
706 if (mz->on_tree)
707 __mem_cgroup_remove_exceeded(mz, mctz);
708 /*
709 * Insert again. mz->usage_in_excess will be updated.
710 * If excess is 0, no tree ops.
711 */
712 __mem_cgroup_insert_exceeded(mz, mctz, excess);
713 spin_unlock_irqrestore(&mctz->lock, flags);
714 }
715 }
716 }
717
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)718 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
719 {
720 struct mem_cgroup_tree_per_node *mctz;
721 struct mem_cgroup_per_node *mz;
722 int nid;
723
724 for_each_node(nid) {
725 mz = mem_cgroup_nodeinfo(memcg, nid);
726 mctz = soft_limit_tree_node(nid);
727 if (mctz)
728 mem_cgroup_remove_exceeded(mz, mctz);
729 }
730 }
731
732 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)733 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
734 {
735 struct mem_cgroup_per_node *mz;
736
737 retry:
738 mz = NULL;
739 if (!mctz->rb_rightmost)
740 goto done; /* Nothing to reclaim from */
741
742 mz = rb_entry(mctz->rb_rightmost,
743 struct mem_cgroup_per_node, tree_node);
744 /*
745 * Remove the node now but someone else can add it back,
746 * we will to add it back at the end of reclaim to its correct
747 * position in the tree.
748 */
749 __mem_cgroup_remove_exceeded(mz, mctz);
750 if (!soft_limit_excess(mz->memcg) ||
751 !css_tryget(&mz->memcg->css))
752 goto retry;
753 done:
754 return mz;
755 }
756
757 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)758 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
759 {
760 struct mem_cgroup_per_node *mz;
761
762 spin_lock_irq(&mctz->lock);
763 mz = __mem_cgroup_largest_soft_limit_node(mctz);
764 spin_unlock_irq(&mctz->lock);
765 return mz;
766 }
767
768 /**
769 * __mod_memcg_state - update cgroup memory statistics
770 * @memcg: the memory cgroup
771 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
772 * @val: delta to add to the counter, can be negative
773 */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)774 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
775 {
776 long x, threshold = MEMCG_CHARGE_BATCH;
777
778 if (mem_cgroup_disabled())
779 return;
780
781 if (memcg_stat_item_in_bytes(idx))
782 threshold <<= PAGE_SHIFT;
783
784 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
785 if (unlikely(abs(x) > threshold)) {
786 struct mem_cgroup *mi;
787
788 /*
789 * Batch local counters to keep them in sync with
790 * the hierarchical ones.
791 */
792 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
793 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
794 atomic_long_add(x, &mi->vmstats[idx]);
795 x = 0;
796 }
797 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
798 }
799
800 static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node * pn,int nid)801 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
802 {
803 struct mem_cgroup *parent;
804
805 parent = parent_mem_cgroup(pn->memcg);
806 if (!parent)
807 return NULL;
808 return mem_cgroup_nodeinfo(parent, nid);
809 }
810
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)811 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
812 int val)
813 {
814 struct mem_cgroup_per_node *pn;
815 struct mem_cgroup *memcg;
816 long x, threshold = MEMCG_CHARGE_BATCH;
817
818 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
819 memcg = pn->memcg;
820
821 /* Update memcg */
822 __mod_memcg_state(memcg, idx, val);
823
824 /* Update lruvec */
825 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
826
827 if (vmstat_item_in_bytes(idx))
828 threshold <<= PAGE_SHIFT;
829
830 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
831 if (unlikely(abs(x) > threshold)) {
832 pg_data_t *pgdat = lruvec_pgdat(lruvec);
833 struct mem_cgroup_per_node *pi;
834
835 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
836 atomic_long_add(x, &pi->lruvec_stat[idx]);
837 x = 0;
838 }
839 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
840 }
841
842 /**
843 * __mod_lruvec_state - update lruvec memory statistics
844 * @lruvec: the lruvec
845 * @idx: the stat item
846 * @val: delta to add to the counter, can be negative
847 *
848 * The lruvec is the intersection of the NUMA node and a cgroup. This
849 * function updates the all three counters that are affected by a
850 * change of state at this level: per-node, per-cgroup, per-lruvec.
851 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)852 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
853 int val)
854 {
855 /* Update node */
856 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
857
858 /* Update memcg and lruvec */
859 if (!mem_cgroup_disabled())
860 __mod_memcg_lruvec_state(lruvec, idx, val);
861 }
862 EXPORT_SYMBOL_GPL(__mod_lruvec_state);
863
__mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)864 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
865 {
866 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
867 struct mem_cgroup *memcg;
868 struct lruvec *lruvec;
869
870 rcu_read_lock();
871 memcg = mem_cgroup_from_obj(p);
872
873 /*
874 * Untracked pages have no memcg, no lruvec. Update only the
875 * node. If we reparent the slab objects to the root memcg,
876 * when we free the slab object, we need to update the per-memcg
877 * vmstats to keep it correct for the root memcg.
878 */
879 if (!memcg) {
880 __mod_node_page_state(pgdat, idx, val);
881 } else {
882 lruvec = mem_cgroup_lruvec(memcg, pgdat);
883 __mod_lruvec_state(lruvec, idx, val);
884 }
885 rcu_read_unlock();
886 }
887
mod_memcg_obj_state(void * p,int idx,int val)888 void mod_memcg_obj_state(void *p, int idx, int val)
889 {
890 struct mem_cgroup *memcg;
891
892 rcu_read_lock();
893 memcg = mem_cgroup_from_obj(p);
894 if (memcg)
895 mod_memcg_state(memcg, idx, val);
896 rcu_read_unlock();
897 }
898
899 /**
900 * __count_memcg_events - account VM events in a cgroup
901 * @memcg: the memory cgroup
902 * @idx: the event item
903 * @count: the number of events that occured
904 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)905 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
906 unsigned long count)
907 {
908 unsigned long x;
909
910 if (mem_cgroup_disabled())
911 return;
912
913 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
914 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
915 struct mem_cgroup *mi;
916
917 /*
918 * Batch local counters to keep them in sync with
919 * the hierarchical ones.
920 */
921 __this_cpu_add(memcg->vmstats_local->events[idx], x);
922 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
923 atomic_long_add(x, &mi->vmevents[idx]);
924 x = 0;
925 }
926 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
927 }
928
memcg_events(struct mem_cgroup * memcg,int event)929 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
930 {
931 return atomic_long_read(&memcg->vmevents[event]);
932 }
933
memcg_events_local(struct mem_cgroup * memcg,int event)934 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
935 {
936 long x = 0;
937 int cpu;
938
939 for_each_possible_cpu(cpu)
940 x += per_cpu(memcg->vmstats_local->events[event], cpu);
941 return x;
942 }
943
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,int nr_pages)944 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
945 struct page *page,
946 int nr_pages)
947 {
948 /* pagein of a big page is an event. So, ignore page size */
949 if (nr_pages > 0)
950 __count_memcg_events(memcg, PGPGIN, 1);
951 else {
952 __count_memcg_events(memcg, PGPGOUT, 1);
953 nr_pages = -nr_pages; /* for event */
954 }
955
956 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
957 }
958
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)959 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
960 enum mem_cgroup_events_target target)
961 {
962 unsigned long val, next;
963
964 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
965 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
966 /* from time_after() in jiffies.h */
967 if ((long)(next - val) < 0) {
968 switch (target) {
969 case MEM_CGROUP_TARGET_THRESH:
970 next = val + THRESHOLDS_EVENTS_TARGET;
971 break;
972 case MEM_CGROUP_TARGET_SOFTLIMIT:
973 next = val + SOFTLIMIT_EVENTS_TARGET;
974 break;
975 default:
976 break;
977 }
978 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
979 return true;
980 }
981 return false;
982 }
983
984 /*
985 * Check events in order.
986 *
987 */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)988 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
989 {
990 /* threshold event is triggered in finer grain than soft limit */
991 if (unlikely(mem_cgroup_event_ratelimit(memcg,
992 MEM_CGROUP_TARGET_THRESH))) {
993 bool do_softlimit;
994
995 do_softlimit = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_SOFTLIMIT);
997 mem_cgroup_threshold(memcg);
998 if (unlikely(do_softlimit))
999 mem_cgroup_update_tree(memcg, page);
1000 }
1001 }
1002
mem_cgroup_from_task(struct task_struct * p)1003 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1004 {
1005 /*
1006 * mm_update_next_owner() may clear mm->owner to NULL
1007 * if it races with swapoff, page migration, etc.
1008 * So this can be called with p == NULL.
1009 */
1010 if (unlikely(!p))
1011 return NULL;
1012
1013 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1014 }
1015 EXPORT_SYMBOL(mem_cgroup_from_task);
1016
1017 /**
1018 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1019 * @mm: mm from which memcg should be extracted. It can be NULL.
1020 *
1021 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1022 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1023 * returned.
1024 */
get_mem_cgroup_from_mm(struct mm_struct * mm)1025 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1026 {
1027 struct mem_cgroup *memcg;
1028
1029 if (mem_cgroup_disabled())
1030 return NULL;
1031
1032 rcu_read_lock();
1033 do {
1034 /*
1035 * Page cache insertions can happen withou an
1036 * actual mm context, e.g. during disk probing
1037 * on boot, loopback IO, acct() writes etc.
1038 */
1039 if (unlikely(!mm))
1040 memcg = root_mem_cgroup;
1041 else {
1042 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1043 if (unlikely(!memcg))
1044 memcg = root_mem_cgroup;
1045 }
1046 } while (!css_tryget(&memcg->css));
1047 rcu_read_unlock();
1048 return memcg;
1049 }
1050 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1051
1052 /**
1053 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1054 * @page: page from which memcg should be extracted.
1055 *
1056 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1057 * root_mem_cgroup is returned.
1058 */
get_mem_cgroup_from_page(struct page * page)1059 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1060 {
1061 struct mem_cgroup *memcg = page->mem_cgroup;
1062
1063 if (mem_cgroup_disabled())
1064 return NULL;
1065
1066 rcu_read_lock();
1067 /* Page should not get uncharged and freed memcg under us. */
1068 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1069 memcg = root_mem_cgroup;
1070 rcu_read_unlock();
1071 return memcg;
1072 }
1073 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1074
active_memcg(void)1075 static __always_inline struct mem_cgroup *active_memcg(void)
1076 {
1077 if (in_interrupt())
1078 return this_cpu_read(int_active_memcg);
1079 else
1080 return current->active_memcg;
1081 }
1082
get_active_memcg(void)1083 static __always_inline struct mem_cgroup *get_active_memcg(void)
1084 {
1085 struct mem_cgroup *memcg;
1086
1087 rcu_read_lock();
1088 memcg = active_memcg();
1089 /* remote memcg must hold a ref. */
1090 if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1091 memcg = root_mem_cgroup;
1092 rcu_read_unlock();
1093
1094 return memcg;
1095 }
1096
memcg_kmem_bypass(void)1097 static __always_inline bool memcg_kmem_bypass(void)
1098 {
1099 /* Allow remote memcg charging from any context. */
1100 if (unlikely(active_memcg()))
1101 return false;
1102
1103 /* Memcg to charge can't be determined. */
1104 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1105 return true;
1106
1107 return false;
1108 }
1109
1110 /**
1111 * If active memcg is set, do not fallback to current->mm->memcg.
1112 */
get_mem_cgroup_from_current(void)1113 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1114 {
1115 if (memcg_kmem_bypass())
1116 return NULL;
1117
1118 if (unlikely(active_memcg()))
1119 return get_active_memcg();
1120
1121 return get_mem_cgroup_from_mm(current->mm);
1122 }
1123
1124 /**
1125 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1126 * @root: hierarchy root
1127 * @prev: previously returned memcg, NULL on first invocation
1128 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1129 *
1130 * Returns references to children of the hierarchy below @root, or
1131 * @root itself, or %NULL after a full round-trip.
1132 *
1133 * Caller must pass the return value in @prev on subsequent
1134 * invocations for reference counting, or use mem_cgroup_iter_break()
1135 * to cancel a hierarchy walk before the round-trip is complete.
1136 *
1137 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1138 * in the hierarchy among all concurrent reclaimers operating on the
1139 * same node.
1140 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1141 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1142 struct mem_cgroup *prev,
1143 struct mem_cgroup_reclaim_cookie *reclaim)
1144 {
1145 struct mem_cgroup_reclaim_iter *iter;
1146 struct cgroup_subsys_state *css = NULL;
1147 struct mem_cgroup *memcg = NULL;
1148 struct mem_cgroup *pos = NULL;
1149
1150 if (mem_cgroup_disabled())
1151 return NULL;
1152
1153 if (!root)
1154 root = root_mem_cgroup;
1155
1156 if (prev && !reclaim)
1157 pos = prev;
1158
1159 if (!root->use_hierarchy && root != root_mem_cgroup) {
1160 if (prev)
1161 goto out;
1162 return root;
1163 }
1164
1165 rcu_read_lock();
1166
1167 if (reclaim) {
1168 struct mem_cgroup_per_node *mz;
1169
1170 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1171 iter = &mz->iter;
1172
1173 if (prev && reclaim->generation != iter->generation)
1174 goto out_unlock;
1175
1176 while (1) {
1177 pos = READ_ONCE(iter->position);
1178 if (!pos || css_tryget(&pos->css))
1179 break;
1180 /*
1181 * css reference reached zero, so iter->position will
1182 * be cleared by ->css_released. However, we should not
1183 * rely on this happening soon, because ->css_released
1184 * is called from a work queue, and by busy-waiting we
1185 * might block it. So we clear iter->position right
1186 * away.
1187 */
1188 (void)cmpxchg(&iter->position, pos, NULL);
1189 }
1190 }
1191
1192 if (pos)
1193 css = &pos->css;
1194
1195 for (;;) {
1196 css = css_next_descendant_pre(css, &root->css);
1197 if (!css) {
1198 /*
1199 * Reclaimers share the hierarchy walk, and a
1200 * new one might jump in right at the end of
1201 * the hierarchy - make sure they see at least
1202 * one group and restart from the beginning.
1203 */
1204 if (!prev)
1205 continue;
1206 break;
1207 }
1208
1209 /*
1210 * Verify the css and acquire a reference. The root
1211 * is provided by the caller, so we know it's alive
1212 * and kicking, and don't take an extra reference.
1213 */
1214 memcg = mem_cgroup_from_css(css);
1215
1216 if (css == &root->css)
1217 break;
1218
1219 if (css_tryget(css))
1220 break;
1221
1222 memcg = NULL;
1223 }
1224
1225 if (reclaim) {
1226 /*
1227 * The position could have already been updated by a competing
1228 * thread, so check that the value hasn't changed since we read
1229 * it to avoid reclaiming from the same cgroup twice.
1230 */
1231 (void)cmpxchg(&iter->position, pos, memcg);
1232
1233 if (pos)
1234 css_put(&pos->css);
1235
1236 if (!memcg)
1237 iter->generation++;
1238 else if (!prev)
1239 reclaim->generation = iter->generation;
1240 }
1241
1242 out_unlock:
1243 rcu_read_unlock();
1244 out:
1245 if (prev && prev != root)
1246 css_put(&prev->css);
1247
1248 return memcg;
1249 }
1250
1251 /**
1252 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1253 * @root: hierarchy root
1254 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1255 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1256 void mem_cgroup_iter_break(struct mem_cgroup *root,
1257 struct mem_cgroup *prev)
1258 {
1259 if (!root)
1260 root = root_mem_cgroup;
1261 if (prev && prev != root)
1262 css_put(&prev->css);
1263 }
1264
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1265 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1266 struct mem_cgroup *dead_memcg)
1267 {
1268 struct mem_cgroup_reclaim_iter *iter;
1269 struct mem_cgroup_per_node *mz;
1270 int nid;
1271
1272 for_each_node(nid) {
1273 mz = mem_cgroup_nodeinfo(from, nid);
1274 iter = &mz->iter;
1275 cmpxchg(&iter->position, dead_memcg, NULL);
1276 }
1277 }
1278
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1279 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1280 {
1281 struct mem_cgroup *memcg = dead_memcg;
1282 struct mem_cgroup *last;
1283
1284 do {
1285 __invalidate_reclaim_iterators(memcg, dead_memcg);
1286 last = memcg;
1287 } while ((memcg = parent_mem_cgroup(memcg)));
1288
1289 /*
1290 * When cgruop1 non-hierarchy mode is used,
1291 * parent_mem_cgroup() does not walk all the way up to the
1292 * cgroup root (root_mem_cgroup). So we have to handle
1293 * dead_memcg from cgroup root separately.
1294 */
1295 if (last != root_mem_cgroup)
1296 __invalidate_reclaim_iterators(root_mem_cgroup,
1297 dead_memcg);
1298 }
1299
1300 /**
1301 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1302 * @memcg: hierarchy root
1303 * @fn: function to call for each task
1304 * @arg: argument passed to @fn
1305 *
1306 * This function iterates over tasks attached to @memcg or to any of its
1307 * descendants and calls @fn for each task. If @fn returns a non-zero
1308 * value, the function breaks the iteration loop and returns the value.
1309 * Otherwise, it will iterate over all tasks and return 0.
1310 *
1311 * This function must not be called for the root memory cgroup.
1312 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1313 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1314 int (*fn)(struct task_struct *, void *), void *arg)
1315 {
1316 struct mem_cgroup *iter;
1317 int ret = 0;
1318
1319 BUG_ON(memcg == root_mem_cgroup);
1320
1321 for_each_mem_cgroup_tree(iter, memcg) {
1322 struct css_task_iter it;
1323 struct task_struct *task;
1324
1325 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1326 while (!ret && (task = css_task_iter_next(&it)))
1327 ret = fn(task, arg);
1328 css_task_iter_end(&it);
1329 if (ret) {
1330 mem_cgroup_iter_break(memcg, iter);
1331 break;
1332 }
1333 }
1334 return ret;
1335 }
1336
1337 /**
1338 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1339 * @page: the page
1340 * @pgdat: pgdat of the page
1341 *
1342 * This function relies on page->mem_cgroup being stable - see the
1343 * access rules in commit_charge().
1344 */
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)1345 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1346 {
1347 struct mem_cgroup_per_node *mz;
1348 struct mem_cgroup *memcg;
1349 struct lruvec *lruvec;
1350
1351 if (mem_cgroup_disabled()) {
1352 lruvec = &pgdat->__lruvec;
1353 goto out;
1354 }
1355
1356 memcg = page->mem_cgroup;
1357 /*
1358 * Swapcache readahead pages are added to the LRU - and
1359 * possibly migrated - before they are charged.
1360 */
1361 if (!memcg)
1362 memcg = root_mem_cgroup;
1363
1364 mz = mem_cgroup_page_nodeinfo(memcg, page);
1365 lruvec = &mz->lruvec;
1366 out:
1367 /*
1368 * Since a node can be onlined after the mem_cgroup was created,
1369 * we have to be prepared to initialize lruvec->zone here;
1370 * and if offlined then reonlined, we need to reinitialize it.
1371 */
1372 if (unlikely(lruvec->pgdat != pgdat))
1373 lruvec->pgdat = pgdat;
1374 return lruvec;
1375 }
1376
page_to_lruvec(struct page * page,pg_data_t * pgdat)1377 struct lruvec *page_to_lruvec(struct page *page, pg_data_t *pgdat)
1378 {
1379 struct lruvec *lruvec;
1380
1381 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1382
1383 return lruvec;
1384 }
1385 EXPORT_SYMBOL_GPL(page_to_lruvec);
1386
do_traversal_all_lruvec(void)1387 void do_traversal_all_lruvec(void)
1388 {
1389 pg_data_t *pgdat;
1390
1391 for_each_online_pgdat(pgdat) {
1392 struct mem_cgroup *memcg = NULL;
1393
1394 spin_lock_irq(&pgdat->lru_lock);
1395 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1396 do {
1397 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
1398
1399 trace_android_vh_do_traversal_lruvec(lruvec);
1400
1401 memcg = mem_cgroup_iter(NULL, memcg, NULL);
1402 } while (memcg);
1403
1404 spin_unlock_irq(&pgdat->lru_lock);
1405 }
1406 }
1407 EXPORT_SYMBOL_GPL(do_traversal_all_lruvec);
1408
1409 /**
1410 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1411 * @lruvec: mem_cgroup per zone lru vector
1412 * @lru: index of lru list the page is sitting on
1413 * @zid: zone id of the accounted pages
1414 * @nr_pages: positive when adding or negative when removing
1415 *
1416 * This function must be called under lru_lock, just before a page is added
1417 * to or just after a page is removed from an lru list (that ordering being
1418 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1419 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1420 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1421 int zid, int nr_pages)
1422 {
1423 struct mem_cgroup_per_node *mz;
1424 unsigned long *lru_size;
1425 long size;
1426
1427 if (mem_cgroup_disabled())
1428 return;
1429
1430 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1431 lru_size = &mz->lru_zone_size[zid][lru];
1432
1433 if (nr_pages < 0)
1434 *lru_size += nr_pages;
1435
1436 size = *lru_size;
1437 if (WARN_ONCE(size < 0,
1438 "%s(%p, %d, %d): lru_size %ld\n",
1439 __func__, lruvec, lru, nr_pages, size)) {
1440 VM_BUG_ON(1);
1441 *lru_size = 0;
1442 }
1443
1444 if (nr_pages > 0)
1445 *lru_size += nr_pages;
1446 }
1447 EXPORT_SYMBOL_GPL(mem_cgroup_update_lru_size);
1448
1449 /**
1450 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1451 * @memcg: the memory cgroup
1452 *
1453 * Returns the maximum amount of memory @mem can be charged with, in
1454 * pages.
1455 */
mem_cgroup_margin(struct mem_cgroup * memcg)1456 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1457 {
1458 unsigned long margin = 0;
1459 unsigned long count;
1460 unsigned long limit;
1461
1462 count = page_counter_read(&memcg->memory);
1463 limit = READ_ONCE(memcg->memory.max);
1464 if (count < limit)
1465 margin = limit - count;
1466
1467 if (do_memsw_account()) {
1468 count = page_counter_read(&memcg->memsw);
1469 limit = READ_ONCE(memcg->memsw.max);
1470 if (count < limit)
1471 margin = min(margin, limit - count);
1472 else
1473 margin = 0;
1474 }
1475
1476 return margin;
1477 }
1478
1479 /*
1480 * A routine for checking "mem" is under move_account() or not.
1481 *
1482 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1483 * moving cgroups. This is for waiting at high-memory pressure
1484 * caused by "move".
1485 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1486 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1487 {
1488 struct mem_cgroup *from;
1489 struct mem_cgroup *to;
1490 bool ret = false;
1491 /*
1492 * Unlike task_move routines, we access mc.to, mc.from not under
1493 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1494 */
1495 spin_lock(&mc.lock);
1496 from = mc.from;
1497 to = mc.to;
1498 if (!from)
1499 goto unlock;
1500
1501 ret = mem_cgroup_is_descendant(from, memcg) ||
1502 mem_cgroup_is_descendant(to, memcg);
1503 unlock:
1504 spin_unlock(&mc.lock);
1505 return ret;
1506 }
1507
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1508 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1509 {
1510 if (mc.moving_task && current != mc.moving_task) {
1511 if (mem_cgroup_under_move(memcg)) {
1512 DEFINE_WAIT(wait);
1513 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1514 /* moving charge context might have finished. */
1515 if (mc.moving_task)
1516 schedule();
1517 finish_wait(&mc.waitq, &wait);
1518 return true;
1519 }
1520 }
1521 return false;
1522 }
1523
1524 struct memory_stat {
1525 const char *name;
1526 unsigned int ratio;
1527 unsigned int idx;
1528 };
1529
1530 static struct memory_stat memory_stats[] = {
1531 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1532 { "file", PAGE_SIZE, NR_FILE_PAGES },
1533 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1534 { "percpu", 1, MEMCG_PERCPU_B },
1535 { "sock", PAGE_SIZE, MEMCG_SOCK },
1536 { "shmem", PAGE_SIZE, NR_SHMEM },
1537 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1538 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1539 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1541 /*
1542 * The ratio will be initialized in memory_stats_init(). Because
1543 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1544 * constant(e.g. powerpc).
1545 */
1546 { "anon_thp", 0, NR_ANON_THPS },
1547 #endif
1548 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1549 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1550 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1551 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1552 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1553
1554 /*
1555 * Note: The slab_reclaimable and slab_unreclaimable must be
1556 * together and slab_reclaimable must be in front.
1557 */
1558 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1559 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1560
1561 /* The memory events */
1562 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1563 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1564 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1565 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1566 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1567 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1568 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1569 };
1570
memory_stats_init(void)1571 static int __init memory_stats_init(void)
1572 {
1573 int i;
1574
1575 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1576 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1577 if (memory_stats[i].idx == NR_ANON_THPS)
1578 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1579 #endif
1580 VM_BUG_ON(!memory_stats[i].ratio);
1581 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1582 }
1583
1584 return 0;
1585 }
1586 pure_initcall(memory_stats_init);
1587
memory_stat_format(struct mem_cgroup * memcg)1588 static char *memory_stat_format(struct mem_cgroup *memcg)
1589 {
1590 struct seq_buf s;
1591 int i;
1592
1593 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1594 if (!s.buffer)
1595 return NULL;
1596
1597 /*
1598 * Provide statistics on the state of the memory subsystem as
1599 * well as cumulative event counters that show past behavior.
1600 *
1601 * This list is ordered following a combination of these gradients:
1602 * 1) generic big picture -> specifics and details
1603 * 2) reflecting userspace activity -> reflecting kernel heuristics
1604 *
1605 * Current memory state:
1606 */
1607
1608 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1609 u64 size;
1610
1611 size = memcg_page_state(memcg, memory_stats[i].idx);
1612 size *= memory_stats[i].ratio;
1613 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1614
1615 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1616 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1617 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1618 seq_buf_printf(&s, "slab %llu\n", size);
1619 }
1620 }
1621
1622 /* Accumulated memory events */
1623
1624 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1625 memcg_events(memcg, PGFAULT));
1626 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1627 memcg_events(memcg, PGMAJFAULT));
1628 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1629 memcg_events(memcg, PGREFILL));
1630 seq_buf_printf(&s, "pgscan %lu\n",
1631 memcg_events(memcg, PGSCAN_KSWAPD) +
1632 memcg_events(memcg, PGSCAN_DIRECT));
1633 seq_buf_printf(&s, "pgsteal %lu\n",
1634 memcg_events(memcg, PGSTEAL_KSWAPD) +
1635 memcg_events(memcg, PGSTEAL_DIRECT));
1636 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1637 memcg_events(memcg, PGACTIVATE));
1638 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1639 memcg_events(memcg, PGDEACTIVATE));
1640 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1641 memcg_events(memcg, PGLAZYFREE));
1642 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1643 memcg_events(memcg, PGLAZYFREED));
1644
1645 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1646 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1647 memcg_events(memcg, THP_FAULT_ALLOC));
1648 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1649 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1650 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1651
1652 /* The above should easily fit into one page */
1653 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1654
1655 return s.buffer;
1656 }
1657
1658 #define K(x) ((x) << (PAGE_SHIFT-10))
1659 /**
1660 * mem_cgroup_print_oom_context: Print OOM information relevant to
1661 * memory controller.
1662 * @memcg: The memory cgroup that went over limit
1663 * @p: Task that is going to be killed
1664 *
1665 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1666 * enabled
1667 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1668 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1669 {
1670 rcu_read_lock();
1671
1672 if (memcg) {
1673 pr_cont(",oom_memcg=");
1674 pr_cont_cgroup_path(memcg->css.cgroup);
1675 } else
1676 pr_cont(",global_oom");
1677 if (p) {
1678 pr_cont(",task_memcg=");
1679 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1680 }
1681 rcu_read_unlock();
1682 }
1683
1684 /**
1685 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1686 * memory controller.
1687 * @memcg: The memory cgroup that went over limit
1688 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1689 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1690 {
1691 char *buf;
1692
1693 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1694 K((u64)page_counter_read(&memcg->memory)),
1695 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1696 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1697 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1698 K((u64)page_counter_read(&memcg->swap)),
1699 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1700 else {
1701 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1702 K((u64)page_counter_read(&memcg->memsw)),
1703 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1704 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1705 K((u64)page_counter_read(&memcg->kmem)),
1706 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1707 }
1708
1709 pr_info("Memory cgroup stats for ");
1710 pr_cont_cgroup_path(memcg->css.cgroup);
1711 pr_cont(":");
1712 buf = memory_stat_format(memcg);
1713 if (!buf)
1714 return;
1715 pr_info("%s", buf);
1716 kfree(buf);
1717 }
1718
1719 /*
1720 * Return the memory (and swap, if configured) limit for a memcg.
1721 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1722 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1723 {
1724 unsigned long max = READ_ONCE(memcg->memory.max);
1725
1726 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1727 if (mem_cgroup_swappiness(memcg))
1728 max += min(READ_ONCE(memcg->swap.max),
1729 (unsigned long)total_swap_pages);
1730 } else { /* v1 */
1731 if (mem_cgroup_swappiness(memcg)) {
1732 /* Calculate swap excess capacity from memsw limit */
1733 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1734
1735 max += min(swap, (unsigned long)total_swap_pages);
1736 }
1737 }
1738 return max;
1739 }
1740
mem_cgroup_size(struct mem_cgroup * memcg)1741 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1742 {
1743 return page_counter_read(&memcg->memory);
1744 }
1745
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1746 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1747 int order)
1748 {
1749 struct oom_control oc = {
1750 .zonelist = NULL,
1751 .nodemask = NULL,
1752 .memcg = memcg,
1753 .gfp_mask = gfp_mask,
1754 .order = order,
1755 };
1756 bool ret = true;
1757
1758 if (mutex_lock_killable(&oom_lock))
1759 return true;
1760
1761 if (mem_cgroup_margin(memcg) >= (1 << order))
1762 goto unlock;
1763
1764 /*
1765 * A few threads which were not waiting at mutex_lock_killable() can
1766 * fail to bail out. Therefore, check again after holding oom_lock.
1767 */
1768 ret = task_is_dying() || out_of_memory(&oc);
1769
1770 unlock:
1771 mutex_unlock(&oom_lock);
1772 return ret;
1773 }
1774
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1775 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1776 pg_data_t *pgdat,
1777 gfp_t gfp_mask,
1778 unsigned long *total_scanned)
1779 {
1780 struct mem_cgroup *victim = NULL;
1781 int total = 0;
1782 int loop = 0;
1783 unsigned long excess;
1784 unsigned long nr_scanned;
1785 struct mem_cgroup_reclaim_cookie reclaim = {
1786 .pgdat = pgdat,
1787 };
1788
1789 excess = soft_limit_excess(root_memcg);
1790
1791 while (1) {
1792 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1793 if (!victim) {
1794 loop++;
1795 if (loop >= 2) {
1796 /*
1797 * If we have not been able to reclaim
1798 * anything, it might because there are
1799 * no reclaimable pages under this hierarchy
1800 */
1801 if (!total)
1802 break;
1803 /*
1804 * We want to do more targeted reclaim.
1805 * excess >> 2 is not to excessive so as to
1806 * reclaim too much, nor too less that we keep
1807 * coming back to reclaim from this cgroup
1808 */
1809 if (total >= (excess >> 2) ||
1810 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1811 break;
1812 }
1813 continue;
1814 }
1815 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1816 pgdat, &nr_scanned);
1817 *total_scanned += nr_scanned;
1818 if (!soft_limit_excess(root_memcg))
1819 break;
1820 }
1821 mem_cgroup_iter_break(root_memcg, victim);
1822 return total;
1823 }
1824
1825 #ifdef CONFIG_LOCKDEP
1826 static struct lockdep_map memcg_oom_lock_dep_map = {
1827 .name = "memcg_oom_lock",
1828 };
1829 #endif
1830
1831 static DEFINE_SPINLOCK(memcg_oom_lock);
1832
1833 /*
1834 * Check OOM-Killer is already running under our hierarchy.
1835 * If someone is running, return false.
1836 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1837 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1838 {
1839 struct mem_cgroup *iter, *failed = NULL;
1840
1841 spin_lock(&memcg_oom_lock);
1842
1843 for_each_mem_cgroup_tree(iter, memcg) {
1844 if (iter->oom_lock) {
1845 /*
1846 * this subtree of our hierarchy is already locked
1847 * so we cannot give a lock.
1848 */
1849 failed = iter;
1850 mem_cgroup_iter_break(memcg, iter);
1851 break;
1852 } else
1853 iter->oom_lock = true;
1854 }
1855
1856 if (failed) {
1857 /*
1858 * OK, we failed to lock the whole subtree so we have
1859 * to clean up what we set up to the failing subtree
1860 */
1861 for_each_mem_cgroup_tree(iter, memcg) {
1862 if (iter == failed) {
1863 mem_cgroup_iter_break(memcg, iter);
1864 break;
1865 }
1866 iter->oom_lock = false;
1867 }
1868 } else
1869 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1870
1871 spin_unlock(&memcg_oom_lock);
1872
1873 return !failed;
1874 }
1875
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1876 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1877 {
1878 struct mem_cgroup *iter;
1879
1880 spin_lock(&memcg_oom_lock);
1881 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1882 for_each_mem_cgroup_tree(iter, memcg)
1883 iter->oom_lock = false;
1884 spin_unlock(&memcg_oom_lock);
1885 }
1886
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1887 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1888 {
1889 struct mem_cgroup *iter;
1890
1891 spin_lock(&memcg_oom_lock);
1892 for_each_mem_cgroup_tree(iter, memcg)
1893 iter->under_oom++;
1894 spin_unlock(&memcg_oom_lock);
1895 }
1896
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1897 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1898 {
1899 struct mem_cgroup *iter;
1900
1901 /*
1902 * Be careful about under_oom underflows becase a child memcg
1903 * could have been added after mem_cgroup_mark_under_oom.
1904 */
1905 spin_lock(&memcg_oom_lock);
1906 for_each_mem_cgroup_tree(iter, memcg)
1907 if (iter->under_oom > 0)
1908 iter->under_oom--;
1909 spin_unlock(&memcg_oom_lock);
1910 }
1911
1912 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1913
1914 struct oom_wait_info {
1915 struct mem_cgroup *memcg;
1916 wait_queue_entry_t wait;
1917 };
1918
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1919 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1920 unsigned mode, int sync, void *arg)
1921 {
1922 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1923 struct mem_cgroup *oom_wait_memcg;
1924 struct oom_wait_info *oom_wait_info;
1925
1926 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1927 oom_wait_memcg = oom_wait_info->memcg;
1928
1929 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1930 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1931 return 0;
1932 return autoremove_wake_function(wait, mode, sync, arg);
1933 }
1934
memcg_oom_recover(struct mem_cgroup * memcg)1935 static void memcg_oom_recover(struct mem_cgroup *memcg)
1936 {
1937 /*
1938 * For the following lockless ->under_oom test, the only required
1939 * guarantee is that it must see the state asserted by an OOM when
1940 * this function is called as a result of userland actions
1941 * triggered by the notification of the OOM. This is trivially
1942 * achieved by invoking mem_cgroup_mark_under_oom() before
1943 * triggering notification.
1944 */
1945 if (memcg && memcg->under_oom)
1946 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1947 }
1948
1949 enum oom_status {
1950 OOM_SUCCESS,
1951 OOM_FAILED,
1952 OOM_ASYNC,
1953 OOM_SKIPPED
1954 };
1955
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1956 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1957 {
1958 enum oom_status ret;
1959 bool locked;
1960
1961 if (order > PAGE_ALLOC_COSTLY_ORDER)
1962 return OOM_SKIPPED;
1963
1964 memcg_memory_event(memcg, MEMCG_OOM);
1965
1966 /*
1967 * We are in the middle of the charge context here, so we
1968 * don't want to block when potentially sitting on a callstack
1969 * that holds all kinds of filesystem and mm locks.
1970 *
1971 * cgroup1 allows disabling the OOM killer and waiting for outside
1972 * handling until the charge can succeed; remember the context and put
1973 * the task to sleep at the end of the page fault when all locks are
1974 * released.
1975 *
1976 * On the other hand, in-kernel OOM killer allows for an async victim
1977 * memory reclaim (oom_reaper) and that means that we are not solely
1978 * relying on the oom victim to make a forward progress and we can
1979 * invoke the oom killer here.
1980 *
1981 * Please note that mem_cgroup_out_of_memory might fail to find a
1982 * victim and then we have to bail out from the charge path.
1983 */
1984 if (memcg->oom_kill_disable) {
1985 if (!current->in_user_fault)
1986 return OOM_SKIPPED;
1987 css_get(&memcg->css);
1988 current->memcg_in_oom = memcg;
1989 current->memcg_oom_gfp_mask = mask;
1990 current->memcg_oom_order = order;
1991
1992 return OOM_ASYNC;
1993 }
1994
1995 mem_cgroup_mark_under_oom(memcg);
1996
1997 locked = mem_cgroup_oom_trylock(memcg);
1998
1999 if (locked)
2000 mem_cgroup_oom_notify(memcg);
2001
2002 mem_cgroup_unmark_under_oom(memcg);
2003 if (mem_cgroup_out_of_memory(memcg, mask, order))
2004 ret = OOM_SUCCESS;
2005 else
2006 ret = OOM_FAILED;
2007
2008 if (locked)
2009 mem_cgroup_oom_unlock(memcg);
2010
2011 return ret;
2012 }
2013
2014 /**
2015 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2016 * @handle: actually kill/wait or just clean up the OOM state
2017 *
2018 * This has to be called at the end of a page fault if the memcg OOM
2019 * handler was enabled.
2020 *
2021 * Memcg supports userspace OOM handling where failed allocations must
2022 * sleep on a waitqueue until the userspace task resolves the
2023 * situation. Sleeping directly in the charge context with all kinds
2024 * of locks held is not a good idea, instead we remember an OOM state
2025 * in the task and mem_cgroup_oom_synchronize() has to be called at
2026 * the end of the page fault to complete the OOM handling.
2027 *
2028 * Returns %true if an ongoing memcg OOM situation was detected and
2029 * completed, %false otherwise.
2030 */
mem_cgroup_oom_synchronize(bool handle)2031 bool mem_cgroup_oom_synchronize(bool handle)
2032 {
2033 struct mem_cgroup *memcg = current->memcg_in_oom;
2034 struct oom_wait_info owait;
2035 bool locked;
2036
2037 /* OOM is global, do not handle */
2038 if (!memcg)
2039 return false;
2040
2041 if (!handle)
2042 goto cleanup;
2043
2044 owait.memcg = memcg;
2045 owait.wait.flags = 0;
2046 owait.wait.func = memcg_oom_wake_function;
2047 owait.wait.private = current;
2048 INIT_LIST_HEAD(&owait.wait.entry);
2049
2050 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2051 mem_cgroup_mark_under_oom(memcg);
2052
2053 locked = mem_cgroup_oom_trylock(memcg);
2054
2055 if (locked)
2056 mem_cgroup_oom_notify(memcg);
2057
2058 if (locked && !memcg->oom_kill_disable) {
2059 mem_cgroup_unmark_under_oom(memcg);
2060 finish_wait(&memcg_oom_waitq, &owait.wait);
2061 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2062 current->memcg_oom_order);
2063 } else {
2064 schedule();
2065 mem_cgroup_unmark_under_oom(memcg);
2066 finish_wait(&memcg_oom_waitq, &owait.wait);
2067 }
2068
2069 if (locked) {
2070 mem_cgroup_oom_unlock(memcg);
2071 /*
2072 * There is no guarantee that an OOM-lock contender
2073 * sees the wakeups triggered by the OOM kill
2074 * uncharges. Wake any sleepers explicitely.
2075 */
2076 memcg_oom_recover(memcg);
2077 }
2078 cleanup:
2079 current->memcg_in_oom = NULL;
2080 css_put(&memcg->css);
2081 return true;
2082 }
2083
2084 /**
2085 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2086 * @victim: task to be killed by the OOM killer
2087 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2088 *
2089 * Returns a pointer to a memory cgroup, which has to be cleaned up
2090 * by killing all belonging OOM-killable tasks.
2091 *
2092 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2093 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2094 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2095 struct mem_cgroup *oom_domain)
2096 {
2097 struct mem_cgroup *oom_group = NULL;
2098 struct mem_cgroup *memcg;
2099
2100 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2101 return NULL;
2102
2103 if (!oom_domain)
2104 oom_domain = root_mem_cgroup;
2105
2106 rcu_read_lock();
2107
2108 memcg = mem_cgroup_from_task(victim);
2109 if (memcg == root_mem_cgroup)
2110 goto out;
2111
2112 /*
2113 * If the victim task has been asynchronously moved to a different
2114 * memory cgroup, we might end up killing tasks outside oom_domain.
2115 * In this case it's better to ignore memory.group.oom.
2116 */
2117 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2118 goto out;
2119
2120 /*
2121 * Traverse the memory cgroup hierarchy from the victim task's
2122 * cgroup up to the OOMing cgroup (or root) to find the
2123 * highest-level memory cgroup with oom.group set.
2124 */
2125 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2126 if (memcg->oom_group)
2127 oom_group = memcg;
2128
2129 if (memcg == oom_domain)
2130 break;
2131 }
2132
2133 if (oom_group)
2134 css_get(&oom_group->css);
2135 out:
2136 rcu_read_unlock();
2137
2138 return oom_group;
2139 }
2140
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2141 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2142 {
2143 pr_info("Tasks in ");
2144 pr_cont_cgroup_path(memcg->css.cgroup);
2145 pr_cont(" are going to be killed due to memory.oom.group set\n");
2146 }
2147
2148 /**
2149 * lock_page_memcg - lock a page->mem_cgroup binding
2150 * @page: the page
2151 *
2152 * This function protects unlocked LRU pages from being moved to
2153 * another cgroup.
2154 *
2155 * It ensures lifetime of the returned memcg. Caller is responsible
2156 * for the lifetime of the page; __unlock_page_memcg() is available
2157 * when @page might get freed inside the locked section.
2158 */
lock_page_memcg(struct page * page)2159 struct mem_cgroup *lock_page_memcg(struct page *page)
2160 {
2161 struct page *head = compound_head(page); /* rmap on tail pages */
2162 struct mem_cgroup *memcg;
2163 unsigned long flags;
2164
2165 /*
2166 * The RCU lock is held throughout the transaction. The fast
2167 * path can get away without acquiring the memcg->move_lock
2168 * because page moving starts with an RCU grace period.
2169 *
2170 * The RCU lock also protects the memcg from being freed when
2171 * the page state that is going to change is the only thing
2172 * preventing the page itself from being freed. E.g. writeback
2173 * doesn't hold a page reference and relies on PG_writeback to
2174 * keep off truncation, migration and so forth.
2175 */
2176 rcu_read_lock();
2177
2178 if (mem_cgroup_disabled())
2179 return NULL;
2180 again:
2181 memcg = head->mem_cgroup;
2182 if (unlikely(!memcg))
2183 return NULL;
2184
2185 if (atomic_read(&memcg->moving_account) <= 0)
2186 return memcg;
2187
2188 spin_lock_irqsave(&memcg->move_lock, flags);
2189 if (memcg != head->mem_cgroup) {
2190 spin_unlock_irqrestore(&memcg->move_lock, flags);
2191 goto again;
2192 }
2193
2194 /*
2195 * When charge migration first begins, we can have locked and
2196 * unlocked page stat updates happening concurrently. Track
2197 * the task who has the lock for unlock_page_memcg().
2198 */
2199 memcg->move_lock_task = current;
2200 memcg->move_lock_flags = flags;
2201
2202 return memcg;
2203 }
2204 EXPORT_SYMBOL(lock_page_memcg);
2205
2206 /**
2207 * __unlock_page_memcg - unlock and unpin a memcg
2208 * @memcg: the memcg
2209 *
2210 * Unlock and unpin a memcg returned by lock_page_memcg().
2211 */
__unlock_page_memcg(struct mem_cgroup * memcg)2212 void __unlock_page_memcg(struct mem_cgroup *memcg)
2213 {
2214 if (memcg && memcg->move_lock_task == current) {
2215 unsigned long flags = memcg->move_lock_flags;
2216
2217 memcg->move_lock_task = NULL;
2218 memcg->move_lock_flags = 0;
2219
2220 spin_unlock_irqrestore(&memcg->move_lock, flags);
2221 }
2222
2223 rcu_read_unlock();
2224 }
2225
2226 /**
2227 * unlock_page_memcg - unlock a page->mem_cgroup binding
2228 * @page: the page
2229 */
unlock_page_memcg(struct page * page)2230 void unlock_page_memcg(struct page *page)
2231 {
2232 struct page *head = compound_head(page);
2233
2234 __unlock_page_memcg(head->mem_cgroup);
2235 }
2236 EXPORT_SYMBOL(unlock_page_memcg);
2237
2238 struct memcg_stock_pcp {
2239 struct mem_cgroup *cached; /* this never be root cgroup */
2240 unsigned int nr_pages;
2241
2242 #ifdef CONFIG_MEMCG_KMEM
2243 struct obj_cgroup *cached_objcg;
2244 unsigned int nr_bytes;
2245 #endif
2246
2247 struct work_struct work;
2248 unsigned long flags;
2249 #define FLUSHING_CACHED_CHARGE 0
2250 };
2251 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2252 static DEFINE_MUTEX(percpu_charge_mutex);
2253
2254 #ifdef CONFIG_MEMCG_KMEM
2255 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2256 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2257 struct mem_cgroup *root_memcg);
2258
2259 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2260 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2261 {
2262 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2263 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2264 struct mem_cgroup *root_memcg)
2265 {
2266 return false;
2267 }
2268 #endif
2269
2270 /**
2271 * consume_stock: Try to consume stocked charge on this cpu.
2272 * @memcg: memcg to consume from.
2273 * @nr_pages: how many pages to charge.
2274 *
2275 * The charges will only happen if @memcg matches the current cpu's memcg
2276 * stock, and at least @nr_pages are available in that stock. Failure to
2277 * service an allocation will refill the stock.
2278 *
2279 * returns true if successful, false otherwise.
2280 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2281 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2282 {
2283 struct memcg_stock_pcp *stock;
2284 unsigned long flags;
2285 bool ret = false;
2286
2287 if (nr_pages > MEMCG_CHARGE_BATCH)
2288 return ret;
2289
2290 local_irq_save(flags);
2291
2292 stock = this_cpu_ptr(&memcg_stock);
2293 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2294 stock->nr_pages -= nr_pages;
2295 ret = true;
2296 }
2297
2298 local_irq_restore(flags);
2299
2300 return ret;
2301 }
2302
2303 /*
2304 * Returns stocks cached in percpu and reset cached information.
2305 */
drain_stock(struct memcg_stock_pcp * stock)2306 static void drain_stock(struct memcg_stock_pcp *stock)
2307 {
2308 struct mem_cgroup *old = stock->cached;
2309
2310 if (!old)
2311 return;
2312
2313 if (stock->nr_pages) {
2314 page_counter_uncharge(&old->memory, stock->nr_pages);
2315 if (do_memsw_account())
2316 page_counter_uncharge(&old->memsw, stock->nr_pages);
2317 stock->nr_pages = 0;
2318 }
2319
2320 css_put(&old->css);
2321 stock->cached = NULL;
2322 }
2323
drain_local_stock(struct work_struct * dummy)2324 static void drain_local_stock(struct work_struct *dummy)
2325 {
2326 struct memcg_stock_pcp *stock;
2327 unsigned long flags;
2328
2329 /*
2330 * The only protection from memory hotplug vs. drain_stock races is
2331 * that we always operate on local CPU stock here with IRQ disabled
2332 */
2333 local_irq_save(flags);
2334
2335 stock = this_cpu_ptr(&memcg_stock);
2336 drain_obj_stock(stock);
2337 drain_stock(stock);
2338 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2339
2340 local_irq_restore(flags);
2341 }
2342
2343 /*
2344 * Cache charges(val) to local per_cpu area.
2345 * This will be consumed by consume_stock() function, later.
2346 */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2347 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2348 {
2349 struct memcg_stock_pcp *stock;
2350 unsigned long flags;
2351
2352 local_irq_save(flags);
2353
2354 stock = this_cpu_ptr(&memcg_stock);
2355 if (stock->cached != memcg) { /* reset if necessary */
2356 drain_stock(stock);
2357 css_get(&memcg->css);
2358 stock->cached = memcg;
2359 }
2360 stock->nr_pages += nr_pages;
2361
2362 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2363 drain_stock(stock);
2364
2365 local_irq_restore(flags);
2366 }
2367
2368 /*
2369 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2370 * of the hierarchy under it.
2371 */
drain_all_stock(struct mem_cgroup * root_memcg)2372 static void drain_all_stock(struct mem_cgroup *root_memcg)
2373 {
2374 int cpu, curcpu;
2375
2376 /* If someone's already draining, avoid adding running more workers. */
2377 if (!mutex_trylock(&percpu_charge_mutex))
2378 return;
2379 /*
2380 * Notify other cpus that system-wide "drain" is running
2381 * We do not care about races with the cpu hotplug because cpu down
2382 * as well as workers from this path always operate on the local
2383 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2384 */
2385 curcpu = get_cpu();
2386 for_each_online_cpu(cpu) {
2387 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2388 struct mem_cgroup *memcg;
2389 bool flush = false;
2390
2391 rcu_read_lock();
2392 memcg = stock->cached;
2393 if (memcg && stock->nr_pages &&
2394 mem_cgroup_is_descendant(memcg, root_memcg))
2395 flush = true;
2396 if (obj_stock_flush_required(stock, root_memcg))
2397 flush = true;
2398 rcu_read_unlock();
2399
2400 if (flush &&
2401 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2402 if (cpu == curcpu)
2403 drain_local_stock(&stock->work);
2404 else
2405 schedule_work_on(cpu, &stock->work);
2406 }
2407 }
2408 put_cpu();
2409 mutex_unlock(&percpu_charge_mutex);
2410 }
2411
memcg_hotplug_cpu_dead(unsigned int cpu)2412 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2413 {
2414 struct memcg_stock_pcp *stock;
2415 struct mem_cgroup *memcg, *mi;
2416
2417 stock = &per_cpu(memcg_stock, cpu);
2418 drain_stock(stock);
2419
2420 for_each_mem_cgroup(memcg) {
2421 int i;
2422
2423 for (i = 0; i < MEMCG_NR_STAT; i++) {
2424 int nid;
2425 long x;
2426
2427 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2428 if (x)
2429 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2430 atomic_long_add(x, &memcg->vmstats[i]);
2431
2432 if (i >= NR_VM_NODE_STAT_ITEMS)
2433 continue;
2434
2435 for_each_node(nid) {
2436 struct mem_cgroup_per_node *pn;
2437
2438 pn = mem_cgroup_nodeinfo(memcg, nid);
2439 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2440 if (x)
2441 do {
2442 atomic_long_add(x, &pn->lruvec_stat[i]);
2443 } while ((pn = parent_nodeinfo(pn, nid)));
2444 }
2445 }
2446
2447 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2448 long x;
2449
2450 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2451 if (x)
2452 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2453 atomic_long_add(x, &memcg->vmevents[i]);
2454 }
2455 }
2456
2457 return 0;
2458 }
2459
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2460 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2461 unsigned int nr_pages,
2462 gfp_t gfp_mask)
2463 {
2464 unsigned long nr_reclaimed = 0;
2465
2466 do {
2467 unsigned long pflags;
2468
2469 if (page_counter_read(&memcg->memory) <=
2470 READ_ONCE(memcg->memory.high))
2471 continue;
2472
2473 memcg_memory_event(memcg, MEMCG_HIGH);
2474
2475 psi_memstall_enter(&pflags);
2476 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2477 gfp_mask, true);
2478 psi_memstall_leave(&pflags);
2479 } while ((memcg = parent_mem_cgroup(memcg)) &&
2480 !mem_cgroup_is_root(memcg));
2481
2482 return nr_reclaimed;
2483 }
2484
high_work_func(struct work_struct * work)2485 static void high_work_func(struct work_struct *work)
2486 {
2487 struct mem_cgroup *memcg;
2488
2489 memcg = container_of(work, struct mem_cgroup, high_work);
2490 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2491 }
2492
2493 /*
2494 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2495 * enough to still cause a significant slowdown in most cases, while still
2496 * allowing diagnostics and tracing to proceed without becoming stuck.
2497 */
2498 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2499
2500 /*
2501 * When calculating the delay, we use these either side of the exponentiation to
2502 * maintain precision and scale to a reasonable number of jiffies (see the table
2503 * below.
2504 *
2505 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2506 * overage ratio to a delay.
2507 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2508 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2509 * to produce a reasonable delay curve.
2510 *
2511 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2512 * reasonable delay curve compared to precision-adjusted overage, not
2513 * penalising heavily at first, but still making sure that growth beyond the
2514 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2515 * example, with a high of 100 megabytes:
2516 *
2517 * +-------+------------------------+
2518 * | usage | time to allocate in ms |
2519 * +-------+------------------------+
2520 * | 100M | 0 |
2521 * | 101M | 6 |
2522 * | 102M | 25 |
2523 * | 103M | 57 |
2524 * | 104M | 102 |
2525 * | 105M | 159 |
2526 * | 106M | 230 |
2527 * | 107M | 313 |
2528 * | 108M | 409 |
2529 * | 109M | 518 |
2530 * | 110M | 639 |
2531 * | 111M | 774 |
2532 * | 112M | 921 |
2533 * | 113M | 1081 |
2534 * | 114M | 1254 |
2535 * | 115M | 1439 |
2536 * | 116M | 1638 |
2537 * | 117M | 1849 |
2538 * | 118M | 2000 |
2539 * | 119M | 2000 |
2540 * | 120M | 2000 |
2541 * +-------+------------------------+
2542 */
2543 #define MEMCG_DELAY_PRECISION_SHIFT 20
2544 #define MEMCG_DELAY_SCALING_SHIFT 14
2545
calculate_overage(unsigned long usage,unsigned long high)2546 static u64 calculate_overage(unsigned long usage, unsigned long high)
2547 {
2548 u64 overage;
2549
2550 if (usage <= high)
2551 return 0;
2552
2553 /*
2554 * Prevent division by 0 in overage calculation by acting as if
2555 * it was a threshold of 1 page
2556 */
2557 high = max(high, 1UL);
2558
2559 overage = usage - high;
2560 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2561 return div64_u64(overage, high);
2562 }
2563
mem_find_max_overage(struct mem_cgroup * memcg)2564 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2565 {
2566 u64 overage, max_overage = 0;
2567
2568 do {
2569 overage = calculate_overage(page_counter_read(&memcg->memory),
2570 READ_ONCE(memcg->memory.high));
2571 max_overage = max(overage, max_overage);
2572 } while ((memcg = parent_mem_cgroup(memcg)) &&
2573 !mem_cgroup_is_root(memcg));
2574
2575 return max_overage;
2576 }
2577
swap_find_max_overage(struct mem_cgroup * memcg)2578 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2579 {
2580 u64 overage, max_overage = 0;
2581
2582 do {
2583 overage = calculate_overage(page_counter_read(&memcg->swap),
2584 READ_ONCE(memcg->swap.high));
2585 if (overage)
2586 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2587 max_overage = max(overage, max_overage);
2588 } while ((memcg = parent_mem_cgroup(memcg)) &&
2589 !mem_cgroup_is_root(memcg));
2590
2591 return max_overage;
2592 }
2593
2594 /*
2595 * Get the number of jiffies that we should penalise a mischievous cgroup which
2596 * is exceeding its memory.high by checking both it and its ancestors.
2597 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2598 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2599 unsigned int nr_pages,
2600 u64 max_overage)
2601 {
2602 unsigned long penalty_jiffies;
2603
2604 if (!max_overage)
2605 return 0;
2606
2607 /*
2608 * We use overage compared to memory.high to calculate the number of
2609 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2610 * fairly lenient on small overages, and increasingly harsh when the
2611 * memcg in question makes it clear that it has no intention of stopping
2612 * its crazy behaviour, so we exponentially increase the delay based on
2613 * overage amount.
2614 */
2615 penalty_jiffies = max_overage * max_overage * HZ;
2616 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2617 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2618
2619 /*
2620 * Factor in the task's own contribution to the overage, such that four
2621 * N-sized allocations are throttled approximately the same as one
2622 * 4N-sized allocation.
2623 *
2624 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2625 * larger the current charge patch is than that.
2626 */
2627 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2628 }
2629
2630 /*
2631 * Scheduled by try_charge() to be executed from the userland return path
2632 * and reclaims memory over the high limit.
2633 */
mem_cgroup_handle_over_high(void)2634 void mem_cgroup_handle_over_high(void)
2635 {
2636 unsigned long penalty_jiffies;
2637 unsigned long pflags;
2638 unsigned long nr_reclaimed;
2639 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2640 int nr_retries = MAX_RECLAIM_RETRIES;
2641 struct mem_cgroup *memcg;
2642 bool in_retry = false;
2643
2644 if (likely(!nr_pages))
2645 return;
2646
2647 memcg = get_mem_cgroup_from_mm(current->mm);
2648 current->memcg_nr_pages_over_high = 0;
2649
2650 retry_reclaim:
2651 /*
2652 * The allocating task should reclaim at least the batch size, but for
2653 * subsequent retries we only want to do what's necessary to prevent oom
2654 * or breaching resource isolation.
2655 *
2656 * This is distinct from memory.max or page allocator behaviour because
2657 * memory.high is currently batched, whereas memory.max and the page
2658 * allocator run every time an allocation is made.
2659 */
2660 nr_reclaimed = reclaim_high(memcg,
2661 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2662 GFP_KERNEL);
2663
2664 /*
2665 * memory.high is breached and reclaim is unable to keep up. Throttle
2666 * allocators proactively to slow down excessive growth.
2667 */
2668 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2669 mem_find_max_overage(memcg));
2670
2671 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2672 swap_find_max_overage(memcg));
2673
2674 /*
2675 * Clamp the max delay per usermode return so as to still keep the
2676 * application moving forwards and also permit diagnostics, albeit
2677 * extremely slowly.
2678 */
2679 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2680
2681 /*
2682 * Don't sleep if the amount of jiffies this memcg owes us is so low
2683 * that it's not even worth doing, in an attempt to be nice to those who
2684 * go only a small amount over their memory.high value and maybe haven't
2685 * been aggressively reclaimed enough yet.
2686 */
2687 if (penalty_jiffies <= HZ / 100)
2688 goto out;
2689
2690 /*
2691 * If reclaim is making forward progress but we're still over
2692 * memory.high, we want to encourage that rather than doing allocator
2693 * throttling.
2694 */
2695 if (nr_reclaimed || nr_retries--) {
2696 in_retry = true;
2697 goto retry_reclaim;
2698 }
2699
2700 /*
2701 * If we exit early, we're guaranteed to die (since
2702 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2703 * need to account for any ill-begotten jiffies to pay them off later.
2704 */
2705 psi_memstall_enter(&pflags);
2706 schedule_timeout_killable(penalty_jiffies);
2707 psi_memstall_leave(&pflags);
2708
2709 out:
2710 css_put(&memcg->css);
2711 }
2712
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2713 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2714 unsigned int nr_pages)
2715 {
2716 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2717 int nr_retries = MAX_RECLAIM_RETRIES;
2718 struct mem_cgroup *mem_over_limit;
2719 struct page_counter *counter;
2720 enum oom_status oom_status;
2721 unsigned long nr_reclaimed;
2722 bool passed_oom = false;
2723 bool may_swap = true;
2724 bool drained = false;
2725 unsigned long pflags;
2726
2727 if (mem_cgroup_is_root(memcg))
2728 return 0;
2729 retry:
2730 if (consume_stock(memcg, nr_pages))
2731 return 0;
2732
2733 if (!do_memsw_account() ||
2734 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2735 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2736 goto done_restock;
2737 if (do_memsw_account())
2738 page_counter_uncharge(&memcg->memsw, batch);
2739 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2740 } else {
2741 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2742 may_swap = false;
2743 }
2744
2745 if (batch > nr_pages) {
2746 batch = nr_pages;
2747 goto retry;
2748 }
2749
2750 /*
2751 * Memcg doesn't have a dedicated reserve for atomic
2752 * allocations. But like the global atomic pool, we need to
2753 * put the burden of reclaim on regular allocation requests
2754 * and let these go through as privileged allocations.
2755 */
2756 if (gfp_mask & __GFP_ATOMIC)
2757 goto force;
2758
2759 /*
2760 * Prevent unbounded recursion when reclaim operations need to
2761 * allocate memory. This might exceed the limits temporarily,
2762 * but we prefer facilitating memory reclaim and getting back
2763 * under the limit over triggering OOM kills in these cases.
2764 */
2765 if (unlikely(current->flags & PF_MEMALLOC))
2766 goto force;
2767
2768 if (unlikely(task_in_memcg_oom(current)))
2769 goto nomem;
2770
2771 if (!gfpflags_allow_blocking(gfp_mask))
2772 goto nomem;
2773
2774 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2775
2776 psi_memstall_enter(&pflags);
2777 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2778 gfp_mask, may_swap);
2779 psi_memstall_leave(&pflags);
2780
2781 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2782 goto retry;
2783
2784 if (!drained) {
2785 drain_all_stock(mem_over_limit);
2786 drained = true;
2787 goto retry;
2788 }
2789
2790 if (gfp_mask & __GFP_NORETRY)
2791 goto nomem;
2792 /*
2793 * Even though the limit is exceeded at this point, reclaim
2794 * may have been able to free some pages. Retry the charge
2795 * before killing the task.
2796 *
2797 * Only for regular pages, though: huge pages are rather
2798 * unlikely to succeed so close to the limit, and we fall back
2799 * to regular pages anyway in case of failure.
2800 */
2801 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2802 goto retry;
2803 /*
2804 * At task move, charge accounts can be doubly counted. So, it's
2805 * better to wait until the end of task_move if something is going on.
2806 */
2807 if (mem_cgroup_wait_acct_move(mem_over_limit))
2808 goto retry;
2809
2810 if (nr_retries--)
2811 goto retry;
2812
2813 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2814 goto nomem;
2815
2816 if (gfp_mask & __GFP_NOFAIL)
2817 goto force;
2818
2819 /* Avoid endless loop for tasks bypassed by the oom killer */
2820 if (passed_oom && task_is_dying())
2821 goto nomem;
2822
2823 /*
2824 * keep retrying as long as the memcg oom killer is able to make
2825 * a forward progress or bypass the charge if the oom killer
2826 * couldn't make any progress.
2827 */
2828 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2829 get_order(nr_pages * PAGE_SIZE));
2830 if (oom_status == OOM_SUCCESS) {
2831 passed_oom = true;
2832 nr_retries = MAX_RECLAIM_RETRIES;
2833 goto retry;
2834 }
2835 nomem:
2836 if (!(gfp_mask & __GFP_NOFAIL))
2837 return -ENOMEM;
2838 force:
2839 /*
2840 * The allocation either can't fail or will lead to more memory
2841 * being freed very soon. Allow memory usage go over the limit
2842 * temporarily by force charging it.
2843 */
2844 page_counter_charge(&memcg->memory, nr_pages);
2845 if (do_memsw_account())
2846 page_counter_charge(&memcg->memsw, nr_pages);
2847
2848 return 0;
2849
2850 done_restock:
2851 if (batch > nr_pages)
2852 refill_stock(memcg, batch - nr_pages);
2853
2854 /*
2855 * If the hierarchy is above the normal consumption range, schedule
2856 * reclaim on returning to userland. We can perform reclaim here
2857 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2858 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2859 * not recorded as it most likely matches current's and won't
2860 * change in the meantime. As high limit is checked again before
2861 * reclaim, the cost of mismatch is negligible.
2862 */
2863 do {
2864 bool mem_high, swap_high;
2865
2866 mem_high = page_counter_read(&memcg->memory) >
2867 READ_ONCE(memcg->memory.high);
2868 swap_high = page_counter_read(&memcg->swap) >
2869 READ_ONCE(memcg->swap.high);
2870
2871 /* Don't bother a random interrupted task */
2872 if (in_interrupt()) {
2873 if (mem_high) {
2874 schedule_work(&memcg->high_work);
2875 break;
2876 }
2877 continue;
2878 }
2879
2880 if (mem_high || swap_high) {
2881 /*
2882 * The allocating tasks in this cgroup will need to do
2883 * reclaim or be throttled to prevent further growth
2884 * of the memory or swap footprints.
2885 *
2886 * Target some best-effort fairness between the tasks,
2887 * and distribute reclaim work and delay penalties
2888 * based on how much each task is actually allocating.
2889 */
2890 current->memcg_nr_pages_over_high += batch;
2891 set_notify_resume(current);
2892 break;
2893 }
2894 } while ((memcg = parent_mem_cgroup(memcg)));
2895
2896 return 0;
2897 }
2898
2899 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2900 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2901 {
2902 if (mem_cgroup_is_root(memcg))
2903 return;
2904
2905 page_counter_uncharge(&memcg->memory, nr_pages);
2906 if (do_memsw_account())
2907 page_counter_uncharge(&memcg->memsw, nr_pages);
2908 }
2909 #endif
2910
commit_charge(struct page * page,struct mem_cgroup * memcg)2911 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2912 {
2913 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2914 /*
2915 * Any of the following ensures page->mem_cgroup stability:
2916 *
2917 * - the page lock
2918 * - LRU isolation
2919 * - lock_page_memcg()
2920 * - exclusive reference
2921 */
2922 page->mem_cgroup = memcg;
2923 }
2924
2925 #ifdef CONFIG_MEMCG_KMEM
2926 /*
2927 * The allocated objcg pointers array is not accounted directly.
2928 * Moreover, it should not come from DMA buffer and is not readily
2929 * reclaimable. So those GFP bits should be masked off.
2930 */
2931 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2932 __GFP_ACCOUNT | __GFP_NOFAIL)
2933
memcg_alloc_page_obj_cgroups(struct page * page,struct kmem_cache * s,gfp_t gfp)2934 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2935 gfp_t gfp)
2936 {
2937 unsigned int objects = objs_per_slab_page(s, page);
2938 void *vec;
2939
2940 gfp &= ~OBJCGS_CLEAR_MASK;
2941 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2942 page_to_nid(page));
2943 if (!vec)
2944 return -ENOMEM;
2945
2946 if (cmpxchg(&page->obj_cgroups, NULL,
2947 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2948 kfree(vec);
2949 else
2950 kmemleak_not_leak(vec);
2951
2952 return 0;
2953 }
2954
2955 /*
2956 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2957 *
2958 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2959 * cgroup_mutex, etc.
2960 */
mem_cgroup_from_obj(void * p)2961 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2962 {
2963 struct page *page;
2964
2965 if (mem_cgroup_disabled())
2966 return NULL;
2967
2968 page = virt_to_head_page(p);
2969
2970 /*
2971 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2972 * or a pointer to obj_cgroup vector. In the latter case the lowest
2973 * bit of the pointer is set.
2974 * The page->mem_cgroup pointer can be asynchronously changed
2975 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2976 * from a valid memcg pointer to objcg vector or back.
2977 */
2978 if (!page->mem_cgroup)
2979 return NULL;
2980
2981 /*
2982 * Slab objects are accounted individually, not per-page.
2983 * Memcg membership data for each individual object is saved in
2984 * the page->obj_cgroups.
2985 */
2986 if (page_has_obj_cgroups(page)) {
2987 struct obj_cgroup *objcg;
2988 unsigned int off;
2989
2990 off = obj_to_index(page->slab_cache, page, p);
2991 objcg = page_obj_cgroups(page)[off];
2992 if (objcg)
2993 return obj_cgroup_memcg(objcg);
2994
2995 return NULL;
2996 }
2997
2998 /* All other pages use page->mem_cgroup */
2999 return page->mem_cgroup;
3000 }
3001
get_obj_cgroup_from_current(void)3002 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3003 {
3004 struct obj_cgroup *objcg = NULL;
3005 struct mem_cgroup *memcg;
3006
3007 if (memcg_kmem_bypass())
3008 return NULL;
3009
3010 rcu_read_lock();
3011 if (unlikely(active_memcg()))
3012 memcg = active_memcg();
3013 else
3014 memcg = mem_cgroup_from_task(current);
3015
3016 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3017 objcg = rcu_dereference(memcg->objcg);
3018 if (objcg && obj_cgroup_tryget(objcg))
3019 break;
3020 objcg = NULL;
3021 }
3022 rcu_read_unlock();
3023
3024 return objcg;
3025 }
3026
memcg_alloc_cache_id(void)3027 static int memcg_alloc_cache_id(void)
3028 {
3029 int id, size;
3030 int err;
3031
3032 id = ida_simple_get(&memcg_cache_ida,
3033 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3034 if (id < 0)
3035 return id;
3036
3037 if (id < memcg_nr_cache_ids)
3038 return id;
3039
3040 /*
3041 * There's no space for the new id in memcg_caches arrays,
3042 * so we have to grow them.
3043 */
3044 down_write(&memcg_cache_ids_sem);
3045
3046 size = 2 * (id + 1);
3047 if (size < MEMCG_CACHES_MIN_SIZE)
3048 size = MEMCG_CACHES_MIN_SIZE;
3049 else if (size > MEMCG_CACHES_MAX_SIZE)
3050 size = MEMCG_CACHES_MAX_SIZE;
3051
3052 err = memcg_update_all_list_lrus(size);
3053 if (!err)
3054 memcg_nr_cache_ids = size;
3055
3056 up_write(&memcg_cache_ids_sem);
3057
3058 if (err) {
3059 ida_simple_remove(&memcg_cache_ida, id);
3060 return err;
3061 }
3062 return id;
3063 }
3064
memcg_free_cache_id(int id)3065 static void memcg_free_cache_id(int id)
3066 {
3067 ida_simple_remove(&memcg_cache_ida, id);
3068 }
3069
3070 /**
3071 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3072 * @memcg: memory cgroup to charge
3073 * @gfp: reclaim mode
3074 * @nr_pages: number of pages to charge
3075 *
3076 * Returns 0 on success, an error code on failure.
3077 */
__memcg_kmem_charge(struct mem_cgroup * memcg,gfp_t gfp,unsigned int nr_pages)3078 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3079 unsigned int nr_pages)
3080 {
3081 struct page_counter *counter;
3082 int ret;
3083
3084 ret = try_charge(memcg, gfp, nr_pages);
3085 if (ret)
3086 return ret;
3087
3088 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3089 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3090
3091 /*
3092 * Enforce __GFP_NOFAIL allocation because callers are not
3093 * prepared to see failures and likely do not have any failure
3094 * handling code.
3095 */
3096 if (gfp & __GFP_NOFAIL) {
3097 page_counter_charge(&memcg->kmem, nr_pages);
3098 return 0;
3099 }
3100 cancel_charge(memcg, nr_pages);
3101 return -ENOMEM;
3102 }
3103 return 0;
3104 }
3105
3106 /**
3107 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3108 * @memcg: memcg to uncharge
3109 * @nr_pages: number of pages to uncharge
3110 */
__memcg_kmem_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)3111 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3112 {
3113 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3114 page_counter_uncharge(&memcg->kmem, nr_pages);
3115
3116 refill_stock(memcg, nr_pages);
3117 }
3118
3119 /**
3120 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3121 * @page: page to charge
3122 * @gfp: reclaim mode
3123 * @order: allocation order
3124 *
3125 * Returns 0 on success, an error code on failure.
3126 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3127 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3128 {
3129 struct mem_cgroup *memcg;
3130 int ret = 0;
3131
3132 memcg = get_mem_cgroup_from_current();
3133 if (memcg && !mem_cgroup_is_root(memcg)) {
3134 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3135 if (!ret) {
3136 page->mem_cgroup = memcg;
3137 __SetPageKmemcg(page);
3138 return 0;
3139 }
3140 css_put(&memcg->css);
3141 }
3142 return ret;
3143 }
3144
3145 /**
3146 * __memcg_kmem_uncharge_page: uncharge a kmem page
3147 * @page: page to uncharge
3148 * @order: allocation order
3149 */
__memcg_kmem_uncharge_page(struct page * page,int order)3150 void __memcg_kmem_uncharge_page(struct page *page, int order)
3151 {
3152 struct mem_cgroup *memcg = page->mem_cgroup;
3153 unsigned int nr_pages = 1 << order;
3154
3155 if (!memcg)
3156 return;
3157
3158 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3159 __memcg_kmem_uncharge(memcg, nr_pages);
3160 page->mem_cgroup = NULL;
3161 css_put(&memcg->css);
3162
3163 /* slab pages do not have PageKmemcg flag set */
3164 if (PageKmemcg(page))
3165 __ClearPageKmemcg(page);
3166 }
3167
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3168 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3169 {
3170 struct memcg_stock_pcp *stock;
3171 unsigned long flags;
3172 bool ret = false;
3173
3174 local_irq_save(flags);
3175
3176 stock = this_cpu_ptr(&memcg_stock);
3177 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3178 stock->nr_bytes -= nr_bytes;
3179 ret = true;
3180 }
3181
3182 local_irq_restore(flags);
3183
3184 return ret;
3185 }
3186
drain_obj_stock(struct memcg_stock_pcp * stock)3187 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3188 {
3189 struct obj_cgroup *old = stock->cached_objcg;
3190
3191 if (!old)
3192 return;
3193
3194 if (stock->nr_bytes) {
3195 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3196 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3197
3198 if (nr_pages) {
3199 struct mem_cgroup *memcg;
3200
3201 rcu_read_lock();
3202 retry:
3203 memcg = obj_cgroup_memcg(old);
3204 if (unlikely(!css_tryget(&memcg->css)))
3205 goto retry;
3206 rcu_read_unlock();
3207
3208 __memcg_kmem_uncharge(memcg, nr_pages);
3209 css_put(&memcg->css);
3210 }
3211
3212 /*
3213 * The leftover is flushed to the centralized per-memcg value.
3214 * On the next attempt to refill obj stock it will be moved
3215 * to a per-cpu stock (probably, on an other CPU), see
3216 * refill_obj_stock().
3217 *
3218 * How often it's flushed is a trade-off between the memory
3219 * limit enforcement accuracy and potential CPU contention,
3220 * so it might be changed in the future.
3221 */
3222 atomic_add(nr_bytes, &old->nr_charged_bytes);
3223 stock->nr_bytes = 0;
3224 }
3225
3226 obj_cgroup_put(old);
3227 stock->cached_objcg = NULL;
3228 }
3229
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3230 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3231 struct mem_cgroup *root_memcg)
3232 {
3233 struct mem_cgroup *memcg;
3234
3235 if (stock->cached_objcg) {
3236 memcg = obj_cgroup_memcg(stock->cached_objcg);
3237 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3238 return true;
3239 }
3240
3241 return false;
3242 }
3243
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3244 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3245 {
3246 struct memcg_stock_pcp *stock;
3247 unsigned long flags;
3248
3249 local_irq_save(flags);
3250
3251 stock = this_cpu_ptr(&memcg_stock);
3252 if (stock->cached_objcg != objcg) { /* reset if necessary */
3253 drain_obj_stock(stock);
3254 obj_cgroup_get(objcg);
3255 stock->cached_objcg = objcg;
3256 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3257 }
3258 stock->nr_bytes += nr_bytes;
3259
3260 if (stock->nr_bytes > PAGE_SIZE)
3261 drain_obj_stock(stock);
3262
3263 local_irq_restore(flags);
3264 }
3265
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3266 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3267 {
3268 struct mem_cgroup *memcg;
3269 unsigned int nr_pages, nr_bytes;
3270 int ret;
3271
3272 if (consume_obj_stock(objcg, size))
3273 return 0;
3274
3275 /*
3276 * In theory, memcg->nr_charged_bytes can have enough
3277 * pre-charged bytes to satisfy the allocation. However,
3278 * flushing memcg->nr_charged_bytes requires two atomic
3279 * operations, and memcg->nr_charged_bytes can't be big,
3280 * so it's better to ignore it and try grab some new pages.
3281 * memcg->nr_charged_bytes will be flushed in
3282 * refill_obj_stock(), called from this function or
3283 * independently later.
3284 */
3285 rcu_read_lock();
3286 retry:
3287 memcg = obj_cgroup_memcg(objcg);
3288 if (unlikely(!css_tryget(&memcg->css)))
3289 goto retry;
3290 rcu_read_unlock();
3291
3292 nr_pages = size >> PAGE_SHIFT;
3293 nr_bytes = size & (PAGE_SIZE - 1);
3294
3295 if (nr_bytes)
3296 nr_pages += 1;
3297
3298 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3299 if (!ret && nr_bytes)
3300 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3301
3302 css_put(&memcg->css);
3303 return ret;
3304 }
3305
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3306 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3307 {
3308 refill_obj_stock(objcg, size);
3309 }
3310
3311 #endif /* CONFIG_MEMCG_KMEM */
3312
3313 /*
3314 * Because head->mem_cgroup is not set on tails, set it now.
3315 */
split_page_memcg(struct page * head,unsigned int nr)3316 void split_page_memcg(struct page *head, unsigned int nr)
3317 {
3318 struct mem_cgroup *memcg = head->mem_cgroup;
3319 int kmemcg = PageKmemcg(head);
3320 int i;
3321
3322 if (mem_cgroup_disabled() || !memcg)
3323 return;
3324
3325 for (i = 1; i < nr; i++) {
3326 head[i].mem_cgroup = memcg;
3327 if (kmemcg)
3328 __SetPageKmemcg(head + i);
3329 }
3330 css_get_many(&memcg->css, nr - 1);
3331 }
3332
3333 #ifdef CONFIG_MEMCG_SWAP
3334 /**
3335 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3336 * @entry: swap entry to be moved
3337 * @from: mem_cgroup which the entry is moved from
3338 * @to: mem_cgroup which the entry is moved to
3339 *
3340 * It succeeds only when the swap_cgroup's record for this entry is the same
3341 * as the mem_cgroup's id of @from.
3342 *
3343 * Returns 0 on success, -EINVAL on failure.
3344 *
3345 * The caller must have charged to @to, IOW, called page_counter_charge() about
3346 * both res and memsw, and called css_get().
3347 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3348 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3349 struct mem_cgroup *from, struct mem_cgroup *to)
3350 {
3351 unsigned short old_id, new_id;
3352
3353 old_id = mem_cgroup_id(from);
3354 new_id = mem_cgroup_id(to);
3355
3356 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3357 mod_memcg_state(from, MEMCG_SWAP, -1);
3358 mod_memcg_state(to, MEMCG_SWAP, 1);
3359 return 0;
3360 }
3361 return -EINVAL;
3362 }
3363 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3364 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3365 struct mem_cgroup *from, struct mem_cgroup *to)
3366 {
3367 return -EINVAL;
3368 }
3369 #endif
3370
3371 static DEFINE_MUTEX(memcg_max_mutex);
3372
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3373 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3374 unsigned long max, bool memsw)
3375 {
3376 bool enlarge = false;
3377 bool drained = false;
3378 int ret;
3379 bool limits_invariant;
3380 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3381
3382 do {
3383 if (signal_pending(current)) {
3384 ret = -EINTR;
3385 break;
3386 }
3387
3388 mutex_lock(&memcg_max_mutex);
3389 /*
3390 * Make sure that the new limit (memsw or memory limit) doesn't
3391 * break our basic invariant rule memory.max <= memsw.max.
3392 */
3393 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3394 max <= memcg->memsw.max;
3395 if (!limits_invariant) {
3396 mutex_unlock(&memcg_max_mutex);
3397 ret = -EINVAL;
3398 break;
3399 }
3400 if (max > counter->max)
3401 enlarge = true;
3402 ret = page_counter_set_max(counter, max);
3403 mutex_unlock(&memcg_max_mutex);
3404
3405 if (!ret)
3406 break;
3407
3408 if (!drained) {
3409 drain_all_stock(memcg);
3410 drained = true;
3411 continue;
3412 }
3413
3414 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3415 GFP_KERNEL, !memsw)) {
3416 ret = -EBUSY;
3417 break;
3418 }
3419 } while (true);
3420
3421 if (!ret && enlarge)
3422 memcg_oom_recover(memcg);
3423
3424 return ret;
3425 }
3426
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3427 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3428 gfp_t gfp_mask,
3429 unsigned long *total_scanned)
3430 {
3431 unsigned long nr_reclaimed = 0;
3432 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3433 unsigned long reclaimed;
3434 int loop = 0;
3435 struct mem_cgroup_tree_per_node *mctz;
3436 unsigned long excess;
3437 unsigned long nr_scanned;
3438
3439 if (order > 0)
3440 return 0;
3441
3442 mctz = soft_limit_tree_node(pgdat->node_id);
3443
3444 /*
3445 * Do not even bother to check the largest node if the root
3446 * is empty. Do it lockless to prevent lock bouncing. Races
3447 * are acceptable as soft limit is best effort anyway.
3448 */
3449 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3450 return 0;
3451
3452 /*
3453 * This loop can run a while, specially if mem_cgroup's continuously
3454 * keep exceeding their soft limit and putting the system under
3455 * pressure
3456 */
3457 do {
3458 if (next_mz)
3459 mz = next_mz;
3460 else
3461 mz = mem_cgroup_largest_soft_limit_node(mctz);
3462 if (!mz)
3463 break;
3464
3465 nr_scanned = 0;
3466 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3467 gfp_mask, &nr_scanned);
3468 nr_reclaimed += reclaimed;
3469 *total_scanned += nr_scanned;
3470 spin_lock_irq(&mctz->lock);
3471 __mem_cgroup_remove_exceeded(mz, mctz);
3472
3473 /*
3474 * If we failed to reclaim anything from this memory cgroup
3475 * it is time to move on to the next cgroup
3476 */
3477 next_mz = NULL;
3478 if (!reclaimed)
3479 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3480
3481 excess = soft_limit_excess(mz->memcg);
3482 /*
3483 * One school of thought says that we should not add
3484 * back the node to the tree if reclaim returns 0.
3485 * But our reclaim could return 0, simply because due
3486 * to priority we are exposing a smaller subset of
3487 * memory to reclaim from. Consider this as a longer
3488 * term TODO.
3489 */
3490 /* If excess == 0, no tree ops */
3491 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3492 spin_unlock_irq(&mctz->lock);
3493 css_put(&mz->memcg->css);
3494 loop++;
3495 /*
3496 * Could not reclaim anything and there are no more
3497 * mem cgroups to try or we seem to be looping without
3498 * reclaiming anything.
3499 */
3500 if (!nr_reclaimed &&
3501 (next_mz == NULL ||
3502 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3503 break;
3504 } while (!nr_reclaimed);
3505 if (next_mz)
3506 css_put(&next_mz->memcg->css);
3507 return nr_reclaimed;
3508 }
3509
3510 /*
3511 * Test whether @memcg has children, dead or alive. Note that this
3512 * function doesn't care whether @memcg has use_hierarchy enabled and
3513 * returns %true if there are child csses according to the cgroup
3514 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3515 */
memcg_has_children(struct mem_cgroup * memcg)3516 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3517 {
3518 bool ret;
3519
3520 rcu_read_lock();
3521 ret = css_next_child(NULL, &memcg->css);
3522 rcu_read_unlock();
3523 return ret;
3524 }
3525
3526 /*
3527 * Reclaims as many pages from the given memcg as possible.
3528 *
3529 * Caller is responsible for holding css reference for memcg.
3530 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3531 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3532 {
3533 int nr_retries = MAX_RECLAIM_RETRIES;
3534
3535 /* we call try-to-free pages for make this cgroup empty */
3536 lru_add_drain_all();
3537
3538 drain_all_stock(memcg);
3539
3540 /* try to free all pages in this cgroup */
3541 while (nr_retries && page_counter_read(&memcg->memory)) {
3542 int progress;
3543
3544 if (signal_pending(current))
3545 return -EINTR;
3546
3547 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3548 GFP_KERNEL, true);
3549 if (!progress) {
3550 nr_retries--;
3551 /* maybe some writeback is necessary */
3552 congestion_wait(BLK_RW_ASYNC, HZ/10);
3553 }
3554
3555 }
3556
3557 return 0;
3558 }
3559
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3560 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3561 char *buf, size_t nbytes,
3562 loff_t off)
3563 {
3564 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3565
3566 if (mem_cgroup_is_root(memcg))
3567 return -EINVAL;
3568 return mem_cgroup_force_empty(memcg) ?: nbytes;
3569 }
3570
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3571 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3572 struct cftype *cft)
3573 {
3574 return mem_cgroup_from_css(css)->use_hierarchy;
3575 }
3576
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3577 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3578 struct cftype *cft, u64 val)
3579 {
3580 int retval = 0;
3581 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3582 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3583
3584 if (memcg->use_hierarchy == val)
3585 return 0;
3586
3587 /*
3588 * If parent's use_hierarchy is set, we can't make any modifications
3589 * in the child subtrees. If it is unset, then the change can
3590 * occur, provided the current cgroup has no children.
3591 *
3592 * For the root cgroup, parent_mem is NULL, we allow value to be
3593 * set if there are no children.
3594 */
3595 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3596 (val == 1 || val == 0)) {
3597 if (!memcg_has_children(memcg))
3598 memcg->use_hierarchy = val;
3599 else
3600 retval = -EBUSY;
3601 } else
3602 retval = -EINVAL;
3603
3604 return retval;
3605 }
3606
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3607 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3608 {
3609 unsigned long val;
3610
3611 if (mem_cgroup_is_root(memcg)) {
3612 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3613 memcg_page_state(memcg, NR_ANON_MAPPED);
3614 if (swap)
3615 val += memcg_page_state(memcg, MEMCG_SWAP);
3616 } else {
3617 if (!swap)
3618 val = page_counter_read(&memcg->memory);
3619 else
3620 val = page_counter_read(&memcg->memsw);
3621 }
3622 return val;
3623 }
3624
3625 enum {
3626 RES_USAGE,
3627 RES_LIMIT,
3628 RES_MAX_USAGE,
3629 RES_FAILCNT,
3630 RES_SOFT_LIMIT,
3631 };
3632
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3633 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3634 struct cftype *cft)
3635 {
3636 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3637 struct page_counter *counter;
3638
3639 switch (MEMFILE_TYPE(cft->private)) {
3640 case _MEM:
3641 counter = &memcg->memory;
3642 break;
3643 case _MEMSWAP:
3644 counter = &memcg->memsw;
3645 break;
3646 case _KMEM:
3647 counter = &memcg->kmem;
3648 break;
3649 case _TCP:
3650 counter = &memcg->tcpmem;
3651 break;
3652 default:
3653 BUG();
3654 }
3655
3656 switch (MEMFILE_ATTR(cft->private)) {
3657 case RES_USAGE:
3658 if (counter == &memcg->memory)
3659 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3660 if (counter == &memcg->memsw)
3661 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3662 return (u64)page_counter_read(counter) * PAGE_SIZE;
3663 case RES_LIMIT:
3664 return (u64)counter->max * PAGE_SIZE;
3665 case RES_MAX_USAGE:
3666 return (u64)counter->watermark * PAGE_SIZE;
3667 case RES_FAILCNT:
3668 return counter->failcnt;
3669 case RES_SOFT_LIMIT:
3670 return (u64)memcg->soft_limit * PAGE_SIZE;
3671 default:
3672 BUG();
3673 }
3674 }
3675
memcg_flush_percpu_vmstats(struct mem_cgroup * memcg)3676 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3677 {
3678 unsigned long stat[MEMCG_NR_STAT] = {0};
3679 struct mem_cgroup *mi;
3680 int node, cpu, i;
3681
3682 for_each_online_cpu(cpu)
3683 for (i = 0; i < MEMCG_NR_STAT; i++)
3684 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3685
3686 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3687 for (i = 0; i < MEMCG_NR_STAT; i++)
3688 atomic_long_add(stat[i], &mi->vmstats[i]);
3689
3690 for_each_node(node) {
3691 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3692 struct mem_cgroup_per_node *pi;
3693
3694 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3695 stat[i] = 0;
3696
3697 for_each_online_cpu(cpu)
3698 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3699 stat[i] += per_cpu(
3700 pn->lruvec_stat_cpu->count[i], cpu);
3701
3702 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3703 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3704 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3705 }
3706 }
3707
memcg_flush_percpu_vmevents(struct mem_cgroup * memcg)3708 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3709 {
3710 unsigned long events[NR_VM_EVENT_ITEMS];
3711 struct mem_cgroup *mi;
3712 int cpu, i;
3713
3714 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3715 events[i] = 0;
3716
3717 for_each_online_cpu(cpu)
3718 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3719 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3720 cpu);
3721
3722 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3723 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3724 atomic_long_add(events[i], &mi->vmevents[i]);
3725 }
3726
3727 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3728 static int memcg_online_kmem(struct mem_cgroup *memcg)
3729 {
3730 struct obj_cgroup *objcg;
3731 int memcg_id;
3732
3733 if (cgroup_memory_nokmem)
3734 return 0;
3735
3736 BUG_ON(memcg->kmemcg_id >= 0);
3737 BUG_ON(memcg->kmem_state);
3738
3739 memcg_id = memcg_alloc_cache_id();
3740 if (memcg_id < 0)
3741 return memcg_id;
3742
3743 objcg = obj_cgroup_alloc();
3744 if (!objcg) {
3745 memcg_free_cache_id(memcg_id);
3746 return -ENOMEM;
3747 }
3748 objcg->memcg = memcg;
3749 rcu_assign_pointer(memcg->objcg, objcg);
3750
3751 static_branch_enable(&memcg_kmem_enabled_key);
3752
3753 /*
3754 * A memory cgroup is considered kmem-online as soon as it gets
3755 * kmemcg_id. Setting the id after enabling static branching will
3756 * guarantee no one starts accounting before all call sites are
3757 * patched.
3758 */
3759 memcg->kmemcg_id = memcg_id;
3760 memcg->kmem_state = KMEM_ONLINE;
3761
3762 return 0;
3763 }
3764
memcg_offline_kmem(struct mem_cgroup * memcg)3765 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3766 {
3767 struct cgroup_subsys_state *css;
3768 struct mem_cgroup *parent, *child;
3769 int kmemcg_id;
3770
3771 if (memcg->kmem_state != KMEM_ONLINE)
3772 return;
3773
3774 memcg->kmem_state = KMEM_ALLOCATED;
3775
3776 parent = parent_mem_cgroup(memcg);
3777 if (!parent)
3778 parent = root_mem_cgroup;
3779
3780 memcg_reparent_objcgs(memcg, parent);
3781
3782 kmemcg_id = memcg->kmemcg_id;
3783 BUG_ON(kmemcg_id < 0);
3784
3785 /*
3786 * Change kmemcg_id of this cgroup and all its descendants to the
3787 * parent's id, and then move all entries from this cgroup's list_lrus
3788 * to ones of the parent. After we have finished, all list_lrus
3789 * corresponding to this cgroup are guaranteed to remain empty. The
3790 * ordering is imposed by list_lru_node->lock taken by
3791 * memcg_drain_all_list_lrus().
3792 */
3793 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3794 css_for_each_descendant_pre(css, &memcg->css) {
3795 child = mem_cgroup_from_css(css);
3796 BUG_ON(child->kmemcg_id != kmemcg_id);
3797 child->kmemcg_id = parent->kmemcg_id;
3798 if (!memcg->use_hierarchy)
3799 break;
3800 }
3801 rcu_read_unlock();
3802
3803 memcg_drain_all_list_lrus(kmemcg_id, parent);
3804
3805 memcg_free_cache_id(kmemcg_id);
3806 }
3807
memcg_free_kmem(struct mem_cgroup * memcg)3808 static void memcg_free_kmem(struct mem_cgroup *memcg)
3809 {
3810 /* css_alloc() failed, offlining didn't happen */
3811 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3812 memcg_offline_kmem(memcg);
3813 }
3814 #else
memcg_online_kmem(struct mem_cgroup * memcg)3815 static int memcg_online_kmem(struct mem_cgroup *memcg)
3816 {
3817 return 0;
3818 }
memcg_offline_kmem(struct mem_cgroup * memcg)3819 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3820 {
3821 }
memcg_free_kmem(struct mem_cgroup * memcg)3822 static void memcg_free_kmem(struct mem_cgroup *memcg)
3823 {
3824 }
3825 #endif /* CONFIG_MEMCG_KMEM */
3826
memcg_update_kmem_max(struct mem_cgroup * memcg,unsigned long max)3827 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3828 unsigned long max)
3829 {
3830 int ret;
3831
3832 mutex_lock(&memcg_max_mutex);
3833 ret = page_counter_set_max(&memcg->kmem, max);
3834 mutex_unlock(&memcg_max_mutex);
3835 return ret;
3836 }
3837
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3838 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3839 {
3840 int ret;
3841
3842 mutex_lock(&memcg_max_mutex);
3843
3844 ret = page_counter_set_max(&memcg->tcpmem, max);
3845 if (ret)
3846 goto out;
3847
3848 if (!memcg->tcpmem_active) {
3849 /*
3850 * The active flag needs to be written after the static_key
3851 * update. This is what guarantees that the socket activation
3852 * function is the last one to run. See mem_cgroup_sk_alloc()
3853 * for details, and note that we don't mark any socket as
3854 * belonging to this memcg until that flag is up.
3855 *
3856 * We need to do this, because static_keys will span multiple
3857 * sites, but we can't control their order. If we mark a socket
3858 * as accounted, but the accounting functions are not patched in
3859 * yet, we'll lose accounting.
3860 *
3861 * We never race with the readers in mem_cgroup_sk_alloc(),
3862 * because when this value change, the code to process it is not
3863 * patched in yet.
3864 */
3865 static_branch_inc(&memcg_sockets_enabled_key);
3866 memcg->tcpmem_active = true;
3867 }
3868 out:
3869 mutex_unlock(&memcg_max_mutex);
3870 return ret;
3871 }
3872
3873 /*
3874 * The user of this function is...
3875 * RES_LIMIT.
3876 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3877 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3878 char *buf, size_t nbytes, loff_t off)
3879 {
3880 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3881 unsigned long nr_pages;
3882 int ret;
3883
3884 buf = strstrip(buf);
3885 ret = page_counter_memparse(buf, "-1", &nr_pages);
3886 if (ret)
3887 return ret;
3888
3889 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3890 case RES_LIMIT:
3891 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3892 ret = -EINVAL;
3893 break;
3894 }
3895 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3896 case _MEM:
3897 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3898 break;
3899 case _MEMSWAP:
3900 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3901 break;
3902 case _KMEM:
3903 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3904 "Please report your usecase to linux-mm@kvack.org if you "
3905 "depend on this functionality.\n");
3906 ret = memcg_update_kmem_max(memcg, nr_pages);
3907 break;
3908 case _TCP:
3909 ret = memcg_update_tcp_max(memcg, nr_pages);
3910 break;
3911 }
3912 break;
3913 case RES_SOFT_LIMIT:
3914 memcg->soft_limit = nr_pages;
3915 ret = 0;
3916 break;
3917 }
3918 return ret ?: nbytes;
3919 }
3920
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3921 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3922 size_t nbytes, loff_t off)
3923 {
3924 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3925 struct page_counter *counter;
3926
3927 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3928 case _MEM:
3929 counter = &memcg->memory;
3930 break;
3931 case _MEMSWAP:
3932 counter = &memcg->memsw;
3933 break;
3934 case _KMEM:
3935 counter = &memcg->kmem;
3936 break;
3937 case _TCP:
3938 counter = &memcg->tcpmem;
3939 break;
3940 default:
3941 BUG();
3942 }
3943
3944 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3945 case RES_MAX_USAGE:
3946 page_counter_reset_watermark(counter);
3947 break;
3948 case RES_FAILCNT:
3949 counter->failcnt = 0;
3950 break;
3951 default:
3952 BUG();
3953 }
3954
3955 return nbytes;
3956 }
3957
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3958 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3959 struct cftype *cft)
3960 {
3961 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3962 }
3963
3964 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3965 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3966 struct cftype *cft, u64 val)
3967 {
3968 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3969
3970 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3971 "Please report your usecase to linux-mm@kvack.org if you "
3972 "depend on this functionality.\n");
3973
3974 if (val & ~MOVE_MASK)
3975 return -EINVAL;
3976
3977 /*
3978 * No kind of locking is needed in here, because ->can_attach() will
3979 * check this value once in the beginning of the process, and then carry
3980 * on with stale data. This means that changes to this value will only
3981 * affect task migrations starting after the change.
3982 */
3983 memcg->move_charge_at_immigrate = val;
3984 return 0;
3985 }
3986 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3987 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3988 struct cftype *cft, u64 val)
3989 {
3990 return -ENOSYS;
3991 }
3992 #endif
3993
3994 #ifdef CONFIG_NUMA
3995
3996 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3997 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3998 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3999
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)4000 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4001 int nid, unsigned int lru_mask, bool tree)
4002 {
4003 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4004 unsigned long nr = 0;
4005 enum lru_list lru;
4006
4007 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4008
4009 for_each_lru(lru) {
4010 if (!(BIT(lru) & lru_mask))
4011 continue;
4012 if (tree)
4013 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4014 else
4015 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4016 }
4017 return nr;
4018 }
4019
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)4020 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4021 unsigned int lru_mask,
4022 bool tree)
4023 {
4024 unsigned long nr = 0;
4025 enum lru_list lru;
4026
4027 for_each_lru(lru) {
4028 if (!(BIT(lru) & lru_mask))
4029 continue;
4030 if (tree)
4031 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4032 else
4033 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4034 }
4035 return nr;
4036 }
4037
memcg_numa_stat_show(struct seq_file * m,void * v)4038 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4039 {
4040 struct numa_stat {
4041 const char *name;
4042 unsigned int lru_mask;
4043 };
4044
4045 static const struct numa_stat stats[] = {
4046 { "total", LRU_ALL },
4047 { "file", LRU_ALL_FILE },
4048 { "anon", LRU_ALL_ANON },
4049 { "unevictable", BIT(LRU_UNEVICTABLE) },
4050 };
4051 const struct numa_stat *stat;
4052 int nid;
4053 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4054
4055 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4056 seq_printf(m, "%s=%lu", stat->name,
4057 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4058 false));
4059 for_each_node_state(nid, N_MEMORY)
4060 seq_printf(m, " N%d=%lu", nid,
4061 mem_cgroup_node_nr_lru_pages(memcg, nid,
4062 stat->lru_mask, false));
4063 seq_putc(m, '\n');
4064 }
4065
4066 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4067
4068 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4069 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4070 true));
4071 for_each_node_state(nid, N_MEMORY)
4072 seq_printf(m, " N%d=%lu", nid,
4073 mem_cgroup_node_nr_lru_pages(memcg, nid,
4074 stat->lru_mask, true));
4075 seq_putc(m, '\n');
4076 }
4077
4078 return 0;
4079 }
4080 #endif /* CONFIG_NUMA */
4081
4082 static const unsigned int memcg1_stats[] = {
4083 NR_FILE_PAGES,
4084 NR_ANON_MAPPED,
4085 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4086 NR_ANON_THPS,
4087 #endif
4088 NR_SHMEM,
4089 NR_FILE_MAPPED,
4090 NR_FILE_DIRTY,
4091 NR_WRITEBACK,
4092 MEMCG_SWAP,
4093 };
4094
4095 static const char *const memcg1_stat_names[] = {
4096 "cache",
4097 "rss",
4098 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4099 "rss_huge",
4100 #endif
4101 "shmem",
4102 "mapped_file",
4103 "dirty",
4104 "writeback",
4105 "swap",
4106 };
4107
4108 /* Universal VM events cgroup1 shows, original sort order */
4109 static const unsigned int memcg1_events[] = {
4110 PGPGIN,
4111 PGPGOUT,
4112 PGFAULT,
4113 PGMAJFAULT,
4114 };
4115
memcg_stat_show(struct seq_file * m,void * v)4116 static int memcg_stat_show(struct seq_file *m, void *v)
4117 {
4118 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4119 unsigned long memory, memsw;
4120 struct mem_cgroup *mi;
4121 unsigned int i;
4122
4123 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4124
4125 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4126 unsigned long nr;
4127
4128 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4129 continue;
4130 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4131 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4132 if (memcg1_stats[i] == NR_ANON_THPS)
4133 nr *= HPAGE_PMD_NR;
4134 #endif
4135 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4136 }
4137
4138 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4139 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4140 memcg_events_local(memcg, memcg1_events[i]));
4141
4142 for (i = 0; i < NR_LRU_LISTS; i++)
4143 seq_printf(m, "%s %lu\n", lru_list_name(i),
4144 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4145 PAGE_SIZE);
4146
4147 /* Hierarchical information */
4148 memory = memsw = PAGE_COUNTER_MAX;
4149 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4150 memory = min(memory, READ_ONCE(mi->memory.max));
4151 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4152 }
4153 seq_printf(m, "hierarchical_memory_limit %llu\n",
4154 (u64)memory * PAGE_SIZE);
4155 if (do_memsw_account())
4156 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4157 (u64)memsw * PAGE_SIZE);
4158
4159 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4160 unsigned long nr;
4161
4162 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4163 continue;
4164 nr = memcg_page_state(memcg, memcg1_stats[i]);
4165 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4166 if (memcg1_stats[i] == NR_ANON_THPS)
4167 nr *= HPAGE_PMD_NR;
4168 #endif
4169 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4170 (u64)nr * PAGE_SIZE);
4171 }
4172
4173 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4174 seq_printf(m, "total_%s %llu\n",
4175 vm_event_name(memcg1_events[i]),
4176 (u64)memcg_events(memcg, memcg1_events[i]));
4177
4178 for (i = 0; i < NR_LRU_LISTS; i++)
4179 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4180 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4181 PAGE_SIZE);
4182
4183 #ifdef CONFIG_DEBUG_VM
4184 {
4185 pg_data_t *pgdat;
4186 struct mem_cgroup_per_node *mz;
4187 unsigned long anon_cost = 0;
4188 unsigned long file_cost = 0;
4189
4190 for_each_online_pgdat(pgdat) {
4191 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4192
4193 anon_cost += mz->lruvec.anon_cost;
4194 file_cost += mz->lruvec.file_cost;
4195 }
4196 seq_printf(m, "anon_cost %lu\n", anon_cost);
4197 seq_printf(m, "file_cost %lu\n", file_cost);
4198 }
4199 #endif
4200
4201 return 0;
4202 }
4203
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4204 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4205 struct cftype *cft)
4206 {
4207 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4208
4209 return mem_cgroup_swappiness(memcg);
4210 }
4211
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4212 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4213 struct cftype *cft, u64 val)
4214 {
4215 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4216
4217 if (val > 200)
4218 return -EINVAL;
4219
4220 if (css->parent)
4221 memcg->swappiness = val;
4222 else
4223 vm_swappiness = val;
4224
4225 return 0;
4226 }
4227
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4228 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4229 {
4230 struct mem_cgroup_threshold_ary *t;
4231 unsigned long usage;
4232 int i;
4233
4234 rcu_read_lock();
4235 if (!swap)
4236 t = rcu_dereference(memcg->thresholds.primary);
4237 else
4238 t = rcu_dereference(memcg->memsw_thresholds.primary);
4239
4240 if (!t)
4241 goto unlock;
4242
4243 usage = mem_cgroup_usage(memcg, swap);
4244
4245 /*
4246 * current_threshold points to threshold just below or equal to usage.
4247 * If it's not true, a threshold was crossed after last
4248 * call of __mem_cgroup_threshold().
4249 */
4250 i = t->current_threshold;
4251
4252 /*
4253 * Iterate backward over array of thresholds starting from
4254 * current_threshold and check if a threshold is crossed.
4255 * If none of thresholds below usage is crossed, we read
4256 * only one element of the array here.
4257 */
4258 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4259 eventfd_signal(t->entries[i].eventfd, 1);
4260
4261 /* i = current_threshold + 1 */
4262 i++;
4263
4264 /*
4265 * Iterate forward over array of thresholds starting from
4266 * current_threshold+1 and check if a threshold is crossed.
4267 * If none of thresholds above usage is crossed, we read
4268 * only one element of the array here.
4269 */
4270 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4271 eventfd_signal(t->entries[i].eventfd, 1);
4272
4273 /* Update current_threshold */
4274 t->current_threshold = i - 1;
4275 unlock:
4276 rcu_read_unlock();
4277 }
4278
mem_cgroup_threshold(struct mem_cgroup * memcg)4279 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4280 {
4281 while (memcg) {
4282 __mem_cgroup_threshold(memcg, false);
4283 if (do_memsw_account())
4284 __mem_cgroup_threshold(memcg, true);
4285
4286 memcg = parent_mem_cgroup(memcg);
4287 }
4288 }
4289
compare_thresholds(const void * a,const void * b)4290 static int compare_thresholds(const void *a, const void *b)
4291 {
4292 const struct mem_cgroup_threshold *_a = a;
4293 const struct mem_cgroup_threshold *_b = b;
4294
4295 if (_a->threshold > _b->threshold)
4296 return 1;
4297
4298 if (_a->threshold < _b->threshold)
4299 return -1;
4300
4301 return 0;
4302 }
4303
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4304 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4305 {
4306 struct mem_cgroup_eventfd_list *ev;
4307
4308 spin_lock(&memcg_oom_lock);
4309
4310 list_for_each_entry(ev, &memcg->oom_notify, list)
4311 eventfd_signal(ev->eventfd, 1);
4312
4313 spin_unlock(&memcg_oom_lock);
4314 return 0;
4315 }
4316
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4317 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4318 {
4319 struct mem_cgroup *iter;
4320
4321 for_each_mem_cgroup_tree(iter, memcg)
4322 mem_cgroup_oom_notify_cb(iter);
4323 }
4324
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4325 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4326 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4327 {
4328 struct mem_cgroup_thresholds *thresholds;
4329 struct mem_cgroup_threshold_ary *new;
4330 unsigned long threshold;
4331 unsigned long usage;
4332 int i, size, ret;
4333
4334 ret = page_counter_memparse(args, "-1", &threshold);
4335 if (ret)
4336 return ret;
4337
4338 mutex_lock(&memcg->thresholds_lock);
4339
4340 if (type == _MEM) {
4341 thresholds = &memcg->thresholds;
4342 usage = mem_cgroup_usage(memcg, false);
4343 } else if (type == _MEMSWAP) {
4344 thresholds = &memcg->memsw_thresholds;
4345 usage = mem_cgroup_usage(memcg, true);
4346 } else
4347 BUG();
4348
4349 /* Check if a threshold crossed before adding a new one */
4350 if (thresholds->primary)
4351 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4352
4353 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4354
4355 /* Allocate memory for new array of thresholds */
4356 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4357 if (!new) {
4358 ret = -ENOMEM;
4359 goto unlock;
4360 }
4361 new->size = size;
4362
4363 /* Copy thresholds (if any) to new array */
4364 if (thresholds->primary)
4365 memcpy(new->entries, thresholds->primary->entries,
4366 flex_array_size(new, entries, size - 1));
4367
4368 /* Add new threshold */
4369 new->entries[size - 1].eventfd = eventfd;
4370 new->entries[size - 1].threshold = threshold;
4371
4372 /* Sort thresholds. Registering of new threshold isn't time-critical */
4373 sort(new->entries, size, sizeof(*new->entries),
4374 compare_thresholds, NULL);
4375
4376 /* Find current threshold */
4377 new->current_threshold = -1;
4378 for (i = 0; i < size; i++) {
4379 if (new->entries[i].threshold <= usage) {
4380 /*
4381 * new->current_threshold will not be used until
4382 * rcu_assign_pointer(), so it's safe to increment
4383 * it here.
4384 */
4385 ++new->current_threshold;
4386 } else
4387 break;
4388 }
4389
4390 /* Free old spare buffer and save old primary buffer as spare */
4391 kfree(thresholds->spare);
4392 thresholds->spare = thresholds->primary;
4393
4394 rcu_assign_pointer(thresholds->primary, new);
4395
4396 /* To be sure that nobody uses thresholds */
4397 synchronize_rcu();
4398
4399 unlock:
4400 mutex_unlock(&memcg->thresholds_lock);
4401
4402 return ret;
4403 }
4404
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4405 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4406 struct eventfd_ctx *eventfd, const char *args)
4407 {
4408 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4409 }
4410
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4411 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4412 struct eventfd_ctx *eventfd, const char *args)
4413 {
4414 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4415 }
4416
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4417 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4418 struct eventfd_ctx *eventfd, enum res_type type)
4419 {
4420 struct mem_cgroup_thresholds *thresholds;
4421 struct mem_cgroup_threshold_ary *new;
4422 unsigned long usage;
4423 int i, j, size, entries;
4424
4425 mutex_lock(&memcg->thresholds_lock);
4426
4427 if (type == _MEM) {
4428 thresholds = &memcg->thresholds;
4429 usage = mem_cgroup_usage(memcg, false);
4430 } else if (type == _MEMSWAP) {
4431 thresholds = &memcg->memsw_thresholds;
4432 usage = mem_cgroup_usage(memcg, true);
4433 } else
4434 BUG();
4435
4436 if (!thresholds->primary)
4437 goto unlock;
4438
4439 /* Check if a threshold crossed before removing */
4440 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4441
4442 /* Calculate new number of threshold */
4443 size = entries = 0;
4444 for (i = 0; i < thresholds->primary->size; i++) {
4445 if (thresholds->primary->entries[i].eventfd != eventfd)
4446 size++;
4447 else
4448 entries++;
4449 }
4450
4451 new = thresholds->spare;
4452
4453 /* If no items related to eventfd have been cleared, nothing to do */
4454 if (!entries)
4455 goto unlock;
4456
4457 /* Set thresholds array to NULL if we don't have thresholds */
4458 if (!size) {
4459 kfree(new);
4460 new = NULL;
4461 goto swap_buffers;
4462 }
4463
4464 new->size = size;
4465
4466 /* Copy thresholds and find current threshold */
4467 new->current_threshold = -1;
4468 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4469 if (thresholds->primary->entries[i].eventfd == eventfd)
4470 continue;
4471
4472 new->entries[j] = thresholds->primary->entries[i];
4473 if (new->entries[j].threshold <= usage) {
4474 /*
4475 * new->current_threshold will not be used
4476 * until rcu_assign_pointer(), so it's safe to increment
4477 * it here.
4478 */
4479 ++new->current_threshold;
4480 }
4481 j++;
4482 }
4483
4484 swap_buffers:
4485 /* Swap primary and spare array */
4486 thresholds->spare = thresholds->primary;
4487
4488 rcu_assign_pointer(thresholds->primary, new);
4489
4490 /* To be sure that nobody uses thresholds */
4491 synchronize_rcu();
4492
4493 /* If all events are unregistered, free the spare array */
4494 if (!new) {
4495 kfree(thresholds->spare);
4496 thresholds->spare = NULL;
4497 }
4498 unlock:
4499 mutex_unlock(&memcg->thresholds_lock);
4500 }
4501
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4502 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4503 struct eventfd_ctx *eventfd)
4504 {
4505 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4506 }
4507
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4508 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4509 struct eventfd_ctx *eventfd)
4510 {
4511 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4512 }
4513
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4514 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4515 struct eventfd_ctx *eventfd, const char *args)
4516 {
4517 struct mem_cgroup_eventfd_list *event;
4518
4519 event = kmalloc(sizeof(*event), GFP_KERNEL);
4520 if (!event)
4521 return -ENOMEM;
4522
4523 spin_lock(&memcg_oom_lock);
4524
4525 event->eventfd = eventfd;
4526 list_add(&event->list, &memcg->oom_notify);
4527
4528 /* already in OOM ? */
4529 if (memcg->under_oom)
4530 eventfd_signal(eventfd, 1);
4531 spin_unlock(&memcg_oom_lock);
4532
4533 return 0;
4534 }
4535
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4536 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4537 struct eventfd_ctx *eventfd)
4538 {
4539 struct mem_cgroup_eventfd_list *ev, *tmp;
4540
4541 spin_lock(&memcg_oom_lock);
4542
4543 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4544 if (ev->eventfd == eventfd) {
4545 list_del(&ev->list);
4546 kfree(ev);
4547 }
4548 }
4549
4550 spin_unlock(&memcg_oom_lock);
4551 }
4552
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4553 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4554 {
4555 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4556
4557 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4558 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4559 seq_printf(sf, "oom_kill %lu\n",
4560 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4561 return 0;
4562 }
4563
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4564 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4565 struct cftype *cft, u64 val)
4566 {
4567 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4568
4569 /* cannot set to root cgroup and only 0 and 1 are allowed */
4570 if (!css->parent || !((val == 0) || (val == 1)))
4571 return -EINVAL;
4572
4573 memcg->oom_kill_disable = val;
4574 if (!val)
4575 memcg_oom_recover(memcg);
4576
4577 return 0;
4578 }
4579
4580 #ifdef CONFIG_CGROUP_WRITEBACK
4581
4582 #include <trace/events/writeback.h>
4583
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4584 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4585 {
4586 return wb_domain_init(&memcg->cgwb_domain, gfp);
4587 }
4588
memcg_wb_domain_exit(struct mem_cgroup * memcg)4589 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4590 {
4591 wb_domain_exit(&memcg->cgwb_domain);
4592 }
4593
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4594 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4595 {
4596 wb_domain_size_changed(&memcg->cgwb_domain);
4597 }
4598
mem_cgroup_wb_domain(struct bdi_writeback * wb)4599 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4600 {
4601 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4602
4603 if (!memcg->css.parent)
4604 return NULL;
4605
4606 return &memcg->cgwb_domain;
4607 }
4608
4609 /*
4610 * idx can be of type enum memcg_stat_item or node_stat_item.
4611 * Keep in sync with memcg_exact_page().
4612 */
memcg_exact_page_state(struct mem_cgroup * memcg,int idx)4613 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4614 {
4615 long x = atomic_long_read(&memcg->vmstats[idx]);
4616 int cpu;
4617
4618 for_each_online_cpu(cpu)
4619 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4620 if (x < 0)
4621 x = 0;
4622 return x;
4623 }
4624
4625 /**
4626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4627 * @wb: bdi_writeback in question
4628 * @pfilepages: out parameter for number of file pages
4629 * @pheadroom: out parameter for number of allocatable pages according to memcg
4630 * @pdirty: out parameter for number of dirty pages
4631 * @pwriteback: out parameter for number of pages under writeback
4632 *
4633 * Determine the numbers of file, headroom, dirty, and writeback pages in
4634 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4635 * is a bit more involved.
4636 *
4637 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4638 * headroom is calculated as the lowest headroom of itself and the
4639 * ancestors. Note that this doesn't consider the actual amount of
4640 * available memory in the system. The caller should further cap
4641 * *@pheadroom accordingly.
4642 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4643 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4644 unsigned long *pheadroom, unsigned long *pdirty,
4645 unsigned long *pwriteback)
4646 {
4647 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4648 struct mem_cgroup *parent;
4649
4650 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4651
4652 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4653 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4654 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4655 *pheadroom = PAGE_COUNTER_MAX;
4656
4657 while ((parent = parent_mem_cgroup(memcg))) {
4658 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4659 READ_ONCE(memcg->memory.high));
4660 unsigned long used = page_counter_read(&memcg->memory);
4661
4662 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4663 memcg = parent;
4664 }
4665 }
4666
4667 /*
4668 * Foreign dirty flushing
4669 *
4670 * There's an inherent mismatch between memcg and writeback. The former
4671 * trackes ownership per-page while the latter per-inode. This was a
4672 * deliberate design decision because honoring per-page ownership in the
4673 * writeback path is complicated, may lead to higher CPU and IO overheads
4674 * and deemed unnecessary given that write-sharing an inode across
4675 * different cgroups isn't a common use-case.
4676 *
4677 * Combined with inode majority-writer ownership switching, this works well
4678 * enough in most cases but there are some pathological cases. For
4679 * example, let's say there are two cgroups A and B which keep writing to
4680 * different but confined parts of the same inode. B owns the inode and
4681 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4682 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4683 * triggering background writeback. A will be slowed down without a way to
4684 * make writeback of the dirty pages happen.
4685 *
4686 * Conditions like the above can lead to a cgroup getting repatedly and
4687 * severely throttled after making some progress after each
4688 * dirty_expire_interval while the underyling IO device is almost
4689 * completely idle.
4690 *
4691 * Solving this problem completely requires matching the ownership tracking
4692 * granularities between memcg and writeback in either direction. However,
4693 * the more egregious behaviors can be avoided by simply remembering the
4694 * most recent foreign dirtying events and initiating remote flushes on
4695 * them when local writeback isn't enough to keep the memory clean enough.
4696 *
4697 * The following two functions implement such mechanism. When a foreign
4698 * page - a page whose memcg and writeback ownerships don't match - is
4699 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4700 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4701 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4702 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4703 * foreign bdi_writebacks which haven't expired. Both the numbers of
4704 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4705 * limited to MEMCG_CGWB_FRN_CNT.
4706 *
4707 * The mechanism only remembers IDs and doesn't hold any object references.
4708 * As being wrong occasionally doesn't matter, updates and accesses to the
4709 * records are lockless and racy.
4710 */
mem_cgroup_track_foreign_dirty_slowpath(struct page * page,struct bdi_writeback * wb)4711 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4712 struct bdi_writeback *wb)
4713 {
4714 struct mem_cgroup *memcg = page->mem_cgroup;
4715 struct memcg_cgwb_frn *frn;
4716 u64 now = get_jiffies_64();
4717 u64 oldest_at = now;
4718 int oldest = -1;
4719 int i;
4720
4721 trace_track_foreign_dirty(page, wb);
4722
4723 /*
4724 * Pick the slot to use. If there is already a slot for @wb, keep
4725 * using it. If not replace the oldest one which isn't being
4726 * written out.
4727 */
4728 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4729 frn = &memcg->cgwb_frn[i];
4730 if (frn->bdi_id == wb->bdi->id &&
4731 frn->memcg_id == wb->memcg_css->id)
4732 break;
4733 if (time_before64(frn->at, oldest_at) &&
4734 atomic_read(&frn->done.cnt) == 1) {
4735 oldest = i;
4736 oldest_at = frn->at;
4737 }
4738 }
4739
4740 if (i < MEMCG_CGWB_FRN_CNT) {
4741 /*
4742 * Re-using an existing one. Update timestamp lazily to
4743 * avoid making the cacheline hot. We want them to be
4744 * reasonably up-to-date and significantly shorter than
4745 * dirty_expire_interval as that's what expires the record.
4746 * Use the shorter of 1s and dirty_expire_interval / 8.
4747 */
4748 unsigned long update_intv =
4749 min_t(unsigned long, HZ,
4750 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4751
4752 if (time_before64(frn->at, now - update_intv))
4753 frn->at = now;
4754 } else if (oldest >= 0) {
4755 /* replace the oldest free one */
4756 frn = &memcg->cgwb_frn[oldest];
4757 frn->bdi_id = wb->bdi->id;
4758 frn->memcg_id = wb->memcg_css->id;
4759 frn->at = now;
4760 }
4761 }
4762
4763 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4764 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4765 {
4766 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4767 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4768 u64 now = jiffies_64;
4769 int i;
4770
4771 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4772 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4773
4774 /*
4775 * If the record is older than dirty_expire_interval,
4776 * writeback on it has already started. No need to kick it
4777 * off again. Also, don't start a new one if there's
4778 * already one in flight.
4779 */
4780 if (time_after64(frn->at, now - intv) &&
4781 atomic_read(&frn->done.cnt) == 1) {
4782 frn->at = 0;
4783 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4784 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4785 WB_REASON_FOREIGN_FLUSH,
4786 &frn->done);
4787 }
4788 }
4789 }
4790
4791 #else /* CONFIG_CGROUP_WRITEBACK */
4792
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4793 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4794 {
4795 return 0;
4796 }
4797
memcg_wb_domain_exit(struct mem_cgroup * memcg)4798 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4799 {
4800 }
4801
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4802 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4803 {
4804 }
4805
4806 #endif /* CONFIG_CGROUP_WRITEBACK */
4807
4808 /*
4809 * DO NOT USE IN NEW FILES.
4810 *
4811 * "cgroup.event_control" implementation.
4812 *
4813 * This is way over-engineered. It tries to support fully configurable
4814 * events for each user. Such level of flexibility is completely
4815 * unnecessary especially in the light of the planned unified hierarchy.
4816 *
4817 * Please deprecate this and replace with something simpler if at all
4818 * possible.
4819 */
4820
4821 /*
4822 * Unregister event and free resources.
4823 *
4824 * Gets called from workqueue.
4825 */
memcg_event_remove(struct work_struct * work)4826 static void memcg_event_remove(struct work_struct *work)
4827 {
4828 struct mem_cgroup_event *event =
4829 container_of(work, struct mem_cgroup_event, remove);
4830 struct mem_cgroup *memcg = event->memcg;
4831
4832 remove_wait_queue(event->wqh, &event->wait);
4833
4834 event->unregister_event(memcg, event->eventfd);
4835
4836 /* Notify userspace the event is going away. */
4837 eventfd_signal(event->eventfd, 1);
4838
4839 eventfd_ctx_put(event->eventfd);
4840 kfree(event);
4841 css_put(&memcg->css);
4842 }
4843
4844 /*
4845 * Gets called on EPOLLHUP on eventfd when user closes it.
4846 *
4847 * Called with wqh->lock held and interrupts disabled.
4848 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4849 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4850 int sync, void *key)
4851 {
4852 struct mem_cgroup_event *event =
4853 container_of(wait, struct mem_cgroup_event, wait);
4854 struct mem_cgroup *memcg = event->memcg;
4855 __poll_t flags = key_to_poll(key);
4856
4857 if (flags & EPOLLHUP) {
4858 /*
4859 * If the event has been detached at cgroup removal, we
4860 * can simply return knowing the other side will cleanup
4861 * for us.
4862 *
4863 * We can't race against event freeing since the other
4864 * side will require wqh->lock via remove_wait_queue(),
4865 * which we hold.
4866 */
4867 spin_lock(&memcg->event_list_lock);
4868 if (!list_empty(&event->list)) {
4869 list_del_init(&event->list);
4870 /*
4871 * We are in atomic context, but cgroup_event_remove()
4872 * may sleep, so we have to call it in workqueue.
4873 */
4874 schedule_work(&event->remove);
4875 }
4876 spin_unlock(&memcg->event_list_lock);
4877 }
4878
4879 return 0;
4880 }
4881
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4882 static void memcg_event_ptable_queue_proc(struct file *file,
4883 wait_queue_head_t *wqh, poll_table *pt)
4884 {
4885 struct mem_cgroup_event *event =
4886 container_of(pt, struct mem_cgroup_event, pt);
4887
4888 event->wqh = wqh;
4889 add_wait_queue(wqh, &event->wait);
4890 }
4891
4892 /*
4893 * DO NOT USE IN NEW FILES.
4894 *
4895 * Parse input and register new cgroup event handler.
4896 *
4897 * Input must be in format '<event_fd> <control_fd> <args>'.
4898 * Interpretation of args is defined by control file implementation.
4899 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4900 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4901 char *buf, size_t nbytes, loff_t off)
4902 {
4903 struct cgroup_subsys_state *css = of_css(of);
4904 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4905 struct mem_cgroup_event *event;
4906 struct cgroup_subsys_state *cfile_css;
4907 unsigned int efd, cfd;
4908 struct fd efile;
4909 struct fd cfile;
4910 struct dentry *cdentry;
4911 const char *name;
4912 char *endp;
4913 int ret;
4914
4915 buf = strstrip(buf);
4916
4917 efd = simple_strtoul(buf, &endp, 10);
4918 if (*endp != ' ')
4919 return -EINVAL;
4920 buf = endp + 1;
4921
4922 cfd = simple_strtoul(buf, &endp, 10);
4923 if ((*endp != ' ') && (*endp != '\0'))
4924 return -EINVAL;
4925 buf = endp + 1;
4926
4927 event = kzalloc(sizeof(*event), GFP_KERNEL);
4928 if (!event)
4929 return -ENOMEM;
4930
4931 event->memcg = memcg;
4932 INIT_LIST_HEAD(&event->list);
4933 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4934 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4935 INIT_WORK(&event->remove, memcg_event_remove);
4936
4937 efile = fdget(efd);
4938 if (!efile.file) {
4939 ret = -EBADF;
4940 goto out_kfree;
4941 }
4942
4943 event->eventfd = eventfd_ctx_fileget(efile.file);
4944 if (IS_ERR(event->eventfd)) {
4945 ret = PTR_ERR(event->eventfd);
4946 goto out_put_efile;
4947 }
4948
4949 cfile = fdget(cfd);
4950 if (!cfile.file) {
4951 ret = -EBADF;
4952 goto out_put_eventfd;
4953 }
4954
4955 /* the process need read permission on control file */
4956 /* AV: shouldn't we check that it's been opened for read instead? */
4957 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4958 if (ret < 0)
4959 goto out_put_cfile;
4960
4961 /*
4962 * The control file must be a regular cgroup1 file. As a regular cgroup
4963 * file can't be renamed, it's safe to access its name afterwards.
4964 */
4965 cdentry = cfile.file->f_path.dentry;
4966 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4967 ret = -EINVAL;
4968 goto out_put_cfile;
4969 }
4970
4971 /*
4972 * Determine the event callbacks and set them in @event. This used
4973 * to be done via struct cftype but cgroup core no longer knows
4974 * about these events. The following is crude but the whole thing
4975 * is for compatibility anyway.
4976 *
4977 * DO NOT ADD NEW FILES.
4978 */
4979 name = cdentry->d_name.name;
4980
4981 if (!strcmp(name, "memory.usage_in_bytes")) {
4982 event->register_event = mem_cgroup_usage_register_event;
4983 event->unregister_event = mem_cgroup_usage_unregister_event;
4984 } else if (!strcmp(name, "memory.oom_control")) {
4985 event->register_event = mem_cgroup_oom_register_event;
4986 event->unregister_event = mem_cgroup_oom_unregister_event;
4987 } else if (!strcmp(name, "memory.pressure_level")) {
4988 event->register_event = vmpressure_register_event;
4989 event->unregister_event = vmpressure_unregister_event;
4990 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4991 event->register_event = memsw_cgroup_usage_register_event;
4992 event->unregister_event = memsw_cgroup_usage_unregister_event;
4993 } else {
4994 ret = -EINVAL;
4995 goto out_put_cfile;
4996 }
4997
4998 /*
4999 * Verify @cfile should belong to @css. Also, remaining events are
5000 * automatically removed on cgroup destruction but the removal is
5001 * asynchronous, so take an extra ref on @css.
5002 */
5003 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5004 &memory_cgrp_subsys);
5005 ret = -EINVAL;
5006 if (IS_ERR(cfile_css))
5007 goto out_put_cfile;
5008 if (cfile_css != css) {
5009 css_put(cfile_css);
5010 goto out_put_cfile;
5011 }
5012
5013 ret = event->register_event(memcg, event->eventfd, buf);
5014 if (ret)
5015 goto out_put_css;
5016
5017 vfs_poll(efile.file, &event->pt);
5018
5019 spin_lock(&memcg->event_list_lock);
5020 list_add(&event->list, &memcg->event_list);
5021 spin_unlock(&memcg->event_list_lock);
5022
5023 fdput(cfile);
5024 fdput(efile);
5025
5026 return nbytes;
5027
5028 out_put_css:
5029 css_put(css);
5030 out_put_cfile:
5031 fdput(cfile);
5032 out_put_eventfd:
5033 eventfd_ctx_put(event->eventfd);
5034 out_put_efile:
5035 fdput(efile);
5036 out_kfree:
5037 kfree(event);
5038
5039 return ret;
5040 }
5041
5042 static struct cftype mem_cgroup_legacy_files[] = {
5043 {
5044 .name = "usage_in_bytes",
5045 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5046 .read_u64 = mem_cgroup_read_u64,
5047 },
5048 {
5049 .name = "max_usage_in_bytes",
5050 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5051 .write = mem_cgroup_reset,
5052 .read_u64 = mem_cgroup_read_u64,
5053 },
5054 {
5055 .name = "limit_in_bytes",
5056 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5057 .write = mem_cgroup_write,
5058 .read_u64 = mem_cgroup_read_u64,
5059 },
5060 {
5061 .name = "soft_limit_in_bytes",
5062 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5063 .write = mem_cgroup_write,
5064 .read_u64 = mem_cgroup_read_u64,
5065 },
5066 {
5067 .name = "failcnt",
5068 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5069 .write = mem_cgroup_reset,
5070 .read_u64 = mem_cgroup_read_u64,
5071 },
5072 {
5073 .name = "stat",
5074 .seq_show = memcg_stat_show,
5075 },
5076 {
5077 .name = "force_empty",
5078 .write = mem_cgroup_force_empty_write,
5079 },
5080 {
5081 .name = "use_hierarchy",
5082 .write_u64 = mem_cgroup_hierarchy_write,
5083 .read_u64 = mem_cgroup_hierarchy_read,
5084 },
5085 {
5086 .name = "cgroup.event_control", /* XXX: for compat */
5087 .write = memcg_write_event_control,
5088 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5089 },
5090 {
5091 .name = "swappiness",
5092 .read_u64 = mem_cgroup_swappiness_read,
5093 .write_u64 = mem_cgroup_swappiness_write,
5094 },
5095 {
5096 .name = "move_charge_at_immigrate",
5097 .read_u64 = mem_cgroup_move_charge_read,
5098 .write_u64 = mem_cgroup_move_charge_write,
5099 },
5100 {
5101 .name = "oom_control",
5102 .seq_show = mem_cgroup_oom_control_read,
5103 .write_u64 = mem_cgroup_oom_control_write,
5104 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5105 },
5106 {
5107 .name = "pressure_level",
5108 },
5109 #ifdef CONFIG_NUMA
5110 {
5111 .name = "numa_stat",
5112 .seq_show = memcg_numa_stat_show,
5113 },
5114 #endif
5115 {
5116 .name = "kmem.limit_in_bytes",
5117 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5118 .write = mem_cgroup_write,
5119 .read_u64 = mem_cgroup_read_u64,
5120 },
5121 {
5122 .name = "kmem.usage_in_bytes",
5123 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5124 .read_u64 = mem_cgroup_read_u64,
5125 },
5126 {
5127 .name = "kmem.failcnt",
5128 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5129 .write = mem_cgroup_reset,
5130 .read_u64 = mem_cgroup_read_u64,
5131 },
5132 {
5133 .name = "kmem.max_usage_in_bytes",
5134 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5135 .write = mem_cgroup_reset,
5136 .read_u64 = mem_cgroup_read_u64,
5137 },
5138 #if defined(CONFIG_MEMCG_KMEM) && \
5139 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5140 {
5141 .name = "kmem.slabinfo",
5142 .seq_show = memcg_slab_show,
5143 },
5144 #endif
5145 {
5146 .name = "kmem.tcp.limit_in_bytes",
5147 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5148 .write = mem_cgroup_write,
5149 .read_u64 = mem_cgroup_read_u64,
5150 },
5151 {
5152 .name = "kmem.tcp.usage_in_bytes",
5153 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5154 .read_u64 = mem_cgroup_read_u64,
5155 },
5156 {
5157 .name = "kmem.tcp.failcnt",
5158 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5159 .write = mem_cgroup_reset,
5160 .read_u64 = mem_cgroup_read_u64,
5161 },
5162 {
5163 .name = "kmem.tcp.max_usage_in_bytes",
5164 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5165 .write = mem_cgroup_reset,
5166 .read_u64 = mem_cgroup_read_u64,
5167 },
5168 { }, /* terminate */
5169 };
5170
5171 /*
5172 * Private memory cgroup IDR
5173 *
5174 * Swap-out records and page cache shadow entries need to store memcg
5175 * references in constrained space, so we maintain an ID space that is
5176 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5177 * memory-controlled cgroups to 64k.
5178 *
5179 * However, there usually are many references to the offline CSS after
5180 * the cgroup has been destroyed, such as page cache or reclaimable
5181 * slab objects, that don't need to hang on to the ID. We want to keep
5182 * those dead CSS from occupying IDs, or we might quickly exhaust the
5183 * relatively small ID space and prevent the creation of new cgroups
5184 * even when there are much fewer than 64k cgroups - possibly none.
5185 *
5186 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5187 * be freed and recycled when it's no longer needed, which is usually
5188 * when the CSS is offlined.
5189 *
5190 * The only exception to that are records of swapped out tmpfs/shmem
5191 * pages that need to be attributed to live ancestors on swapin. But
5192 * those references are manageable from userspace.
5193 */
5194
5195 static DEFINE_IDR(mem_cgroup_idr);
5196
mem_cgroup_id_remove(struct mem_cgroup * memcg)5197 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5198 {
5199 if (memcg->id.id > 0) {
5200 trace_android_vh_mem_cgroup_id_remove(memcg);
5201 idr_remove(&mem_cgroup_idr, memcg->id.id);
5202 memcg->id.id = 0;
5203 }
5204 }
5205
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5206 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5207 unsigned int n)
5208 {
5209 refcount_add(n, &memcg->id.ref);
5210 }
5211
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5212 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5213 {
5214 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5215 mem_cgroup_id_remove(memcg);
5216
5217 /* Memcg ID pins CSS */
5218 css_put(&memcg->css);
5219 }
5220 }
5221
mem_cgroup_id_put(struct mem_cgroup * memcg)5222 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5223 {
5224 mem_cgroup_id_put_many(memcg, 1);
5225 }
5226
5227 /**
5228 * mem_cgroup_from_id - look up a memcg from a memcg id
5229 * @id: the memcg id to look up
5230 *
5231 * Caller must hold rcu_read_lock().
5232 */
mem_cgroup_from_id(unsigned short id)5233 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5234 {
5235 WARN_ON_ONCE(!rcu_read_lock_held());
5236 return idr_find(&mem_cgroup_idr, id);
5237 }
5238 EXPORT_SYMBOL_GPL(mem_cgroup_from_id);
5239
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5240 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5241 {
5242 struct mem_cgroup_per_node *pn;
5243 int tmp = node;
5244 /*
5245 * This routine is called against possible nodes.
5246 * But it's BUG to call kmalloc() against offline node.
5247 *
5248 * TODO: this routine can waste much memory for nodes which will
5249 * never be onlined. It's better to use memory hotplug callback
5250 * function.
5251 */
5252 if (!node_state(node, N_NORMAL_MEMORY))
5253 tmp = -1;
5254 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5255 if (!pn)
5256 return 1;
5257
5258 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5259 GFP_KERNEL_ACCOUNT);
5260 if (!pn->lruvec_stat_local) {
5261 kfree(pn);
5262 return 1;
5263 }
5264
5265 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5266 GFP_KERNEL_ACCOUNT);
5267 if (!pn->lruvec_stat_cpu) {
5268 free_percpu(pn->lruvec_stat_local);
5269 kfree(pn);
5270 return 1;
5271 }
5272
5273 lruvec_init(&pn->lruvec);
5274 pn->usage_in_excess = 0;
5275 pn->on_tree = false;
5276 pn->memcg = memcg;
5277
5278 memcg->nodeinfo[node] = pn;
5279 return 0;
5280 }
5281
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5282 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5283 {
5284 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5285
5286 if (!pn)
5287 return;
5288
5289 free_percpu(pn->lruvec_stat_cpu);
5290 free_percpu(pn->lruvec_stat_local);
5291 kfree(pn);
5292 }
5293
__mem_cgroup_free(struct mem_cgroup * memcg)5294 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5295 {
5296 int node;
5297
5298 trace_android_vh_mem_cgroup_free(memcg);
5299 for_each_node(node)
5300 free_mem_cgroup_per_node_info(memcg, node);
5301 free_percpu(memcg->vmstats_percpu);
5302 free_percpu(memcg->vmstats_local);
5303 kfree(memcg);
5304 }
5305
mem_cgroup_free(struct mem_cgroup * memcg)5306 static void mem_cgroup_free(struct mem_cgroup *memcg)
5307 {
5308 memcg_wb_domain_exit(memcg);
5309 /*
5310 * Flush percpu vmstats and vmevents to guarantee the value correctness
5311 * on parent's and all ancestor levels.
5312 */
5313 memcg_flush_percpu_vmstats(memcg);
5314 memcg_flush_percpu_vmevents(memcg);
5315 __mem_cgroup_free(memcg);
5316 }
5317
mem_cgroup_alloc(void)5318 static struct mem_cgroup *mem_cgroup_alloc(void)
5319 {
5320 struct mem_cgroup *memcg;
5321 unsigned int size;
5322 int node;
5323 int __maybe_unused i;
5324 long error = -ENOMEM;
5325
5326 size = sizeof(struct mem_cgroup);
5327 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5328
5329 memcg = kzalloc(size, GFP_KERNEL);
5330 if (!memcg)
5331 return ERR_PTR(error);
5332
5333 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5334 1, MEM_CGROUP_ID_MAX,
5335 GFP_KERNEL);
5336 if (memcg->id.id < 0) {
5337 error = memcg->id.id;
5338 goto fail;
5339 }
5340
5341 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5342 GFP_KERNEL_ACCOUNT);
5343 if (!memcg->vmstats_local)
5344 goto fail;
5345
5346 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5347 GFP_KERNEL_ACCOUNT);
5348 if (!memcg->vmstats_percpu)
5349 goto fail;
5350
5351 for_each_node(node)
5352 if (alloc_mem_cgroup_per_node_info(memcg, node))
5353 goto fail;
5354
5355 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5356 goto fail;
5357
5358 INIT_WORK(&memcg->high_work, high_work_func);
5359 INIT_LIST_HEAD(&memcg->oom_notify);
5360 mutex_init(&memcg->thresholds_lock);
5361 spin_lock_init(&memcg->move_lock);
5362 vmpressure_init(&memcg->vmpressure);
5363 INIT_LIST_HEAD(&memcg->event_list);
5364 spin_lock_init(&memcg->event_list_lock);
5365 memcg->socket_pressure = jiffies;
5366 #ifdef CONFIG_MEMCG_KMEM
5367 memcg->kmemcg_id = -1;
5368 INIT_LIST_HEAD(&memcg->objcg_list);
5369 #endif
5370 #ifdef CONFIG_CGROUP_WRITEBACK
5371 INIT_LIST_HEAD(&memcg->cgwb_list);
5372 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5373 memcg->cgwb_frn[i].done =
5374 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5375 #endif
5376 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5377 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5378 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5379 memcg->deferred_split_queue.split_queue_len = 0;
5380 #endif
5381 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5382 trace_android_vh_mem_cgroup_alloc(memcg);
5383 return memcg;
5384 fail:
5385 mem_cgroup_id_remove(memcg);
5386 __mem_cgroup_free(memcg);
5387 return ERR_PTR(error);
5388 }
5389
5390 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5391 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5392 {
5393 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5394 struct mem_cgroup *memcg, *old_memcg;
5395 long error = -ENOMEM;
5396
5397 old_memcg = set_active_memcg(parent);
5398 memcg = mem_cgroup_alloc();
5399 set_active_memcg(old_memcg);
5400 if (IS_ERR(memcg))
5401 return ERR_CAST(memcg);
5402
5403 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5404 memcg->soft_limit = PAGE_COUNTER_MAX;
5405 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5406 if (parent) {
5407 memcg->swappiness = mem_cgroup_swappiness(parent);
5408 memcg->oom_kill_disable = parent->oom_kill_disable;
5409 }
5410 if (!parent) {
5411 page_counter_init(&memcg->memory, NULL);
5412 page_counter_init(&memcg->swap, NULL);
5413 page_counter_init(&memcg->kmem, NULL);
5414 page_counter_init(&memcg->tcpmem, NULL);
5415 } else if (parent->use_hierarchy) {
5416 memcg->use_hierarchy = true;
5417 page_counter_init(&memcg->memory, &parent->memory);
5418 page_counter_init(&memcg->swap, &parent->swap);
5419 page_counter_init(&memcg->kmem, &parent->kmem);
5420 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5421 } else {
5422 page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5423 page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5424 page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5425 page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5426 /*
5427 * Deeper hierachy with use_hierarchy == false doesn't make
5428 * much sense so let cgroup subsystem know about this
5429 * unfortunate state in our controller.
5430 */
5431 if (parent != root_mem_cgroup)
5432 memory_cgrp_subsys.broken_hierarchy = true;
5433 }
5434
5435 /* The following stuff does not apply to the root */
5436 if (!parent) {
5437 root_mem_cgroup = memcg;
5438 return &memcg->css;
5439 }
5440
5441 error = memcg_online_kmem(memcg);
5442 if (error)
5443 goto fail;
5444
5445 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5446 static_branch_inc(&memcg_sockets_enabled_key);
5447
5448 return &memcg->css;
5449 fail:
5450 mem_cgroup_id_remove(memcg);
5451 mem_cgroup_free(memcg);
5452 return ERR_PTR(error);
5453 }
5454
mem_cgroup_css_online(struct cgroup_subsys_state * css)5455 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5456 {
5457 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5458
5459 /*
5460 * A memcg must be visible for memcg_expand_shrinker_maps()
5461 * by the time the maps are allocated. So, we allocate maps
5462 * here, when for_each_mem_cgroup() can't skip it.
5463 */
5464 if (memcg_alloc_shrinker_maps(memcg)) {
5465 mem_cgroup_id_remove(memcg);
5466 return -ENOMEM;
5467 }
5468
5469 /* Online state pins memcg ID, memcg ID pins CSS */
5470 refcount_set(&memcg->id.ref, 1);
5471 css_get(css);
5472 trace_android_vh_mem_cgroup_css_online(css, memcg);
5473 return 0;
5474 }
5475
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5476 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5477 {
5478 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5479 struct mem_cgroup_event *event, *tmp;
5480
5481 trace_android_vh_mem_cgroup_css_offline(css, memcg);
5482 /*
5483 * Unregister events and notify userspace.
5484 * Notify userspace about cgroup removing only after rmdir of cgroup
5485 * directory to avoid race between userspace and kernelspace.
5486 */
5487 spin_lock(&memcg->event_list_lock);
5488 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5489 list_del_init(&event->list);
5490 schedule_work(&event->remove);
5491 }
5492 spin_unlock(&memcg->event_list_lock);
5493
5494 page_counter_set_min(&memcg->memory, 0);
5495 page_counter_set_low(&memcg->memory, 0);
5496
5497 memcg_offline_kmem(memcg);
5498 wb_memcg_offline(memcg);
5499
5500 drain_all_stock(memcg);
5501
5502 mem_cgroup_id_put(memcg);
5503 }
5504
mem_cgroup_css_released(struct cgroup_subsys_state * css)5505 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5506 {
5507 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5508
5509 invalidate_reclaim_iterators(memcg);
5510 }
5511
mem_cgroup_css_free(struct cgroup_subsys_state * css)5512 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5513 {
5514 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5515 int __maybe_unused i;
5516
5517 #ifdef CONFIG_CGROUP_WRITEBACK
5518 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5519 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5520 #endif
5521 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5522 static_branch_dec(&memcg_sockets_enabled_key);
5523
5524 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5525 static_branch_dec(&memcg_sockets_enabled_key);
5526
5527 vmpressure_cleanup(&memcg->vmpressure);
5528 cancel_work_sync(&memcg->high_work);
5529 mem_cgroup_remove_from_trees(memcg);
5530 memcg_free_shrinker_maps(memcg);
5531 memcg_free_kmem(memcg);
5532 mem_cgroup_free(memcg);
5533 }
5534
5535 /**
5536 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5537 * @css: the target css
5538 *
5539 * Reset the states of the mem_cgroup associated with @css. This is
5540 * invoked when the userland requests disabling on the default hierarchy
5541 * but the memcg is pinned through dependency. The memcg should stop
5542 * applying policies and should revert to the vanilla state as it may be
5543 * made visible again.
5544 *
5545 * The current implementation only resets the essential configurations.
5546 * This needs to be expanded to cover all the visible parts.
5547 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5548 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5549 {
5550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5551
5552 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5553 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5554 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5555 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5556 page_counter_set_min(&memcg->memory, 0);
5557 page_counter_set_low(&memcg->memory, 0);
5558 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5559 memcg->soft_limit = PAGE_COUNTER_MAX;
5560 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5561 memcg_wb_domain_size_changed(memcg);
5562 }
5563
5564 #ifdef CONFIG_MMU
5565 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5566 static int mem_cgroup_do_precharge(unsigned long count)
5567 {
5568 int ret;
5569
5570 /* Try a single bulk charge without reclaim first, kswapd may wake */
5571 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5572 if (!ret) {
5573 mc.precharge += count;
5574 return ret;
5575 }
5576
5577 /* Try charges one by one with reclaim, but do not retry */
5578 while (count--) {
5579 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5580 if (ret)
5581 return ret;
5582 mc.precharge++;
5583 cond_resched();
5584 }
5585 return 0;
5586 }
5587
5588 union mc_target {
5589 struct page *page;
5590 swp_entry_t ent;
5591 };
5592
5593 enum mc_target_type {
5594 MC_TARGET_NONE = 0,
5595 MC_TARGET_PAGE,
5596 MC_TARGET_SWAP,
5597 MC_TARGET_DEVICE,
5598 };
5599
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5600 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5601 unsigned long addr, pte_t ptent)
5602 {
5603 struct page *page = vm_normal_page(vma, addr, ptent);
5604
5605 if (!page || !page_mapped(page))
5606 return NULL;
5607 if (PageAnon(page)) {
5608 if (!(mc.flags & MOVE_ANON))
5609 return NULL;
5610 } else {
5611 if (!(mc.flags & MOVE_FILE))
5612 return NULL;
5613 }
5614 if (!get_page_unless_zero(page))
5615 return NULL;
5616
5617 return page;
5618 }
5619
5620 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5621 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5622 pte_t ptent, swp_entry_t *entry)
5623 {
5624 struct page *page = NULL;
5625 swp_entry_t ent = pte_to_swp_entry(ptent);
5626
5627 if (!(mc.flags & MOVE_ANON))
5628 return NULL;
5629
5630 /*
5631 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5632 * a device and because they are not accessible by CPU they are store
5633 * as special swap entry in the CPU page table.
5634 */
5635 if (is_device_private_entry(ent)) {
5636 page = device_private_entry_to_page(ent);
5637 /*
5638 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5639 * a refcount of 1 when free (unlike normal page)
5640 */
5641 if (!page_ref_add_unless(page, 1, 1))
5642 return NULL;
5643 return page;
5644 }
5645
5646 if (non_swap_entry(ent))
5647 return NULL;
5648
5649 /*
5650 * Because lookup_swap_cache() updates some statistics counter,
5651 * we call find_get_page() with swapper_space directly.
5652 */
5653 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5654 entry->val = ent.val;
5655
5656 return page;
5657 }
5658 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5659 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5660 pte_t ptent, swp_entry_t *entry)
5661 {
5662 return NULL;
5663 }
5664 #endif
5665
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5666 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5667 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5668 {
5669 if (!vma->vm_file) /* anonymous vma */
5670 return NULL;
5671 if (!(mc.flags & MOVE_FILE))
5672 return NULL;
5673
5674 /* page is moved even if it's not RSS of this task(page-faulted). */
5675 /* shmem/tmpfs may report page out on swap: account for that too. */
5676 return find_get_incore_page(vma->vm_file->f_mapping,
5677 linear_page_index(vma, addr));
5678 }
5679
5680 /**
5681 * mem_cgroup_move_account - move account of the page
5682 * @page: the page
5683 * @compound: charge the page as compound or small page
5684 * @from: mem_cgroup which the page is moved from.
5685 * @to: mem_cgroup which the page is moved to. @from != @to.
5686 *
5687 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5688 *
5689 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5690 * from old cgroup.
5691 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5692 static int mem_cgroup_move_account(struct page *page,
5693 bool compound,
5694 struct mem_cgroup *from,
5695 struct mem_cgroup *to)
5696 {
5697 struct lruvec *from_vec, *to_vec;
5698 struct pglist_data *pgdat;
5699 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5700 int ret;
5701
5702 VM_BUG_ON(from == to);
5703 VM_BUG_ON_PAGE(PageLRU(page), page);
5704 VM_BUG_ON(compound && !PageTransHuge(page));
5705
5706 /*
5707 * Prevent mem_cgroup_migrate() from looking at
5708 * page->mem_cgroup of its source page while we change it.
5709 */
5710 ret = -EBUSY;
5711 if (!trylock_page(page))
5712 goto out;
5713
5714 ret = -EINVAL;
5715 if (page->mem_cgroup != from)
5716 goto out_unlock;
5717
5718 pgdat = page_pgdat(page);
5719 from_vec = mem_cgroup_lruvec(from, pgdat);
5720 to_vec = mem_cgroup_lruvec(to, pgdat);
5721
5722 lock_page_memcg(page);
5723
5724 if (PageAnon(page)) {
5725 if (page_mapped(page)) {
5726 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5727 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5728 if (PageTransHuge(page)) {
5729 __dec_lruvec_state(from_vec, NR_ANON_THPS);
5730 __inc_lruvec_state(to_vec, NR_ANON_THPS);
5731 }
5732
5733 }
5734 } else {
5735 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5736 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5737
5738 if (PageSwapBacked(page)) {
5739 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5740 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5741 }
5742
5743 if (page_mapped(page)) {
5744 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5745 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5746 }
5747
5748 if (PageDirty(page)) {
5749 struct address_space *mapping = page_mapping(page);
5750
5751 if (mapping_can_writeback(mapping)) {
5752 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5753 -nr_pages);
5754 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5755 nr_pages);
5756 }
5757 }
5758 }
5759
5760 if (PageWriteback(page)) {
5761 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5762 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5763 }
5764
5765 /*
5766 * All state has been migrated, let's switch to the new memcg.
5767 *
5768 * It is safe to change page->mem_cgroup here because the page
5769 * is referenced, charged, isolated, and locked: we can't race
5770 * with (un)charging, migration, LRU putback, or anything else
5771 * that would rely on a stable page->mem_cgroup.
5772 *
5773 * Note that lock_page_memcg is a memcg lock, not a page lock,
5774 * to save space. As soon as we switch page->mem_cgroup to a
5775 * new memcg that isn't locked, the above state can change
5776 * concurrently again. Make sure we're truly done with it.
5777 */
5778 smp_mb();
5779
5780 css_get(&to->css);
5781 css_put(&from->css);
5782
5783 page->mem_cgroup = to;
5784
5785 __unlock_page_memcg(from);
5786
5787 ret = 0;
5788
5789 local_irq_disable();
5790 mem_cgroup_charge_statistics(to, page, nr_pages);
5791 memcg_check_events(to, page);
5792 mem_cgroup_charge_statistics(from, page, -nr_pages);
5793 memcg_check_events(from, page);
5794 local_irq_enable();
5795 out_unlock:
5796 unlock_page(page);
5797 out:
5798 return ret;
5799 }
5800
5801 /**
5802 * get_mctgt_type - get target type of moving charge
5803 * @vma: the vma the pte to be checked belongs
5804 * @addr: the address corresponding to the pte to be checked
5805 * @ptent: the pte to be checked
5806 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5807 *
5808 * Returns
5809 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5810 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5811 * move charge. if @target is not NULL, the page is stored in target->page
5812 * with extra refcnt got(Callers should handle it).
5813 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5814 * target for charge migration. if @target is not NULL, the entry is stored
5815 * in target->ent.
5816 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5817 * (so ZONE_DEVICE page and thus not on the lru).
5818 * For now we such page is charge like a regular page would be as for all
5819 * intent and purposes it is just special memory taking the place of a
5820 * regular page.
5821 *
5822 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5823 *
5824 * Called with pte lock held.
5825 */
5826
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5827 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5828 unsigned long addr, pte_t ptent, union mc_target *target)
5829 {
5830 struct page *page = NULL;
5831 enum mc_target_type ret = MC_TARGET_NONE;
5832 swp_entry_t ent = { .val = 0 };
5833
5834 if (pte_present(ptent))
5835 page = mc_handle_present_pte(vma, addr, ptent);
5836 else if (is_swap_pte(ptent))
5837 page = mc_handle_swap_pte(vma, ptent, &ent);
5838 else if (pte_none(ptent))
5839 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5840
5841 if (!page && !ent.val)
5842 return ret;
5843 if (page) {
5844 /*
5845 * Do only loose check w/o serialization.
5846 * mem_cgroup_move_account() checks the page is valid or
5847 * not under LRU exclusion.
5848 */
5849 if (page->mem_cgroup == mc.from) {
5850 ret = MC_TARGET_PAGE;
5851 if (is_device_private_page(page))
5852 ret = MC_TARGET_DEVICE;
5853 if (target)
5854 target->page = page;
5855 }
5856 if (!ret || !target)
5857 put_page(page);
5858 }
5859 /*
5860 * There is a swap entry and a page doesn't exist or isn't charged.
5861 * But we cannot move a tail-page in a THP.
5862 */
5863 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5864 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5865 ret = MC_TARGET_SWAP;
5866 if (target)
5867 target->ent = ent;
5868 }
5869 return ret;
5870 }
5871
5872 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5873 /*
5874 * We don't consider PMD mapped swapping or file mapped pages because THP does
5875 * not support them for now.
5876 * Caller should make sure that pmd_trans_huge(pmd) is true.
5877 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5878 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5879 unsigned long addr, pmd_t pmd, union mc_target *target)
5880 {
5881 struct page *page = NULL;
5882 enum mc_target_type ret = MC_TARGET_NONE;
5883
5884 if (unlikely(is_swap_pmd(pmd))) {
5885 VM_BUG_ON(thp_migration_supported() &&
5886 !is_pmd_migration_entry(pmd));
5887 return ret;
5888 }
5889 page = pmd_page(pmd);
5890 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5891 if (!(mc.flags & MOVE_ANON))
5892 return ret;
5893 if (page->mem_cgroup == mc.from) {
5894 ret = MC_TARGET_PAGE;
5895 if (target) {
5896 get_page(page);
5897 target->page = page;
5898 }
5899 }
5900 return ret;
5901 }
5902 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5903 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5904 unsigned long addr, pmd_t pmd, union mc_target *target)
5905 {
5906 return MC_TARGET_NONE;
5907 }
5908 #endif
5909
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5910 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5911 unsigned long addr, unsigned long end,
5912 struct mm_walk *walk)
5913 {
5914 struct vm_area_struct *vma = walk->vma;
5915 pte_t *pte;
5916 spinlock_t *ptl;
5917
5918 ptl = pmd_trans_huge_lock(pmd, vma);
5919 if (ptl) {
5920 /*
5921 * Note their can not be MC_TARGET_DEVICE for now as we do not
5922 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5923 * this might change.
5924 */
5925 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5926 mc.precharge += HPAGE_PMD_NR;
5927 spin_unlock(ptl);
5928 return 0;
5929 }
5930
5931 if (pmd_trans_unstable(pmd))
5932 return 0;
5933 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5934 for (; addr != end; pte++, addr += PAGE_SIZE)
5935 if (get_mctgt_type(vma, addr, *pte, NULL))
5936 mc.precharge++; /* increment precharge temporarily */
5937 pte_unmap_unlock(pte - 1, ptl);
5938 cond_resched();
5939
5940 return 0;
5941 }
5942
5943 static const struct mm_walk_ops precharge_walk_ops = {
5944 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5945 };
5946
mem_cgroup_count_precharge(struct mm_struct * mm)5947 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5948 {
5949 unsigned long precharge;
5950
5951 mmap_read_lock(mm);
5952 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5953 mmap_read_unlock(mm);
5954
5955 precharge = mc.precharge;
5956 mc.precharge = 0;
5957
5958 return precharge;
5959 }
5960
mem_cgroup_precharge_mc(struct mm_struct * mm)5961 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5962 {
5963 unsigned long precharge = mem_cgroup_count_precharge(mm);
5964
5965 VM_BUG_ON(mc.moving_task);
5966 mc.moving_task = current;
5967 return mem_cgroup_do_precharge(precharge);
5968 }
5969
5970 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)5971 static void __mem_cgroup_clear_mc(void)
5972 {
5973 struct mem_cgroup *from = mc.from;
5974 struct mem_cgroup *to = mc.to;
5975
5976 /* we must uncharge all the leftover precharges from mc.to */
5977 if (mc.precharge) {
5978 cancel_charge(mc.to, mc.precharge);
5979 mc.precharge = 0;
5980 }
5981 /*
5982 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5983 * we must uncharge here.
5984 */
5985 if (mc.moved_charge) {
5986 cancel_charge(mc.from, mc.moved_charge);
5987 mc.moved_charge = 0;
5988 }
5989 /* we must fixup refcnts and charges */
5990 if (mc.moved_swap) {
5991 /* uncharge swap account from the old cgroup */
5992 if (!mem_cgroup_is_root(mc.from))
5993 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5994
5995 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5996
5997 /*
5998 * we charged both to->memory and to->memsw, so we
5999 * should uncharge to->memory.
6000 */
6001 if (!mem_cgroup_is_root(mc.to))
6002 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6003
6004 mc.moved_swap = 0;
6005 }
6006 memcg_oom_recover(from);
6007 memcg_oom_recover(to);
6008 wake_up_all(&mc.waitq);
6009 }
6010
mem_cgroup_clear_mc(void)6011 static void mem_cgroup_clear_mc(void)
6012 {
6013 struct mm_struct *mm = mc.mm;
6014
6015 /*
6016 * we must clear moving_task before waking up waiters at the end of
6017 * task migration.
6018 */
6019 mc.moving_task = NULL;
6020 __mem_cgroup_clear_mc();
6021 spin_lock(&mc.lock);
6022 mc.from = NULL;
6023 mc.to = NULL;
6024 mc.mm = NULL;
6025 spin_unlock(&mc.lock);
6026
6027 mmput(mm);
6028 }
6029
mem_cgroup_can_attach(struct cgroup_taskset * tset)6030 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6031 {
6032 struct cgroup_subsys_state *css;
6033 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6034 struct mem_cgroup *from;
6035 struct task_struct *leader, *p;
6036 struct mm_struct *mm;
6037 unsigned long move_flags;
6038 int ret = 0;
6039
6040 /* charge immigration isn't supported on the default hierarchy */
6041 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6042 return 0;
6043
6044 /*
6045 * Multi-process migrations only happen on the default hierarchy
6046 * where charge immigration is not used. Perform charge
6047 * immigration if @tset contains a leader and whine if there are
6048 * multiple.
6049 */
6050 p = NULL;
6051 cgroup_taskset_for_each_leader(leader, css, tset) {
6052 WARN_ON_ONCE(p);
6053 p = leader;
6054 memcg = mem_cgroup_from_css(css);
6055 }
6056 if (!p)
6057 return 0;
6058
6059 /*
6060 * We are now commited to this value whatever it is. Changes in this
6061 * tunable will only affect upcoming migrations, not the current one.
6062 * So we need to save it, and keep it going.
6063 */
6064 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6065 if (!move_flags)
6066 return 0;
6067
6068 from = mem_cgroup_from_task(p);
6069
6070 VM_BUG_ON(from == memcg);
6071
6072 mm = get_task_mm(p);
6073 if (!mm)
6074 return 0;
6075 /* We move charges only when we move a owner of the mm */
6076 if (mm->owner == p) {
6077 VM_BUG_ON(mc.from);
6078 VM_BUG_ON(mc.to);
6079 VM_BUG_ON(mc.precharge);
6080 VM_BUG_ON(mc.moved_charge);
6081 VM_BUG_ON(mc.moved_swap);
6082
6083 spin_lock(&mc.lock);
6084 mc.mm = mm;
6085 mc.from = from;
6086 mc.to = memcg;
6087 mc.flags = move_flags;
6088 spin_unlock(&mc.lock);
6089 /* We set mc.moving_task later */
6090
6091 ret = mem_cgroup_precharge_mc(mm);
6092 if (ret)
6093 mem_cgroup_clear_mc();
6094 } else {
6095 mmput(mm);
6096 }
6097 return ret;
6098 }
6099
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6100 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6101 {
6102 if (mc.to)
6103 mem_cgroup_clear_mc();
6104 }
6105
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6106 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6107 unsigned long addr, unsigned long end,
6108 struct mm_walk *walk)
6109 {
6110 int ret = 0;
6111 struct vm_area_struct *vma = walk->vma;
6112 pte_t *pte;
6113 spinlock_t *ptl;
6114 enum mc_target_type target_type;
6115 union mc_target target;
6116 struct page *page;
6117
6118 ptl = pmd_trans_huge_lock(pmd, vma);
6119 if (ptl) {
6120 if (mc.precharge < HPAGE_PMD_NR) {
6121 spin_unlock(ptl);
6122 return 0;
6123 }
6124 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6125 if (target_type == MC_TARGET_PAGE) {
6126 page = target.page;
6127 if (!isolate_lru_page(page)) {
6128 if (!mem_cgroup_move_account(page, true,
6129 mc.from, mc.to)) {
6130 mc.precharge -= HPAGE_PMD_NR;
6131 mc.moved_charge += HPAGE_PMD_NR;
6132 }
6133 putback_lru_page(page);
6134 }
6135 put_page(page);
6136 } else if (target_type == MC_TARGET_DEVICE) {
6137 page = target.page;
6138 if (!mem_cgroup_move_account(page, true,
6139 mc.from, mc.to)) {
6140 mc.precharge -= HPAGE_PMD_NR;
6141 mc.moved_charge += HPAGE_PMD_NR;
6142 }
6143 put_page(page);
6144 }
6145 spin_unlock(ptl);
6146 return 0;
6147 }
6148
6149 if (pmd_trans_unstable(pmd))
6150 return 0;
6151 retry:
6152 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6153 for (; addr != end; addr += PAGE_SIZE) {
6154 pte_t ptent = *(pte++);
6155 bool device = false;
6156 swp_entry_t ent;
6157
6158 if (!mc.precharge)
6159 break;
6160
6161 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6162 case MC_TARGET_DEVICE:
6163 device = true;
6164 fallthrough;
6165 case MC_TARGET_PAGE:
6166 page = target.page;
6167 /*
6168 * We can have a part of the split pmd here. Moving it
6169 * can be done but it would be too convoluted so simply
6170 * ignore such a partial THP and keep it in original
6171 * memcg. There should be somebody mapping the head.
6172 */
6173 if (PageTransCompound(page))
6174 goto put;
6175 if (!device && isolate_lru_page(page))
6176 goto put;
6177 if (!mem_cgroup_move_account(page, false,
6178 mc.from, mc.to)) {
6179 mc.precharge--;
6180 /* we uncharge from mc.from later. */
6181 mc.moved_charge++;
6182 }
6183 if (!device)
6184 putback_lru_page(page);
6185 put: /* get_mctgt_type() gets the page */
6186 put_page(page);
6187 break;
6188 case MC_TARGET_SWAP:
6189 ent = target.ent;
6190 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6191 mc.precharge--;
6192 mem_cgroup_id_get_many(mc.to, 1);
6193 /* we fixup other refcnts and charges later. */
6194 mc.moved_swap++;
6195 }
6196 break;
6197 default:
6198 break;
6199 }
6200 }
6201 pte_unmap_unlock(pte - 1, ptl);
6202 cond_resched();
6203
6204 if (addr != end) {
6205 /*
6206 * We have consumed all precharges we got in can_attach().
6207 * We try charge one by one, but don't do any additional
6208 * charges to mc.to if we have failed in charge once in attach()
6209 * phase.
6210 */
6211 ret = mem_cgroup_do_precharge(1);
6212 if (!ret)
6213 goto retry;
6214 }
6215
6216 return ret;
6217 }
6218
6219 static const struct mm_walk_ops charge_walk_ops = {
6220 .pmd_entry = mem_cgroup_move_charge_pte_range,
6221 };
6222
mem_cgroup_move_charge(void)6223 static void mem_cgroup_move_charge(void)
6224 {
6225 lru_add_drain_all();
6226 /*
6227 * Signal lock_page_memcg() to take the memcg's move_lock
6228 * while we're moving its pages to another memcg. Then wait
6229 * for already started RCU-only updates to finish.
6230 */
6231 atomic_inc(&mc.from->moving_account);
6232 synchronize_rcu();
6233 retry:
6234 if (unlikely(!mmap_read_trylock(mc.mm))) {
6235 /*
6236 * Someone who are holding the mmap_lock might be waiting in
6237 * waitq. So we cancel all extra charges, wake up all waiters,
6238 * and retry. Because we cancel precharges, we might not be able
6239 * to move enough charges, but moving charge is a best-effort
6240 * feature anyway, so it wouldn't be a big problem.
6241 */
6242 __mem_cgroup_clear_mc();
6243 cond_resched();
6244 goto retry;
6245 }
6246 /*
6247 * When we have consumed all precharges and failed in doing
6248 * additional charge, the page walk just aborts.
6249 */
6250 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6251 NULL);
6252
6253 mmap_read_unlock(mc.mm);
6254 atomic_dec(&mc.from->moving_account);
6255 }
6256
mem_cgroup_move_task(void)6257 static void mem_cgroup_move_task(void)
6258 {
6259 if (mc.to) {
6260 mem_cgroup_move_charge();
6261 mem_cgroup_clear_mc();
6262 }
6263 }
6264 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6265 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6266 {
6267 return 0;
6268 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6269 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6270 {
6271 }
mem_cgroup_move_task(void)6272 static void mem_cgroup_move_task(void)
6273 {
6274 }
6275 #endif
6276
6277 /*
6278 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6279 * to verify whether we're attached to the default hierarchy on each mount
6280 * attempt.
6281 */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)6282 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6283 {
6284 /*
6285 * use_hierarchy is forced on the default hierarchy. cgroup core
6286 * guarantees that @root doesn't have any children, so turning it
6287 * on for the root memcg is enough.
6288 */
6289 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6290 root_mem_cgroup->use_hierarchy = true;
6291 else
6292 root_mem_cgroup->use_hierarchy = false;
6293 }
6294
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6295 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6296 {
6297 if (value == PAGE_COUNTER_MAX)
6298 seq_puts(m, "max\n");
6299 else
6300 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6301
6302 return 0;
6303 }
6304
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6305 static u64 memory_current_read(struct cgroup_subsys_state *css,
6306 struct cftype *cft)
6307 {
6308 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6309
6310 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6311 }
6312
memory_min_show(struct seq_file * m,void * v)6313 static int memory_min_show(struct seq_file *m, void *v)
6314 {
6315 return seq_puts_memcg_tunable(m,
6316 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6317 }
6318
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6319 static ssize_t memory_min_write(struct kernfs_open_file *of,
6320 char *buf, size_t nbytes, loff_t off)
6321 {
6322 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6323 unsigned long min;
6324 int err;
6325
6326 buf = strstrip(buf);
6327 err = page_counter_memparse(buf, "max", &min);
6328 if (err)
6329 return err;
6330
6331 page_counter_set_min(&memcg->memory, min);
6332
6333 return nbytes;
6334 }
6335
memory_low_show(struct seq_file * m,void * v)6336 static int memory_low_show(struct seq_file *m, void *v)
6337 {
6338 return seq_puts_memcg_tunable(m,
6339 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6340 }
6341
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6342 static ssize_t memory_low_write(struct kernfs_open_file *of,
6343 char *buf, size_t nbytes, loff_t off)
6344 {
6345 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6346 unsigned long low;
6347 int err;
6348
6349 buf = strstrip(buf);
6350 err = page_counter_memparse(buf, "max", &low);
6351 if (err)
6352 return err;
6353
6354 page_counter_set_low(&memcg->memory, low);
6355
6356 return nbytes;
6357 }
6358
memory_high_show(struct seq_file * m,void * v)6359 static int memory_high_show(struct seq_file *m, void *v)
6360 {
6361 return seq_puts_memcg_tunable(m,
6362 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6363 }
6364
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6365 static ssize_t memory_high_write(struct kernfs_open_file *of,
6366 char *buf, size_t nbytes, loff_t off)
6367 {
6368 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6369 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6370 bool drained = false;
6371 unsigned long high;
6372 int err;
6373
6374 buf = strstrip(buf);
6375 err = page_counter_memparse(buf, "max", &high);
6376 if (err)
6377 return err;
6378
6379 page_counter_set_high(&memcg->memory, high);
6380
6381 for (;;) {
6382 unsigned long nr_pages = page_counter_read(&memcg->memory);
6383 unsigned long reclaimed;
6384
6385 if (nr_pages <= high)
6386 break;
6387
6388 if (signal_pending(current))
6389 break;
6390
6391 if (!drained) {
6392 drain_all_stock(memcg);
6393 drained = true;
6394 continue;
6395 }
6396
6397 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6398 GFP_KERNEL, true);
6399
6400 if (!reclaimed && !nr_retries--)
6401 break;
6402 }
6403
6404 memcg_wb_domain_size_changed(memcg);
6405 return nbytes;
6406 }
6407
memory_max_show(struct seq_file * m,void * v)6408 static int memory_max_show(struct seq_file *m, void *v)
6409 {
6410 return seq_puts_memcg_tunable(m,
6411 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6412 }
6413
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6414 static ssize_t memory_max_write(struct kernfs_open_file *of,
6415 char *buf, size_t nbytes, loff_t off)
6416 {
6417 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6418 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6419 bool drained = false;
6420 unsigned long max;
6421 int err;
6422
6423 buf = strstrip(buf);
6424 err = page_counter_memparse(buf, "max", &max);
6425 if (err)
6426 return err;
6427
6428 xchg(&memcg->memory.max, max);
6429
6430 for (;;) {
6431 unsigned long nr_pages = page_counter_read(&memcg->memory);
6432
6433 if (nr_pages <= max)
6434 break;
6435
6436 if (signal_pending(current))
6437 break;
6438
6439 if (!drained) {
6440 drain_all_stock(memcg);
6441 drained = true;
6442 continue;
6443 }
6444
6445 if (nr_reclaims) {
6446 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6447 GFP_KERNEL, true))
6448 nr_reclaims--;
6449 continue;
6450 }
6451
6452 memcg_memory_event(memcg, MEMCG_OOM);
6453 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6454 break;
6455 }
6456
6457 memcg_wb_domain_size_changed(memcg);
6458 return nbytes;
6459 }
6460
__memory_events_show(struct seq_file * m,atomic_long_t * events)6461 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6462 {
6463 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6464 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6465 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6466 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6467 seq_printf(m, "oom_kill %lu\n",
6468 atomic_long_read(&events[MEMCG_OOM_KILL]));
6469 }
6470
memory_events_show(struct seq_file * m,void * v)6471 static int memory_events_show(struct seq_file *m, void *v)
6472 {
6473 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6474
6475 __memory_events_show(m, memcg->memory_events);
6476 return 0;
6477 }
6478
memory_events_local_show(struct seq_file * m,void * v)6479 static int memory_events_local_show(struct seq_file *m, void *v)
6480 {
6481 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6482
6483 __memory_events_show(m, memcg->memory_events_local);
6484 return 0;
6485 }
6486
memory_stat_show(struct seq_file * m,void * v)6487 static int memory_stat_show(struct seq_file *m, void *v)
6488 {
6489 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6490 char *buf;
6491
6492 buf = memory_stat_format(memcg);
6493 if (!buf)
6494 return -ENOMEM;
6495 seq_puts(m, buf);
6496 kfree(buf);
6497 return 0;
6498 }
6499
6500 #ifdef CONFIG_NUMA
memory_numa_stat_show(struct seq_file * m,void * v)6501 static int memory_numa_stat_show(struct seq_file *m, void *v)
6502 {
6503 int i;
6504 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6505
6506 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6507 int nid;
6508
6509 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6510 continue;
6511
6512 seq_printf(m, "%s", memory_stats[i].name);
6513 for_each_node_state(nid, N_MEMORY) {
6514 u64 size;
6515 struct lruvec *lruvec;
6516
6517 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6518 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6519 size *= memory_stats[i].ratio;
6520 seq_printf(m, " N%d=%llu", nid, size);
6521 }
6522 seq_putc(m, '\n');
6523 }
6524
6525 return 0;
6526 }
6527 #endif
6528
memory_oom_group_show(struct seq_file * m,void * v)6529 static int memory_oom_group_show(struct seq_file *m, void *v)
6530 {
6531 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6532
6533 seq_printf(m, "%d\n", memcg->oom_group);
6534
6535 return 0;
6536 }
6537
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6538 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6539 char *buf, size_t nbytes, loff_t off)
6540 {
6541 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6542 int ret, oom_group;
6543
6544 buf = strstrip(buf);
6545 if (!buf)
6546 return -EINVAL;
6547
6548 ret = kstrtoint(buf, 0, &oom_group);
6549 if (ret)
6550 return ret;
6551
6552 if (oom_group != 0 && oom_group != 1)
6553 return -EINVAL;
6554
6555 memcg->oom_group = oom_group;
6556
6557 return nbytes;
6558 }
6559
6560 static struct cftype memory_files[] = {
6561 {
6562 .name = "current",
6563 .flags = CFTYPE_NOT_ON_ROOT,
6564 .read_u64 = memory_current_read,
6565 },
6566 {
6567 .name = "min",
6568 .flags = CFTYPE_NOT_ON_ROOT,
6569 .seq_show = memory_min_show,
6570 .write = memory_min_write,
6571 },
6572 {
6573 .name = "low",
6574 .flags = CFTYPE_NOT_ON_ROOT,
6575 .seq_show = memory_low_show,
6576 .write = memory_low_write,
6577 },
6578 {
6579 .name = "high",
6580 .flags = CFTYPE_NOT_ON_ROOT,
6581 .seq_show = memory_high_show,
6582 .write = memory_high_write,
6583 },
6584 {
6585 .name = "max",
6586 .flags = CFTYPE_NOT_ON_ROOT,
6587 .seq_show = memory_max_show,
6588 .write = memory_max_write,
6589 },
6590 {
6591 .name = "events",
6592 .flags = CFTYPE_NOT_ON_ROOT,
6593 .file_offset = offsetof(struct mem_cgroup, events_file),
6594 .seq_show = memory_events_show,
6595 },
6596 {
6597 .name = "events.local",
6598 .flags = CFTYPE_NOT_ON_ROOT,
6599 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6600 .seq_show = memory_events_local_show,
6601 },
6602 {
6603 .name = "stat",
6604 .seq_show = memory_stat_show,
6605 },
6606 #ifdef CONFIG_NUMA
6607 {
6608 .name = "numa_stat",
6609 .seq_show = memory_numa_stat_show,
6610 },
6611 #endif
6612 {
6613 .name = "oom.group",
6614 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6615 .seq_show = memory_oom_group_show,
6616 .write = memory_oom_group_write,
6617 },
6618 { } /* terminate */
6619 };
6620
6621 struct cgroup_subsys memory_cgrp_subsys = {
6622 .css_alloc = mem_cgroup_css_alloc,
6623 .css_online = mem_cgroup_css_online,
6624 .css_offline = mem_cgroup_css_offline,
6625 .css_released = mem_cgroup_css_released,
6626 .css_free = mem_cgroup_css_free,
6627 .css_reset = mem_cgroup_css_reset,
6628 .can_attach = mem_cgroup_can_attach,
6629 .cancel_attach = mem_cgroup_cancel_attach,
6630 .post_attach = mem_cgroup_move_task,
6631 .bind = mem_cgroup_bind,
6632 .dfl_cftypes = memory_files,
6633 .legacy_cftypes = mem_cgroup_legacy_files,
6634 .early_init = 0,
6635 };
6636
6637 /*
6638 * This function calculates an individual cgroup's effective
6639 * protection which is derived from its own memory.min/low, its
6640 * parent's and siblings' settings, as well as the actual memory
6641 * distribution in the tree.
6642 *
6643 * The following rules apply to the effective protection values:
6644 *
6645 * 1. At the first level of reclaim, effective protection is equal to
6646 * the declared protection in memory.min and memory.low.
6647 *
6648 * 2. To enable safe delegation of the protection configuration, at
6649 * subsequent levels the effective protection is capped to the
6650 * parent's effective protection.
6651 *
6652 * 3. To make complex and dynamic subtrees easier to configure, the
6653 * user is allowed to overcommit the declared protection at a given
6654 * level. If that is the case, the parent's effective protection is
6655 * distributed to the children in proportion to how much protection
6656 * they have declared and how much of it they are utilizing.
6657 *
6658 * This makes distribution proportional, but also work-conserving:
6659 * if one cgroup claims much more protection than it uses memory,
6660 * the unused remainder is available to its siblings.
6661 *
6662 * 4. Conversely, when the declared protection is undercommitted at a
6663 * given level, the distribution of the larger parental protection
6664 * budget is NOT proportional. A cgroup's protection from a sibling
6665 * is capped to its own memory.min/low setting.
6666 *
6667 * 5. However, to allow protecting recursive subtrees from each other
6668 * without having to declare each individual cgroup's fixed share
6669 * of the ancestor's claim to protection, any unutilized -
6670 * "floating" - protection from up the tree is distributed in
6671 * proportion to each cgroup's *usage*. This makes the protection
6672 * neutral wrt sibling cgroups and lets them compete freely over
6673 * the shared parental protection budget, but it protects the
6674 * subtree as a whole from neighboring subtrees.
6675 *
6676 * Note that 4. and 5. are not in conflict: 4. is about protecting
6677 * against immediate siblings whereas 5. is about protecting against
6678 * neighboring subtrees.
6679 */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6680 static unsigned long effective_protection(unsigned long usage,
6681 unsigned long parent_usage,
6682 unsigned long setting,
6683 unsigned long parent_effective,
6684 unsigned long siblings_protected)
6685 {
6686 unsigned long protected;
6687 unsigned long ep;
6688
6689 protected = min(usage, setting);
6690 /*
6691 * If all cgroups at this level combined claim and use more
6692 * protection then what the parent affords them, distribute
6693 * shares in proportion to utilization.
6694 *
6695 * We are using actual utilization rather than the statically
6696 * claimed protection in order to be work-conserving: claimed
6697 * but unused protection is available to siblings that would
6698 * otherwise get a smaller chunk than what they claimed.
6699 */
6700 if (siblings_protected > parent_effective)
6701 return protected * parent_effective / siblings_protected;
6702
6703 /*
6704 * Ok, utilized protection of all children is within what the
6705 * parent affords them, so we know whatever this child claims
6706 * and utilizes is effectively protected.
6707 *
6708 * If there is unprotected usage beyond this value, reclaim
6709 * will apply pressure in proportion to that amount.
6710 *
6711 * If there is unutilized protection, the cgroup will be fully
6712 * shielded from reclaim, but we do return a smaller value for
6713 * protection than what the group could enjoy in theory. This
6714 * is okay. With the overcommit distribution above, effective
6715 * protection is always dependent on how memory is actually
6716 * consumed among the siblings anyway.
6717 */
6718 ep = protected;
6719
6720 /*
6721 * If the children aren't claiming (all of) the protection
6722 * afforded to them by the parent, distribute the remainder in
6723 * proportion to the (unprotected) memory of each cgroup. That
6724 * way, cgroups that aren't explicitly prioritized wrt each
6725 * other compete freely over the allowance, but they are
6726 * collectively protected from neighboring trees.
6727 *
6728 * We're using unprotected memory for the weight so that if
6729 * some cgroups DO claim explicit protection, we don't protect
6730 * the same bytes twice.
6731 *
6732 * Check both usage and parent_usage against the respective
6733 * protected values. One should imply the other, but they
6734 * aren't read atomically - make sure the division is sane.
6735 */
6736 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6737 return ep;
6738 if (parent_effective > siblings_protected &&
6739 parent_usage > siblings_protected &&
6740 usage > protected) {
6741 unsigned long unclaimed;
6742
6743 unclaimed = parent_effective - siblings_protected;
6744 unclaimed *= usage - protected;
6745 unclaimed /= parent_usage - siblings_protected;
6746
6747 ep += unclaimed;
6748 }
6749
6750 return ep;
6751 }
6752
6753 /**
6754 * mem_cgroup_protected - check if memory consumption is in the normal range
6755 * @root: the top ancestor of the sub-tree being checked
6756 * @memcg: the memory cgroup to check
6757 *
6758 * WARNING: This function is not stateless! It can only be used as part
6759 * of a top-down tree iteration, not for isolated queries.
6760 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)6761 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6762 struct mem_cgroup *memcg)
6763 {
6764 unsigned long usage, parent_usage;
6765 struct mem_cgroup *parent;
6766
6767 if (mem_cgroup_disabled())
6768 return;
6769
6770 if (!root)
6771 root = root_mem_cgroup;
6772
6773 /*
6774 * Effective values of the reclaim targets are ignored so they
6775 * can be stale. Have a look at mem_cgroup_protection for more
6776 * details.
6777 * TODO: calculation should be more robust so that we do not need
6778 * that special casing.
6779 */
6780 if (memcg == root)
6781 return;
6782
6783 usage = page_counter_read(&memcg->memory);
6784 if (!usage)
6785 return;
6786
6787 parent = parent_mem_cgroup(memcg);
6788 /* No parent means a non-hierarchical mode on v1 memcg */
6789 if (!parent)
6790 return;
6791
6792 if (parent == root) {
6793 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6794 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6795 return;
6796 }
6797
6798 parent_usage = page_counter_read(&parent->memory);
6799
6800 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6801 READ_ONCE(memcg->memory.min),
6802 READ_ONCE(parent->memory.emin),
6803 atomic_long_read(&parent->memory.children_min_usage)));
6804
6805 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6806 READ_ONCE(memcg->memory.low),
6807 READ_ONCE(parent->memory.elow),
6808 atomic_long_read(&parent->memory.children_low_usage)));
6809 }
6810
6811 /**
6812 * __mem_cgroup_charge - charge a newly allocated page to a cgroup
6813 * @page: page to charge
6814 * @mm: mm context of the victim
6815 * @gfp_mask: reclaim mode
6816 *
6817 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6818 * pages according to @gfp_mask if necessary.
6819 *
6820 * Returns 0 on success. Otherwise, an error code is returned.
6821 */
__mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)6822 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6823 gfp_t gfp_mask)
6824 {
6825 unsigned int nr_pages = thp_nr_pages(page);
6826 struct mem_cgroup *memcg = NULL;
6827 int ret = 0;
6828
6829 if (PageSwapCache(page)) {
6830 swp_entry_t ent = { .val = page_private(page), };
6831 unsigned short id;
6832
6833 /*
6834 * Every swap fault against a single page tries to charge the
6835 * page, bail as early as possible. shmem_unuse() encounters
6836 * already charged pages, too. page->mem_cgroup is protected
6837 * by the page lock, which serializes swap cache removal, which
6838 * in turn serializes uncharging.
6839 */
6840 VM_BUG_ON_PAGE(!PageLocked(page), page);
6841 if (compound_head(page)->mem_cgroup)
6842 goto out;
6843
6844 id = lookup_swap_cgroup_id(ent);
6845 rcu_read_lock();
6846 memcg = mem_cgroup_from_id(id);
6847 if (memcg && !css_tryget_online(&memcg->css))
6848 memcg = NULL;
6849 rcu_read_unlock();
6850 }
6851
6852 if (!memcg)
6853 memcg = get_mem_cgroup_from_mm(mm);
6854
6855 ret = try_charge(memcg, gfp_mask, nr_pages);
6856 if (ret)
6857 goto out_put;
6858
6859 css_get(&memcg->css);
6860 commit_charge(page, memcg);
6861
6862 local_irq_disable();
6863 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6864 memcg_check_events(memcg, page);
6865 local_irq_enable();
6866
6867 /*
6868 * Cgroup1's unified memory+swap counter has been charged with the
6869 * new swapcache page, finish the transfer by uncharging the swap
6870 * slot. The swap slot would also get uncharged when it dies, but
6871 * it can stick around indefinitely and we'd count the page twice
6872 * the entire time.
6873 *
6874 * Cgroup2 has separate resource counters for memory and swap,
6875 * so this is a non-issue here. Memory and swap charge lifetimes
6876 * correspond 1:1 to page and swap slot lifetimes: we charge the
6877 * page to memory here, and uncharge swap when the slot is freed.
6878 */
6879 if (do_memsw_account() && PageSwapCache(page)) {
6880 swp_entry_t entry = { .val = page_private(page) };
6881 /*
6882 * The swap entry might not get freed for a long time,
6883 * let's not wait for it. The page already received a
6884 * memory+swap charge, drop the swap entry duplicate.
6885 */
6886 mem_cgroup_uncharge_swap(entry, nr_pages);
6887 }
6888
6889 out_put:
6890 css_put(&memcg->css);
6891 out:
6892 return ret;
6893 }
6894
6895 struct uncharge_gather {
6896 struct mem_cgroup *memcg;
6897 unsigned long nr_pages;
6898 unsigned long pgpgout;
6899 unsigned long nr_kmem;
6900 struct page *dummy_page;
6901 };
6902
uncharge_gather_clear(struct uncharge_gather * ug)6903 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6904 {
6905 memset(ug, 0, sizeof(*ug));
6906 }
6907
uncharge_batch(const struct uncharge_gather * ug)6908 static void uncharge_batch(const struct uncharge_gather *ug)
6909 {
6910 unsigned long flags;
6911
6912 if (!mem_cgroup_is_root(ug->memcg)) {
6913 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6914 if (do_memsw_account())
6915 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6916 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6917 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6918 memcg_oom_recover(ug->memcg);
6919 }
6920
6921 local_irq_save(flags);
6922 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6923 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6924 memcg_check_events(ug->memcg, ug->dummy_page);
6925 local_irq_restore(flags);
6926
6927 /* drop reference from uncharge_page */
6928 css_put(&ug->memcg->css);
6929 }
6930
uncharge_page(struct page * page,struct uncharge_gather * ug)6931 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6932 {
6933 unsigned long nr_pages;
6934
6935 VM_BUG_ON_PAGE(PageLRU(page), page);
6936
6937 if (!page->mem_cgroup)
6938 return;
6939
6940 /*
6941 * Nobody should be changing or seriously looking at
6942 * page->mem_cgroup at this point, we have fully
6943 * exclusive access to the page.
6944 */
6945
6946 if (ug->memcg != page->mem_cgroup) {
6947 if (ug->memcg) {
6948 uncharge_batch(ug);
6949 uncharge_gather_clear(ug);
6950 }
6951 ug->memcg = page->mem_cgroup;
6952
6953 /* pairs with css_put in uncharge_batch */
6954 css_get(&ug->memcg->css);
6955 }
6956
6957 nr_pages = compound_nr(page);
6958 ug->nr_pages += nr_pages;
6959
6960 if (!PageKmemcg(page)) {
6961 ug->pgpgout++;
6962 } else {
6963 ug->nr_kmem += nr_pages;
6964 __ClearPageKmemcg(page);
6965 }
6966
6967 ug->dummy_page = page;
6968 page->mem_cgroup = NULL;
6969 css_put(&ug->memcg->css);
6970 }
6971
uncharge_list(struct list_head * page_list)6972 static void uncharge_list(struct list_head *page_list)
6973 {
6974 struct uncharge_gather ug;
6975 struct list_head *next;
6976
6977 uncharge_gather_clear(&ug);
6978
6979 /*
6980 * Note that the list can be a single page->lru; hence the
6981 * do-while loop instead of a simple list_for_each_entry().
6982 */
6983 next = page_list->next;
6984 do {
6985 struct page *page;
6986
6987 page = list_entry(next, struct page, lru);
6988 next = page->lru.next;
6989
6990 uncharge_page(page, &ug);
6991 } while (next != page_list);
6992
6993 if (ug.memcg)
6994 uncharge_batch(&ug);
6995 }
6996
6997 /**
6998 * __mem_cgroup_uncharge - uncharge a page
6999 * @page: page to uncharge
7000 *
7001 * Uncharge a page previously charged with __mem_cgroup_charge().
7002 */
__mem_cgroup_uncharge(struct page * page)7003 void __mem_cgroup_uncharge(struct page *page)
7004 {
7005 struct uncharge_gather ug;
7006
7007 /* Don't touch page->lru of any random page, pre-check: */
7008 if (!page->mem_cgroup)
7009 return;
7010
7011 uncharge_gather_clear(&ug);
7012 uncharge_page(page, &ug);
7013 uncharge_batch(&ug);
7014 }
7015
7016 /**
7017 * __mem_cgroup_uncharge_list - uncharge a list of page
7018 * @page_list: list of pages to uncharge
7019 *
7020 * Uncharge a list of pages previously charged with
7021 * __mem_cgroup_charge().
7022 */
__mem_cgroup_uncharge_list(struct list_head * page_list)7023 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7024 {
7025 if (!list_empty(page_list))
7026 uncharge_list(page_list);
7027 }
7028
7029 /**
7030 * mem_cgroup_migrate - charge a page's replacement
7031 * @oldpage: currently circulating page
7032 * @newpage: replacement page
7033 *
7034 * Charge @newpage as a replacement page for @oldpage. @oldpage will
7035 * be uncharged upon free.
7036 *
7037 * Both pages must be locked, @newpage->mapping must be set up.
7038 */
mem_cgroup_migrate(struct page * oldpage,struct page * newpage)7039 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
7040 {
7041 struct mem_cgroup *memcg;
7042 unsigned int nr_pages;
7043 unsigned long flags;
7044
7045 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
7046 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
7047 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
7048 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
7049 newpage);
7050
7051 if (mem_cgroup_disabled())
7052 return;
7053
7054 /* Page cache replacement: new page already charged? */
7055 if (newpage->mem_cgroup)
7056 return;
7057
7058 /* Swapcache readahead pages can get replaced before being charged */
7059 memcg = oldpage->mem_cgroup;
7060 if (!memcg)
7061 return;
7062
7063 /* Force-charge the new page. The old one will be freed soon */
7064 nr_pages = thp_nr_pages(newpage);
7065
7066 page_counter_charge(&memcg->memory, nr_pages);
7067 if (do_memsw_account())
7068 page_counter_charge(&memcg->memsw, nr_pages);
7069
7070 css_get(&memcg->css);
7071 commit_charge(newpage, memcg);
7072
7073 local_irq_save(flags);
7074 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7075 memcg_check_events(memcg, newpage);
7076 local_irq_restore(flags);
7077 }
7078
7079 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7080 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7081
mem_cgroup_sk_alloc(struct sock * sk)7082 void mem_cgroup_sk_alloc(struct sock *sk)
7083 {
7084 struct mem_cgroup *memcg;
7085
7086 if (!mem_cgroup_sockets_enabled)
7087 return;
7088
7089 /* Do not associate the sock with unrelated interrupted task's memcg. */
7090 if (in_interrupt())
7091 return;
7092
7093 rcu_read_lock();
7094 memcg = mem_cgroup_from_task(current);
7095 if (memcg == root_mem_cgroup)
7096 goto out;
7097 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7098 goto out;
7099 if (css_tryget(&memcg->css))
7100 sk->sk_memcg = memcg;
7101 out:
7102 rcu_read_unlock();
7103 }
7104
mem_cgroup_sk_free(struct sock * sk)7105 void mem_cgroup_sk_free(struct sock *sk)
7106 {
7107 if (sk->sk_memcg)
7108 css_put(&sk->sk_memcg->css);
7109 }
7110
7111 /**
7112 * mem_cgroup_charge_skmem - charge socket memory
7113 * @memcg: memcg to charge
7114 * @nr_pages: number of pages to charge
7115 *
7116 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7117 * @memcg's configured limit, %false if the charge had to be forced.
7118 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7119 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7120 {
7121 gfp_t gfp_mask = GFP_KERNEL;
7122
7123 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7124 struct page_counter *fail;
7125
7126 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7127 memcg->tcpmem_pressure = 0;
7128 return true;
7129 }
7130 page_counter_charge(&memcg->tcpmem, nr_pages);
7131 memcg->tcpmem_pressure = 1;
7132 return false;
7133 }
7134
7135 /* Don't block in the packet receive path */
7136 if (in_softirq())
7137 gfp_mask = GFP_NOWAIT;
7138
7139 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7140
7141 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7142 return true;
7143
7144 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7145 return false;
7146 }
7147
7148 /**
7149 * mem_cgroup_uncharge_skmem - uncharge socket memory
7150 * @memcg: memcg to uncharge
7151 * @nr_pages: number of pages to uncharge
7152 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7153 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7154 {
7155 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7156 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7157 return;
7158 }
7159
7160 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7161
7162 refill_stock(memcg, nr_pages);
7163 }
7164
cgroup_memory(char * s)7165 static int __init cgroup_memory(char *s)
7166 {
7167 char *token;
7168
7169 while ((token = strsep(&s, ",")) != NULL) {
7170 if (!*token)
7171 continue;
7172 if (!strcmp(token, "nosocket"))
7173 cgroup_memory_nosocket = true;
7174 if (!strcmp(token, "nokmem"))
7175 cgroup_memory_nokmem = true;
7176 }
7177 return 1;
7178 }
7179 __setup("cgroup.memory=", cgroup_memory);
7180
7181 /*
7182 * subsys_initcall() for memory controller.
7183 *
7184 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7185 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7186 * basically everything that doesn't depend on a specific mem_cgroup structure
7187 * should be initialized from here.
7188 */
mem_cgroup_init(void)7189 static int __init mem_cgroup_init(void)
7190 {
7191 int cpu, node;
7192
7193 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7194 memcg_hotplug_cpu_dead);
7195
7196 for_each_possible_cpu(cpu)
7197 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7198 drain_local_stock);
7199
7200 for_each_node(node) {
7201 struct mem_cgroup_tree_per_node *rtpn;
7202
7203 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7204 node_online(node) ? node : NUMA_NO_NODE);
7205
7206 rtpn->rb_root = RB_ROOT;
7207 rtpn->rb_rightmost = NULL;
7208 spin_lock_init(&rtpn->lock);
7209 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7210 }
7211
7212 return 0;
7213 }
7214 subsys_initcall(mem_cgroup_init);
7215
7216 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7217 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7218 {
7219 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7220 /*
7221 * The root cgroup cannot be destroyed, so it's refcount must
7222 * always be >= 1.
7223 */
7224 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7225 VM_BUG_ON(1);
7226 break;
7227 }
7228 memcg = parent_mem_cgroup(memcg);
7229 if (!memcg)
7230 memcg = root_mem_cgroup;
7231 }
7232 return memcg;
7233 }
7234
7235 /**
7236 * mem_cgroup_swapout - transfer a memsw charge to swap
7237 * @page: page whose memsw charge to transfer
7238 * @entry: swap entry to move the charge to
7239 *
7240 * Transfer the memsw charge of @page to @entry.
7241 */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)7242 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7243 {
7244 struct mem_cgroup *memcg, *swap_memcg;
7245 unsigned int nr_entries;
7246 unsigned short oldid;
7247
7248 VM_BUG_ON_PAGE(PageLRU(page), page);
7249 VM_BUG_ON_PAGE(page_count(page), page);
7250
7251 if (mem_cgroup_disabled())
7252 return;
7253
7254 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7255 return;
7256
7257 memcg = page->mem_cgroup;
7258
7259 /* Readahead page, never charged */
7260 if (!memcg)
7261 return;
7262
7263 /*
7264 * In case the memcg owning these pages has been offlined and doesn't
7265 * have an ID allocated to it anymore, charge the closest online
7266 * ancestor for the swap instead and transfer the memory+swap charge.
7267 */
7268 swap_memcg = mem_cgroup_id_get_online(memcg);
7269 nr_entries = thp_nr_pages(page);
7270 /* Get references for the tail pages, too */
7271 if (nr_entries > 1)
7272 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7273 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7274 nr_entries);
7275 VM_BUG_ON_PAGE(oldid, page);
7276 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7277
7278 page->mem_cgroup = NULL;
7279
7280 if (!mem_cgroup_is_root(memcg))
7281 page_counter_uncharge(&memcg->memory, nr_entries);
7282
7283 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7284 if (!mem_cgroup_is_root(swap_memcg))
7285 page_counter_charge(&swap_memcg->memsw, nr_entries);
7286 page_counter_uncharge(&memcg->memsw, nr_entries);
7287 }
7288
7289 /*
7290 * Interrupts should be disabled here because the caller holds the
7291 * i_pages lock which is taken with interrupts-off. It is
7292 * important here to have the interrupts disabled because it is the
7293 * only synchronisation we have for updating the per-CPU variables.
7294 */
7295 VM_BUG_ON(!irqs_disabled());
7296 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7297 memcg_check_events(memcg, page);
7298
7299 css_put(&memcg->css);
7300 }
7301
7302 /**
7303 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7304 * @page: page being added to swap
7305 * @entry: swap entry to charge
7306 *
7307 * Try to charge @page's memcg for the swap space at @entry.
7308 *
7309 * Returns 0 on success, -ENOMEM on failure.
7310 */
__mem_cgroup_try_charge_swap(struct page * page,swp_entry_t entry)7311 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7312 {
7313 unsigned int nr_pages = thp_nr_pages(page);
7314 struct page_counter *counter;
7315 struct mem_cgroup *memcg;
7316 unsigned short oldid;
7317
7318 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7319 return 0;
7320
7321 memcg = page->mem_cgroup;
7322
7323 /* Readahead page, never charged */
7324 if (!memcg)
7325 return 0;
7326
7327 if (!entry.val) {
7328 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7329 return 0;
7330 }
7331
7332 memcg = mem_cgroup_id_get_online(memcg);
7333
7334 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7335 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7336 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7337 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7338 mem_cgroup_id_put(memcg);
7339 return -ENOMEM;
7340 }
7341
7342 /* Get references for the tail pages, too */
7343 if (nr_pages > 1)
7344 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7345 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7346 VM_BUG_ON_PAGE(oldid, page);
7347 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7348
7349 return 0;
7350 }
7351
7352 /**
7353 * __mem_cgroup_uncharge_swap - uncharge swap space
7354 * @entry: swap entry to uncharge
7355 * @nr_pages: the amount of swap space to uncharge
7356 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7357 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7358 {
7359 struct mem_cgroup *memcg;
7360 unsigned short id;
7361
7362 id = swap_cgroup_record(entry, 0, nr_pages);
7363 rcu_read_lock();
7364 memcg = mem_cgroup_from_id(id);
7365 if (memcg) {
7366 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7367 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7368 page_counter_uncharge(&memcg->swap, nr_pages);
7369 else
7370 page_counter_uncharge(&memcg->memsw, nr_pages);
7371 }
7372 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7373 mem_cgroup_id_put_many(memcg, nr_pages);
7374 }
7375 rcu_read_unlock();
7376 }
7377
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7378 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7379 {
7380 long nr_swap_pages = get_nr_swap_pages();
7381
7382 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7383 return nr_swap_pages;
7384 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7385 nr_swap_pages = min_t(long, nr_swap_pages,
7386 READ_ONCE(memcg->swap.max) -
7387 page_counter_read(&memcg->swap));
7388 return nr_swap_pages;
7389 }
7390
mem_cgroup_swap_full(struct page * page)7391 bool mem_cgroup_swap_full(struct page *page)
7392 {
7393 struct mem_cgroup *memcg;
7394
7395 VM_BUG_ON_PAGE(!PageLocked(page), page);
7396
7397 if (vm_swap_full())
7398 return true;
7399 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7400 return false;
7401
7402 memcg = page->mem_cgroup;
7403 if (!memcg)
7404 return false;
7405
7406 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7407 unsigned long usage = page_counter_read(&memcg->swap);
7408
7409 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7410 usage * 2 >= READ_ONCE(memcg->swap.max))
7411 return true;
7412 }
7413
7414 return false;
7415 }
7416
setup_swap_account(char * s)7417 static int __init setup_swap_account(char *s)
7418 {
7419 if (!strcmp(s, "1"))
7420 cgroup_memory_noswap = 0;
7421 else if (!strcmp(s, "0"))
7422 cgroup_memory_noswap = 1;
7423 return 1;
7424 }
7425 __setup("swapaccount=", setup_swap_account);
7426
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7427 static u64 swap_current_read(struct cgroup_subsys_state *css,
7428 struct cftype *cft)
7429 {
7430 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7431
7432 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7433 }
7434
swap_high_show(struct seq_file * m,void * v)7435 static int swap_high_show(struct seq_file *m, void *v)
7436 {
7437 return seq_puts_memcg_tunable(m,
7438 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7439 }
7440
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7441 static ssize_t swap_high_write(struct kernfs_open_file *of,
7442 char *buf, size_t nbytes, loff_t off)
7443 {
7444 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7445 unsigned long high;
7446 int err;
7447
7448 buf = strstrip(buf);
7449 err = page_counter_memparse(buf, "max", &high);
7450 if (err)
7451 return err;
7452
7453 page_counter_set_high(&memcg->swap, high);
7454
7455 return nbytes;
7456 }
7457
swap_max_show(struct seq_file * m,void * v)7458 static int swap_max_show(struct seq_file *m, void *v)
7459 {
7460 return seq_puts_memcg_tunable(m,
7461 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7462 }
7463
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7464 static ssize_t swap_max_write(struct kernfs_open_file *of,
7465 char *buf, size_t nbytes, loff_t off)
7466 {
7467 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7468 unsigned long max;
7469 int err;
7470
7471 buf = strstrip(buf);
7472 err = page_counter_memparse(buf, "max", &max);
7473 if (err)
7474 return err;
7475
7476 xchg(&memcg->swap.max, max);
7477
7478 return nbytes;
7479 }
7480
swap_events_show(struct seq_file * m,void * v)7481 static int swap_events_show(struct seq_file *m, void *v)
7482 {
7483 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7484
7485 seq_printf(m, "high %lu\n",
7486 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7487 seq_printf(m, "max %lu\n",
7488 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7489 seq_printf(m, "fail %lu\n",
7490 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7491
7492 return 0;
7493 }
7494
7495 static struct cftype swap_files[] = {
7496 {
7497 .name = "swap.current",
7498 .flags = CFTYPE_NOT_ON_ROOT,
7499 .read_u64 = swap_current_read,
7500 },
7501 {
7502 .name = "swap.high",
7503 .flags = CFTYPE_NOT_ON_ROOT,
7504 .seq_show = swap_high_show,
7505 .write = swap_high_write,
7506 },
7507 {
7508 .name = "swap.max",
7509 .flags = CFTYPE_NOT_ON_ROOT,
7510 .seq_show = swap_max_show,
7511 .write = swap_max_write,
7512 },
7513 {
7514 .name = "swap.events",
7515 .flags = CFTYPE_NOT_ON_ROOT,
7516 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7517 .seq_show = swap_events_show,
7518 },
7519 { } /* terminate */
7520 };
7521
7522 static struct cftype memsw_files[] = {
7523 {
7524 .name = "memsw.usage_in_bytes",
7525 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7526 .read_u64 = mem_cgroup_read_u64,
7527 },
7528 {
7529 .name = "memsw.max_usage_in_bytes",
7530 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7531 .write = mem_cgroup_reset,
7532 .read_u64 = mem_cgroup_read_u64,
7533 },
7534 {
7535 .name = "memsw.limit_in_bytes",
7536 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7537 .write = mem_cgroup_write,
7538 .read_u64 = mem_cgroup_read_u64,
7539 },
7540 {
7541 .name = "memsw.failcnt",
7542 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7543 .write = mem_cgroup_reset,
7544 .read_u64 = mem_cgroup_read_u64,
7545 },
7546 { }, /* terminate */
7547 };
7548
7549 /*
7550 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7551 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7552 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7553 * boot parameter. This may result in premature OOPS inside
7554 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7555 */
mem_cgroup_swap_init(void)7556 static int __init mem_cgroup_swap_init(void)
7557 {
7558 /* No memory control -> no swap control */
7559 if (mem_cgroup_disabled())
7560 cgroup_memory_noswap = true;
7561
7562 if (cgroup_memory_noswap)
7563 return 0;
7564
7565 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7566 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7567
7568 return 0;
7569 }
7570 core_initcall(mem_cgroup_swap_init);
7571
7572 #endif /* CONFIG_MEMCG_SWAP */
7573