1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Architecture-specific setup.
4 *
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
8 *
9 * 2005-10-07 Keith Owens <kaos@sgi.com>
10 * Add notify_die() hooks.
11 */
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/elf.h>
15 #include <linux/errno.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/sched/task.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/stddef.h>
28 #include <linux/thread_info.h>
29 #include <linux/unistd.h>
30 #include <linux/efi.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/kdebug.h>
34 #include <linux/utsname.h>
35 #include <linux/tracehook.h>
36 #include <linux/rcupdate.h>
37
38 #include <asm/cpu.h>
39 #include <asm/delay.h>
40 #include <asm/elf.h>
41 #include <asm/irq.h>
42 #include <asm/kexec.h>
43 #include <asm/processor.h>
44 #include <asm/sal.h>
45 #include <asm/switch_to.h>
46 #include <asm/tlbflush.h>
47 #include <linux/uaccess.h>
48 #include <asm/unwind.h>
49 #include <asm/user.h>
50 #include <asm/xtp.h>
51
52 #include "entry.h"
53
54 #include "sigframe.h"
55
56 void (*ia64_mark_idle)(int);
57
58 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
59 EXPORT_SYMBOL(boot_option_idle_override);
60 void (*pm_power_off) (void);
61 EXPORT_SYMBOL(pm_power_off);
62
63 static void
ia64_do_show_stack(struct unw_frame_info * info,void * arg)64 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
65 {
66 unsigned long ip, sp, bsp;
67 const char *loglvl = arg;
68
69 printk("%s\nCall Trace:\n", loglvl);
70 do {
71 unw_get_ip(info, &ip);
72 if (ip == 0)
73 break;
74
75 unw_get_sp(info, &sp);
76 unw_get_bsp(info, &bsp);
77 printk("%s [<%016lx>] %pS\n"
78 " sp=%016lx bsp=%016lx\n",
79 loglvl, ip, (void *)ip, sp, bsp);
80 } while (unw_unwind(info) >= 0);
81 }
82
83 void
show_stack(struct task_struct * task,unsigned long * sp,const char * loglvl)84 show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
85 {
86 if (!task)
87 unw_init_running(ia64_do_show_stack, (void *)loglvl);
88 else {
89 struct unw_frame_info info;
90
91 unw_init_from_blocked_task(&info, task);
92 ia64_do_show_stack(&info, (void *)loglvl);
93 }
94 }
95
96 void
show_regs(struct pt_regs * regs)97 show_regs (struct pt_regs *regs)
98 {
99 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
100
101 print_modules();
102 printk("\n");
103 show_regs_print_info(KERN_DEFAULT);
104 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
105 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
106 init_utsname()->release);
107 printk("ip is at %pS\n", (void *)ip);
108 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
109 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
110 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
111 regs->ar_rnat, regs->ar_bspstore, regs->pr);
112 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
113 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
114 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
115 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
116 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
117 regs->f6.u.bits[1], regs->f6.u.bits[0],
118 regs->f7.u.bits[1], regs->f7.u.bits[0]);
119 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
120 regs->f8.u.bits[1], regs->f8.u.bits[0],
121 regs->f9.u.bits[1], regs->f9.u.bits[0]);
122 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
123 regs->f10.u.bits[1], regs->f10.u.bits[0],
124 regs->f11.u.bits[1], regs->f11.u.bits[0]);
125
126 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
127 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
128 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
129 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
130 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
131 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
132 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
133 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
134 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
135
136 if (user_mode(regs)) {
137 /* print the stacked registers */
138 unsigned long val, *bsp, ndirty;
139 int i, sof, is_nat = 0;
140
141 sof = regs->cr_ifs & 0x7f; /* size of frame */
142 ndirty = (regs->loadrs >> 19);
143 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
144 for (i = 0; i < sof; ++i) {
145 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
146 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
147 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
148 }
149 } else
150 show_stack(NULL, NULL, KERN_DEFAULT);
151 }
152
153 /* local support for deprecated console_print */
154 void
console_print(const char * s)155 console_print(const char *s)
156 {
157 printk(KERN_EMERG "%s", s);
158 }
159
160 void
do_notify_resume_user(sigset_t * unused,struct sigscratch * scr,long in_syscall)161 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
162 {
163 if (fsys_mode(current, &scr->pt)) {
164 /*
165 * defer signal-handling etc. until we return to
166 * privilege-level 0.
167 */
168 if (!ia64_psr(&scr->pt)->lp)
169 ia64_psr(&scr->pt)->lp = 1;
170 return;
171 }
172
173 /* deal with pending signal delivery */
174 if (test_thread_flag(TIF_SIGPENDING) ||
175 test_thread_flag(TIF_NOTIFY_SIGNAL)) {
176 local_irq_enable(); /* force interrupt enable */
177 ia64_do_signal(scr, in_syscall);
178 }
179
180 if (test_thread_flag(TIF_NOTIFY_RESUME)) {
181 local_irq_enable(); /* force interrupt enable */
182 tracehook_notify_resume(&scr->pt);
183 }
184
185 /* copy user rbs to kernel rbs */
186 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
187 local_irq_enable(); /* force interrupt enable */
188 ia64_sync_krbs();
189 }
190
191 local_irq_disable(); /* force interrupt disable */
192 }
193
nohalt_setup(char * str)194 static int __init nohalt_setup(char * str)
195 {
196 cpu_idle_poll_ctrl(true);
197 return 1;
198 }
199 __setup("nohalt", nohalt_setup);
200
201 #ifdef CONFIG_HOTPLUG_CPU
202 /* We don't actually take CPU down, just spin without interrupts. */
play_dead(void)203 static inline void play_dead(void)
204 {
205 unsigned int this_cpu = smp_processor_id();
206
207 /* Ack it */
208 __this_cpu_write(cpu_state, CPU_DEAD);
209
210 max_xtp();
211 local_irq_disable();
212 idle_task_exit();
213 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
214 /*
215 * The above is a point of no-return, the processor is
216 * expected to be in SAL loop now.
217 */
218 BUG();
219 }
220 #else
play_dead(void)221 static inline void play_dead(void)
222 {
223 BUG();
224 }
225 #endif /* CONFIG_HOTPLUG_CPU */
226
arch_cpu_idle_dead(void)227 void arch_cpu_idle_dead(void)
228 {
229 play_dead();
230 }
231
arch_cpu_idle(void)232 void arch_cpu_idle(void)
233 {
234 void (*mark_idle)(int) = ia64_mark_idle;
235
236 #ifdef CONFIG_SMP
237 min_xtp();
238 #endif
239 rmb();
240 if (mark_idle)
241 (*mark_idle)(1);
242
243 raw_safe_halt();
244
245 if (mark_idle)
246 (*mark_idle)(0);
247 #ifdef CONFIG_SMP
248 normal_xtp();
249 #endif
250 }
251
252 void
ia64_save_extra(struct task_struct * task)253 ia64_save_extra (struct task_struct *task)
254 {
255 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
256 ia64_save_debug_regs(&task->thread.dbr[0]);
257 }
258
259 void
ia64_load_extra(struct task_struct * task)260 ia64_load_extra (struct task_struct *task)
261 {
262 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
263 ia64_load_debug_regs(&task->thread.dbr[0]);
264 }
265
266 /*
267 * Copy the state of an ia-64 thread.
268 *
269 * We get here through the following call chain:
270 *
271 * from user-level: from kernel:
272 *
273 * <clone syscall> <some kernel call frames>
274 * sys_clone :
275 * kernel_clone kernel_clone
276 * copy_thread copy_thread
277 *
278 * This means that the stack layout is as follows:
279 *
280 * +---------------------+ (highest addr)
281 * | struct pt_regs |
282 * +---------------------+
283 * | struct switch_stack |
284 * +---------------------+
285 * | |
286 * | memory stack |
287 * | | <-- sp (lowest addr)
288 * +---------------------+
289 *
290 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
291 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
292 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
293 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
294 * the stack is page aligned and the page size is at least 4KB, this is always the case,
295 * so there is nothing to worry about.
296 */
297 int
copy_thread(unsigned long clone_flags,unsigned long user_stack_base,unsigned long user_stack_size,struct task_struct * p,unsigned long tls)298 copy_thread(unsigned long clone_flags, unsigned long user_stack_base,
299 unsigned long user_stack_size, struct task_struct *p, unsigned long tls)
300 {
301 extern char ia64_ret_from_clone;
302 struct switch_stack *child_stack, *stack;
303 unsigned long rbs, child_rbs, rbs_size;
304 struct pt_regs *child_ptregs;
305 struct pt_regs *regs = current_pt_regs();
306 int retval = 0;
307
308 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
309 child_stack = (struct switch_stack *) child_ptregs - 1;
310
311 rbs = (unsigned long) current + IA64_RBS_OFFSET;
312 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
313
314 /* copy parts of thread_struct: */
315 p->thread.ksp = (unsigned long) child_stack - 16;
316
317 /*
318 * NOTE: The calling convention considers all floating point
319 * registers in the high partition (fph) to be scratch. Since
320 * the only way to get to this point is through a system call,
321 * we know that the values in fph are all dead. Hence, there
322 * is no need to inherit the fph state from the parent to the
323 * child and all we have to do is to make sure that
324 * IA64_THREAD_FPH_VALID is cleared in the child.
325 *
326 * XXX We could push this optimization a bit further by
327 * clearing IA64_THREAD_FPH_VALID on ANY system call.
328 * However, it's not clear this is worth doing. Also, it
329 * would be a slight deviation from the normal Linux system
330 * call behavior where scratch registers are preserved across
331 * system calls (unless used by the system call itself).
332 */
333 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
334 | IA64_THREAD_PM_VALID)
335 # define THREAD_FLAGS_TO_SET 0
336 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
337 | THREAD_FLAGS_TO_SET);
338
339 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
340
341 if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
342 if (unlikely(!user_stack_base)) {
343 /* fork_idle() called us */
344 return 0;
345 }
346 memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
347 child_stack->r4 = user_stack_base; /* payload */
348 child_stack->r5 = user_stack_size; /* argument */
349 /*
350 * Preserve PSR bits, except for bits 32-34 and 37-45,
351 * which we can't read.
352 */
353 child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
354 /* mark as valid, empty frame */
355 child_ptregs->cr_ifs = 1UL << 63;
356 child_stack->ar_fpsr = child_ptregs->ar_fpsr
357 = ia64_getreg(_IA64_REG_AR_FPSR);
358 child_stack->pr = (1 << PRED_KERNEL_STACK);
359 child_stack->ar_bspstore = child_rbs;
360 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
361
362 /* stop some PSR bits from being inherited.
363 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
364 * therefore we must specify them explicitly here and not include them in
365 * IA64_PSR_BITS_TO_CLEAR.
366 */
367 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
368 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
369
370 return 0;
371 }
372 stack = ((struct switch_stack *) regs) - 1;
373 /* copy parent's switch_stack & pt_regs to child: */
374 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
375
376 /* copy the parent's register backing store to the child: */
377 rbs_size = stack->ar_bspstore - rbs;
378 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
379 if (clone_flags & CLONE_SETTLS)
380 child_ptregs->r13 = tls;
381 if (user_stack_base) {
382 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
383 child_ptregs->ar_bspstore = user_stack_base;
384 child_ptregs->ar_rnat = 0;
385 child_ptregs->loadrs = 0;
386 }
387 child_stack->ar_bspstore = child_rbs + rbs_size;
388 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
389
390 /* stop some PSR bits from being inherited.
391 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
392 * therefore we must specify them explicitly here and not include them in
393 * IA64_PSR_BITS_TO_CLEAR.
394 */
395 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
396 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
397 return retval;
398 }
399
ia64_clone(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,unsigned long parent_tidptr,unsigned long child_tidptr,unsigned long tls)400 asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
401 unsigned long stack_size, unsigned long parent_tidptr,
402 unsigned long child_tidptr, unsigned long tls)
403 {
404 struct kernel_clone_args args = {
405 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
406 .pidfd = (int __user *)parent_tidptr,
407 .child_tid = (int __user *)child_tidptr,
408 .parent_tid = (int __user *)parent_tidptr,
409 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
410 .stack = stack_start,
411 .stack_size = stack_size,
412 .tls = tls,
413 };
414
415 return kernel_clone(&args);
416 }
417
418 static void
do_copy_task_regs(struct task_struct * task,struct unw_frame_info * info,void * arg)419 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
420 {
421 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
422 unsigned long ip;
423 elf_greg_t *dst = arg;
424 struct pt_regs *pt;
425 char nat;
426 int i;
427
428 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
429
430 if (unw_unwind_to_user(info) < 0)
431 return;
432
433 unw_get_sp(info, &sp);
434 pt = (struct pt_regs *) (sp + 16);
435
436 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
437
438 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
439 return;
440
441 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
442 &ar_rnat);
443
444 /*
445 * coredump format:
446 * r0-r31
447 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
448 * predicate registers (p0-p63)
449 * b0-b7
450 * ip cfm user-mask
451 * ar.rsc ar.bsp ar.bspstore ar.rnat
452 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
453 */
454
455 /* r0 is zero */
456 for (i = 1, mask = (1UL << i); i < 32; ++i) {
457 unw_get_gr(info, i, &dst[i], &nat);
458 if (nat)
459 nat_bits |= mask;
460 mask <<= 1;
461 }
462 dst[32] = nat_bits;
463 unw_get_pr(info, &dst[33]);
464
465 for (i = 0; i < 8; ++i)
466 unw_get_br(info, i, &dst[34 + i]);
467
468 unw_get_rp(info, &ip);
469 dst[42] = ip + ia64_psr(pt)->ri;
470 dst[43] = cfm;
471 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
472
473 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
474 /*
475 * For bsp and bspstore, unw_get_ar() would return the kernel
476 * addresses, but we need the user-level addresses instead:
477 */
478 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
479 dst[47] = pt->ar_bspstore;
480 dst[48] = ar_rnat;
481 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
482 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
483 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
484 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
485 unw_get_ar(info, UNW_AR_LC, &dst[53]);
486 unw_get_ar(info, UNW_AR_EC, &dst[54]);
487 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
488 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
489 }
490
491 void
do_copy_regs(struct unw_frame_info * info,void * arg)492 do_copy_regs (struct unw_frame_info *info, void *arg)
493 {
494 do_copy_task_regs(current, info, arg);
495 }
496
497 void
ia64_elf_core_copy_regs(struct pt_regs * pt,elf_gregset_t dst)498 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
499 {
500 unw_init_running(do_copy_regs, dst);
501 }
502
503 /*
504 * Flush thread state. This is called when a thread does an execve().
505 */
506 void
flush_thread(void)507 flush_thread (void)
508 {
509 /* drop floating-point and debug-register state if it exists: */
510 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
511 ia64_drop_fpu(current);
512 }
513
514 /*
515 * Clean up state associated with a thread. This is called when
516 * the thread calls exit().
517 */
518 void
exit_thread(struct task_struct * tsk)519 exit_thread (struct task_struct *tsk)
520 {
521
522 ia64_drop_fpu(tsk);
523 }
524
525 unsigned long
get_wchan(struct task_struct * p)526 get_wchan (struct task_struct *p)
527 {
528 struct unw_frame_info info;
529 unsigned long ip;
530 int count = 0;
531
532 if (!p || p == current || p->state == TASK_RUNNING)
533 return 0;
534
535 /*
536 * Note: p may not be a blocked task (it could be current or
537 * another process running on some other CPU. Rather than
538 * trying to determine if p is really blocked, we just assume
539 * it's blocked and rely on the unwind routines to fail
540 * gracefully if the process wasn't really blocked after all.
541 * --davidm 99/12/15
542 */
543 unw_init_from_blocked_task(&info, p);
544 do {
545 if (p->state == TASK_RUNNING)
546 return 0;
547 if (unw_unwind(&info) < 0)
548 return 0;
549 unw_get_ip(&info, &ip);
550 if (!in_sched_functions(ip))
551 return ip;
552 } while (count++ < 16);
553 return 0;
554 }
555
556 void
cpu_halt(void)557 cpu_halt (void)
558 {
559 pal_power_mgmt_info_u_t power_info[8];
560 unsigned long min_power;
561 int i, min_power_state;
562
563 if (ia64_pal_halt_info(power_info) != 0)
564 return;
565
566 min_power_state = 0;
567 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
568 for (i = 1; i < 8; ++i)
569 if (power_info[i].pal_power_mgmt_info_s.im
570 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
571 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
572 min_power_state = i;
573 }
574
575 while (1)
576 ia64_pal_halt(min_power_state);
577 }
578
machine_shutdown(void)579 void machine_shutdown(void)
580 {
581 smp_shutdown_nonboot_cpus(reboot_cpu);
582
583 #ifdef CONFIG_KEXEC
584 kexec_disable_iosapic();
585 #endif
586 }
587
588 void
machine_restart(char * restart_cmd)589 machine_restart (char *restart_cmd)
590 {
591 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
592 efi_reboot(REBOOT_WARM, NULL);
593 }
594
595 void
machine_halt(void)596 machine_halt (void)
597 {
598 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
599 cpu_halt();
600 }
601
602 void
machine_power_off(void)603 machine_power_off (void)
604 {
605 if (pm_power_off)
606 pm_power_off();
607 machine_halt();
608 }
609
610 EXPORT_SYMBOL(ia64_delay_loop);
611