• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/core.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9  */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37 
38 #include "core.h"
39 #include "card.h"
40 #include "crypto.h"
41 #include "bus.h"
42 #include "host.h"
43 #include "sdio_bus.h"
44 #include "pwrseq.h"
45 
46 #include "mmc_ops.h"
47 #include "sd_ops.h"
48 #include "sdio_ops.h"
49 
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS	(250)
53 
54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55 
56 /*
57  * Enabling software CRCs on the data blocks can be a significant (30%)
58  * performance cost, and for other reasons may not always be desired.
59  * So we allow it it to be disabled.
60  */
61 bool use_spi_crc = 1;
62 module_param(use_spi_crc, bool, 0);
63 
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)64 static int mmc_schedule_delayed_work(struct delayed_work *work,
65 				     unsigned long delay)
66 {
67 	/*
68 	 * We use the system_freezable_wq, because of two reasons.
69 	 * First, it allows several works (not the same work item) to be
70 	 * executed simultaneously. Second, the queue becomes frozen when
71 	 * userspace becomes frozen during system PM.
72 	 */
73 	return queue_delayed_work(system_freezable_wq, work, delay);
74 }
75 
76 #ifdef CONFIG_FAIL_MMC_REQUEST
77 
78 /*
79  * Internal function. Inject random data errors.
80  * If mmc_data is NULL no errors are injected.
81  */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)82 static void mmc_should_fail_request(struct mmc_host *host,
83 				    struct mmc_request *mrq)
84 {
85 	struct mmc_command *cmd = mrq->cmd;
86 	struct mmc_data *data = mrq->data;
87 	static const int data_errors[] = {
88 		-ETIMEDOUT,
89 		-EILSEQ,
90 		-EIO,
91 	};
92 
93 	if (!data)
94 		return;
95 
96 	if ((cmd && cmd->error) || data->error ||
97 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 		return;
99 
100 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
101 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
102 }
103 
104 #else /* CONFIG_FAIL_MMC_REQUEST */
105 
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)106 static inline void mmc_should_fail_request(struct mmc_host *host,
107 					   struct mmc_request *mrq)
108 {
109 }
110 
111 #endif /* CONFIG_FAIL_MMC_REQUEST */
112 
mmc_complete_cmd(struct mmc_request * mrq)113 static inline void mmc_complete_cmd(struct mmc_request *mrq)
114 {
115 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 		complete_all(&mrq->cmd_completion);
117 }
118 
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120 {
121 	if (!mrq->cap_cmd_during_tfr)
122 		return;
123 
124 	mmc_complete_cmd(mrq);
125 
126 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 		 mmc_hostname(host), mrq->cmd->opcode);
128 }
129 EXPORT_SYMBOL(mmc_command_done);
130 
131 /**
132  *	mmc_request_done - finish processing an MMC request
133  *	@host: MMC host which completed request
134  *	@mrq: MMC request which request
135  *
136  *	MMC drivers should call this function when they have completed
137  *	their processing of a request.
138  */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 	struct mmc_command *cmd = mrq->cmd;
142 	int err = cmd->error;
143 
144 	/* Flag re-tuning needed on CRC errors */
145 	if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
147 	    !host->retune_crc_disable &&
148 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
149 	    (mrq->data && mrq->data->error == -EILSEQ) ||
150 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
151 		mmc_retune_needed(host);
152 
153 	if (err && cmd->retries && mmc_host_is_spi(host)) {
154 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
155 			cmd->retries = 0;
156 	}
157 
158 	if (host->ongoing_mrq == mrq)
159 		host->ongoing_mrq = NULL;
160 
161 	mmc_complete_cmd(mrq);
162 
163 	trace_mmc_request_done(host, mrq);
164 
165 	/*
166 	 * We list various conditions for the command to be considered
167 	 * properly done:
168 	 *
169 	 * - There was no error, OK fine then
170 	 * - We are not doing some kind of retry
171 	 * - The card was removed (...so just complete everything no matter
172 	 *   if there are errors or retries)
173 	 */
174 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
175 		mmc_should_fail_request(host, mrq);
176 
177 		if (!host->ongoing_mrq)
178 			led_trigger_event(host->led, LED_OFF);
179 
180 		if (mrq->sbc) {
181 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182 				mmc_hostname(host), mrq->sbc->opcode,
183 				mrq->sbc->error,
184 				mrq->sbc->resp[0], mrq->sbc->resp[1],
185 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
186 		}
187 
188 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189 			mmc_hostname(host), cmd->opcode, err,
190 			cmd->resp[0], cmd->resp[1],
191 			cmd->resp[2], cmd->resp[3]);
192 
193 		if (mrq->data) {
194 			pr_debug("%s:     %d bytes transferred: %d\n",
195 				mmc_hostname(host),
196 				mrq->data->bytes_xfered, mrq->data->error);
197 		}
198 
199 		if (mrq->stop) {
200 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
201 				mmc_hostname(host), mrq->stop->opcode,
202 				mrq->stop->error,
203 				mrq->stop->resp[0], mrq->stop->resp[1],
204 				mrq->stop->resp[2], mrq->stop->resp[3]);
205 		}
206 	}
207 	/*
208 	 * Request starter must handle retries - see
209 	 * mmc_wait_for_req_done().
210 	 */
211 	if (mrq->done)
212 		mrq->done(mrq);
213 }
214 
215 EXPORT_SYMBOL(mmc_request_done);
216 
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)217 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
218 {
219 	int err;
220 
221 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
222 	err = mmc_retune(host);
223 	if (err) {
224 		mrq->cmd->error = err;
225 		mmc_request_done(host, mrq);
226 		return;
227 	}
228 
229 	/*
230 	 * For sdio rw commands we must wait for card busy otherwise some
231 	 * sdio devices won't work properly.
232 	 * And bypass I/O abort, reset and bus suspend operations.
233 	 */
234 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
235 	    host->ops->card_busy) {
236 		int tries = 500; /* Wait aprox 500ms at maximum */
237 
238 		while (host->ops->card_busy(host) && --tries)
239 			mmc_delay(1);
240 
241 		if (tries == 0) {
242 			mrq->cmd->error = -EBUSY;
243 			mmc_request_done(host, mrq);
244 			return;
245 		}
246 	}
247 
248 	if (mrq->cap_cmd_during_tfr) {
249 		host->ongoing_mrq = mrq;
250 		/*
251 		 * Retry path could come through here without having waiting on
252 		 * cmd_completion, so ensure it is reinitialised.
253 		 */
254 		reinit_completion(&mrq->cmd_completion);
255 	}
256 
257 	trace_mmc_request_start(host, mrq);
258 
259 	if (host->cqe_on)
260 		host->cqe_ops->cqe_off(host);
261 
262 	host->ops->request(host, mrq);
263 }
264 
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)265 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
266 			     bool cqe)
267 {
268 	if (mrq->sbc) {
269 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 			 mmc_hostname(host), mrq->sbc->opcode,
271 			 mrq->sbc->arg, mrq->sbc->flags);
272 	}
273 
274 	if (mrq->cmd) {
275 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276 			 mmc_hostname(host), cqe ? "CQE direct " : "",
277 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
278 	} else if (cqe) {
279 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
281 	}
282 
283 	if (mrq->data) {
284 		pr_debug("%s:     blksz %d blocks %d flags %08x "
285 			"tsac %d ms nsac %d\n",
286 			mmc_hostname(host), mrq->data->blksz,
287 			mrq->data->blocks, mrq->data->flags,
288 			mrq->data->timeout_ns / 1000000,
289 			mrq->data->timeout_clks);
290 	}
291 
292 	if (mrq->stop) {
293 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
294 			 mmc_hostname(host), mrq->stop->opcode,
295 			 mrq->stop->arg, mrq->stop->flags);
296 	}
297 }
298 
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300 {
301 	unsigned int i, sz = 0;
302 	struct scatterlist *sg;
303 
304 	if (mrq->cmd) {
305 		mrq->cmd->error = 0;
306 		mrq->cmd->mrq = mrq;
307 		mrq->cmd->data = mrq->data;
308 	}
309 	if (mrq->sbc) {
310 		mrq->sbc->error = 0;
311 		mrq->sbc->mrq = mrq;
312 	}
313 	if (mrq->data) {
314 		if (mrq->data->blksz > host->max_blk_size ||
315 		    mrq->data->blocks > host->max_blk_count ||
316 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 			return -EINVAL;
318 
319 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320 			sz += sg->length;
321 		if (sz != mrq->data->blocks * mrq->data->blksz)
322 			return -EINVAL;
323 
324 		mrq->data->error = 0;
325 		mrq->data->mrq = mrq;
326 		if (mrq->stop) {
327 			mrq->data->stop = mrq->stop;
328 			mrq->stop->error = 0;
329 			mrq->stop->mrq = mrq;
330 		}
331 	}
332 
333 	return 0;
334 }
335 
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)336 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337 {
338 	int err;
339 
340 	init_completion(&mrq->cmd_completion);
341 
342 	mmc_retune_hold(host);
343 
344 	if (mmc_card_removed(host->card))
345 		return -ENOMEDIUM;
346 
347 	mmc_mrq_pr_debug(host, mrq, false);
348 
349 	WARN_ON(!host->claimed);
350 
351 	err = mmc_mrq_prep(host, mrq);
352 	if (err)
353 		return err;
354 
355 	led_trigger_event(host->led, LED_FULL);
356 	__mmc_start_request(host, mrq);
357 
358 	return 0;
359 }
360 EXPORT_SYMBOL(mmc_start_request);
361 
mmc_wait_done(struct mmc_request * mrq)362 static void mmc_wait_done(struct mmc_request *mrq)
363 {
364 	complete(&mrq->completion);
365 }
366 
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)367 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
368 {
369 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
370 
371 	/*
372 	 * If there is an ongoing transfer, wait for the command line to become
373 	 * available.
374 	 */
375 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
376 		wait_for_completion(&ongoing_mrq->cmd_completion);
377 }
378 
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)379 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
380 {
381 	int err;
382 
383 	mmc_wait_ongoing_tfr_cmd(host);
384 
385 	init_completion(&mrq->completion);
386 	mrq->done = mmc_wait_done;
387 
388 	err = mmc_start_request(host, mrq);
389 	if (err) {
390 		mrq->cmd->error = err;
391 		mmc_complete_cmd(mrq);
392 		complete(&mrq->completion);
393 	}
394 
395 	return err;
396 }
397 
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)398 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
399 {
400 	struct mmc_command *cmd;
401 
402 	while (1) {
403 		wait_for_completion(&mrq->completion);
404 
405 		cmd = mrq->cmd;
406 
407 		if (!cmd->error || !cmd->retries ||
408 		    mmc_card_removed(host->card))
409 			break;
410 
411 		mmc_retune_recheck(host);
412 
413 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
414 			 mmc_hostname(host), cmd->opcode, cmd->error);
415 		cmd->retries--;
416 		cmd->error = 0;
417 		__mmc_start_request(host, mrq);
418 	}
419 
420 	mmc_retune_release(host);
421 }
422 EXPORT_SYMBOL(mmc_wait_for_req_done);
423 
424 /*
425  * mmc_cqe_start_req - Start a CQE request.
426  * @host: MMC host to start the request
427  * @mrq: request to start
428  *
429  * Start the request, re-tuning if needed and it is possible. Returns an error
430  * code if the request fails to start or -EBUSY if CQE is busy.
431  */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)432 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
433 {
434 	int err;
435 
436 	/*
437 	 * CQE cannot process re-tuning commands. Caller must hold retuning
438 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
439 	 * active requests i.e. this is the first.  Note, re-tuning will call
440 	 * ->cqe_off().
441 	 */
442 	err = mmc_retune(host);
443 	if (err)
444 		goto out_err;
445 
446 	mrq->host = host;
447 
448 	mmc_mrq_pr_debug(host, mrq, true);
449 
450 	err = mmc_mrq_prep(host, mrq);
451 	if (err)
452 		goto out_err;
453 
454 	err = host->cqe_ops->cqe_request(host, mrq);
455 	if (err)
456 		goto out_err;
457 
458 	trace_mmc_request_start(host, mrq);
459 
460 	return 0;
461 
462 out_err:
463 	if (mrq->cmd) {
464 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
465 			 mmc_hostname(host), mrq->cmd->opcode, err);
466 	} else {
467 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
468 			 mmc_hostname(host), mrq->tag, err);
469 	}
470 	return err;
471 }
472 EXPORT_SYMBOL(mmc_cqe_start_req);
473 
474 /**
475  *	mmc_cqe_request_done - CQE has finished processing an MMC request
476  *	@host: MMC host which completed request
477  *	@mrq: MMC request which completed
478  *
479  *	CQE drivers should call this function when they have completed
480  *	their processing of a request.
481  */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)482 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
483 {
484 	mmc_should_fail_request(host, mrq);
485 
486 	/* Flag re-tuning needed on CRC errors */
487 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
488 	    (mrq->data && mrq->data->error == -EILSEQ))
489 		mmc_retune_needed(host);
490 
491 	trace_mmc_request_done(host, mrq);
492 
493 	if (mrq->cmd) {
494 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
495 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
496 	} else {
497 		pr_debug("%s: CQE transfer done tag %d\n",
498 			 mmc_hostname(host), mrq->tag);
499 	}
500 
501 	if (mrq->data) {
502 		pr_debug("%s:     %d bytes transferred: %d\n",
503 			 mmc_hostname(host),
504 			 mrq->data->bytes_xfered, mrq->data->error);
505 	}
506 
507 	mrq->done(mrq);
508 }
509 EXPORT_SYMBOL(mmc_cqe_request_done);
510 
511 /**
512  *	mmc_cqe_post_req - CQE post process of a completed MMC request
513  *	@host: MMC host
514  *	@mrq: MMC request to be processed
515  */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)516 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
517 {
518 	if (host->cqe_ops->cqe_post_req)
519 		host->cqe_ops->cqe_post_req(host, mrq);
520 }
521 EXPORT_SYMBOL(mmc_cqe_post_req);
522 
523 /* Arbitrary 1 second timeout */
524 #define MMC_CQE_RECOVERY_TIMEOUT	1000
525 
526 /*
527  * mmc_cqe_recovery - Recover from CQE errors.
528  * @host: MMC host to recover
529  *
530  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
531  * in eMMC, and discarding the queue in CQE. CQE must call
532  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
533  * fails to discard its queue.
534  */
mmc_cqe_recovery(struct mmc_host * host)535 int mmc_cqe_recovery(struct mmc_host *host)
536 {
537 	struct mmc_command cmd;
538 	int err;
539 
540 	mmc_retune_hold_now(host);
541 
542 	/*
543 	 * Recovery is expected seldom, if at all, but it reduces performance,
544 	 * so make sure it is not completely silent.
545 	 */
546 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
547 
548 	host->cqe_ops->cqe_recovery_start(host);
549 
550 	memset(&cmd, 0, sizeof(cmd));
551 	cmd.opcode       = MMC_STOP_TRANSMISSION;
552 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
553 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
554 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
555 	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
556 
557 	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, MMC_BUSY_IO);
558 
559 	memset(&cmd, 0, sizeof(cmd));
560 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
561 	cmd.arg          = 1; /* Discard entire queue */
562 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
563 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
564 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
565 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
566 
567 	host->cqe_ops->cqe_recovery_finish(host);
568 
569 	if (err)
570 		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
571 
572 	mmc_retune_release(host);
573 
574 	return err;
575 }
576 EXPORT_SYMBOL(mmc_cqe_recovery);
577 
578 /**
579  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
580  *	@host: MMC host
581  *	@mrq: MMC request
582  *
583  *	mmc_is_req_done() is used with requests that have
584  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
585  *	starting a request and before waiting for it to complete. That is,
586  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
587  *	and before mmc_wait_for_req_done(). If it is called at other times the
588  *	result is not meaningful.
589  */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)590 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
591 {
592 	return completion_done(&mrq->completion);
593 }
594 EXPORT_SYMBOL(mmc_is_req_done);
595 
596 /**
597  *	mmc_wait_for_req - start a request and wait for completion
598  *	@host: MMC host to start command
599  *	@mrq: MMC request to start
600  *
601  *	Start a new MMC custom command request for a host, and wait
602  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
603  *	requests, the transfer is ongoing and the caller can issue further
604  *	commands that do not use the data lines, and then wait by calling
605  *	mmc_wait_for_req_done().
606  *	Does not attempt to parse the response.
607  */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)608 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
609 {
610 	__mmc_start_req(host, mrq);
611 
612 	if (!mrq->cap_cmd_during_tfr)
613 		mmc_wait_for_req_done(host, mrq);
614 }
615 EXPORT_SYMBOL(mmc_wait_for_req);
616 
617 /**
618  *	mmc_wait_for_cmd - start a command and wait for completion
619  *	@host: MMC host to start command
620  *	@cmd: MMC command to start
621  *	@retries: maximum number of retries
622  *
623  *	Start a new MMC command for a host, and wait for the command
624  *	to complete.  Return any error that occurred while the command
625  *	was executing.  Do not attempt to parse the response.
626  */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)627 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
628 {
629 	struct mmc_request mrq = {};
630 
631 	WARN_ON(!host->claimed);
632 
633 	memset(cmd->resp, 0, sizeof(cmd->resp));
634 	cmd->retries = retries;
635 
636 	mrq.cmd = cmd;
637 	cmd->data = NULL;
638 
639 	mmc_wait_for_req(host, &mrq);
640 
641 	return cmd->error;
642 }
643 
644 EXPORT_SYMBOL(mmc_wait_for_cmd);
645 
646 /**
647  *	mmc_set_data_timeout - set the timeout for a data command
648  *	@data: data phase for command
649  *	@card: the MMC card associated with the data transfer
650  *
651  *	Computes the data timeout parameters according to the
652  *	correct algorithm given the card type.
653  */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)654 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
655 {
656 	unsigned int mult;
657 
658 	/*
659 	 * SDIO cards only define an upper 1 s limit on access.
660 	 */
661 	if (mmc_card_sdio(card)) {
662 		data->timeout_ns = 1000000000;
663 		data->timeout_clks = 0;
664 		return;
665 	}
666 
667 	/*
668 	 * SD cards use a 100 multiplier rather than 10
669 	 */
670 	mult = mmc_card_sd(card) ? 100 : 10;
671 
672 	/*
673 	 * Scale up the multiplier (and therefore the timeout) by
674 	 * the r2w factor for writes.
675 	 */
676 	if (data->flags & MMC_DATA_WRITE)
677 		mult <<= card->csd.r2w_factor;
678 
679 	data->timeout_ns = card->csd.taac_ns * mult;
680 	data->timeout_clks = card->csd.taac_clks * mult;
681 
682 	/*
683 	 * SD cards also have an upper limit on the timeout.
684 	 */
685 	if (mmc_card_sd(card)) {
686 		unsigned int timeout_us, limit_us;
687 
688 		timeout_us = data->timeout_ns / 1000;
689 		if (card->host->ios.clock)
690 			timeout_us += data->timeout_clks * 1000 /
691 				(card->host->ios.clock / 1000);
692 
693 		if (data->flags & MMC_DATA_WRITE)
694 			/*
695 			 * The MMC spec "It is strongly recommended
696 			 * for hosts to implement more than 500ms
697 			 * timeout value even if the card indicates
698 			 * the 250ms maximum busy length."  Even the
699 			 * previous value of 300ms is known to be
700 			 * insufficient for some cards.
701 			 */
702 			limit_us = 3000000;
703 		else
704 			limit_us = 100000;
705 
706 		/*
707 		 * SDHC cards always use these fixed values.
708 		 */
709 		if (timeout_us > limit_us) {
710 			data->timeout_ns = limit_us * 1000;
711 			data->timeout_clks = 0;
712 		}
713 
714 		/* assign limit value if invalid */
715 		if (timeout_us == 0)
716 			data->timeout_ns = limit_us * 1000;
717 	}
718 
719 	/*
720 	 * Some cards require longer data read timeout than indicated in CSD.
721 	 * Address this by setting the read timeout to a "reasonably high"
722 	 * value. For the cards tested, 600ms has proven enough. If necessary,
723 	 * this value can be increased if other problematic cards require this.
724 	 */
725 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
726 		data->timeout_ns = 600000000;
727 		data->timeout_clks = 0;
728 	}
729 
730 	/*
731 	 * Some cards need very high timeouts if driven in SPI mode.
732 	 * The worst observed timeout was 900ms after writing a
733 	 * continuous stream of data until the internal logic
734 	 * overflowed.
735 	 */
736 	if (mmc_host_is_spi(card->host)) {
737 		if (data->flags & MMC_DATA_WRITE) {
738 			if (data->timeout_ns < 1000000000)
739 				data->timeout_ns = 1000000000;	/* 1s */
740 		} else {
741 			if (data->timeout_ns < 100000000)
742 				data->timeout_ns =  100000000;	/* 100ms */
743 		}
744 	}
745 }
746 EXPORT_SYMBOL(mmc_set_data_timeout);
747 
748 /*
749  * Allow claiming an already claimed host if the context is the same or there is
750  * no context but the task is the same.
751  */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)752 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
753 				   struct task_struct *task)
754 {
755 	return host->claimer == ctx ||
756 	       (!ctx && task && host->claimer->task == task);
757 }
758 
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)759 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
760 				       struct mmc_ctx *ctx,
761 				       struct task_struct *task)
762 {
763 	if (!host->claimer) {
764 		if (ctx)
765 			host->claimer = ctx;
766 		else
767 			host->claimer = &host->default_ctx;
768 	}
769 	if (task)
770 		host->claimer->task = task;
771 }
772 
773 /**
774  *	__mmc_claim_host - exclusively claim a host
775  *	@host: mmc host to claim
776  *	@ctx: context that claims the host or NULL in which case the default
777  *	context will be used
778  *	@abort: whether or not the operation should be aborted
779  *
780  *	Claim a host for a set of operations.  If @abort is non null and
781  *	dereference a non-zero value then this will return prematurely with
782  *	that non-zero value without acquiring the lock.  Returns zero
783  *	with the lock held otherwise.
784  */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)785 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
786 		     atomic_t *abort)
787 {
788 	struct task_struct *task = ctx ? NULL : current;
789 	DECLARE_WAITQUEUE(wait, current);
790 	unsigned long flags;
791 	int stop;
792 	bool pm = false;
793 
794 	might_sleep();
795 
796 	add_wait_queue(&host->wq, &wait);
797 	spin_lock_irqsave(&host->lock, flags);
798 	while (1) {
799 		set_current_state(TASK_UNINTERRUPTIBLE);
800 		stop = abort ? atomic_read(abort) : 0;
801 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
802 			break;
803 		spin_unlock_irqrestore(&host->lock, flags);
804 		schedule();
805 		spin_lock_irqsave(&host->lock, flags);
806 	}
807 	set_current_state(TASK_RUNNING);
808 	if (!stop) {
809 		host->claimed = 1;
810 		mmc_ctx_set_claimer(host, ctx, task);
811 		host->claim_cnt += 1;
812 		if (host->claim_cnt == 1)
813 			pm = true;
814 	} else
815 		wake_up(&host->wq);
816 	spin_unlock_irqrestore(&host->lock, flags);
817 	remove_wait_queue(&host->wq, &wait);
818 
819 	if (pm)
820 		pm_runtime_get_sync(mmc_dev(host));
821 
822 	return stop;
823 }
824 EXPORT_SYMBOL(__mmc_claim_host);
825 
826 /**
827  *	mmc_release_host - release a host
828  *	@host: mmc host to release
829  *
830  *	Release a MMC host, allowing others to claim the host
831  *	for their operations.
832  */
mmc_release_host(struct mmc_host * host)833 void mmc_release_host(struct mmc_host *host)
834 {
835 	unsigned long flags;
836 
837 	WARN_ON(!host->claimed);
838 
839 	spin_lock_irqsave(&host->lock, flags);
840 	if (--host->claim_cnt) {
841 		/* Release for nested claim */
842 		spin_unlock_irqrestore(&host->lock, flags);
843 	} else {
844 		host->claimed = 0;
845 		host->claimer->task = NULL;
846 		host->claimer = NULL;
847 		spin_unlock_irqrestore(&host->lock, flags);
848 		wake_up(&host->wq);
849 		pm_runtime_mark_last_busy(mmc_dev(host));
850 		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
851 			pm_runtime_put_sync_suspend(mmc_dev(host));
852 		else
853 			pm_runtime_put_autosuspend(mmc_dev(host));
854 	}
855 }
856 EXPORT_SYMBOL(mmc_release_host);
857 
858 /*
859  * This is a helper function, which fetches a runtime pm reference for the
860  * card device and also claims the host.
861  */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)862 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
863 {
864 	pm_runtime_get_sync(&card->dev);
865 	__mmc_claim_host(card->host, ctx, NULL);
866 }
867 EXPORT_SYMBOL(mmc_get_card);
868 
869 /*
870  * This is a helper function, which releases the host and drops the runtime
871  * pm reference for the card device.
872  */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)873 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
874 {
875 	struct mmc_host *host = card->host;
876 
877 	WARN_ON(ctx && host->claimer != ctx);
878 
879 	mmc_release_host(host);
880 	pm_runtime_mark_last_busy(&card->dev);
881 	pm_runtime_put_autosuspend(&card->dev);
882 }
883 EXPORT_SYMBOL(mmc_put_card);
884 
885 /*
886  * Internal function that does the actual ios call to the host driver,
887  * optionally printing some debug output.
888  */
mmc_set_ios(struct mmc_host * host)889 static inline void mmc_set_ios(struct mmc_host *host)
890 {
891 	struct mmc_ios *ios = &host->ios;
892 
893 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
894 		"width %u timing %u\n",
895 		 mmc_hostname(host), ios->clock, ios->bus_mode,
896 		 ios->power_mode, ios->chip_select, ios->vdd,
897 		 1 << ios->bus_width, ios->timing);
898 
899 	host->ops->set_ios(host, ios);
900 }
901 
902 /*
903  * Control chip select pin on a host.
904  */
mmc_set_chip_select(struct mmc_host * host,int mode)905 void mmc_set_chip_select(struct mmc_host *host, int mode)
906 {
907 	host->ios.chip_select = mode;
908 	mmc_set_ios(host);
909 }
910 
911 /*
912  * Sets the host clock to the highest possible frequency that
913  * is below "hz".
914  */
mmc_set_clock(struct mmc_host * host,unsigned int hz)915 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
916 {
917 	WARN_ON(hz && hz < host->f_min);
918 
919 	if (hz > host->f_max)
920 		hz = host->f_max;
921 
922 	host->ios.clock = hz;
923 	mmc_set_ios(host);
924 }
925 EXPORT_SYMBOL_GPL(mmc_set_clock);
926 
mmc_execute_tuning(struct mmc_card * card)927 int mmc_execute_tuning(struct mmc_card *card)
928 {
929 	struct mmc_host *host = card->host;
930 	u32 opcode;
931 	int err;
932 
933 	if (!host->ops->execute_tuning)
934 		return 0;
935 
936 	if (host->cqe_on)
937 		host->cqe_ops->cqe_off(host);
938 
939 	if (mmc_card_mmc(card))
940 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
941 	else
942 		opcode = MMC_SEND_TUNING_BLOCK;
943 
944 	err = host->ops->execute_tuning(host, opcode);
945 
946 	if (err) {
947 		pr_err("%s: tuning execution failed: %d\n",
948 			mmc_hostname(host), err);
949 	} else {
950 		host->retune_now = 0;
951 		host->need_retune = 0;
952 		mmc_retune_enable(host);
953 	}
954 
955 	return err;
956 }
957 
958 /*
959  * Change the bus mode (open drain/push-pull) of a host.
960  */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)961 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
962 {
963 	host->ios.bus_mode = mode;
964 	mmc_set_ios(host);
965 }
966 
967 /*
968  * Change data bus width of a host.
969  */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)970 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
971 {
972 	host->ios.bus_width = width;
973 	mmc_set_ios(host);
974 }
975 
976 /*
977  * Set initial state after a power cycle or a hw_reset.
978  */
mmc_set_initial_state(struct mmc_host * host)979 void mmc_set_initial_state(struct mmc_host *host)
980 {
981 	if (host->cqe_on)
982 		host->cqe_ops->cqe_off(host);
983 
984 	mmc_retune_disable(host);
985 
986 	if (mmc_host_is_spi(host))
987 		host->ios.chip_select = MMC_CS_HIGH;
988 	else
989 		host->ios.chip_select = MMC_CS_DONTCARE;
990 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
991 	host->ios.bus_width = MMC_BUS_WIDTH_1;
992 	host->ios.timing = MMC_TIMING_LEGACY;
993 	host->ios.drv_type = 0;
994 	host->ios.enhanced_strobe = false;
995 
996 	/*
997 	 * Make sure we are in non-enhanced strobe mode before we
998 	 * actually enable it in ext_csd.
999 	 */
1000 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1001 	     host->ops->hs400_enhanced_strobe)
1002 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1003 
1004 	mmc_set_ios(host);
1005 
1006 	mmc_crypto_set_initial_state(host);
1007 }
1008 EXPORT_SYMBOL_GPL(mmc_set_initial_state);
1009 
1010 /**
1011  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1012  * @vdd:	voltage (mV)
1013  * @low_bits:	prefer low bits in boundary cases
1014  *
1015  * This function returns the OCR bit number according to the provided @vdd
1016  * value. If conversion is not possible a negative errno value returned.
1017  *
1018  * Depending on the @low_bits flag the function prefers low or high OCR bits
1019  * on boundary voltages. For example,
1020  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1021  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1022  *
1023  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1024  */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1025 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1026 {
1027 	const int max_bit = ilog2(MMC_VDD_35_36);
1028 	int bit;
1029 
1030 	if (vdd < 1650 || vdd > 3600)
1031 		return -EINVAL;
1032 
1033 	if (vdd >= 1650 && vdd <= 1950)
1034 		return ilog2(MMC_VDD_165_195);
1035 
1036 	if (low_bits)
1037 		vdd -= 1;
1038 
1039 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1040 	bit = (vdd - 2000) / 100 + 8;
1041 	if (bit > max_bit)
1042 		return max_bit;
1043 	return bit;
1044 }
1045 
1046 /**
1047  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1048  * @vdd_min:	minimum voltage value (mV)
1049  * @vdd_max:	maximum voltage value (mV)
1050  *
1051  * This function returns the OCR mask bits according to the provided @vdd_min
1052  * and @vdd_max values. If conversion is not possible the function returns 0.
1053  *
1054  * Notes wrt boundary cases:
1055  * This function sets the OCR bits for all boundary voltages, for example
1056  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1057  * MMC_VDD_34_35 mask.
1058  */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1059 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1060 {
1061 	u32 mask = 0;
1062 
1063 	if (vdd_max < vdd_min)
1064 		return 0;
1065 
1066 	/* Prefer high bits for the boundary vdd_max values. */
1067 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1068 	if (vdd_max < 0)
1069 		return 0;
1070 
1071 	/* Prefer low bits for the boundary vdd_min values. */
1072 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1073 	if (vdd_min < 0)
1074 		return 0;
1075 
1076 	/* Fill the mask, from max bit to min bit. */
1077 	while (vdd_max >= vdd_min)
1078 		mask |= 1 << vdd_max--;
1079 
1080 	return mask;
1081 }
1082 
mmc_of_get_func_num(struct device_node * node)1083 static int mmc_of_get_func_num(struct device_node *node)
1084 {
1085 	u32 reg;
1086 	int ret;
1087 
1088 	ret = of_property_read_u32(node, "reg", &reg);
1089 	if (ret < 0)
1090 		return ret;
1091 
1092 	return reg;
1093 }
1094 
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1095 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1096 		unsigned func_num)
1097 {
1098 	struct device_node *node;
1099 
1100 	if (!host->parent || !host->parent->of_node)
1101 		return NULL;
1102 
1103 	for_each_child_of_node(host->parent->of_node, node) {
1104 		if (mmc_of_get_func_num(node) == func_num)
1105 			return node;
1106 	}
1107 
1108 	return NULL;
1109 }
1110 
1111 /*
1112  * Mask off any voltages we don't support and select
1113  * the lowest voltage
1114  */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1115 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1116 {
1117 	int bit;
1118 
1119 	/*
1120 	 * Sanity check the voltages that the card claims to
1121 	 * support.
1122 	 */
1123 	if (ocr & 0x7F) {
1124 		dev_warn(mmc_dev(host),
1125 		"card claims to support voltages below defined range\n");
1126 		ocr &= ~0x7F;
1127 	}
1128 
1129 	ocr &= host->ocr_avail;
1130 	if (!ocr) {
1131 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1132 		return 0;
1133 	}
1134 
1135 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1136 		bit = ffs(ocr) - 1;
1137 		ocr &= 3 << bit;
1138 		mmc_power_cycle(host, ocr);
1139 	} else {
1140 		bit = fls(ocr) - 1;
1141 		/*
1142 		 * The bit variable represents the highest voltage bit set in
1143 		 * the OCR register.
1144 		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1145 		 * we must shift the mask '3' with (bit - 1).
1146 		 */
1147 		ocr &= 3 << (bit - 1);
1148 		if (bit != host->ios.vdd)
1149 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1150 	}
1151 
1152 	return ocr;
1153 }
1154 
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1155 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1156 {
1157 	int err = 0;
1158 	int old_signal_voltage = host->ios.signal_voltage;
1159 
1160 	host->ios.signal_voltage = signal_voltage;
1161 	if (host->ops->start_signal_voltage_switch)
1162 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1163 
1164 	if (err)
1165 		host->ios.signal_voltage = old_signal_voltage;
1166 
1167 	return err;
1168 
1169 }
1170 
mmc_set_initial_signal_voltage(struct mmc_host * host)1171 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1172 {
1173 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1174 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1175 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1176 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1177 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1178 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1179 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1180 }
1181 
mmc_host_set_uhs_voltage(struct mmc_host * host)1182 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1183 {
1184 	u32 clock;
1185 
1186 	/*
1187 	 * During a signal voltage level switch, the clock must be gated
1188 	 * for 5 ms according to the SD spec
1189 	 */
1190 	clock = host->ios.clock;
1191 	host->ios.clock = 0;
1192 	mmc_set_ios(host);
1193 
1194 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1195 		return -EAGAIN;
1196 
1197 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1198 	mmc_delay(10);
1199 	host->ios.clock = clock;
1200 	mmc_set_ios(host);
1201 
1202 	return 0;
1203 }
1204 
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1205 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1206 {
1207 	struct mmc_command cmd = {};
1208 	int err = 0;
1209 
1210 	/*
1211 	 * If we cannot switch voltages, return failure so the caller
1212 	 * can continue without UHS mode
1213 	 */
1214 	if (!host->ops->start_signal_voltage_switch)
1215 		return -EPERM;
1216 	if (!host->ops->card_busy)
1217 		pr_warn("%s: cannot verify signal voltage switch\n",
1218 			mmc_hostname(host));
1219 
1220 	cmd.opcode = SD_SWITCH_VOLTAGE;
1221 	cmd.arg = 0;
1222 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1223 
1224 	err = mmc_wait_for_cmd(host, &cmd, 0);
1225 	if (err)
1226 		goto power_cycle;
1227 
1228 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1229 		return -EIO;
1230 
1231 	/*
1232 	 * The card should drive cmd and dat[0:3] low immediately
1233 	 * after the response of cmd11, but wait 1 ms to be sure
1234 	 */
1235 	mmc_delay(1);
1236 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1237 		err = -EAGAIN;
1238 		goto power_cycle;
1239 	}
1240 
1241 	if (mmc_host_set_uhs_voltage(host)) {
1242 		/*
1243 		 * Voltages may not have been switched, but we've already
1244 		 * sent CMD11, so a power cycle is required anyway
1245 		 */
1246 		err = -EAGAIN;
1247 		goto power_cycle;
1248 	}
1249 
1250 	/* Wait for at least 1 ms according to spec */
1251 	mmc_delay(1);
1252 
1253 	/*
1254 	 * Failure to switch is indicated by the card holding
1255 	 * dat[0:3] low
1256 	 */
1257 	if (host->ops->card_busy && host->ops->card_busy(host))
1258 		err = -EAGAIN;
1259 
1260 power_cycle:
1261 	if (err) {
1262 		pr_debug("%s: Signal voltage switch failed, "
1263 			"power cycling card\n", mmc_hostname(host));
1264 		mmc_power_cycle(host, ocr);
1265 	}
1266 
1267 	return err;
1268 }
1269 
1270 /*
1271  * Select timing parameters for host.
1272  */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1273 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1274 {
1275 	host->ios.timing = timing;
1276 	mmc_set_ios(host);
1277 }
1278 EXPORT_SYMBOL_GPL(mmc_set_timing);
1279 
1280 /*
1281  * Select appropriate driver type for host.
1282  */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1283 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1284 {
1285 	host->ios.drv_type = drv_type;
1286 	mmc_set_ios(host);
1287 }
1288 
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1289 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1290 			      int card_drv_type, int *drv_type)
1291 {
1292 	struct mmc_host *host = card->host;
1293 	int host_drv_type = SD_DRIVER_TYPE_B;
1294 
1295 	*drv_type = 0;
1296 
1297 	if (!host->ops->select_drive_strength)
1298 		return 0;
1299 
1300 	/* Use SD definition of driver strength for hosts */
1301 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1302 		host_drv_type |= SD_DRIVER_TYPE_A;
1303 
1304 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1305 		host_drv_type |= SD_DRIVER_TYPE_C;
1306 
1307 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1308 		host_drv_type |= SD_DRIVER_TYPE_D;
1309 
1310 	/*
1311 	 * The drive strength that the hardware can support
1312 	 * depends on the board design.  Pass the appropriate
1313 	 * information and let the hardware specific code
1314 	 * return what is possible given the options
1315 	 */
1316 	return host->ops->select_drive_strength(card, max_dtr,
1317 						host_drv_type,
1318 						card_drv_type,
1319 						drv_type);
1320 }
1321 
1322 /*
1323  * Apply power to the MMC stack.  This is a two-stage process.
1324  * First, we enable power to the card without the clock running.
1325  * We then wait a bit for the power to stabilise.  Finally,
1326  * enable the bus drivers and clock to the card.
1327  *
1328  * We must _NOT_ enable the clock prior to power stablising.
1329  *
1330  * If a host does all the power sequencing itself, ignore the
1331  * initial MMC_POWER_UP stage.
1332  */
mmc_power_up(struct mmc_host * host,u32 ocr)1333 void mmc_power_up(struct mmc_host *host, u32 ocr)
1334 {
1335 	if (host->ios.power_mode == MMC_POWER_ON)
1336 		return;
1337 
1338 	mmc_pwrseq_pre_power_on(host);
1339 
1340 	host->ios.vdd = fls(ocr) - 1;
1341 	host->ios.power_mode = MMC_POWER_UP;
1342 	/* Set initial state and call mmc_set_ios */
1343 	mmc_set_initial_state(host);
1344 
1345 	mmc_set_initial_signal_voltage(host);
1346 
1347 	/*
1348 	 * This delay should be sufficient to allow the power supply
1349 	 * to reach the minimum voltage.
1350 	 */
1351 	mmc_delay(host->ios.power_delay_ms);
1352 
1353 	mmc_pwrseq_post_power_on(host);
1354 
1355 	host->ios.clock = host->f_init;
1356 
1357 	host->ios.power_mode = MMC_POWER_ON;
1358 	mmc_set_ios(host);
1359 
1360 	/*
1361 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1362 	 * time required to reach a stable voltage.
1363 	 */
1364 	mmc_delay(host->ios.power_delay_ms);
1365 }
1366 
mmc_power_off(struct mmc_host * host)1367 void mmc_power_off(struct mmc_host *host)
1368 {
1369 	if (host->ios.power_mode == MMC_POWER_OFF)
1370 		return;
1371 
1372 	mmc_pwrseq_power_off(host);
1373 
1374 	host->ios.clock = 0;
1375 	host->ios.vdd = 0;
1376 
1377 	host->ios.power_mode = MMC_POWER_OFF;
1378 	/* Set initial state and call mmc_set_ios */
1379 	mmc_set_initial_state(host);
1380 
1381 	/*
1382 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1383 	 * XO-1.5, require a short delay after poweroff before the card
1384 	 * can be successfully turned on again.
1385 	 */
1386 	mmc_delay(1);
1387 }
1388 
mmc_power_cycle(struct mmc_host * host,u32 ocr)1389 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1390 {
1391 	mmc_power_off(host);
1392 	/* Wait at least 1 ms according to SD spec */
1393 	mmc_delay(1);
1394 	mmc_power_up(host, ocr);
1395 }
1396 
1397 /*
1398  * Cleanup when the last reference to the bus operator is dropped.
1399  */
__mmc_release_bus(struct mmc_host * host)1400 static void __mmc_release_bus(struct mmc_host *host)
1401 {
1402 	WARN_ON(!host->bus_dead);
1403 
1404 	host->bus_ops = NULL;
1405 }
1406 
1407 /*
1408  * Increase reference count of bus operator
1409  */
mmc_bus_get(struct mmc_host * host)1410 static inline void mmc_bus_get(struct mmc_host *host)
1411 {
1412 	unsigned long flags;
1413 
1414 	spin_lock_irqsave(&host->lock, flags);
1415 	host->bus_refs++;
1416 	spin_unlock_irqrestore(&host->lock, flags);
1417 }
1418 
1419 /*
1420  * Decrease reference count of bus operator and free it if
1421  * it is the last reference.
1422  */
mmc_bus_put(struct mmc_host * host)1423 static inline void mmc_bus_put(struct mmc_host *host)
1424 {
1425 	unsigned long flags;
1426 
1427 	spin_lock_irqsave(&host->lock, flags);
1428 	host->bus_refs--;
1429 	if ((host->bus_refs == 0) && host->bus_ops)
1430 		__mmc_release_bus(host);
1431 	spin_unlock_irqrestore(&host->lock, flags);
1432 }
1433 
1434 /*
1435  * Assign a mmc bus handler to a host. Only one bus handler may control a
1436  * host at any given time.
1437  */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1438 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1439 {
1440 	unsigned long flags;
1441 
1442 	WARN_ON(!host->claimed);
1443 
1444 	spin_lock_irqsave(&host->lock, flags);
1445 
1446 	WARN_ON(host->bus_ops);
1447 	WARN_ON(host->bus_refs);
1448 
1449 	host->bus_ops = ops;
1450 	host->bus_refs = 1;
1451 	host->bus_dead = 0;
1452 
1453 	spin_unlock_irqrestore(&host->lock, flags);
1454 }
1455 
1456 /*
1457  * Remove the current bus handler from a host.
1458  */
mmc_detach_bus(struct mmc_host * host)1459 void mmc_detach_bus(struct mmc_host *host)
1460 {
1461 	unsigned long flags;
1462 
1463 	WARN_ON(!host->claimed);
1464 	WARN_ON(!host->bus_ops);
1465 
1466 	spin_lock_irqsave(&host->lock, flags);
1467 
1468 	host->bus_dead = 1;
1469 
1470 	spin_unlock_irqrestore(&host->lock, flags);
1471 
1472 	mmc_bus_put(host);
1473 }
1474 
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1475 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1476 {
1477 	/*
1478 	 * Prevent system sleep for 5s to allow user space to consume the
1479 	 * corresponding uevent. This is especially useful, when CD irq is used
1480 	 * as a system wakeup, but doesn't hurt in other cases.
1481 	 */
1482 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1483 		__pm_wakeup_event(host->ws, 5000);
1484 
1485 	host->detect_change = 1;
1486 	mmc_schedule_delayed_work(&host->detect, delay);
1487 }
1488 
1489 /**
1490  *	mmc_detect_change - process change of state on a MMC socket
1491  *	@host: host which changed state.
1492  *	@delay: optional delay to wait before detection (jiffies)
1493  *
1494  *	MMC drivers should call this when they detect a card has been
1495  *	inserted or removed. The MMC layer will confirm that any
1496  *	present card is still functional, and initialize any newly
1497  *	inserted.
1498  */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1499 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1500 {
1501 	_mmc_detect_change(host, delay, true);
1502 }
1503 EXPORT_SYMBOL(mmc_detect_change);
1504 
mmc_init_erase(struct mmc_card * card)1505 void mmc_init_erase(struct mmc_card *card)
1506 {
1507 	unsigned int sz;
1508 
1509 	if (is_power_of_2(card->erase_size))
1510 		card->erase_shift = ffs(card->erase_size) - 1;
1511 	else
1512 		card->erase_shift = 0;
1513 
1514 	/*
1515 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1516 	 * card.  That is not desirable because it can take a long time
1517 	 * (minutes) potentially delaying more important I/O, and also the
1518 	 * timeout calculations become increasingly hugely over-estimated.
1519 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1520 	 * to that size and alignment.
1521 	 *
1522 	 * For SD cards that define Allocation Unit size, limit erases to one
1523 	 * Allocation Unit at a time.
1524 	 * For MMC, have a stab at ai good value and for modern cards it will
1525 	 * end up being 4MiB. Note that if the value is too small, it can end
1526 	 * up taking longer to erase. Also note, erase_size is already set to
1527 	 * High Capacity Erase Size if available when this function is called.
1528 	 */
1529 	if (mmc_card_sd(card) && card->ssr.au) {
1530 		card->pref_erase = card->ssr.au;
1531 		card->erase_shift = ffs(card->ssr.au) - 1;
1532 	} else if (card->erase_size) {
1533 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1534 		if (sz < 128)
1535 			card->pref_erase = 512 * 1024 / 512;
1536 		else if (sz < 512)
1537 			card->pref_erase = 1024 * 1024 / 512;
1538 		else if (sz < 1024)
1539 			card->pref_erase = 2 * 1024 * 1024 / 512;
1540 		else
1541 			card->pref_erase = 4 * 1024 * 1024 / 512;
1542 		if (card->pref_erase < card->erase_size)
1543 			card->pref_erase = card->erase_size;
1544 		else {
1545 			sz = card->pref_erase % card->erase_size;
1546 			if (sz)
1547 				card->pref_erase += card->erase_size - sz;
1548 		}
1549 	} else
1550 		card->pref_erase = 0;
1551 }
1552 
is_trim_arg(unsigned int arg)1553 static bool is_trim_arg(unsigned int arg)
1554 {
1555 	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1556 }
1557 
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1558 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1559 				          unsigned int arg, unsigned int qty)
1560 {
1561 	unsigned int erase_timeout;
1562 
1563 	if (arg == MMC_DISCARD_ARG ||
1564 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1565 		erase_timeout = card->ext_csd.trim_timeout;
1566 	} else if (card->ext_csd.erase_group_def & 1) {
1567 		/* High Capacity Erase Group Size uses HC timeouts */
1568 		if (arg == MMC_TRIM_ARG)
1569 			erase_timeout = card->ext_csd.trim_timeout;
1570 		else
1571 			erase_timeout = card->ext_csd.hc_erase_timeout;
1572 	} else {
1573 		/* CSD Erase Group Size uses write timeout */
1574 		unsigned int mult = (10 << card->csd.r2w_factor);
1575 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1576 		unsigned int timeout_us;
1577 
1578 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1579 		if (card->csd.taac_ns < 1000000)
1580 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1581 		else
1582 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1583 
1584 		/*
1585 		 * ios.clock is only a target.  The real clock rate might be
1586 		 * less but not that much less, so fudge it by multiplying by 2.
1587 		 */
1588 		timeout_clks <<= 1;
1589 		timeout_us += (timeout_clks * 1000) /
1590 			      (card->host->ios.clock / 1000);
1591 
1592 		erase_timeout = timeout_us / 1000;
1593 
1594 		/*
1595 		 * Theoretically, the calculation could underflow so round up
1596 		 * to 1ms in that case.
1597 		 */
1598 		if (!erase_timeout)
1599 			erase_timeout = 1;
1600 	}
1601 
1602 	/* Multiplier for secure operations */
1603 	if (arg & MMC_SECURE_ARGS) {
1604 		if (arg == MMC_SECURE_ERASE_ARG)
1605 			erase_timeout *= card->ext_csd.sec_erase_mult;
1606 		else
1607 			erase_timeout *= card->ext_csd.sec_trim_mult;
1608 	}
1609 
1610 	erase_timeout *= qty;
1611 
1612 	/*
1613 	 * Ensure at least a 1 second timeout for SPI as per
1614 	 * 'mmc_set_data_timeout()'
1615 	 */
1616 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1617 		erase_timeout = 1000;
1618 
1619 	return erase_timeout;
1620 }
1621 
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1622 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1623 					 unsigned int arg,
1624 					 unsigned int qty)
1625 {
1626 	unsigned int erase_timeout;
1627 
1628 	/* for DISCARD none of the below calculation applies.
1629 	 * the busy timeout is 250msec per discard command.
1630 	 */
1631 	if (arg == SD_DISCARD_ARG)
1632 		return SD_DISCARD_TIMEOUT_MS;
1633 
1634 	if (card->ssr.erase_timeout) {
1635 		/* Erase timeout specified in SD Status Register (SSR) */
1636 		erase_timeout = card->ssr.erase_timeout * qty +
1637 				card->ssr.erase_offset;
1638 	} else {
1639 		/*
1640 		 * Erase timeout not specified in SD Status Register (SSR) so
1641 		 * use 250ms per write block.
1642 		 */
1643 		erase_timeout = 250 * qty;
1644 	}
1645 
1646 	/* Must not be less than 1 second */
1647 	if (erase_timeout < 1000)
1648 		erase_timeout = 1000;
1649 
1650 	return erase_timeout;
1651 }
1652 
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1653 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1654 				      unsigned int arg,
1655 				      unsigned int qty)
1656 {
1657 	if (mmc_card_sd(card))
1658 		return mmc_sd_erase_timeout(card, arg, qty);
1659 	else
1660 		return mmc_mmc_erase_timeout(card, arg, qty);
1661 }
1662 
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1663 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1664 			unsigned int to, unsigned int arg)
1665 {
1666 	struct mmc_command cmd = {};
1667 	unsigned int qty = 0, busy_timeout = 0;
1668 	bool use_r1b_resp = false;
1669 	int err;
1670 
1671 	mmc_retune_hold(card->host);
1672 
1673 	/*
1674 	 * qty is used to calculate the erase timeout which depends on how many
1675 	 * erase groups (or allocation units in SD terminology) are affected.
1676 	 * We count erasing part of an erase group as one erase group.
1677 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1678 	 * erase group size is almost certainly also power of 2, but it does not
1679 	 * seem to insist on that in the JEDEC standard, so we fall back to
1680 	 * division in that case.  SD may not specify an allocation unit size,
1681 	 * in which case the timeout is based on the number of write blocks.
1682 	 *
1683 	 * Note that the timeout for secure trim 2 will only be correct if the
1684 	 * number of erase groups specified is the same as the total of all
1685 	 * preceding secure trim 1 commands.  Since the power may have been
1686 	 * lost since the secure trim 1 commands occurred, it is generally
1687 	 * impossible to calculate the secure trim 2 timeout correctly.
1688 	 */
1689 	if (card->erase_shift)
1690 		qty += ((to >> card->erase_shift) -
1691 			(from >> card->erase_shift)) + 1;
1692 	else if (mmc_card_sd(card))
1693 		qty += to - from + 1;
1694 	else
1695 		qty += ((to / card->erase_size) -
1696 			(from / card->erase_size)) + 1;
1697 
1698 	if (!mmc_card_blockaddr(card)) {
1699 		from <<= 9;
1700 		to <<= 9;
1701 	}
1702 
1703 	if (mmc_card_sd(card))
1704 		cmd.opcode = SD_ERASE_WR_BLK_START;
1705 	else
1706 		cmd.opcode = MMC_ERASE_GROUP_START;
1707 	cmd.arg = from;
1708 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1709 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1710 	if (err) {
1711 		pr_err("mmc_erase: group start error %d, "
1712 		       "status %#x\n", err, cmd.resp[0]);
1713 		err = -EIO;
1714 		goto out;
1715 	}
1716 
1717 	memset(&cmd, 0, sizeof(struct mmc_command));
1718 	if (mmc_card_sd(card))
1719 		cmd.opcode = SD_ERASE_WR_BLK_END;
1720 	else
1721 		cmd.opcode = MMC_ERASE_GROUP_END;
1722 	cmd.arg = to;
1723 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1724 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1725 	if (err) {
1726 		pr_err("mmc_erase: group end error %d, status %#x\n",
1727 		       err, cmd.resp[0]);
1728 		err = -EIO;
1729 		goto out;
1730 	}
1731 
1732 	memset(&cmd, 0, sizeof(struct mmc_command));
1733 	cmd.opcode = MMC_ERASE;
1734 	cmd.arg = arg;
1735 	busy_timeout = mmc_erase_timeout(card, arg, qty);
1736 	/*
1737 	 * If the host controller supports busy signalling and the timeout for
1738 	 * the erase operation does not exceed the max_busy_timeout, we should
1739 	 * use R1B response. Or we need to prevent the host from doing hw busy
1740 	 * detection, which is done by converting to a R1 response instead.
1741 	 * Note, some hosts requires R1B, which also means they are on their own
1742 	 * when it comes to deal with the busy timeout.
1743 	 */
1744 	if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
1745 	    card->host->max_busy_timeout &&
1746 	    busy_timeout > card->host->max_busy_timeout) {
1747 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1748 	} else {
1749 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1750 		cmd.busy_timeout = busy_timeout;
1751 		use_r1b_resp = true;
1752 	}
1753 
1754 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1755 	if (err) {
1756 		pr_err("mmc_erase: erase error %d, status %#x\n",
1757 		       err, cmd.resp[0]);
1758 		err = -EIO;
1759 		goto out;
1760 	}
1761 
1762 	if (mmc_host_is_spi(card->host))
1763 		goto out;
1764 
1765 	/*
1766 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1767 	 * shall be avoided.
1768 	 */
1769 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1770 		goto out;
1771 
1772 	/* Let's poll to find out when the erase operation completes. */
1773 	err = mmc_poll_for_busy(card, busy_timeout, MMC_BUSY_ERASE);
1774 
1775 out:
1776 	mmc_retune_release(card->host);
1777 	return err;
1778 }
1779 
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1780 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1781 					 unsigned int *from,
1782 					 unsigned int *to,
1783 					 unsigned int nr)
1784 {
1785 	unsigned int from_new = *from, nr_new = nr, rem;
1786 
1787 	/*
1788 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1789 	 * to align the erase size efficiently.
1790 	 */
1791 	if (is_power_of_2(card->erase_size)) {
1792 		unsigned int temp = from_new;
1793 
1794 		from_new = round_up(temp, card->erase_size);
1795 		rem = from_new - temp;
1796 
1797 		if (nr_new > rem)
1798 			nr_new -= rem;
1799 		else
1800 			return 0;
1801 
1802 		nr_new = round_down(nr_new, card->erase_size);
1803 	} else {
1804 		rem = from_new % card->erase_size;
1805 		if (rem) {
1806 			rem = card->erase_size - rem;
1807 			from_new += rem;
1808 			if (nr_new > rem)
1809 				nr_new -= rem;
1810 			else
1811 				return 0;
1812 		}
1813 
1814 		rem = nr_new % card->erase_size;
1815 		if (rem)
1816 			nr_new -= rem;
1817 	}
1818 
1819 	if (nr_new == 0)
1820 		return 0;
1821 
1822 	*to = from_new + nr_new;
1823 	*from = from_new;
1824 
1825 	return nr_new;
1826 }
1827 
1828 /**
1829  * mmc_erase - erase sectors.
1830  * @card: card to erase
1831  * @from: first sector to erase
1832  * @nr: number of sectors to erase
1833  * @arg: erase command argument
1834  *
1835  * Caller must claim host before calling this function.
1836  */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1837 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1838 	      unsigned int arg)
1839 {
1840 	unsigned int rem, to = from + nr;
1841 	int err;
1842 
1843 	if (!(card->csd.cmdclass & CCC_ERASE))
1844 		return -EOPNOTSUPP;
1845 
1846 	if (!card->erase_size)
1847 		return -EOPNOTSUPP;
1848 
1849 	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1850 		return -EOPNOTSUPP;
1851 
1852 	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1853 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1854 		return -EOPNOTSUPP;
1855 
1856 	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1857 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1858 		return -EOPNOTSUPP;
1859 
1860 	if (arg == MMC_SECURE_ERASE_ARG) {
1861 		if (from % card->erase_size || nr % card->erase_size)
1862 			return -EINVAL;
1863 	}
1864 
1865 	if (arg == MMC_ERASE_ARG)
1866 		nr = mmc_align_erase_size(card, &from, &to, nr);
1867 
1868 	if (nr == 0)
1869 		return 0;
1870 
1871 	if (to <= from)
1872 		return -EINVAL;
1873 
1874 	/* 'from' and 'to' are inclusive */
1875 	to -= 1;
1876 
1877 	/*
1878 	 * Special case where only one erase-group fits in the timeout budget:
1879 	 * If the region crosses an erase-group boundary on this particular
1880 	 * case, we will be trimming more than one erase-group which, does not
1881 	 * fit in the timeout budget of the controller, so we need to split it
1882 	 * and call mmc_do_erase() twice if necessary. This special case is
1883 	 * identified by the card->eg_boundary flag.
1884 	 */
1885 	rem = card->erase_size - (from % card->erase_size);
1886 	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1887 		err = mmc_do_erase(card, from, from + rem - 1, arg);
1888 		from += rem;
1889 		if ((err) || (to <= from))
1890 			return err;
1891 	}
1892 
1893 	return mmc_do_erase(card, from, to, arg);
1894 }
1895 EXPORT_SYMBOL(mmc_erase);
1896 
mmc_can_erase(struct mmc_card * card)1897 int mmc_can_erase(struct mmc_card *card)
1898 {
1899 	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1900 		return 1;
1901 	return 0;
1902 }
1903 EXPORT_SYMBOL(mmc_can_erase);
1904 
mmc_can_trim(struct mmc_card * card)1905 int mmc_can_trim(struct mmc_card *card)
1906 {
1907 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1908 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1909 		return 1;
1910 	return 0;
1911 }
1912 EXPORT_SYMBOL(mmc_can_trim);
1913 
mmc_can_discard(struct mmc_card * card)1914 int mmc_can_discard(struct mmc_card *card)
1915 {
1916 	/*
1917 	 * As there's no way to detect the discard support bit at v4.5
1918 	 * use the s/w feature support filed.
1919 	 */
1920 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1921 		return 1;
1922 	return 0;
1923 }
1924 EXPORT_SYMBOL(mmc_can_discard);
1925 
mmc_can_sanitize(struct mmc_card * card)1926 int mmc_can_sanitize(struct mmc_card *card)
1927 {
1928 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1929 		return 0;
1930 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1931 		return 1;
1932 	return 0;
1933 }
1934 
mmc_can_secure_erase_trim(struct mmc_card * card)1935 int mmc_can_secure_erase_trim(struct mmc_card *card)
1936 {
1937 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1938 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1939 		return 1;
1940 	return 0;
1941 }
1942 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1943 
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1944 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1945 			    unsigned int nr)
1946 {
1947 	if (!card->erase_size)
1948 		return 0;
1949 	if (from % card->erase_size || nr % card->erase_size)
1950 		return 0;
1951 	return 1;
1952 }
1953 EXPORT_SYMBOL(mmc_erase_group_aligned);
1954 
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1955 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1956 					    unsigned int arg)
1957 {
1958 	struct mmc_host *host = card->host;
1959 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1960 	unsigned int last_timeout = 0;
1961 	unsigned int max_busy_timeout = host->max_busy_timeout ?
1962 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1963 
1964 	if (card->erase_shift) {
1965 		max_qty = UINT_MAX >> card->erase_shift;
1966 		min_qty = card->pref_erase >> card->erase_shift;
1967 	} else if (mmc_card_sd(card)) {
1968 		max_qty = UINT_MAX;
1969 		min_qty = card->pref_erase;
1970 	} else {
1971 		max_qty = UINT_MAX / card->erase_size;
1972 		min_qty = card->pref_erase / card->erase_size;
1973 	}
1974 
1975 	/*
1976 	 * We should not only use 'host->max_busy_timeout' as the limitation
1977 	 * when deciding the max discard sectors. We should set a balance value
1978 	 * to improve the erase speed, and it can not get too long timeout at
1979 	 * the same time.
1980 	 *
1981 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1982 	 * matter what size of 'host->max_busy_timeout', but if the
1983 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1984 	 * then we can continue to increase the max discard sectors until we
1985 	 * get a balance value. In cases when the 'host->max_busy_timeout'
1986 	 * isn't specified, use the default max erase timeout.
1987 	 */
1988 	do {
1989 		y = 0;
1990 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1991 			timeout = mmc_erase_timeout(card, arg, qty + x);
1992 
1993 			if (qty + x > min_qty && timeout > max_busy_timeout)
1994 				break;
1995 
1996 			if (timeout < last_timeout)
1997 				break;
1998 			last_timeout = timeout;
1999 			y = x;
2000 		}
2001 		qty += y;
2002 	} while (y);
2003 
2004 	if (!qty)
2005 		return 0;
2006 
2007 	/*
2008 	 * When specifying a sector range to trim, chances are we might cross
2009 	 * an erase-group boundary even if the amount of sectors is less than
2010 	 * one erase-group.
2011 	 * If we can only fit one erase-group in the controller timeout budget,
2012 	 * we have to care that erase-group boundaries are not crossed by a
2013 	 * single trim operation. We flag that special case with "eg_boundary".
2014 	 * In all other cases we can just decrement qty and pretend that we
2015 	 * always touch (qty + 1) erase-groups as a simple optimization.
2016 	 */
2017 	if (qty == 1)
2018 		card->eg_boundary = 1;
2019 	else
2020 		qty--;
2021 
2022 	/* Convert qty to sectors */
2023 	if (card->erase_shift)
2024 		max_discard = qty << card->erase_shift;
2025 	else if (mmc_card_sd(card))
2026 		max_discard = qty + 1;
2027 	else
2028 		max_discard = qty * card->erase_size;
2029 
2030 	return max_discard;
2031 }
2032 
mmc_calc_max_discard(struct mmc_card * card)2033 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2034 {
2035 	struct mmc_host *host = card->host;
2036 	unsigned int max_discard, max_trim;
2037 
2038 	/*
2039 	 * Without erase_group_def set, MMC erase timeout depends on clock
2040 	 * frequence which can change.  In that case, the best choice is
2041 	 * just the preferred erase size.
2042 	 */
2043 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2044 		return card->pref_erase;
2045 
2046 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2047 	if (mmc_can_trim(card)) {
2048 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2049 		if (max_trim < max_discard || max_discard == 0)
2050 			max_discard = max_trim;
2051 	} else if (max_discard < card->erase_size) {
2052 		max_discard = 0;
2053 	}
2054 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2055 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2056 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2057 	return max_discard;
2058 }
2059 EXPORT_SYMBOL(mmc_calc_max_discard);
2060 
mmc_card_is_blockaddr(struct mmc_card * card)2061 bool mmc_card_is_blockaddr(struct mmc_card *card)
2062 {
2063 	return card ? mmc_card_blockaddr(card) : false;
2064 }
2065 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2066 
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2067 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2068 {
2069 	struct mmc_command cmd = {};
2070 
2071 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2072 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2073 		return 0;
2074 
2075 	cmd.opcode = MMC_SET_BLOCKLEN;
2076 	cmd.arg = blocklen;
2077 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2078 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2079 }
2080 EXPORT_SYMBOL(mmc_set_blocklen);
2081 
mmc_hw_reset_for_init(struct mmc_host * host)2082 static void mmc_hw_reset_for_init(struct mmc_host *host)
2083 {
2084 	mmc_pwrseq_reset(host);
2085 
2086 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2087 		return;
2088 	host->ops->hw_reset(host);
2089 }
2090 
2091 /**
2092  * mmc_hw_reset - reset the card in hardware
2093  * @host: MMC host to which the card is attached
2094  *
2095  * Hard reset the card. This function is only for upper layers, like the
2096  * block layer or card drivers. You cannot use it in host drivers (struct
2097  * mmc_card might be gone then).
2098  *
2099  * Return: 0 on success, -errno on failure
2100  */
mmc_hw_reset(struct mmc_host * host)2101 int mmc_hw_reset(struct mmc_host *host)
2102 {
2103 	int ret;
2104 
2105 	if (!host->card)
2106 		return -EINVAL;
2107 
2108 	mmc_bus_get(host);
2109 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2110 		mmc_bus_put(host);
2111 		return -EOPNOTSUPP;
2112 	}
2113 
2114 	ret = host->bus_ops->hw_reset(host);
2115 	mmc_bus_put(host);
2116 
2117 	if (ret < 0)
2118 		pr_warn("%s: tried to HW reset card, got error %d\n",
2119 			mmc_hostname(host), ret);
2120 
2121 	return ret;
2122 }
2123 EXPORT_SYMBOL(mmc_hw_reset);
2124 
mmc_sw_reset(struct mmc_host * host)2125 int mmc_sw_reset(struct mmc_host *host)
2126 {
2127 	int ret;
2128 
2129 	if (!host->card)
2130 		return -EINVAL;
2131 
2132 	mmc_bus_get(host);
2133 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2134 		mmc_bus_put(host);
2135 		return -EOPNOTSUPP;
2136 	}
2137 
2138 	ret = host->bus_ops->sw_reset(host);
2139 	mmc_bus_put(host);
2140 
2141 	if (ret)
2142 		pr_warn("%s: tried to SW reset card, got error %d\n",
2143 			mmc_hostname(host), ret);
2144 
2145 	return ret;
2146 }
2147 EXPORT_SYMBOL(mmc_sw_reset);
2148 
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2149 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2150 {
2151 	host->f_init = freq;
2152 
2153 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2154 		mmc_hostname(host), __func__, host->f_init);
2155 
2156 	mmc_power_up(host, host->ocr_avail);
2157 
2158 	/*
2159 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2160 	 * do a hardware reset if possible.
2161 	 */
2162 	mmc_hw_reset_for_init(host);
2163 
2164 	/*
2165 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2166 	 * if the card is being re-initialized, just send it.  CMD52
2167 	 * should be ignored by SD/eMMC cards.
2168 	 * Skip it if we already know that we do not support SDIO commands
2169 	 */
2170 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2171 		sdio_reset(host);
2172 
2173 	mmc_go_idle(host);
2174 
2175 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2176 		mmc_send_if_cond(host, host->ocr_avail);
2177 
2178 	/* Order's important: probe SDIO, then SD, then MMC */
2179 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2180 		if (!mmc_attach_sdio(host))
2181 			return 0;
2182 
2183 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2184 		if (!mmc_attach_sd(host))
2185 			return 0;
2186 
2187 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2188 		if (!mmc_attach_mmc(host))
2189 			return 0;
2190 
2191 	mmc_power_off(host);
2192 	return -EIO;
2193 }
2194 
_mmc_detect_card_removed(struct mmc_host * host)2195 int _mmc_detect_card_removed(struct mmc_host *host)
2196 {
2197 	int ret;
2198 
2199 	if (!host->card || mmc_card_removed(host->card))
2200 		return 1;
2201 
2202 	ret = host->bus_ops->alive(host);
2203 
2204 	/*
2205 	 * Card detect status and alive check may be out of sync if card is
2206 	 * removed slowly, when card detect switch changes while card/slot
2207 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2208 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2209 	 * detect work 200ms later for this case.
2210 	 */
2211 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2212 		mmc_detect_change(host, msecs_to_jiffies(200));
2213 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2214 	}
2215 
2216 	if (ret) {
2217 		mmc_card_set_removed(host->card);
2218 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2219 	}
2220 
2221 	return ret;
2222 }
2223 
mmc_detect_card_removed(struct mmc_host * host)2224 int mmc_detect_card_removed(struct mmc_host *host)
2225 {
2226 	struct mmc_card *card = host->card;
2227 	int ret;
2228 
2229 	WARN_ON(!host->claimed);
2230 
2231 	if (!card)
2232 		return 1;
2233 
2234 	if (!mmc_card_is_removable(host))
2235 		return 0;
2236 
2237 	ret = mmc_card_removed(card);
2238 	/*
2239 	 * The card will be considered unchanged unless we have been asked to
2240 	 * detect a change or host requires polling to provide card detection.
2241 	 */
2242 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2243 		return ret;
2244 
2245 	host->detect_change = 0;
2246 	if (!ret) {
2247 		ret = _mmc_detect_card_removed(host);
2248 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2249 			/*
2250 			 * Schedule a detect work as soon as possible to let a
2251 			 * rescan handle the card removal.
2252 			 */
2253 			cancel_delayed_work(&host->detect);
2254 			_mmc_detect_change(host, 0, false);
2255 		}
2256 	}
2257 
2258 	return ret;
2259 }
2260 EXPORT_SYMBOL(mmc_detect_card_removed);
2261 
mmc_rescan(struct work_struct * work)2262 void mmc_rescan(struct work_struct *work)
2263 {
2264 	struct mmc_host *host =
2265 		container_of(work, struct mmc_host, detect.work);
2266 	int i;
2267 
2268 	if (host->rescan_disable)
2269 		return;
2270 
2271 	/* If there is a non-removable card registered, only scan once */
2272 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2273 		return;
2274 	host->rescan_entered = 1;
2275 
2276 	if (host->trigger_card_event && host->ops->card_event) {
2277 		mmc_claim_host(host);
2278 		host->ops->card_event(host);
2279 		mmc_release_host(host);
2280 		host->trigger_card_event = false;
2281 	}
2282 
2283 	mmc_bus_get(host);
2284 
2285 	/* Verify a registered card to be functional, else remove it. */
2286 	if (host->bus_ops && !host->bus_dead)
2287 		host->bus_ops->detect(host);
2288 
2289 	host->detect_change = 0;
2290 
2291 	/*
2292 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2293 	 * the card is no longer present.
2294 	 */
2295 	mmc_bus_put(host);
2296 	mmc_bus_get(host);
2297 
2298 	/* if there still is a card present, stop here */
2299 	if (host->bus_ops != NULL) {
2300 		mmc_bus_put(host);
2301 		goto out;
2302 	}
2303 
2304 	/*
2305 	 * Only we can add a new handler, so it's safe to
2306 	 * release the lock here.
2307 	 */
2308 	mmc_bus_put(host);
2309 
2310 	mmc_claim_host(host);
2311 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2312 			host->ops->get_cd(host) == 0) {
2313 		mmc_power_off(host);
2314 		mmc_release_host(host);
2315 		goto out;
2316 	}
2317 
2318 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2319 		unsigned int freq = freqs[i];
2320 		if (freq > host->f_max) {
2321 			if (i + 1 < ARRAY_SIZE(freqs))
2322 				continue;
2323 			freq = host->f_max;
2324 		}
2325 		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2326 			break;
2327 		if (freqs[i] <= host->f_min)
2328 			break;
2329 	}
2330 	mmc_release_host(host);
2331 
2332  out:
2333 	if (host->caps & MMC_CAP_NEEDS_POLL)
2334 		mmc_schedule_delayed_work(&host->detect, HZ);
2335 }
2336 
mmc_start_host(struct mmc_host * host)2337 void mmc_start_host(struct mmc_host *host)
2338 {
2339 	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2340 	host->rescan_disable = 0;
2341 
2342 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2343 		mmc_claim_host(host);
2344 		mmc_power_up(host, host->ocr_avail);
2345 		mmc_release_host(host);
2346 	}
2347 
2348 	mmc_gpiod_request_cd_irq(host);
2349 	_mmc_detect_change(host, 0, false);
2350 }
2351 
__mmc_stop_host(struct mmc_host * host)2352 void __mmc_stop_host(struct mmc_host *host)
2353 {
2354 	if (host->slot.cd_irq >= 0) {
2355 		mmc_gpio_set_cd_wake(host, false);
2356 		disable_irq(host->slot.cd_irq);
2357 	}
2358 
2359 	host->rescan_disable = 1;
2360 	cancel_delayed_work_sync(&host->detect);
2361 }
2362 
mmc_stop_host(struct mmc_host * host)2363 void mmc_stop_host(struct mmc_host *host)
2364 {
2365 	__mmc_stop_host(host);
2366 
2367 	/* clear pm flags now and let card drivers set them as needed */
2368 	host->pm_flags = 0;
2369 
2370 	mmc_bus_get(host);
2371 	if (host->bus_ops && !host->bus_dead) {
2372 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2373 		host->bus_ops->remove(host);
2374 		mmc_claim_host(host);
2375 		mmc_detach_bus(host);
2376 		mmc_power_off(host);
2377 		mmc_release_host(host);
2378 		mmc_bus_put(host);
2379 		return;
2380 	}
2381 	mmc_bus_put(host);
2382 
2383 	mmc_claim_host(host);
2384 	mmc_power_off(host);
2385 	mmc_release_host(host);
2386 }
2387 
mmc_init(void)2388 static int __init mmc_init(void)
2389 {
2390 	int ret;
2391 
2392 	ret = mmc_register_bus();
2393 	if (ret)
2394 		return ret;
2395 
2396 	ret = mmc_register_host_class();
2397 	if (ret)
2398 		goto unregister_bus;
2399 
2400 	ret = sdio_register_bus();
2401 	if (ret)
2402 		goto unregister_host_class;
2403 
2404 	return 0;
2405 
2406 unregister_host_class:
2407 	mmc_unregister_host_class();
2408 unregister_bus:
2409 	mmc_unregister_bus();
2410 	return ret;
2411 }
2412 
mmc_exit(void)2413 static void __exit mmc_exit(void)
2414 {
2415 	sdio_unregister_bus();
2416 	mmc_unregister_host_class();
2417 	mmc_unregister_bus();
2418 }
2419 
2420 subsys_initcall(mmc_init);
2421 module_exit(mmc_exit);
2422 
2423 MODULE_LICENSE("GPL");
2424