• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  linux/drivers/mmc/core/mmc_ops.h
4  *
5  *  Copyright 2006-2007 Pierre Ossman
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12 
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16 
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21 
22 #define MMC_BKOPS_TIMEOUT_MS		(120 * 1000) /* 120s */
23 #define MMC_CACHE_FLUSH_TIMEOUT_MS	(30 * 1000) /* 30s */
24 #define MMC_SANITIZE_TIMEOUT_MS		(240 * 1000) /* 240s */
25 
26 static const u8 tuning_blk_pattern_4bit[] = {
27 	0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
28 	0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
29 	0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
30 	0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
31 	0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
32 	0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
33 	0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
34 	0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
35 };
36 
37 static const u8 tuning_blk_pattern_8bit[] = {
38 	0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
39 	0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
40 	0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
41 	0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
42 	0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
43 	0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
44 	0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
45 	0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
46 	0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
47 	0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
48 	0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
49 	0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
50 	0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
51 	0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
52 	0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
53 	0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
54 };
55 
__mmc_send_status(struct mmc_card * card,u32 * status,unsigned int retries)56 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
57 {
58 	int err;
59 	struct mmc_command cmd = {};
60 
61 	cmd.opcode = MMC_SEND_STATUS;
62 	if (!mmc_host_is_spi(card->host))
63 		cmd.arg = card->rca << 16;
64 	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
65 
66 	err = mmc_wait_for_cmd(card->host, &cmd, retries);
67 	if (err)
68 		return err;
69 
70 	/* NOTE: callers are required to understand the difference
71 	 * between "native" and SPI format status words!
72 	 */
73 	if (status)
74 		*status = cmd.resp[0];
75 
76 	return 0;
77 }
78 EXPORT_SYMBOL_GPL(__mmc_send_status);
79 
mmc_send_status(struct mmc_card * card,u32 * status)80 int mmc_send_status(struct mmc_card *card, u32 *status)
81 {
82 	return __mmc_send_status(card, status, MMC_CMD_RETRIES);
83 }
84 EXPORT_SYMBOL_GPL(mmc_send_status);
85 
_mmc_select_card(struct mmc_host * host,struct mmc_card * card)86 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
87 {
88 	struct mmc_command cmd = {};
89 
90 	cmd.opcode = MMC_SELECT_CARD;
91 
92 	if (card) {
93 		cmd.arg = card->rca << 16;
94 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
95 	} else {
96 		cmd.arg = 0;
97 		cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
98 	}
99 
100 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
101 }
102 
mmc_select_card(struct mmc_card * card)103 int mmc_select_card(struct mmc_card *card)
104 {
105 
106 	return _mmc_select_card(card->host, card);
107 }
108 
mmc_deselect_cards(struct mmc_host * host)109 int mmc_deselect_cards(struct mmc_host *host)
110 {
111 	return _mmc_select_card(host, NULL);
112 }
113 
114 /*
115  * Write the value specified in the device tree or board code into the optional
116  * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
117  * drive strength of the DAT and CMD outputs. The actual meaning of a given
118  * value is hardware dependant.
119  * The presence of the DSR register can be determined from the CSD register,
120  * bit 76.
121  */
mmc_set_dsr(struct mmc_host * host)122 int mmc_set_dsr(struct mmc_host *host)
123 {
124 	struct mmc_command cmd = {};
125 
126 	cmd.opcode = MMC_SET_DSR;
127 
128 	cmd.arg = (host->dsr << 16) | 0xffff;
129 	cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
130 
131 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
132 }
133 
mmc_go_idle(struct mmc_host * host)134 int mmc_go_idle(struct mmc_host *host)
135 {
136 	int err;
137 	struct mmc_command cmd = {};
138 
139 	/*
140 	 * Non-SPI hosts need to prevent chipselect going active during
141 	 * GO_IDLE; that would put chips into SPI mode.  Remind them of
142 	 * that in case of hardware that won't pull up DAT3/nCS otherwise.
143 	 *
144 	 * SPI hosts ignore ios.chip_select; it's managed according to
145 	 * rules that must accommodate non-MMC slaves which this layer
146 	 * won't even know about.
147 	 */
148 	if (!mmc_host_is_spi(host)) {
149 		mmc_set_chip_select(host, MMC_CS_HIGH);
150 		mmc_delay(1);
151 	}
152 
153 	cmd.opcode = MMC_GO_IDLE_STATE;
154 	cmd.arg = 0;
155 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
156 
157 	err = mmc_wait_for_cmd(host, &cmd, 0);
158 
159 	mmc_delay(1);
160 
161 	if (!mmc_host_is_spi(host)) {
162 		mmc_set_chip_select(host, MMC_CS_DONTCARE);
163 		mmc_delay(1);
164 	}
165 
166 	host->use_spi_crc = 0;
167 
168 	return err;
169 }
170 
mmc_send_op_cond(struct mmc_host * host,u32 ocr,u32 * rocr)171 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
172 {
173 	struct mmc_command cmd = {};
174 	int i, err = 0;
175 
176 	cmd.opcode = MMC_SEND_OP_COND;
177 	cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
178 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
179 
180 	for (i = 100; i; i--) {
181 		err = mmc_wait_for_cmd(host, &cmd, 0);
182 		if (err)
183 			break;
184 
185 		/* wait until reset completes */
186 		if (mmc_host_is_spi(host)) {
187 			if (!(cmd.resp[0] & R1_SPI_IDLE))
188 				break;
189 		} else {
190 			if (cmd.resp[0] & MMC_CARD_BUSY)
191 				break;
192 		}
193 
194 		err = -ETIMEDOUT;
195 
196 		mmc_delay(10);
197 
198 		/*
199 		 * According to eMMC specification v5.1 section 6.4.3, we
200 		 * should issue CMD1 repeatedly in the idle state until
201 		 * the eMMC is ready. Otherwise some eMMC devices seem to enter
202 		 * the inactive mode after mmc_init_card() issued CMD0 when
203 		 * the eMMC device is busy.
204 		 */
205 		if (!ocr && !mmc_host_is_spi(host))
206 			cmd.arg = cmd.resp[0] | BIT(30);
207 	}
208 
209 	if (rocr && !mmc_host_is_spi(host))
210 		*rocr = cmd.resp[0];
211 
212 	return err;
213 }
214 
mmc_set_relative_addr(struct mmc_card * card)215 int mmc_set_relative_addr(struct mmc_card *card)
216 {
217 	struct mmc_command cmd = {};
218 
219 	cmd.opcode = MMC_SET_RELATIVE_ADDR;
220 	cmd.arg = card->rca << 16;
221 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
222 
223 	return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
224 }
225 
226 static int
mmc_send_cxd_native(struct mmc_host * host,u32 arg,u32 * cxd,int opcode)227 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
228 {
229 	int err;
230 	struct mmc_command cmd = {};
231 
232 	cmd.opcode = opcode;
233 	cmd.arg = arg;
234 	cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
235 
236 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
237 	if (err)
238 		return err;
239 
240 	memcpy(cxd, cmd.resp, sizeof(u32) * 4);
241 
242 	return 0;
243 }
244 
245 /*
246  * NOTE: void *buf, caller for the buf is required to use DMA-capable
247  * buffer or on-stack buffer (with some overhead in callee).
248  */
249 static int
mmc_send_cxd_data(struct mmc_card * card,struct mmc_host * host,u32 opcode,void * buf,unsigned len)250 mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
251 		u32 opcode, void *buf, unsigned len)
252 {
253 	struct mmc_request mrq = {};
254 	struct mmc_command cmd = {};
255 	struct mmc_data data = {};
256 	struct scatterlist sg;
257 
258 	mrq.cmd = &cmd;
259 	mrq.data = &data;
260 
261 	cmd.opcode = opcode;
262 	cmd.arg = 0;
263 
264 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
265 	 * rely on callers to never use this with "native" calls for reading
266 	 * CSD or CID.  Native versions of those commands use the R2 type,
267 	 * not R1 plus a data block.
268 	 */
269 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
270 
271 	data.blksz = len;
272 	data.blocks = 1;
273 	data.flags = MMC_DATA_READ;
274 	data.sg = &sg;
275 	data.sg_len = 1;
276 
277 	sg_init_one(&sg, buf, len);
278 
279 	if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
280 		/*
281 		 * The spec states that CSR and CID accesses have a timeout
282 		 * of 64 clock cycles.
283 		 */
284 		data.timeout_ns = 0;
285 		data.timeout_clks = 64;
286 	} else
287 		mmc_set_data_timeout(&data, card);
288 
289 	mmc_wait_for_req(host, &mrq);
290 
291 	if (cmd.error)
292 		return cmd.error;
293 	if (data.error)
294 		return data.error;
295 
296 	return 0;
297 }
298 
mmc_spi_send_csd(struct mmc_card * card,u32 * csd)299 static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd)
300 {
301 	int ret, i;
302 	__be32 *csd_tmp;
303 
304 	csd_tmp = kzalloc(16, GFP_KERNEL);
305 	if (!csd_tmp)
306 		return -ENOMEM;
307 
308 	ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16);
309 	if (ret)
310 		goto err;
311 
312 	for (i = 0; i < 4; i++)
313 		csd[i] = be32_to_cpu(csd_tmp[i]);
314 
315 err:
316 	kfree(csd_tmp);
317 	return ret;
318 }
319 
mmc_send_csd(struct mmc_card * card,u32 * csd)320 int mmc_send_csd(struct mmc_card *card, u32 *csd)
321 {
322 	if (mmc_host_is_spi(card->host))
323 		return mmc_spi_send_csd(card, csd);
324 
325 	return mmc_send_cxd_native(card->host, card->rca << 16,	csd,
326 				MMC_SEND_CSD);
327 }
328 
mmc_spi_send_cid(struct mmc_host * host,u32 * cid)329 static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid)
330 {
331 	int ret, i;
332 	__be32 *cid_tmp;
333 
334 	cid_tmp = kzalloc(16, GFP_KERNEL);
335 	if (!cid_tmp)
336 		return -ENOMEM;
337 
338 	ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16);
339 	if (ret)
340 		goto err;
341 
342 	for (i = 0; i < 4; i++)
343 		cid[i] = be32_to_cpu(cid_tmp[i]);
344 
345 err:
346 	kfree(cid_tmp);
347 	return ret;
348 }
349 
mmc_send_cid(struct mmc_host * host,u32 * cid)350 int mmc_send_cid(struct mmc_host *host, u32 *cid)
351 {
352 	if (mmc_host_is_spi(host))
353 		return mmc_spi_send_cid(host, cid);
354 
355 	return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
356 }
357 
mmc_get_ext_csd(struct mmc_card * card,u8 ** new_ext_csd)358 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
359 {
360 	int err;
361 	u8 *ext_csd;
362 
363 	if (!card || !new_ext_csd)
364 		return -EINVAL;
365 
366 	if (!mmc_can_ext_csd(card))
367 		return -EOPNOTSUPP;
368 
369 	/*
370 	 * As the ext_csd is so large and mostly unused, we don't store the
371 	 * raw block in mmc_card.
372 	 */
373 	ext_csd = kzalloc(512, GFP_KERNEL);
374 	if (!ext_csd)
375 		return -ENOMEM;
376 
377 	err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
378 				512);
379 	if (err)
380 		kfree(ext_csd);
381 	else
382 		*new_ext_csd = ext_csd;
383 
384 	return err;
385 }
386 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
387 
mmc_spi_read_ocr(struct mmc_host * host,int highcap,u32 * ocrp)388 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
389 {
390 	struct mmc_command cmd = {};
391 	int err;
392 
393 	cmd.opcode = MMC_SPI_READ_OCR;
394 	cmd.arg = highcap ? (1 << 30) : 0;
395 	cmd.flags = MMC_RSP_SPI_R3;
396 
397 	err = mmc_wait_for_cmd(host, &cmd, 0);
398 
399 	*ocrp = cmd.resp[1];
400 	return err;
401 }
402 
mmc_spi_set_crc(struct mmc_host * host,int use_crc)403 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
404 {
405 	struct mmc_command cmd = {};
406 	int err;
407 
408 	cmd.opcode = MMC_SPI_CRC_ON_OFF;
409 	cmd.flags = MMC_RSP_SPI_R1;
410 	cmd.arg = use_crc;
411 
412 	err = mmc_wait_for_cmd(host, &cmd, 0);
413 	if (!err)
414 		host->use_spi_crc = use_crc;
415 	return err;
416 }
417 
mmc_switch_status_error(struct mmc_host * host,u32 status)418 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
419 {
420 	if (mmc_host_is_spi(host)) {
421 		if (status & R1_SPI_ILLEGAL_COMMAND)
422 			return -EBADMSG;
423 	} else {
424 		if (R1_STATUS(status))
425 			pr_warn("%s: unexpected status %#x after switch\n",
426 				mmc_hostname(host), status);
427 		if (status & R1_SWITCH_ERROR)
428 			return -EBADMSG;
429 	}
430 	return 0;
431 }
432 
433 /* Caller must hold re-tuning */
mmc_switch_status(struct mmc_card * card,bool crc_err_fatal)434 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
435 {
436 	u32 status;
437 	int err;
438 
439 	err = mmc_send_status(card, &status);
440 	if (!crc_err_fatal && err == -EILSEQ)
441 		return 0;
442 	if (err)
443 		return err;
444 
445 	return mmc_switch_status_error(card->host, status);
446 }
447 
mmc_busy_status(struct mmc_card * card,bool retry_crc_err,enum mmc_busy_cmd busy_cmd,bool * busy)448 static int mmc_busy_status(struct mmc_card *card, bool retry_crc_err,
449 			   enum mmc_busy_cmd busy_cmd, bool *busy)
450 {
451 	struct mmc_host *host = card->host;
452 	u32 status = 0;
453 	int err;
454 
455 	if (busy_cmd != MMC_BUSY_IO && host->ops->card_busy) {
456 		*busy = host->ops->card_busy(host);
457 		return 0;
458 	}
459 
460 	err = mmc_send_status(card, &status);
461 	if (retry_crc_err && err == -EILSEQ) {
462 		*busy = true;
463 		return 0;
464 	}
465 	if (err)
466 		return err;
467 
468 	switch (busy_cmd) {
469 	case MMC_BUSY_CMD6:
470 		err = mmc_switch_status_error(card->host, status);
471 		break;
472 	case MMC_BUSY_ERASE:
473 		err = R1_STATUS(status) ? -EIO : 0;
474 		break;
475 	case MMC_BUSY_HPI:
476 	case MMC_BUSY_IO:
477 		break;
478 	default:
479 		err = -EINVAL;
480 	}
481 
482 	if (err)
483 		return err;
484 
485 	*busy = !mmc_ready_for_data(status);
486 	return 0;
487 }
488 
__mmc_poll_for_busy(struct mmc_card * card,unsigned int timeout_ms,bool send_status,bool retry_crc_err,enum mmc_busy_cmd busy_cmd)489 static int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
490 			       bool send_status, bool retry_crc_err,
491 			       enum mmc_busy_cmd busy_cmd)
492 {
493 	struct mmc_host *host = card->host;
494 	int err;
495 	unsigned long timeout;
496 	unsigned int udelay = 32, udelay_max = 32768;
497 	bool expired = false;
498 	bool busy = false;
499 
500 	/*
501 	 * In cases when not allowed to poll by using CMD13 or because we aren't
502 	 * capable of polling by using ->card_busy(), then rely on waiting the
503 	 * stated timeout to be sufficient.
504 	 */
505 	if (!send_status && !host->ops->card_busy) {
506 		mmc_delay(timeout_ms);
507 		return 0;
508 	}
509 
510 	timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
511 	do {
512 		/*
513 		 * Due to the possibility of being preempted while polling,
514 		 * check the expiration time first.
515 		 */
516 		expired = time_after(jiffies, timeout);
517 
518 		err = mmc_busy_status(card, retry_crc_err, busy_cmd, &busy);
519 		if (err)
520 			return err;
521 
522 		/* Timeout if the device still remains busy. */
523 		if (expired && busy) {
524 			pr_err("%s: Card stuck being busy! %s\n",
525 				mmc_hostname(host), __func__);
526 			return -ETIMEDOUT;
527 		}
528 
529 		/* Throttle the polling rate to avoid hogging the CPU. */
530 		if (busy) {
531 			usleep_range(udelay, udelay * 2);
532 			if (udelay < udelay_max)
533 				udelay *= 2;
534 		}
535 	} while (busy);
536 
537 	return 0;
538 }
539 
mmc_poll_for_busy(struct mmc_card * card,unsigned int timeout_ms,enum mmc_busy_cmd busy_cmd)540 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
541 		      enum mmc_busy_cmd busy_cmd)
542 {
543 	return __mmc_poll_for_busy(card, timeout_ms, true, false, busy_cmd);
544 }
545 
546 /**
547  *	__mmc_switch - modify EXT_CSD register
548  *	@card: the MMC card associated with the data transfer
549  *	@set: cmd set values
550  *	@index: EXT_CSD register index
551  *	@value: value to program into EXT_CSD register
552  *	@timeout_ms: timeout (ms) for operation performed by register write,
553  *                   timeout of zero implies maximum possible timeout
554  *	@timing: new timing to change to
555  *	@send_status: send status cmd to poll for busy
556  *	@retry_crc_err: retry when CRC errors when polling with CMD13 for busy
557  *
558  *	Modifies the EXT_CSD register for selected card.
559  */
__mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms,unsigned char timing,bool send_status,bool retry_crc_err)560 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
561 		unsigned int timeout_ms, unsigned char timing,
562 		bool send_status, bool retry_crc_err)
563 {
564 	struct mmc_host *host = card->host;
565 	int err;
566 	struct mmc_command cmd = {};
567 	bool use_r1b_resp = true;
568 	unsigned char old_timing = host->ios.timing;
569 
570 	mmc_retune_hold(host);
571 
572 	if (!timeout_ms) {
573 		pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
574 			mmc_hostname(host));
575 		timeout_ms = card->ext_csd.generic_cmd6_time;
576 	}
577 
578 	/*
579 	 * If the max_busy_timeout of the host is specified, make sure it's
580 	 * enough to fit the used timeout_ms. In case it's not, let's instruct
581 	 * the host to avoid HW busy detection, by converting to a R1 response
582 	 * instead of a R1B. Note, some hosts requires R1B, which also means
583 	 * they are on their own when it comes to deal with the busy timeout.
584 	 */
585 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
586 	    (timeout_ms > host->max_busy_timeout))
587 		use_r1b_resp = false;
588 
589 	cmd.opcode = MMC_SWITCH;
590 	cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
591 		  (index << 16) |
592 		  (value << 8) |
593 		  set;
594 	cmd.flags = MMC_CMD_AC;
595 	if (use_r1b_resp) {
596 		cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
597 		cmd.busy_timeout = timeout_ms;
598 	} else {
599 		cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
600 	}
601 
602 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
603 	if (err)
604 		goto out;
605 
606 	/*If SPI or used HW busy detection above, then we don't need to poll. */
607 	if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
608 		mmc_host_is_spi(host))
609 		goto out_tim;
610 
611 	/* Let's try to poll to find out when the command is completed. */
612 	err = __mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err,
613 				  MMC_BUSY_CMD6);
614 	if (err)
615 		goto out;
616 
617 out_tim:
618 	/* Switch to new timing before check switch status. */
619 	if (timing)
620 		mmc_set_timing(host, timing);
621 
622 	if (send_status) {
623 		err = mmc_switch_status(card, true);
624 		if (err && timing)
625 			mmc_set_timing(host, old_timing);
626 	}
627 out:
628 	mmc_retune_release(host);
629 
630 	return err;
631 }
632 
mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms)633 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
634 		unsigned int timeout_ms)
635 {
636 	return __mmc_switch(card, set, index, value, timeout_ms, 0,
637 			    true, false);
638 }
639 EXPORT_SYMBOL_GPL(mmc_switch);
640 
mmc_send_tuning(struct mmc_host * host,u32 opcode,int * cmd_error)641 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
642 {
643 	struct mmc_request mrq = {};
644 	struct mmc_command cmd = {};
645 	struct mmc_data data = {};
646 	struct scatterlist sg;
647 	struct mmc_ios *ios = &host->ios;
648 	const u8 *tuning_block_pattern;
649 	int size, err = 0;
650 	u8 *data_buf;
651 
652 	if (ios->bus_width == MMC_BUS_WIDTH_8) {
653 		tuning_block_pattern = tuning_blk_pattern_8bit;
654 		size = sizeof(tuning_blk_pattern_8bit);
655 	} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
656 		tuning_block_pattern = tuning_blk_pattern_4bit;
657 		size = sizeof(tuning_blk_pattern_4bit);
658 	} else
659 		return -EINVAL;
660 
661 	data_buf = kzalloc(size, GFP_KERNEL);
662 	if (!data_buf)
663 		return -ENOMEM;
664 
665 	mrq.cmd = &cmd;
666 	mrq.data = &data;
667 
668 	cmd.opcode = opcode;
669 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
670 
671 	data.blksz = size;
672 	data.blocks = 1;
673 	data.flags = MMC_DATA_READ;
674 
675 	/*
676 	 * According to the tuning specs, Tuning process
677 	 * is normally shorter 40 executions of CMD19,
678 	 * and timeout value should be shorter than 150 ms
679 	 */
680 	data.timeout_ns = 150 * NSEC_PER_MSEC;
681 
682 	data.sg = &sg;
683 	data.sg_len = 1;
684 	sg_init_one(&sg, data_buf, size);
685 
686 	mmc_wait_for_req(host, &mrq);
687 
688 	if (cmd_error)
689 		*cmd_error = cmd.error;
690 
691 	if (cmd.error) {
692 		err = cmd.error;
693 		goto out;
694 	}
695 
696 	if (data.error) {
697 		err = data.error;
698 		goto out;
699 	}
700 
701 	if (memcmp(data_buf, tuning_block_pattern, size))
702 		err = -EIO;
703 
704 out:
705 	kfree(data_buf);
706 	return err;
707 }
708 EXPORT_SYMBOL_GPL(mmc_send_tuning);
709 
mmc_abort_tuning(struct mmc_host * host,u32 opcode)710 int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
711 {
712 	struct mmc_command cmd = {};
713 
714 	/*
715 	 * eMMC specification specifies that CMD12 can be used to stop a tuning
716 	 * command, but SD specification does not, so do nothing unless it is
717 	 * eMMC.
718 	 */
719 	if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
720 		return 0;
721 
722 	cmd.opcode = MMC_STOP_TRANSMISSION;
723 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
724 
725 	/*
726 	 * For drivers that override R1 to R1b, set an arbitrary timeout based
727 	 * on the tuning timeout i.e. 150ms.
728 	 */
729 	cmd.busy_timeout = 150;
730 
731 	return mmc_wait_for_cmd(host, &cmd, 0);
732 }
733 EXPORT_SYMBOL_GPL(mmc_abort_tuning);
734 
735 static int
mmc_send_bus_test(struct mmc_card * card,struct mmc_host * host,u8 opcode,u8 len)736 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
737 		  u8 len)
738 {
739 	struct mmc_request mrq = {};
740 	struct mmc_command cmd = {};
741 	struct mmc_data data = {};
742 	struct scatterlist sg;
743 	u8 *data_buf;
744 	u8 *test_buf;
745 	int i, err;
746 	static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
747 	static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
748 
749 	/* dma onto stack is unsafe/nonportable, but callers to this
750 	 * routine normally provide temporary on-stack buffers ...
751 	 */
752 	data_buf = kmalloc(len, GFP_KERNEL);
753 	if (!data_buf)
754 		return -ENOMEM;
755 
756 	if (len == 8)
757 		test_buf = testdata_8bit;
758 	else if (len == 4)
759 		test_buf = testdata_4bit;
760 	else {
761 		pr_err("%s: Invalid bus_width %d\n",
762 		       mmc_hostname(host), len);
763 		kfree(data_buf);
764 		return -EINVAL;
765 	}
766 
767 	if (opcode == MMC_BUS_TEST_W)
768 		memcpy(data_buf, test_buf, len);
769 
770 	mrq.cmd = &cmd;
771 	mrq.data = &data;
772 	cmd.opcode = opcode;
773 	cmd.arg = 0;
774 
775 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
776 	 * rely on callers to never use this with "native" calls for reading
777 	 * CSD or CID.  Native versions of those commands use the R2 type,
778 	 * not R1 plus a data block.
779 	 */
780 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
781 
782 	data.blksz = len;
783 	data.blocks = 1;
784 	if (opcode == MMC_BUS_TEST_R)
785 		data.flags = MMC_DATA_READ;
786 	else
787 		data.flags = MMC_DATA_WRITE;
788 
789 	data.sg = &sg;
790 	data.sg_len = 1;
791 	mmc_set_data_timeout(&data, card);
792 	sg_init_one(&sg, data_buf, len);
793 	mmc_wait_for_req(host, &mrq);
794 	err = 0;
795 	if (opcode == MMC_BUS_TEST_R) {
796 		for (i = 0; i < len / 4; i++)
797 			if ((test_buf[i] ^ data_buf[i]) != 0xff) {
798 				err = -EIO;
799 				break;
800 			}
801 	}
802 	kfree(data_buf);
803 
804 	if (cmd.error)
805 		return cmd.error;
806 	if (data.error)
807 		return data.error;
808 
809 	return err;
810 }
811 
mmc_bus_test(struct mmc_card * card,u8 bus_width)812 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
813 {
814 	int width;
815 
816 	if (bus_width == MMC_BUS_WIDTH_8)
817 		width = 8;
818 	else if (bus_width == MMC_BUS_WIDTH_4)
819 		width = 4;
820 	else if (bus_width == MMC_BUS_WIDTH_1)
821 		return 0; /* no need for test */
822 	else
823 		return -EINVAL;
824 
825 	/*
826 	 * Ignore errors from BUS_TEST_W.  BUS_TEST_R will fail if there
827 	 * is a problem.  This improves chances that the test will work.
828 	 */
829 	mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
830 	return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
831 }
832 
mmc_send_hpi_cmd(struct mmc_card * card)833 static int mmc_send_hpi_cmd(struct mmc_card *card)
834 {
835 	unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
836 	struct mmc_host *host = card->host;
837 	bool use_r1b_resp = true;
838 	struct mmc_command cmd = {};
839 	int err;
840 
841 	cmd.opcode = card->ext_csd.hpi_cmd;
842 	cmd.arg = card->rca << 16 | 1;
843 
844 	/*
845 	 * Make sure the host's max_busy_timeout fit the needed timeout for HPI.
846 	 * In case it doesn't, let's instruct the host to avoid HW busy
847 	 * detection, by using a R1 response instead of R1B.
848 	 */
849 	if (host->max_busy_timeout && busy_timeout_ms > host->max_busy_timeout)
850 		use_r1b_resp = false;
851 
852 	if (cmd.opcode == MMC_STOP_TRANSMISSION && use_r1b_resp) {
853 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
854 		cmd.busy_timeout = busy_timeout_ms;
855 	} else {
856 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
857 		use_r1b_resp = false;
858 	}
859 
860 	err = mmc_wait_for_cmd(host, &cmd, 0);
861 	if (err) {
862 		pr_warn("%s: HPI error %d. Command response %#x\n",
863 			mmc_hostname(host), err, cmd.resp[0]);
864 		return err;
865 	}
866 
867 	/* No need to poll when using HW busy detection. */
868 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
869 		return 0;
870 
871 	/* Let's poll to find out when the HPI request completes. */
872 	return mmc_poll_for_busy(card, busy_timeout_ms, MMC_BUSY_HPI);
873 }
874 
875 /**
876  *	mmc_interrupt_hpi - Issue for High priority Interrupt
877  *	@card: the MMC card associated with the HPI transfer
878  *
879  *	Issued High Priority Interrupt, and check for card status
880  *	until out-of prg-state.
881  */
mmc_interrupt_hpi(struct mmc_card * card)882 static int mmc_interrupt_hpi(struct mmc_card *card)
883 {
884 	int err;
885 	u32 status;
886 
887 	if (!card->ext_csd.hpi_en) {
888 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
889 		return 1;
890 	}
891 
892 	err = mmc_send_status(card, &status);
893 	if (err) {
894 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
895 		goto out;
896 	}
897 
898 	switch (R1_CURRENT_STATE(status)) {
899 	case R1_STATE_IDLE:
900 	case R1_STATE_READY:
901 	case R1_STATE_STBY:
902 	case R1_STATE_TRAN:
903 		/*
904 		 * In idle and transfer states, HPI is not needed and the caller
905 		 * can issue the next intended command immediately
906 		 */
907 		goto out;
908 	case R1_STATE_PRG:
909 		break;
910 	default:
911 		/* In all other states, it's illegal to issue HPI */
912 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
913 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
914 		err = -EINVAL;
915 		goto out;
916 	}
917 
918 	err = mmc_send_hpi_cmd(card);
919 out:
920 	return err;
921 }
922 
mmc_can_ext_csd(struct mmc_card * card)923 int mmc_can_ext_csd(struct mmc_card *card)
924 {
925 	return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
926 }
927 
mmc_read_bkops_status(struct mmc_card * card)928 static int mmc_read_bkops_status(struct mmc_card *card)
929 {
930 	int err;
931 	u8 *ext_csd;
932 
933 	err = mmc_get_ext_csd(card, &ext_csd);
934 	if (err)
935 		return err;
936 
937 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
938 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
939 	kfree(ext_csd);
940 	return 0;
941 }
942 
943 /**
944  *	mmc_run_bkops - Run BKOPS for supported cards
945  *	@card: MMC card to run BKOPS for
946  *
947  *	Run background operations synchronously for cards having manual BKOPS
948  *	enabled and in case it reports urgent BKOPS level.
949 */
mmc_run_bkops(struct mmc_card * card)950 void mmc_run_bkops(struct mmc_card *card)
951 {
952 	int err;
953 
954 	if (!card->ext_csd.man_bkops_en)
955 		return;
956 
957 	err = mmc_read_bkops_status(card);
958 	if (err) {
959 		pr_err("%s: Failed to read bkops status: %d\n",
960 		       mmc_hostname(card->host), err);
961 		return;
962 	}
963 
964 	if (!card->ext_csd.raw_bkops_status ||
965 	    card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
966 		return;
967 
968 	mmc_retune_hold(card->host);
969 
970 	/*
971 	 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
972 	 * synchronously. Future wise, we may consider to start BKOPS, for less
973 	 * urgent levels by using an asynchronous background task, when idle.
974 	 */
975 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
976 			 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
977 	if (err)
978 		pr_warn("%s: Error %d starting bkops\n",
979 			mmc_hostname(card->host), err);
980 
981 	mmc_retune_release(card->host);
982 }
983 EXPORT_SYMBOL(mmc_run_bkops);
984 
985 /*
986  * Flush the cache to the non-volatile storage.
987  */
mmc_flush_cache(struct mmc_card * card)988 int mmc_flush_cache(struct mmc_card *card)
989 {
990 	int err = 0;
991 
992 	if (mmc_cache_enabled(card->host)) {
993 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
994 				 EXT_CSD_FLUSH_CACHE, 1,
995 				 MMC_CACHE_FLUSH_TIMEOUT_MS);
996 		if (err)
997 			pr_err("%s: cache flush error %d\n",
998 					mmc_hostname(card->host), err);
999 	}
1000 
1001 	return err;
1002 }
1003 EXPORT_SYMBOL(mmc_flush_cache);
1004 
mmc_cmdq_switch(struct mmc_card * card,bool enable)1005 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1006 {
1007 	u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1008 	int err;
1009 
1010 	if (!card->ext_csd.cmdq_support)
1011 		return -EOPNOTSUPP;
1012 
1013 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1014 			 val, card->ext_csd.generic_cmd6_time);
1015 	if (!err)
1016 		card->ext_csd.cmdq_en = enable;
1017 
1018 	return err;
1019 }
1020 
mmc_cmdq_enable(struct mmc_card * card)1021 int mmc_cmdq_enable(struct mmc_card *card)
1022 {
1023 	return mmc_cmdq_switch(card, true);
1024 }
1025 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1026 
mmc_cmdq_disable(struct mmc_card * card)1027 int mmc_cmdq_disable(struct mmc_card *card)
1028 {
1029 	return mmc_cmdq_switch(card, false);
1030 }
1031 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1032 
mmc_sanitize(struct mmc_card * card)1033 int mmc_sanitize(struct mmc_card *card)
1034 {
1035 	struct mmc_host *host = card->host;
1036 	int err;
1037 
1038 	if (!mmc_can_sanitize(card)) {
1039 		pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1040 		return -EOPNOTSUPP;
1041 	}
1042 
1043 	pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1044 
1045 	mmc_retune_hold(host);
1046 
1047 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1048 			 1, MMC_SANITIZE_TIMEOUT_MS);
1049 	if (err)
1050 		pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1051 
1052 	/*
1053 	 * If the sanitize operation timed out, the card is probably still busy
1054 	 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1055 	 * it with a HPI command to get back into R1_STATE_TRAN.
1056 	 */
1057 	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1058 		pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1059 
1060 	mmc_retune_release(host);
1061 
1062 	pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1063 	return err;
1064 }
1065 EXPORT_SYMBOL_GPL(mmc_sanitize);
1066