1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * linux/drivers/mmc/core/mmc_ops.h
4 *
5 * Copyright 2006-2007 Pierre Ossman
6 */
7
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21
22 #define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */
23 #define MMC_CACHE_FLUSH_TIMEOUT_MS (30 * 1000) /* 30s */
24 #define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */
25
26 static const u8 tuning_blk_pattern_4bit[] = {
27 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
28 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
29 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
30 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
31 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
32 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
33 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
34 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
35 };
36
37 static const u8 tuning_blk_pattern_8bit[] = {
38 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
39 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
40 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
41 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
42 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
43 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
44 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
45 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
46 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
47 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
48 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
49 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
50 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
51 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
52 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
53 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
54 };
55
__mmc_send_status(struct mmc_card * card,u32 * status,unsigned int retries)56 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
57 {
58 int err;
59 struct mmc_command cmd = {};
60
61 cmd.opcode = MMC_SEND_STATUS;
62 if (!mmc_host_is_spi(card->host))
63 cmd.arg = card->rca << 16;
64 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
65
66 err = mmc_wait_for_cmd(card->host, &cmd, retries);
67 if (err)
68 return err;
69
70 /* NOTE: callers are required to understand the difference
71 * between "native" and SPI format status words!
72 */
73 if (status)
74 *status = cmd.resp[0];
75
76 return 0;
77 }
78 EXPORT_SYMBOL_GPL(__mmc_send_status);
79
mmc_send_status(struct mmc_card * card,u32 * status)80 int mmc_send_status(struct mmc_card *card, u32 *status)
81 {
82 return __mmc_send_status(card, status, MMC_CMD_RETRIES);
83 }
84 EXPORT_SYMBOL_GPL(mmc_send_status);
85
_mmc_select_card(struct mmc_host * host,struct mmc_card * card)86 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
87 {
88 struct mmc_command cmd = {};
89
90 cmd.opcode = MMC_SELECT_CARD;
91
92 if (card) {
93 cmd.arg = card->rca << 16;
94 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
95 } else {
96 cmd.arg = 0;
97 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
98 }
99
100 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
101 }
102
mmc_select_card(struct mmc_card * card)103 int mmc_select_card(struct mmc_card *card)
104 {
105
106 return _mmc_select_card(card->host, card);
107 }
108
mmc_deselect_cards(struct mmc_host * host)109 int mmc_deselect_cards(struct mmc_host *host)
110 {
111 return _mmc_select_card(host, NULL);
112 }
113
114 /*
115 * Write the value specified in the device tree or board code into the optional
116 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
117 * drive strength of the DAT and CMD outputs. The actual meaning of a given
118 * value is hardware dependant.
119 * The presence of the DSR register can be determined from the CSD register,
120 * bit 76.
121 */
mmc_set_dsr(struct mmc_host * host)122 int mmc_set_dsr(struct mmc_host *host)
123 {
124 struct mmc_command cmd = {};
125
126 cmd.opcode = MMC_SET_DSR;
127
128 cmd.arg = (host->dsr << 16) | 0xffff;
129 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
130
131 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
132 }
133
mmc_go_idle(struct mmc_host * host)134 int mmc_go_idle(struct mmc_host *host)
135 {
136 int err;
137 struct mmc_command cmd = {};
138
139 /*
140 * Non-SPI hosts need to prevent chipselect going active during
141 * GO_IDLE; that would put chips into SPI mode. Remind them of
142 * that in case of hardware that won't pull up DAT3/nCS otherwise.
143 *
144 * SPI hosts ignore ios.chip_select; it's managed according to
145 * rules that must accommodate non-MMC slaves which this layer
146 * won't even know about.
147 */
148 if (!mmc_host_is_spi(host)) {
149 mmc_set_chip_select(host, MMC_CS_HIGH);
150 mmc_delay(1);
151 }
152
153 cmd.opcode = MMC_GO_IDLE_STATE;
154 cmd.arg = 0;
155 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
156
157 err = mmc_wait_for_cmd(host, &cmd, 0);
158
159 mmc_delay(1);
160
161 if (!mmc_host_is_spi(host)) {
162 mmc_set_chip_select(host, MMC_CS_DONTCARE);
163 mmc_delay(1);
164 }
165
166 host->use_spi_crc = 0;
167
168 return err;
169 }
170
mmc_send_op_cond(struct mmc_host * host,u32 ocr,u32 * rocr)171 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
172 {
173 struct mmc_command cmd = {};
174 int i, err = 0;
175
176 cmd.opcode = MMC_SEND_OP_COND;
177 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
178 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
179
180 for (i = 100; i; i--) {
181 err = mmc_wait_for_cmd(host, &cmd, 0);
182 if (err)
183 break;
184
185 /* wait until reset completes */
186 if (mmc_host_is_spi(host)) {
187 if (!(cmd.resp[0] & R1_SPI_IDLE))
188 break;
189 } else {
190 if (cmd.resp[0] & MMC_CARD_BUSY)
191 break;
192 }
193
194 err = -ETIMEDOUT;
195
196 mmc_delay(10);
197
198 /*
199 * According to eMMC specification v5.1 section 6.4.3, we
200 * should issue CMD1 repeatedly in the idle state until
201 * the eMMC is ready. Otherwise some eMMC devices seem to enter
202 * the inactive mode after mmc_init_card() issued CMD0 when
203 * the eMMC device is busy.
204 */
205 if (!ocr && !mmc_host_is_spi(host))
206 cmd.arg = cmd.resp[0] | BIT(30);
207 }
208
209 if (rocr && !mmc_host_is_spi(host))
210 *rocr = cmd.resp[0];
211
212 return err;
213 }
214
mmc_set_relative_addr(struct mmc_card * card)215 int mmc_set_relative_addr(struct mmc_card *card)
216 {
217 struct mmc_command cmd = {};
218
219 cmd.opcode = MMC_SET_RELATIVE_ADDR;
220 cmd.arg = card->rca << 16;
221 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
222
223 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
224 }
225
226 static int
mmc_send_cxd_native(struct mmc_host * host,u32 arg,u32 * cxd,int opcode)227 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
228 {
229 int err;
230 struct mmc_command cmd = {};
231
232 cmd.opcode = opcode;
233 cmd.arg = arg;
234 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
235
236 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
237 if (err)
238 return err;
239
240 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
241
242 return 0;
243 }
244
245 /*
246 * NOTE: void *buf, caller for the buf is required to use DMA-capable
247 * buffer or on-stack buffer (with some overhead in callee).
248 */
249 static int
mmc_send_cxd_data(struct mmc_card * card,struct mmc_host * host,u32 opcode,void * buf,unsigned len)250 mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
251 u32 opcode, void *buf, unsigned len)
252 {
253 struct mmc_request mrq = {};
254 struct mmc_command cmd = {};
255 struct mmc_data data = {};
256 struct scatterlist sg;
257
258 mrq.cmd = &cmd;
259 mrq.data = &data;
260
261 cmd.opcode = opcode;
262 cmd.arg = 0;
263
264 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
265 * rely on callers to never use this with "native" calls for reading
266 * CSD or CID. Native versions of those commands use the R2 type,
267 * not R1 plus a data block.
268 */
269 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
270
271 data.blksz = len;
272 data.blocks = 1;
273 data.flags = MMC_DATA_READ;
274 data.sg = &sg;
275 data.sg_len = 1;
276
277 sg_init_one(&sg, buf, len);
278
279 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
280 /*
281 * The spec states that CSR and CID accesses have a timeout
282 * of 64 clock cycles.
283 */
284 data.timeout_ns = 0;
285 data.timeout_clks = 64;
286 } else
287 mmc_set_data_timeout(&data, card);
288
289 mmc_wait_for_req(host, &mrq);
290
291 if (cmd.error)
292 return cmd.error;
293 if (data.error)
294 return data.error;
295
296 return 0;
297 }
298
mmc_spi_send_csd(struct mmc_card * card,u32 * csd)299 static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd)
300 {
301 int ret, i;
302 __be32 *csd_tmp;
303
304 csd_tmp = kzalloc(16, GFP_KERNEL);
305 if (!csd_tmp)
306 return -ENOMEM;
307
308 ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16);
309 if (ret)
310 goto err;
311
312 for (i = 0; i < 4; i++)
313 csd[i] = be32_to_cpu(csd_tmp[i]);
314
315 err:
316 kfree(csd_tmp);
317 return ret;
318 }
319
mmc_send_csd(struct mmc_card * card,u32 * csd)320 int mmc_send_csd(struct mmc_card *card, u32 *csd)
321 {
322 if (mmc_host_is_spi(card->host))
323 return mmc_spi_send_csd(card, csd);
324
325 return mmc_send_cxd_native(card->host, card->rca << 16, csd,
326 MMC_SEND_CSD);
327 }
328
mmc_spi_send_cid(struct mmc_host * host,u32 * cid)329 static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid)
330 {
331 int ret, i;
332 __be32 *cid_tmp;
333
334 cid_tmp = kzalloc(16, GFP_KERNEL);
335 if (!cid_tmp)
336 return -ENOMEM;
337
338 ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16);
339 if (ret)
340 goto err;
341
342 for (i = 0; i < 4; i++)
343 cid[i] = be32_to_cpu(cid_tmp[i]);
344
345 err:
346 kfree(cid_tmp);
347 return ret;
348 }
349
mmc_send_cid(struct mmc_host * host,u32 * cid)350 int mmc_send_cid(struct mmc_host *host, u32 *cid)
351 {
352 if (mmc_host_is_spi(host))
353 return mmc_spi_send_cid(host, cid);
354
355 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
356 }
357
mmc_get_ext_csd(struct mmc_card * card,u8 ** new_ext_csd)358 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
359 {
360 int err;
361 u8 *ext_csd;
362
363 if (!card || !new_ext_csd)
364 return -EINVAL;
365
366 if (!mmc_can_ext_csd(card))
367 return -EOPNOTSUPP;
368
369 /*
370 * As the ext_csd is so large and mostly unused, we don't store the
371 * raw block in mmc_card.
372 */
373 ext_csd = kzalloc(512, GFP_KERNEL);
374 if (!ext_csd)
375 return -ENOMEM;
376
377 err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
378 512);
379 if (err)
380 kfree(ext_csd);
381 else
382 *new_ext_csd = ext_csd;
383
384 return err;
385 }
386 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
387
mmc_spi_read_ocr(struct mmc_host * host,int highcap,u32 * ocrp)388 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
389 {
390 struct mmc_command cmd = {};
391 int err;
392
393 cmd.opcode = MMC_SPI_READ_OCR;
394 cmd.arg = highcap ? (1 << 30) : 0;
395 cmd.flags = MMC_RSP_SPI_R3;
396
397 err = mmc_wait_for_cmd(host, &cmd, 0);
398
399 *ocrp = cmd.resp[1];
400 return err;
401 }
402
mmc_spi_set_crc(struct mmc_host * host,int use_crc)403 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
404 {
405 struct mmc_command cmd = {};
406 int err;
407
408 cmd.opcode = MMC_SPI_CRC_ON_OFF;
409 cmd.flags = MMC_RSP_SPI_R1;
410 cmd.arg = use_crc;
411
412 err = mmc_wait_for_cmd(host, &cmd, 0);
413 if (!err)
414 host->use_spi_crc = use_crc;
415 return err;
416 }
417
mmc_switch_status_error(struct mmc_host * host,u32 status)418 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
419 {
420 if (mmc_host_is_spi(host)) {
421 if (status & R1_SPI_ILLEGAL_COMMAND)
422 return -EBADMSG;
423 } else {
424 if (R1_STATUS(status))
425 pr_warn("%s: unexpected status %#x after switch\n",
426 mmc_hostname(host), status);
427 if (status & R1_SWITCH_ERROR)
428 return -EBADMSG;
429 }
430 return 0;
431 }
432
433 /* Caller must hold re-tuning */
mmc_switch_status(struct mmc_card * card,bool crc_err_fatal)434 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
435 {
436 u32 status;
437 int err;
438
439 err = mmc_send_status(card, &status);
440 if (!crc_err_fatal && err == -EILSEQ)
441 return 0;
442 if (err)
443 return err;
444
445 return mmc_switch_status_error(card->host, status);
446 }
447
mmc_busy_status(struct mmc_card * card,bool retry_crc_err,enum mmc_busy_cmd busy_cmd,bool * busy)448 static int mmc_busy_status(struct mmc_card *card, bool retry_crc_err,
449 enum mmc_busy_cmd busy_cmd, bool *busy)
450 {
451 struct mmc_host *host = card->host;
452 u32 status = 0;
453 int err;
454
455 if (busy_cmd != MMC_BUSY_IO && host->ops->card_busy) {
456 *busy = host->ops->card_busy(host);
457 return 0;
458 }
459
460 err = mmc_send_status(card, &status);
461 if (retry_crc_err && err == -EILSEQ) {
462 *busy = true;
463 return 0;
464 }
465 if (err)
466 return err;
467
468 switch (busy_cmd) {
469 case MMC_BUSY_CMD6:
470 err = mmc_switch_status_error(card->host, status);
471 break;
472 case MMC_BUSY_ERASE:
473 err = R1_STATUS(status) ? -EIO : 0;
474 break;
475 case MMC_BUSY_HPI:
476 case MMC_BUSY_IO:
477 break;
478 default:
479 err = -EINVAL;
480 }
481
482 if (err)
483 return err;
484
485 *busy = !mmc_ready_for_data(status);
486 return 0;
487 }
488
__mmc_poll_for_busy(struct mmc_card * card,unsigned int timeout_ms,bool send_status,bool retry_crc_err,enum mmc_busy_cmd busy_cmd)489 static int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
490 bool send_status, bool retry_crc_err,
491 enum mmc_busy_cmd busy_cmd)
492 {
493 struct mmc_host *host = card->host;
494 int err;
495 unsigned long timeout;
496 unsigned int udelay = 32, udelay_max = 32768;
497 bool expired = false;
498 bool busy = false;
499
500 /*
501 * In cases when not allowed to poll by using CMD13 or because we aren't
502 * capable of polling by using ->card_busy(), then rely on waiting the
503 * stated timeout to be sufficient.
504 */
505 if (!send_status && !host->ops->card_busy) {
506 mmc_delay(timeout_ms);
507 return 0;
508 }
509
510 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
511 do {
512 /*
513 * Due to the possibility of being preempted while polling,
514 * check the expiration time first.
515 */
516 expired = time_after(jiffies, timeout);
517
518 err = mmc_busy_status(card, retry_crc_err, busy_cmd, &busy);
519 if (err)
520 return err;
521
522 /* Timeout if the device still remains busy. */
523 if (expired && busy) {
524 pr_err("%s: Card stuck being busy! %s\n",
525 mmc_hostname(host), __func__);
526 return -ETIMEDOUT;
527 }
528
529 /* Throttle the polling rate to avoid hogging the CPU. */
530 if (busy) {
531 usleep_range(udelay, udelay * 2);
532 if (udelay < udelay_max)
533 udelay *= 2;
534 }
535 } while (busy);
536
537 return 0;
538 }
539
mmc_poll_for_busy(struct mmc_card * card,unsigned int timeout_ms,enum mmc_busy_cmd busy_cmd)540 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
541 enum mmc_busy_cmd busy_cmd)
542 {
543 return __mmc_poll_for_busy(card, timeout_ms, true, false, busy_cmd);
544 }
545
546 /**
547 * __mmc_switch - modify EXT_CSD register
548 * @card: the MMC card associated with the data transfer
549 * @set: cmd set values
550 * @index: EXT_CSD register index
551 * @value: value to program into EXT_CSD register
552 * @timeout_ms: timeout (ms) for operation performed by register write,
553 * timeout of zero implies maximum possible timeout
554 * @timing: new timing to change to
555 * @send_status: send status cmd to poll for busy
556 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
557 *
558 * Modifies the EXT_CSD register for selected card.
559 */
__mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms,unsigned char timing,bool send_status,bool retry_crc_err)560 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
561 unsigned int timeout_ms, unsigned char timing,
562 bool send_status, bool retry_crc_err)
563 {
564 struct mmc_host *host = card->host;
565 int err;
566 struct mmc_command cmd = {};
567 bool use_r1b_resp = true;
568 unsigned char old_timing = host->ios.timing;
569
570 mmc_retune_hold(host);
571
572 if (!timeout_ms) {
573 pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
574 mmc_hostname(host));
575 timeout_ms = card->ext_csd.generic_cmd6_time;
576 }
577
578 /*
579 * If the max_busy_timeout of the host is specified, make sure it's
580 * enough to fit the used timeout_ms. In case it's not, let's instruct
581 * the host to avoid HW busy detection, by converting to a R1 response
582 * instead of a R1B. Note, some hosts requires R1B, which also means
583 * they are on their own when it comes to deal with the busy timeout.
584 */
585 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
586 (timeout_ms > host->max_busy_timeout))
587 use_r1b_resp = false;
588
589 cmd.opcode = MMC_SWITCH;
590 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
591 (index << 16) |
592 (value << 8) |
593 set;
594 cmd.flags = MMC_CMD_AC;
595 if (use_r1b_resp) {
596 cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
597 cmd.busy_timeout = timeout_ms;
598 } else {
599 cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
600 }
601
602 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
603 if (err)
604 goto out;
605
606 /*If SPI or used HW busy detection above, then we don't need to poll. */
607 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
608 mmc_host_is_spi(host))
609 goto out_tim;
610
611 /* Let's try to poll to find out when the command is completed. */
612 err = __mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err,
613 MMC_BUSY_CMD6);
614 if (err)
615 goto out;
616
617 out_tim:
618 /* Switch to new timing before check switch status. */
619 if (timing)
620 mmc_set_timing(host, timing);
621
622 if (send_status) {
623 err = mmc_switch_status(card, true);
624 if (err && timing)
625 mmc_set_timing(host, old_timing);
626 }
627 out:
628 mmc_retune_release(host);
629
630 return err;
631 }
632
mmc_switch(struct mmc_card * card,u8 set,u8 index,u8 value,unsigned int timeout_ms)633 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
634 unsigned int timeout_ms)
635 {
636 return __mmc_switch(card, set, index, value, timeout_ms, 0,
637 true, false);
638 }
639 EXPORT_SYMBOL_GPL(mmc_switch);
640
mmc_send_tuning(struct mmc_host * host,u32 opcode,int * cmd_error)641 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
642 {
643 struct mmc_request mrq = {};
644 struct mmc_command cmd = {};
645 struct mmc_data data = {};
646 struct scatterlist sg;
647 struct mmc_ios *ios = &host->ios;
648 const u8 *tuning_block_pattern;
649 int size, err = 0;
650 u8 *data_buf;
651
652 if (ios->bus_width == MMC_BUS_WIDTH_8) {
653 tuning_block_pattern = tuning_blk_pattern_8bit;
654 size = sizeof(tuning_blk_pattern_8bit);
655 } else if (ios->bus_width == MMC_BUS_WIDTH_4) {
656 tuning_block_pattern = tuning_blk_pattern_4bit;
657 size = sizeof(tuning_blk_pattern_4bit);
658 } else
659 return -EINVAL;
660
661 data_buf = kzalloc(size, GFP_KERNEL);
662 if (!data_buf)
663 return -ENOMEM;
664
665 mrq.cmd = &cmd;
666 mrq.data = &data;
667
668 cmd.opcode = opcode;
669 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
670
671 data.blksz = size;
672 data.blocks = 1;
673 data.flags = MMC_DATA_READ;
674
675 /*
676 * According to the tuning specs, Tuning process
677 * is normally shorter 40 executions of CMD19,
678 * and timeout value should be shorter than 150 ms
679 */
680 data.timeout_ns = 150 * NSEC_PER_MSEC;
681
682 data.sg = &sg;
683 data.sg_len = 1;
684 sg_init_one(&sg, data_buf, size);
685
686 mmc_wait_for_req(host, &mrq);
687
688 if (cmd_error)
689 *cmd_error = cmd.error;
690
691 if (cmd.error) {
692 err = cmd.error;
693 goto out;
694 }
695
696 if (data.error) {
697 err = data.error;
698 goto out;
699 }
700
701 if (memcmp(data_buf, tuning_block_pattern, size))
702 err = -EIO;
703
704 out:
705 kfree(data_buf);
706 return err;
707 }
708 EXPORT_SYMBOL_GPL(mmc_send_tuning);
709
mmc_abort_tuning(struct mmc_host * host,u32 opcode)710 int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
711 {
712 struct mmc_command cmd = {};
713
714 /*
715 * eMMC specification specifies that CMD12 can be used to stop a tuning
716 * command, but SD specification does not, so do nothing unless it is
717 * eMMC.
718 */
719 if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
720 return 0;
721
722 cmd.opcode = MMC_STOP_TRANSMISSION;
723 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
724
725 /*
726 * For drivers that override R1 to R1b, set an arbitrary timeout based
727 * on the tuning timeout i.e. 150ms.
728 */
729 cmd.busy_timeout = 150;
730
731 return mmc_wait_for_cmd(host, &cmd, 0);
732 }
733 EXPORT_SYMBOL_GPL(mmc_abort_tuning);
734
735 static int
mmc_send_bus_test(struct mmc_card * card,struct mmc_host * host,u8 opcode,u8 len)736 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
737 u8 len)
738 {
739 struct mmc_request mrq = {};
740 struct mmc_command cmd = {};
741 struct mmc_data data = {};
742 struct scatterlist sg;
743 u8 *data_buf;
744 u8 *test_buf;
745 int i, err;
746 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
747 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
748
749 /* dma onto stack is unsafe/nonportable, but callers to this
750 * routine normally provide temporary on-stack buffers ...
751 */
752 data_buf = kmalloc(len, GFP_KERNEL);
753 if (!data_buf)
754 return -ENOMEM;
755
756 if (len == 8)
757 test_buf = testdata_8bit;
758 else if (len == 4)
759 test_buf = testdata_4bit;
760 else {
761 pr_err("%s: Invalid bus_width %d\n",
762 mmc_hostname(host), len);
763 kfree(data_buf);
764 return -EINVAL;
765 }
766
767 if (opcode == MMC_BUS_TEST_W)
768 memcpy(data_buf, test_buf, len);
769
770 mrq.cmd = &cmd;
771 mrq.data = &data;
772 cmd.opcode = opcode;
773 cmd.arg = 0;
774
775 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
776 * rely on callers to never use this with "native" calls for reading
777 * CSD or CID. Native versions of those commands use the R2 type,
778 * not R1 plus a data block.
779 */
780 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
781
782 data.blksz = len;
783 data.blocks = 1;
784 if (opcode == MMC_BUS_TEST_R)
785 data.flags = MMC_DATA_READ;
786 else
787 data.flags = MMC_DATA_WRITE;
788
789 data.sg = &sg;
790 data.sg_len = 1;
791 mmc_set_data_timeout(&data, card);
792 sg_init_one(&sg, data_buf, len);
793 mmc_wait_for_req(host, &mrq);
794 err = 0;
795 if (opcode == MMC_BUS_TEST_R) {
796 for (i = 0; i < len / 4; i++)
797 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
798 err = -EIO;
799 break;
800 }
801 }
802 kfree(data_buf);
803
804 if (cmd.error)
805 return cmd.error;
806 if (data.error)
807 return data.error;
808
809 return err;
810 }
811
mmc_bus_test(struct mmc_card * card,u8 bus_width)812 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
813 {
814 int width;
815
816 if (bus_width == MMC_BUS_WIDTH_8)
817 width = 8;
818 else if (bus_width == MMC_BUS_WIDTH_4)
819 width = 4;
820 else if (bus_width == MMC_BUS_WIDTH_1)
821 return 0; /* no need for test */
822 else
823 return -EINVAL;
824
825 /*
826 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
827 * is a problem. This improves chances that the test will work.
828 */
829 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
830 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
831 }
832
mmc_send_hpi_cmd(struct mmc_card * card)833 static int mmc_send_hpi_cmd(struct mmc_card *card)
834 {
835 unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
836 struct mmc_host *host = card->host;
837 bool use_r1b_resp = true;
838 struct mmc_command cmd = {};
839 int err;
840
841 cmd.opcode = card->ext_csd.hpi_cmd;
842 cmd.arg = card->rca << 16 | 1;
843
844 /*
845 * Make sure the host's max_busy_timeout fit the needed timeout for HPI.
846 * In case it doesn't, let's instruct the host to avoid HW busy
847 * detection, by using a R1 response instead of R1B.
848 */
849 if (host->max_busy_timeout && busy_timeout_ms > host->max_busy_timeout)
850 use_r1b_resp = false;
851
852 if (cmd.opcode == MMC_STOP_TRANSMISSION && use_r1b_resp) {
853 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
854 cmd.busy_timeout = busy_timeout_ms;
855 } else {
856 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
857 use_r1b_resp = false;
858 }
859
860 err = mmc_wait_for_cmd(host, &cmd, 0);
861 if (err) {
862 pr_warn("%s: HPI error %d. Command response %#x\n",
863 mmc_hostname(host), err, cmd.resp[0]);
864 return err;
865 }
866
867 /* No need to poll when using HW busy detection. */
868 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
869 return 0;
870
871 /* Let's poll to find out when the HPI request completes. */
872 return mmc_poll_for_busy(card, busy_timeout_ms, MMC_BUSY_HPI);
873 }
874
875 /**
876 * mmc_interrupt_hpi - Issue for High priority Interrupt
877 * @card: the MMC card associated with the HPI transfer
878 *
879 * Issued High Priority Interrupt, and check for card status
880 * until out-of prg-state.
881 */
mmc_interrupt_hpi(struct mmc_card * card)882 static int mmc_interrupt_hpi(struct mmc_card *card)
883 {
884 int err;
885 u32 status;
886
887 if (!card->ext_csd.hpi_en) {
888 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
889 return 1;
890 }
891
892 err = mmc_send_status(card, &status);
893 if (err) {
894 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
895 goto out;
896 }
897
898 switch (R1_CURRENT_STATE(status)) {
899 case R1_STATE_IDLE:
900 case R1_STATE_READY:
901 case R1_STATE_STBY:
902 case R1_STATE_TRAN:
903 /*
904 * In idle and transfer states, HPI is not needed and the caller
905 * can issue the next intended command immediately
906 */
907 goto out;
908 case R1_STATE_PRG:
909 break;
910 default:
911 /* In all other states, it's illegal to issue HPI */
912 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
913 mmc_hostname(card->host), R1_CURRENT_STATE(status));
914 err = -EINVAL;
915 goto out;
916 }
917
918 err = mmc_send_hpi_cmd(card);
919 out:
920 return err;
921 }
922
mmc_can_ext_csd(struct mmc_card * card)923 int mmc_can_ext_csd(struct mmc_card *card)
924 {
925 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
926 }
927
mmc_read_bkops_status(struct mmc_card * card)928 static int mmc_read_bkops_status(struct mmc_card *card)
929 {
930 int err;
931 u8 *ext_csd;
932
933 err = mmc_get_ext_csd(card, &ext_csd);
934 if (err)
935 return err;
936
937 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
938 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
939 kfree(ext_csd);
940 return 0;
941 }
942
943 /**
944 * mmc_run_bkops - Run BKOPS for supported cards
945 * @card: MMC card to run BKOPS for
946 *
947 * Run background operations synchronously for cards having manual BKOPS
948 * enabled and in case it reports urgent BKOPS level.
949 */
mmc_run_bkops(struct mmc_card * card)950 void mmc_run_bkops(struct mmc_card *card)
951 {
952 int err;
953
954 if (!card->ext_csd.man_bkops_en)
955 return;
956
957 err = mmc_read_bkops_status(card);
958 if (err) {
959 pr_err("%s: Failed to read bkops status: %d\n",
960 mmc_hostname(card->host), err);
961 return;
962 }
963
964 if (!card->ext_csd.raw_bkops_status ||
965 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
966 return;
967
968 mmc_retune_hold(card->host);
969
970 /*
971 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
972 * synchronously. Future wise, we may consider to start BKOPS, for less
973 * urgent levels by using an asynchronous background task, when idle.
974 */
975 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
976 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
977 if (err)
978 pr_warn("%s: Error %d starting bkops\n",
979 mmc_hostname(card->host), err);
980
981 mmc_retune_release(card->host);
982 }
983 EXPORT_SYMBOL(mmc_run_bkops);
984
985 /*
986 * Flush the cache to the non-volatile storage.
987 */
mmc_flush_cache(struct mmc_card * card)988 int mmc_flush_cache(struct mmc_card *card)
989 {
990 int err = 0;
991
992 if (mmc_cache_enabled(card->host)) {
993 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
994 EXT_CSD_FLUSH_CACHE, 1,
995 MMC_CACHE_FLUSH_TIMEOUT_MS);
996 if (err)
997 pr_err("%s: cache flush error %d\n",
998 mmc_hostname(card->host), err);
999 }
1000
1001 return err;
1002 }
1003 EXPORT_SYMBOL(mmc_flush_cache);
1004
mmc_cmdq_switch(struct mmc_card * card,bool enable)1005 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1006 {
1007 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1008 int err;
1009
1010 if (!card->ext_csd.cmdq_support)
1011 return -EOPNOTSUPP;
1012
1013 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1014 val, card->ext_csd.generic_cmd6_time);
1015 if (!err)
1016 card->ext_csd.cmdq_en = enable;
1017
1018 return err;
1019 }
1020
mmc_cmdq_enable(struct mmc_card * card)1021 int mmc_cmdq_enable(struct mmc_card *card)
1022 {
1023 return mmc_cmdq_switch(card, true);
1024 }
1025 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1026
mmc_cmdq_disable(struct mmc_card * card)1027 int mmc_cmdq_disable(struct mmc_card *card)
1028 {
1029 return mmc_cmdq_switch(card, false);
1030 }
1031 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1032
mmc_sanitize(struct mmc_card * card)1033 int mmc_sanitize(struct mmc_card *card)
1034 {
1035 struct mmc_host *host = card->host;
1036 int err;
1037
1038 if (!mmc_can_sanitize(card)) {
1039 pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1040 return -EOPNOTSUPP;
1041 }
1042
1043 pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1044
1045 mmc_retune_hold(host);
1046
1047 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1048 1, MMC_SANITIZE_TIMEOUT_MS);
1049 if (err)
1050 pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1051
1052 /*
1053 * If the sanitize operation timed out, the card is probably still busy
1054 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1055 * it with a HPI command to get back into R1_STATE_TRAN.
1056 */
1057 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1058 pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1059
1060 mmc_retune_release(host);
1061
1062 pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1063 return err;
1064 }
1065 EXPORT_SYMBOL_GPL(mmc_sanitize);
1066