1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105
106 #include "internal.h"
107
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
118
119 /*
120 * run-time system-wide default policy => local allocation
121 */
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126 };
127
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130 /**
131 * numa_map_to_online_node - Find closest online node
132 * @node: Node id to start the search
133 *
134 * Lookup the next closest node by distance if @nid is not online.
135 */
numa_map_to_online_node(int node)136 int numa_map_to_online_node(int node)
137 {
138 int min_dist = INT_MAX, dist, n, min_node;
139
140 if (node == NUMA_NO_NODE || node_online(node))
141 return node;
142
143 min_node = node;
144 for_each_online_node(n) {
145 dist = node_distance(node, n);
146 if (dist < min_dist) {
147 min_dist = dist;
148 min_node = n;
149 }
150 }
151
152 return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155
get_task_policy(struct task_struct * p)156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 struct mempolicy *pol = p->mempolicy;
159 int node;
160
161 if (pol)
162 return pol;
163
164 node = numa_node_id();
165 if (node != NUMA_NO_NODE) {
166 pol = &preferred_node_policy[node];
167 /* preferred_node_policy is not initialised early in boot */
168 if (pol->mode)
169 return pol;
170 }
171
172 return &default_policy;
173 }
174
175 static const struct mempolicy_operations {
176 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179
mpol_store_user_nodemask(const struct mempolicy * pol)180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 return pol->flags & MPOL_MODE_FLAGS;
183 }
184
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 const nodemask_t *rel)
187 {
188 nodemask_t tmp;
189 nodes_fold(tmp, *orig, nodes_weight(*rel));
190 nodes_onto(*ret, tmp, *rel);
191 }
192
mpol_new_interleave(struct mempolicy * pol,const nodemask_t * nodes)193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 if (nodes_empty(*nodes))
196 return -EINVAL;
197 pol->v.nodes = *nodes;
198 return 0;
199 }
200
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 if (!nodes)
204 pol->flags |= MPOL_F_LOCAL; /* local allocation */
205 else if (nodes_empty(*nodes))
206 return -EINVAL; /* no allowed nodes */
207 else
208 pol->v.preferred_node = first_node(*nodes);
209 return 0;
210 }
211
mpol_new_bind(struct mempolicy * pol,const nodemask_t * nodes)212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 if (nodes_empty(*nodes))
215 return -EINVAL;
216 pol->v.nodes = *nodes;
217 return 0;
218 }
219
220 /*
221 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222 * any, for the new policy. mpol_new() has already validated the nodes
223 * parameter with respect to the policy mode and flags. But, we need to
224 * handle an empty nodemask with MPOL_PREFERRED here.
225 *
226 * Must be called holding task's alloc_lock to protect task's mems_allowed
227 * and mempolicy. May also be called holding the mmap_lock for write.
228 */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)229 static int mpol_set_nodemask(struct mempolicy *pol,
230 const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 int ret;
233
234 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 if (pol == NULL)
236 return 0;
237 /* Check N_MEMORY */
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
240
241 VM_BUG_ON(!nodes);
242 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 nodes = NULL; /* explicit local allocation */
244 else {
245 if (pol->flags & MPOL_F_RELATIVE_NODES)
246 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 else
248 nodes_and(nsc->mask2, *nodes, nsc->mask1);
249
250 if (mpol_store_user_nodemask(pol))
251 pol->w.user_nodemask = *nodes;
252 else
253 pol->w.cpuset_mems_allowed =
254 cpuset_current_mems_allowed;
255 }
256
257 if (nodes)
258 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 else
260 ret = mpol_ops[pol->mode].create(pol, NULL);
261 return ret;
262 }
263
264 /*
265 * This function just creates a new policy, does some check and simple
266 * initialization. You must invoke mpol_set_nodemask() to set nodes.
267 */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 nodemask_t *nodes)
270 {
271 struct mempolicy *policy;
272
273 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275
276 if (mode == MPOL_DEFAULT) {
277 if (nodes && !nodes_empty(*nodes))
278 return ERR_PTR(-EINVAL);
279 return NULL;
280 }
281 VM_BUG_ON(!nodes);
282
283 /*
284 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 * All other modes require a valid pointer to a non-empty nodemask.
287 */
288 if (mode == MPOL_PREFERRED) {
289 if (nodes_empty(*nodes)) {
290 if (((flags & MPOL_F_STATIC_NODES) ||
291 (flags & MPOL_F_RELATIVE_NODES)))
292 return ERR_PTR(-EINVAL);
293 }
294 } else if (mode == MPOL_LOCAL) {
295 if (!nodes_empty(*nodes) ||
296 (flags & MPOL_F_STATIC_NODES) ||
297 (flags & MPOL_F_RELATIVE_NODES))
298 return ERR_PTR(-EINVAL);
299 mode = MPOL_PREFERRED;
300 } else if (nodes_empty(*nodes))
301 return ERR_PTR(-EINVAL);
302 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 if (!policy)
304 return ERR_PTR(-ENOMEM);
305 atomic_set(&policy->refcnt, 1);
306 policy->mode = mode;
307 policy->flags = flags;
308
309 return policy;
310 }
311
312 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)313 void __mpol_put(struct mempolicy *p)
314 {
315 if (!atomic_dec_and_test(&p->refcnt))
316 return;
317 kmem_cache_free(policy_cache, p);
318 }
319
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 nodemask_t tmp;
327
328 if (pol->flags & MPOL_F_STATIC_NODES)
329 nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 else {
333 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
334 *nodes);
335 pol->w.cpuset_mems_allowed = *nodes;
336 }
337
338 if (nodes_empty(tmp))
339 tmp = *nodes;
340
341 pol->v.nodes = tmp;
342 }
343
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 const nodemask_t *nodes)
346 {
347 nodemask_t tmp;
348
349 if (pol->flags & MPOL_F_STATIC_NODES) {
350 int node = first_node(pol->w.user_nodemask);
351
352 if (node_isset(node, *nodes)) {
353 pol->v.preferred_node = node;
354 pol->flags &= ~MPOL_F_LOCAL;
355 } else
356 pol->flags |= MPOL_F_LOCAL;
357 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 pol->v.preferred_node = first_node(tmp);
360 } else if (!(pol->flags & MPOL_F_LOCAL)) {
361 pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 pol->w.cpuset_mems_allowed,
363 *nodes);
364 pol->w.cpuset_mems_allowed = *nodes;
365 }
366 }
367
368 /*
369 * mpol_rebind_policy - Migrate a policy to a different set of nodes
370 *
371 * Per-vma policies are protected by mmap_lock. Allocations using per-task
372 * policies are protected by task->mems_allowed_seq to prevent a premature
373 * OOM/allocation failure due to parallel nodemask modification.
374 */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 if (!pol || pol->mode == MPOL_LOCAL)
378 return;
379 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 return;
382
383 mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385
386 /*
387 * Wrapper for mpol_rebind_policy() that just requires task
388 * pointer, and updates task mempolicy.
389 *
390 * Called with task's alloc_lock held.
391 */
392
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 mpol_rebind_policy(tsk->mempolicy, new);
396 }
397
398 /*
399 * Rebind each vma in mm to new nodemask.
400 *
401 * Call holding a reference to mm. Takes mm->mmap_lock during call.
402 */
403
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 struct vm_area_struct *vma;
407
408 mmap_write_lock(mm);
409 for (vma = mm->mmap; vma; vma = vma->vm_next) {
410 vm_write_begin(vma);
411 mpol_rebind_policy(vma->vm_policy, new);
412 vm_write_end(vma);
413 }
414 mmap_write_unlock(mm);
415 }
416
417 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
418 [MPOL_DEFAULT] = {
419 .rebind = mpol_rebind_default,
420 },
421 [MPOL_INTERLEAVE] = {
422 .create = mpol_new_interleave,
423 .rebind = mpol_rebind_nodemask,
424 },
425 [MPOL_PREFERRED] = {
426 .create = mpol_new_preferred,
427 .rebind = mpol_rebind_preferred,
428 },
429 [MPOL_BIND] = {
430 .create = mpol_new_bind,
431 .rebind = mpol_rebind_nodemask,
432 },
433 };
434
435 static int migrate_page_add(struct page *page, struct list_head *pagelist,
436 unsigned long flags);
437
438 struct queue_pages {
439 struct list_head *pagelist;
440 unsigned long flags;
441 nodemask_t *nmask;
442 unsigned long start;
443 unsigned long end;
444 struct vm_area_struct *first;
445 };
446
447 /*
448 * Check if the page's nid is in qp->nmask.
449 *
450 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
451 * in the invert of qp->nmask.
452 */
queue_pages_required(struct page * page,struct queue_pages * qp)453 static inline bool queue_pages_required(struct page *page,
454 struct queue_pages *qp)
455 {
456 int nid = page_to_nid(page);
457 unsigned long flags = qp->flags;
458
459 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
460 }
461
462 /*
463 * queue_pages_pmd() has four possible return values:
464 * 0 - pages are placed on the right node or queued successfully.
465 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
466 * specified.
467 * 2 - THP was split.
468 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
469 * existing page was already on a node that does not follow the
470 * policy.
471 */
queue_pages_pmd(pmd_t * pmd,spinlock_t * ptl,unsigned long addr,unsigned long end,struct mm_walk * walk)472 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
473 unsigned long end, struct mm_walk *walk)
474 __releases(ptl)
475 {
476 int ret = 0;
477 struct page *page;
478 struct queue_pages *qp = walk->private;
479 unsigned long flags;
480
481 if (unlikely(is_pmd_migration_entry(*pmd))) {
482 ret = -EIO;
483 goto unlock;
484 }
485 page = pmd_page(*pmd);
486 if (is_huge_zero_page(page)) {
487 spin_unlock(ptl);
488 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
489 ret = 2;
490 goto out;
491 }
492 if (!queue_pages_required(page, qp))
493 goto unlock;
494
495 flags = qp->flags;
496 /* go to thp migration */
497 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
498 if (!vma_migratable(walk->vma) ||
499 migrate_page_add(page, qp->pagelist, flags)) {
500 ret = 1;
501 goto unlock;
502 }
503 } else
504 ret = -EIO;
505 unlock:
506 spin_unlock(ptl);
507 out:
508 return ret;
509 }
510
511 /*
512 * Scan through pages checking if pages follow certain conditions,
513 * and move them to the pagelist if they do.
514 *
515 * queue_pages_pte_range() has three possible return values:
516 * 0 - pages are placed on the right node or queued successfully.
517 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
518 * specified.
519 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
520 * on a node that does not follow the policy.
521 */
queue_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)522 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
523 unsigned long end, struct mm_walk *walk)
524 {
525 struct vm_area_struct *vma = walk->vma;
526 struct page *page;
527 struct queue_pages *qp = walk->private;
528 unsigned long flags = qp->flags;
529 int ret;
530 bool has_unmovable = false;
531 pte_t *pte, *mapped_pte;
532 spinlock_t *ptl;
533
534 ptl = pmd_trans_huge_lock(pmd, vma);
535 if (ptl) {
536 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
537 if (ret != 2)
538 return ret;
539 }
540 /* THP was split, fall through to pte walk */
541
542 if (pmd_trans_unstable(pmd))
543 return 0;
544
545 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
546 for (; addr != end; pte++, addr += PAGE_SIZE) {
547 if (!pte_present(*pte))
548 continue;
549 page = vm_normal_page(vma, addr, *pte);
550 if (!page)
551 continue;
552 /*
553 * vm_normal_page() filters out zero pages, but there might
554 * still be PageReserved pages to skip, perhaps in a VDSO.
555 */
556 if (PageReserved(page))
557 continue;
558 if (!queue_pages_required(page, qp))
559 continue;
560 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
561 /* MPOL_MF_STRICT must be specified if we get here */
562 if (!vma_migratable(vma)) {
563 has_unmovable = true;
564 break;
565 }
566
567 /*
568 * Do not abort immediately since there may be
569 * temporary off LRU pages in the range. Still
570 * need migrate other LRU pages.
571 */
572 if (migrate_page_add(page, qp->pagelist, flags))
573 has_unmovable = true;
574 } else
575 break;
576 }
577 pte_unmap_unlock(mapped_pte, ptl);
578 cond_resched();
579
580 if (has_unmovable)
581 return 1;
582
583 return addr != end ? -EIO : 0;
584 }
585
queue_pages_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)586 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
587 unsigned long addr, unsigned long end,
588 struct mm_walk *walk)
589 {
590 int ret = 0;
591 #ifdef CONFIG_HUGETLB_PAGE
592 struct queue_pages *qp = walk->private;
593 unsigned long flags = (qp->flags & MPOL_MF_VALID);
594 struct page *page;
595 spinlock_t *ptl;
596 pte_t entry;
597
598 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
599 entry = huge_ptep_get(pte);
600 if (!pte_present(entry))
601 goto unlock;
602 page = pte_page(entry);
603 if (!queue_pages_required(page, qp))
604 goto unlock;
605
606 if (flags == MPOL_MF_STRICT) {
607 /*
608 * STRICT alone means only detecting misplaced page and no
609 * need to further check other vma.
610 */
611 ret = -EIO;
612 goto unlock;
613 }
614
615 if (!vma_migratable(walk->vma)) {
616 /*
617 * Must be STRICT with MOVE*, otherwise .test_walk() have
618 * stopped walking current vma.
619 * Detecting misplaced page but allow migrating pages which
620 * have been queued.
621 */
622 ret = 1;
623 goto unlock;
624 }
625
626 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
627 if (flags & (MPOL_MF_MOVE_ALL) ||
628 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1 &&
629 !hugetlb_pmd_shared(pte))) {
630 if (isolate_hugetlb(page, qp->pagelist) &&
631 (flags & MPOL_MF_STRICT))
632 /*
633 * Failed to isolate page but allow migrating pages
634 * which have been queued.
635 */
636 ret = 1;
637 }
638 unlock:
639 spin_unlock(ptl);
640 #else
641 BUG();
642 #endif
643 return ret;
644 }
645
646 #ifdef CONFIG_NUMA_BALANCING
647 /*
648 * This is used to mark a range of virtual addresses to be inaccessible.
649 * These are later cleared by a NUMA hinting fault. Depending on these
650 * faults, pages may be migrated for better NUMA placement.
651 *
652 * This is assuming that NUMA faults are handled using PROT_NONE. If
653 * an architecture makes a different choice, it will need further
654 * changes to the core.
655 */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)656 unsigned long change_prot_numa(struct vm_area_struct *vma,
657 unsigned long addr, unsigned long end)
658 {
659 int nr_updated;
660
661 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
662 if (nr_updated)
663 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
664
665 return nr_updated;
666 }
667 #else
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)668 static unsigned long change_prot_numa(struct vm_area_struct *vma,
669 unsigned long addr, unsigned long end)
670 {
671 return 0;
672 }
673 #endif /* CONFIG_NUMA_BALANCING */
674
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)675 static int queue_pages_test_walk(unsigned long start, unsigned long end,
676 struct mm_walk *walk)
677 {
678 struct vm_area_struct *vma = walk->vma;
679 struct queue_pages *qp = walk->private;
680 unsigned long endvma = vma->vm_end;
681 unsigned long flags = qp->flags;
682
683 /* range check first */
684 VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
685
686 if (!qp->first) {
687 qp->first = vma;
688 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
689 (qp->start < vma->vm_start))
690 /* hole at head side of range */
691 return -EFAULT;
692 }
693 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
694 ((vma->vm_end < qp->end) &&
695 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
696 /* hole at middle or tail of range */
697 return -EFAULT;
698
699 /*
700 * Need check MPOL_MF_STRICT to return -EIO if possible
701 * regardless of vma_migratable
702 */
703 if (!vma_migratable(vma) &&
704 !(flags & MPOL_MF_STRICT))
705 return 1;
706
707 if (endvma > end)
708 endvma = end;
709
710 if (flags & MPOL_MF_LAZY) {
711 /* Similar to task_numa_work, skip inaccessible VMAs */
712 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
713 !(vma->vm_flags & VM_MIXEDMAP))
714 change_prot_numa(vma, start, endvma);
715 return 1;
716 }
717
718 /* queue pages from current vma */
719 if (flags & MPOL_MF_VALID)
720 return 0;
721 return 1;
722 }
723
724 static const struct mm_walk_ops queue_pages_walk_ops = {
725 .hugetlb_entry = queue_pages_hugetlb,
726 .pmd_entry = queue_pages_pte_range,
727 .test_walk = queue_pages_test_walk,
728 };
729
730 /*
731 * Walk through page tables and collect pages to be migrated.
732 *
733 * If pages found in a given range are on a set of nodes (determined by
734 * @nodes and @flags,) it's isolated and queued to the pagelist which is
735 * passed via @private.
736 *
737 * queue_pages_range() has three possible return values:
738 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
739 * specified.
740 * 0 - queue pages successfully or no misplaced page.
741 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
742 * memory range specified by nodemask and maxnode points outside
743 * your accessible address space (-EFAULT)
744 */
745 static int
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)746 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
747 nodemask_t *nodes, unsigned long flags,
748 struct list_head *pagelist)
749 {
750 int err;
751 struct queue_pages qp = {
752 .pagelist = pagelist,
753 .flags = flags,
754 .nmask = nodes,
755 .start = start,
756 .end = end,
757 .first = NULL,
758 };
759
760 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
761
762 if (!qp.first)
763 /* whole range in hole */
764 err = -EFAULT;
765
766 return err;
767 }
768
769 /*
770 * Apply policy to a single VMA
771 * This must be called with the mmap_lock held for writing.
772 */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)773 static int vma_replace_policy(struct vm_area_struct *vma,
774 struct mempolicy *pol)
775 {
776 int err;
777 struct mempolicy *old;
778 struct mempolicy *new;
779
780 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
781 vma->vm_start, vma->vm_end, vma->vm_pgoff,
782 vma->vm_ops, vma->vm_file,
783 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
784
785 new = mpol_dup(pol);
786 if (IS_ERR(new))
787 return PTR_ERR(new);
788
789 vm_write_begin(vma);
790 if (vma->vm_ops && vma->vm_ops->set_policy) {
791 err = vma->vm_ops->set_policy(vma, new);
792 if (err)
793 goto err_out;
794 }
795
796 old = vma->vm_policy;
797 /*
798 * The speculative page fault handler accesses this field without
799 * hodling the mmap_sem.
800 */
801 WRITE_ONCE(vma->vm_policy, new);
802 vm_write_end(vma);
803 mpol_put(old);
804
805 return 0;
806 err_out:
807 vm_write_end(vma);
808 mpol_put(new);
809 return err;
810 }
811
812 /* Step 2: apply policy to a range and do splits. */
mbind_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct mempolicy * new_pol)813 static int mbind_range(struct mm_struct *mm, unsigned long start,
814 unsigned long end, struct mempolicy *new_pol)
815 {
816 struct vm_area_struct *prev;
817 struct vm_area_struct *vma;
818 int err = 0;
819 pgoff_t pgoff;
820 unsigned long vmstart;
821 unsigned long vmend;
822
823 vma = find_vma(mm, start);
824 VM_BUG_ON(!vma);
825
826 prev = vma->vm_prev;
827 if (start > vma->vm_start)
828 prev = vma;
829
830 for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) {
831 vmstart = max(start, vma->vm_start);
832 vmend = min(end, vma->vm_end);
833
834 if (mpol_equal(vma_policy(vma), new_pol))
835 continue;
836
837 pgoff = vma->vm_pgoff +
838 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
839 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
840 vma->anon_vma, vma->vm_file, pgoff,
841 new_pol, vma->vm_userfaultfd_ctx,
842 vma_get_anon_name(vma));
843 if (prev) {
844 vma = prev;
845 goto replace;
846 }
847 if (vma->vm_start != vmstart) {
848 err = split_vma(vma->vm_mm, vma, vmstart, 1);
849 if (err)
850 goto out;
851 }
852 if (vma->vm_end != vmend) {
853 err = split_vma(vma->vm_mm, vma, vmend, 0);
854 if (err)
855 goto out;
856 }
857 replace:
858 err = vma_replace_policy(vma, new_pol);
859 if (err)
860 goto out;
861 }
862
863 out:
864 return err;
865 }
866
867 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)868 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
869 nodemask_t *nodes)
870 {
871 struct mempolicy *new, *old;
872 NODEMASK_SCRATCH(scratch);
873 int ret;
874
875 if (!scratch)
876 return -ENOMEM;
877
878 new = mpol_new(mode, flags, nodes);
879 if (IS_ERR(new)) {
880 ret = PTR_ERR(new);
881 goto out;
882 }
883
884 ret = mpol_set_nodemask(new, nodes, scratch);
885 if (ret) {
886 mpol_put(new);
887 goto out;
888 }
889 task_lock(current);
890 old = current->mempolicy;
891 current->mempolicy = new;
892 if (new && new->mode == MPOL_INTERLEAVE)
893 current->il_prev = MAX_NUMNODES-1;
894 task_unlock(current);
895 mpol_put(old);
896 ret = 0;
897 out:
898 NODEMASK_SCRATCH_FREE(scratch);
899 return ret;
900 }
901
902 /*
903 * Return nodemask for policy for get_mempolicy() query
904 *
905 * Called with task's alloc_lock held
906 */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)907 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
908 {
909 nodes_clear(*nodes);
910 if (p == &default_policy)
911 return;
912
913 switch (p->mode) {
914 case MPOL_BIND:
915 case MPOL_INTERLEAVE:
916 *nodes = p->v.nodes;
917 break;
918 case MPOL_PREFERRED:
919 if (!(p->flags & MPOL_F_LOCAL))
920 node_set(p->v.preferred_node, *nodes);
921 /* else return empty node mask for local allocation */
922 break;
923 default:
924 BUG();
925 }
926 }
927
lookup_node(struct mm_struct * mm,unsigned long addr)928 static int lookup_node(struct mm_struct *mm, unsigned long addr)
929 {
930 struct page *p = NULL;
931 int err;
932
933 int locked = 1;
934 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
935 if (err > 0) {
936 err = page_to_nid(p);
937 put_page(p);
938 }
939 if (locked)
940 mmap_read_unlock(mm);
941 return err;
942 }
943
944 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)945 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
946 unsigned long addr, unsigned long flags)
947 {
948 int err;
949 struct mm_struct *mm = current->mm;
950 struct vm_area_struct *vma = NULL;
951 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
952
953 if (flags &
954 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
955 return -EINVAL;
956
957 if (flags & MPOL_F_MEMS_ALLOWED) {
958 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
959 return -EINVAL;
960 *policy = 0; /* just so it's initialized */
961 task_lock(current);
962 *nmask = cpuset_current_mems_allowed;
963 task_unlock(current);
964 return 0;
965 }
966
967 if (flags & MPOL_F_ADDR) {
968 /*
969 * Do NOT fall back to task policy if the
970 * vma/shared policy at addr is NULL. We
971 * want to return MPOL_DEFAULT in this case.
972 */
973 mmap_read_lock(mm);
974 vma = find_vma_intersection(mm, addr, addr+1);
975 if (!vma) {
976 mmap_read_unlock(mm);
977 return -EFAULT;
978 }
979 if (vma->vm_ops && vma->vm_ops->get_policy)
980 pol = vma->vm_ops->get_policy(vma, addr);
981 else
982 pol = vma->vm_policy;
983 } else if (addr)
984 return -EINVAL;
985
986 if (!pol)
987 pol = &default_policy; /* indicates default behavior */
988
989 if (flags & MPOL_F_NODE) {
990 if (flags & MPOL_F_ADDR) {
991 /*
992 * Take a refcount on the mpol, lookup_node()
993 * wil drop the mmap_lock, so after calling
994 * lookup_node() only "pol" remains valid, "vma"
995 * is stale.
996 */
997 pol_refcount = pol;
998 vma = NULL;
999 mpol_get(pol);
1000 err = lookup_node(mm, addr);
1001 if (err < 0)
1002 goto out;
1003 *policy = err;
1004 } else if (pol == current->mempolicy &&
1005 pol->mode == MPOL_INTERLEAVE) {
1006 *policy = next_node_in(current->il_prev, pol->v.nodes);
1007 } else {
1008 err = -EINVAL;
1009 goto out;
1010 }
1011 } else {
1012 *policy = pol == &default_policy ? MPOL_DEFAULT :
1013 pol->mode;
1014 /*
1015 * Internal mempolicy flags must be masked off before exposing
1016 * the policy to userspace.
1017 */
1018 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1019 }
1020
1021 err = 0;
1022 if (nmask) {
1023 if (mpol_store_user_nodemask(pol)) {
1024 *nmask = pol->w.user_nodemask;
1025 } else {
1026 task_lock(current);
1027 get_policy_nodemask(pol, nmask);
1028 task_unlock(current);
1029 }
1030 }
1031
1032 out:
1033 mpol_cond_put(pol);
1034 if (vma)
1035 mmap_read_unlock(mm);
1036 if (pol_refcount)
1037 mpol_put(pol_refcount);
1038 return err;
1039 }
1040
1041 #ifdef CONFIG_MIGRATION
1042 /*
1043 * page migration, thp tail pages can be passed.
1044 */
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1045 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1046 unsigned long flags)
1047 {
1048 struct page *head = compound_head(page);
1049 /*
1050 * Avoid migrating a page that is shared with others.
1051 */
1052 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1053 if (!isolate_lru_page(head)) {
1054 list_add_tail(&head->lru, pagelist);
1055 mod_node_page_state(page_pgdat(head),
1056 NR_ISOLATED_ANON + page_is_file_lru(head),
1057 thp_nr_pages(head));
1058 } else if (flags & MPOL_MF_STRICT) {
1059 /*
1060 * Non-movable page may reach here. And, there may be
1061 * temporary off LRU pages or non-LRU movable pages.
1062 * Treat them as unmovable pages since they can't be
1063 * isolated, so they can't be moved at the moment. It
1064 * should return -EIO for this case too.
1065 */
1066 return -EIO;
1067 }
1068 }
1069
1070 return 0;
1071 }
1072
1073 /*
1074 * Migrate pages from one node to a target node.
1075 * Returns error or the number of pages not migrated.
1076 */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)1077 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1078 int flags)
1079 {
1080 nodemask_t nmask;
1081 LIST_HEAD(pagelist);
1082 int err = 0;
1083 struct migration_target_control mtc = {
1084 .nid = dest,
1085 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1086 };
1087
1088 nodes_clear(nmask);
1089 node_set(source, nmask);
1090
1091 /*
1092 * This does not "check" the range but isolates all pages that
1093 * need migration. Between passing in the full user address
1094 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1095 */
1096 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1097 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1098 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1099
1100 if (!list_empty(&pagelist)) {
1101 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1102 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1103 if (err)
1104 putback_movable_pages(&pagelist);
1105 }
1106
1107 return err;
1108 }
1109
1110 /*
1111 * Move pages between the two nodesets so as to preserve the physical
1112 * layout as much as possible.
1113 *
1114 * Returns the number of page that could not be moved.
1115 */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1116 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1117 const nodemask_t *to, int flags)
1118 {
1119 int busy = 0;
1120 int err = 0;
1121 nodemask_t tmp;
1122
1123 lru_cache_disable();
1124
1125 mmap_read_lock(mm);
1126
1127 /*
1128 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1129 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1130 * bit in 'tmp', and return that <source, dest> pair for migration.
1131 * The pair of nodemasks 'to' and 'from' define the map.
1132 *
1133 * If no pair of bits is found that way, fallback to picking some
1134 * pair of 'source' and 'dest' bits that are not the same. If the
1135 * 'source' and 'dest' bits are the same, this represents a node
1136 * that will be migrating to itself, so no pages need move.
1137 *
1138 * If no bits are left in 'tmp', or if all remaining bits left
1139 * in 'tmp' correspond to the same bit in 'to', return false
1140 * (nothing left to migrate).
1141 *
1142 * This lets us pick a pair of nodes to migrate between, such that
1143 * if possible the dest node is not already occupied by some other
1144 * source node, minimizing the risk of overloading the memory on a
1145 * node that would happen if we migrated incoming memory to a node
1146 * before migrating outgoing memory source that same node.
1147 *
1148 * A single scan of tmp is sufficient. As we go, we remember the
1149 * most recent <s, d> pair that moved (s != d). If we find a pair
1150 * that not only moved, but what's better, moved to an empty slot
1151 * (d is not set in tmp), then we break out then, with that pair.
1152 * Otherwise when we finish scanning from_tmp, we at least have the
1153 * most recent <s, d> pair that moved. If we get all the way through
1154 * the scan of tmp without finding any node that moved, much less
1155 * moved to an empty node, then there is nothing left worth migrating.
1156 */
1157
1158 tmp = *from;
1159 while (!nodes_empty(tmp)) {
1160 int s,d;
1161 int source = NUMA_NO_NODE;
1162 int dest = 0;
1163
1164 for_each_node_mask(s, tmp) {
1165
1166 /*
1167 * do_migrate_pages() tries to maintain the relative
1168 * node relationship of the pages established between
1169 * threads and memory areas.
1170 *
1171 * However if the number of source nodes is not equal to
1172 * the number of destination nodes we can not preserve
1173 * this node relative relationship. In that case, skip
1174 * copying memory from a node that is in the destination
1175 * mask.
1176 *
1177 * Example: [2,3,4] -> [3,4,5] moves everything.
1178 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1179 */
1180
1181 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1182 (node_isset(s, *to)))
1183 continue;
1184
1185 d = node_remap(s, *from, *to);
1186 if (s == d)
1187 continue;
1188
1189 source = s; /* Node moved. Memorize */
1190 dest = d;
1191
1192 /* dest not in remaining from nodes? */
1193 if (!node_isset(dest, tmp))
1194 break;
1195 }
1196 if (source == NUMA_NO_NODE)
1197 break;
1198
1199 node_clear(source, tmp);
1200 err = migrate_to_node(mm, source, dest, flags);
1201 if (err > 0)
1202 busy += err;
1203 if (err < 0)
1204 break;
1205 }
1206 mmap_read_unlock(mm);
1207
1208 lru_cache_enable();
1209 if (err < 0)
1210 return err;
1211 return busy;
1212
1213 }
1214
1215 /*
1216 * Allocate a new page for page migration based on vma policy.
1217 * Start by assuming the page is mapped by the same vma as contains @start.
1218 * Search forward from there, if not. N.B., this assumes that the
1219 * list of pages handed to migrate_pages()--which is how we get here--
1220 * is in virtual address order.
1221 */
new_page(struct page * page,unsigned long start)1222 static struct page *new_page(struct page *page, unsigned long start)
1223 {
1224 struct vm_area_struct *vma;
1225 unsigned long address;
1226
1227 vma = find_vma(current->mm, start);
1228 while (vma) {
1229 address = page_address_in_vma(page, vma);
1230 if (address != -EFAULT)
1231 break;
1232 vma = vma->vm_next;
1233 }
1234
1235 if (PageHuge(page)) {
1236 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1237 vma, address);
1238 } else if (PageTransHuge(page)) {
1239 struct page *thp;
1240
1241 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1242 HPAGE_PMD_ORDER);
1243 if (!thp)
1244 return NULL;
1245 prep_transhuge_page(thp);
1246 return thp;
1247 }
1248 /*
1249 * if !vma, alloc_page_vma() will use task or system default policy
1250 */
1251 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1252 vma, address);
1253 }
1254 #else
1255
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1256 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1257 unsigned long flags)
1258 {
1259 return -EIO;
1260 }
1261
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1262 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1263 const nodemask_t *to, int flags)
1264 {
1265 return -ENOSYS;
1266 }
1267
new_page(struct page * page,unsigned long start)1268 static struct page *new_page(struct page *page, unsigned long start)
1269 {
1270 return NULL;
1271 }
1272 #endif
1273
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1274 static long do_mbind(unsigned long start, unsigned long len,
1275 unsigned short mode, unsigned short mode_flags,
1276 nodemask_t *nmask, unsigned long flags)
1277 {
1278 struct mm_struct *mm = current->mm;
1279 struct mempolicy *new;
1280 unsigned long end;
1281 int err;
1282 int ret;
1283 LIST_HEAD(pagelist);
1284
1285 if (flags & ~(unsigned long)MPOL_MF_VALID)
1286 return -EINVAL;
1287 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1288 return -EPERM;
1289
1290 if (start & ~PAGE_MASK)
1291 return -EINVAL;
1292
1293 if (mode == MPOL_DEFAULT)
1294 flags &= ~MPOL_MF_STRICT;
1295
1296 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1297 end = start + len;
1298
1299 if (end < start)
1300 return -EINVAL;
1301 if (end == start)
1302 return 0;
1303
1304 new = mpol_new(mode, mode_flags, nmask);
1305 if (IS_ERR(new))
1306 return PTR_ERR(new);
1307
1308 if (flags & MPOL_MF_LAZY)
1309 new->flags |= MPOL_F_MOF;
1310
1311 /*
1312 * If we are using the default policy then operation
1313 * on discontinuous address spaces is okay after all
1314 */
1315 if (!new)
1316 flags |= MPOL_MF_DISCONTIG_OK;
1317
1318 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1319 start, start + len, mode, mode_flags,
1320 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1321
1322 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1323
1324 lru_cache_disable();
1325 }
1326 {
1327 NODEMASK_SCRATCH(scratch);
1328 if (scratch) {
1329 mmap_write_lock(mm);
1330 err = mpol_set_nodemask(new, nmask, scratch);
1331 if (err)
1332 mmap_write_unlock(mm);
1333 } else
1334 err = -ENOMEM;
1335 NODEMASK_SCRATCH_FREE(scratch);
1336 }
1337 if (err)
1338 goto mpol_out;
1339
1340 ret = queue_pages_range(mm, start, end, nmask,
1341 flags | MPOL_MF_INVERT, &pagelist);
1342
1343 if (ret < 0) {
1344 err = ret;
1345 goto up_out;
1346 }
1347
1348 err = mbind_range(mm, start, end, new);
1349
1350 if (!err) {
1351 int nr_failed = 0;
1352
1353 if (!list_empty(&pagelist)) {
1354 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1355 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1356 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1357 if (nr_failed)
1358 putback_movable_pages(&pagelist);
1359 }
1360
1361 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1362 err = -EIO;
1363 } else {
1364 up_out:
1365 if (!list_empty(&pagelist))
1366 putback_movable_pages(&pagelist);
1367 }
1368
1369 mmap_write_unlock(mm);
1370 mpol_out:
1371 mpol_put(new);
1372 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1373 lru_cache_enable();
1374 return err;
1375 }
1376
1377 /*
1378 * User space interface with variable sized bitmaps for nodelists.
1379 */
1380
1381 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1382 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1383 unsigned long maxnode)
1384 {
1385 unsigned long k;
1386 unsigned long t;
1387 unsigned long nlongs;
1388 unsigned long endmask;
1389
1390 --maxnode;
1391 nodes_clear(*nodes);
1392 if (maxnode == 0 || !nmask)
1393 return 0;
1394 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1395 return -EINVAL;
1396
1397 nlongs = BITS_TO_LONGS(maxnode);
1398 if ((maxnode % BITS_PER_LONG) == 0)
1399 endmask = ~0UL;
1400 else
1401 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1402
1403 /*
1404 * When the user specified more nodes than supported just check
1405 * if the non supported part is all zero.
1406 *
1407 * If maxnode have more longs than MAX_NUMNODES, check
1408 * the bits in that area first. And then go through to
1409 * check the rest bits which equal or bigger than MAX_NUMNODES.
1410 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1411 */
1412 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1413 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1414 if (get_user(t, nmask + k))
1415 return -EFAULT;
1416 if (k == nlongs - 1) {
1417 if (t & endmask)
1418 return -EINVAL;
1419 } else if (t)
1420 return -EINVAL;
1421 }
1422 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1423 endmask = ~0UL;
1424 }
1425
1426 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1427 unsigned long valid_mask = endmask;
1428
1429 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1430 if (get_user(t, nmask + nlongs - 1))
1431 return -EFAULT;
1432 if (t & valid_mask)
1433 return -EINVAL;
1434 }
1435
1436 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1437 return -EFAULT;
1438 nodes_addr(*nodes)[nlongs-1] &= endmask;
1439 return 0;
1440 }
1441
1442 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1443 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1444 nodemask_t *nodes)
1445 {
1446 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1447 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1448
1449 if (copy > nbytes) {
1450 if (copy > PAGE_SIZE)
1451 return -EINVAL;
1452 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1453 return -EFAULT;
1454 copy = nbytes;
1455 }
1456 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1457 }
1458
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1459 static long kernel_mbind(unsigned long start, unsigned long len,
1460 unsigned long mode, const unsigned long __user *nmask,
1461 unsigned long maxnode, unsigned int flags)
1462 {
1463 nodemask_t nodes;
1464 int err;
1465 unsigned short mode_flags;
1466
1467 start = untagged_addr(start);
1468 mode_flags = mode & MPOL_MODE_FLAGS;
1469 mode &= ~MPOL_MODE_FLAGS;
1470 if (mode >= MPOL_MAX)
1471 return -EINVAL;
1472 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1473 (mode_flags & MPOL_F_RELATIVE_NODES))
1474 return -EINVAL;
1475 err = get_nodes(&nodes, nmask, maxnode);
1476 if (err)
1477 return err;
1478 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1479 }
1480
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1481 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1482 unsigned long, mode, const unsigned long __user *, nmask,
1483 unsigned long, maxnode, unsigned int, flags)
1484 {
1485 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1486 }
1487
1488 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1489 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1490 unsigned long maxnode)
1491 {
1492 int err;
1493 nodemask_t nodes;
1494 unsigned short flags;
1495
1496 flags = mode & MPOL_MODE_FLAGS;
1497 mode &= ~MPOL_MODE_FLAGS;
1498 if ((unsigned int)mode >= MPOL_MAX)
1499 return -EINVAL;
1500 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1501 return -EINVAL;
1502 err = get_nodes(&nodes, nmask, maxnode);
1503 if (err)
1504 return err;
1505 return do_set_mempolicy(mode, flags, &nodes);
1506 }
1507
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1508 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1509 unsigned long, maxnode)
1510 {
1511 return kernel_set_mempolicy(mode, nmask, maxnode);
1512 }
1513
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1514 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1515 const unsigned long __user *old_nodes,
1516 const unsigned long __user *new_nodes)
1517 {
1518 struct mm_struct *mm = NULL;
1519 struct task_struct *task;
1520 nodemask_t task_nodes;
1521 int err;
1522 nodemask_t *old;
1523 nodemask_t *new;
1524 NODEMASK_SCRATCH(scratch);
1525
1526 if (!scratch)
1527 return -ENOMEM;
1528
1529 old = &scratch->mask1;
1530 new = &scratch->mask2;
1531
1532 err = get_nodes(old, old_nodes, maxnode);
1533 if (err)
1534 goto out;
1535
1536 err = get_nodes(new, new_nodes, maxnode);
1537 if (err)
1538 goto out;
1539
1540 /* Find the mm_struct */
1541 rcu_read_lock();
1542 task = pid ? find_task_by_vpid(pid) : current;
1543 if (!task) {
1544 rcu_read_unlock();
1545 err = -ESRCH;
1546 goto out;
1547 }
1548 get_task_struct(task);
1549
1550 err = -EINVAL;
1551
1552 /*
1553 * Check if this process has the right to modify the specified process.
1554 * Use the regular "ptrace_may_access()" checks.
1555 */
1556 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1557 rcu_read_unlock();
1558 err = -EPERM;
1559 goto out_put;
1560 }
1561 rcu_read_unlock();
1562
1563 task_nodes = cpuset_mems_allowed(task);
1564 /* Is the user allowed to access the target nodes? */
1565 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1566 err = -EPERM;
1567 goto out_put;
1568 }
1569
1570 task_nodes = cpuset_mems_allowed(current);
1571 nodes_and(*new, *new, task_nodes);
1572 if (nodes_empty(*new))
1573 goto out_put;
1574
1575 err = security_task_movememory(task);
1576 if (err)
1577 goto out_put;
1578
1579 mm = get_task_mm(task);
1580 put_task_struct(task);
1581
1582 if (!mm) {
1583 err = -EINVAL;
1584 goto out;
1585 }
1586
1587 err = do_migrate_pages(mm, old, new,
1588 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1589
1590 mmput(mm);
1591 out:
1592 NODEMASK_SCRATCH_FREE(scratch);
1593
1594 return err;
1595
1596 out_put:
1597 put_task_struct(task);
1598 goto out;
1599
1600 }
1601
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1602 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1603 const unsigned long __user *, old_nodes,
1604 const unsigned long __user *, new_nodes)
1605 {
1606 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1607 }
1608
1609
1610 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1611 static int kernel_get_mempolicy(int __user *policy,
1612 unsigned long __user *nmask,
1613 unsigned long maxnode,
1614 unsigned long addr,
1615 unsigned long flags)
1616 {
1617 int err;
1618 int pval;
1619 nodemask_t nodes;
1620
1621 if (nmask != NULL && maxnode < nr_node_ids)
1622 return -EINVAL;
1623
1624 addr = untagged_addr(addr);
1625
1626 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1627
1628 if (err)
1629 return err;
1630
1631 if (policy && put_user(pval, policy))
1632 return -EFAULT;
1633
1634 if (nmask)
1635 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1636
1637 return err;
1638 }
1639
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1640 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1641 unsigned long __user *, nmask, unsigned long, maxnode,
1642 unsigned long, addr, unsigned long, flags)
1643 {
1644 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1645 }
1646
1647 #ifdef CONFIG_COMPAT
1648
COMPAT_SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,addr,compat_ulong_t,flags)1649 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1650 compat_ulong_t __user *, nmask,
1651 compat_ulong_t, maxnode,
1652 compat_ulong_t, addr, compat_ulong_t, flags)
1653 {
1654 long err;
1655 unsigned long __user *nm = NULL;
1656 unsigned long nr_bits, alloc_size;
1657 DECLARE_BITMAP(bm, MAX_NUMNODES);
1658
1659 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1660 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1661
1662 if (nmask)
1663 nm = compat_alloc_user_space(alloc_size);
1664
1665 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1666
1667 if (!err && nmask) {
1668 unsigned long copy_size;
1669 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1670 err = copy_from_user(bm, nm, copy_size);
1671 /* ensure entire bitmap is zeroed */
1672 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1673 err |= compat_put_bitmap(nmask, bm, nr_bits);
1674 }
1675
1676 return err;
1677 }
1678
COMPAT_SYSCALL_DEFINE3(set_mempolicy,int,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode)1679 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1680 compat_ulong_t, maxnode)
1681 {
1682 unsigned long __user *nm = NULL;
1683 unsigned long nr_bits, alloc_size;
1684 DECLARE_BITMAP(bm, MAX_NUMNODES);
1685
1686 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1687 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1688
1689 if (nmask) {
1690 if (compat_get_bitmap(bm, nmask, nr_bits))
1691 return -EFAULT;
1692 nm = compat_alloc_user_space(alloc_size);
1693 if (copy_to_user(nm, bm, alloc_size))
1694 return -EFAULT;
1695 }
1696
1697 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1698 }
1699
COMPAT_SYSCALL_DEFINE6(mbind,compat_ulong_t,start,compat_ulong_t,len,compat_ulong_t,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,flags)1700 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1701 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1702 compat_ulong_t, maxnode, compat_ulong_t, flags)
1703 {
1704 unsigned long __user *nm = NULL;
1705 unsigned long nr_bits, alloc_size;
1706 nodemask_t bm;
1707
1708 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1709 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1710
1711 if (nmask) {
1712 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1713 return -EFAULT;
1714 nm = compat_alloc_user_space(alloc_size);
1715 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1716 return -EFAULT;
1717 }
1718
1719 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1720 }
1721
COMPAT_SYSCALL_DEFINE4(migrate_pages,compat_pid_t,pid,compat_ulong_t,maxnode,const compat_ulong_t __user *,old_nodes,const compat_ulong_t __user *,new_nodes)1722 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1723 compat_ulong_t, maxnode,
1724 const compat_ulong_t __user *, old_nodes,
1725 const compat_ulong_t __user *, new_nodes)
1726 {
1727 unsigned long __user *old = NULL;
1728 unsigned long __user *new = NULL;
1729 nodemask_t tmp_mask;
1730 unsigned long nr_bits;
1731 unsigned long size;
1732
1733 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1734 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1735 if (old_nodes) {
1736 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1737 return -EFAULT;
1738 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1739 if (new_nodes)
1740 new = old + size / sizeof(unsigned long);
1741 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1742 return -EFAULT;
1743 }
1744 if (new_nodes) {
1745 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1746 return -EFAULT;
1747 if (new == NULL)
1748 new = compat_alloc_user_space(size);
1749 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1750 return -EFAULT;
1751 }
1752 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1753 }
1754
1755 #endif /* CONFIG_COMPAT */
1756
vma_migratable(struct vm_area_struct * vma)1757 bool vma_migratable(struct vm_area_struct *vma)
1758 {
1759 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1760 return false;
1761
1762 /*
1763 * DAX device mappings require predictable access latency, so avoid
1764 * incurring periodic faults.
1765 */
1766 if (vma_is_dax(vma))
1767 return false;
1768
1769 if (is_vm_hugetlb_page(vma) &&
1770 !hugepage_migration_supported(hstate_vma(vma)))
1771 return false;
1772
1773 /*
1774 * Migration allocates pages in the highest zone. If we cannot
1775 * do so then migration (at least from node to node) is not
1776 * possible.
1777 */
1778 if (vma->vm_file &&
1779 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1780 < policy_zone)
1781 return false;
1782 return true;
1783 }
1784
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1785 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1786 unsigned long addr)
1787 {
1788 struct mempolicy *pol;
1789
1790 if (!vma)
1791 return NULL;
1792
1793 if (vma->vm_ops && vma->vm_ops->get_policy)
1794 return vma->vm_ops->get_policy(vma, addr);
1795
1796 /*
1797 * This could be called without holding the mmap_sem in the
1798 * speculative page fault handler's path.
1799 */
1800 pol = READ_ONCE(vma->vm_policy);
1801 if (pol) {
1802 /*
1803 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1804 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1805 * count on these policies which will be dropped by
1806 * mpol_cond_put() later
1807 */
1808 if (mpol_needs_cond_ref(pol))
1809 mpol_get(pol);
1810 }
1811
1812 return pol;
1813 }
1814
1815 /*
1816 * get_vma_policy(@vma, @addr)
1817 * @vma: virtual memory area whose policy is sought
1818 * @addr: address in @vma for shared policy lookup
1819 *
1820 * Returns effective policy for a VMA at specified address.
1821 * Falls back to current->mempolicy or system default policy, as necessary.
1822 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1823 * count--added by the get_policy() vm_op, as appropriate--to protect against
1824 * freeing by another task. It is the caller's responsibility to free the
1825 * extra reference for shared policies.
1826 */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1827 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1828 unsigned long addr)
1829 {
1830 struct mempolicy *pol = __get_vma_policy(vma, addr);
1831
1832 if (!pol)
1833 pol = get_task_policy(current);
1834
1835 return pol;
1836 }
1837
vma_policy_mof(struct vm_area_struct * vma)1838 bool vma_policy_mof(struct vm_area_struct *vma)
1839 {
1840 struct mempolicy *pol;
1841
1842 if (vma->vm_ops && vma->vm_ops->get_policy) {
1843 bool ret = false;
1844
1845 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1846 if (pol && (pol->flags & MPOL_F_MOF))
1847 ret = true;
1848 mpol_cond_put(pol);
1849
1850 return ret;
1851 }
1852
1853 pol = vma->vm_policy;
1854 if (!pol)
1855 pol = get_task_policy(current);
1856
1857 return pol->flags & MPOL_F_MOF;
1858 }
1859
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1860 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1861 {
1862 enum zone_type dynamic_policy_zone = policy_zone;
1863
1864 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1865
1866 /*
1867 * if policy->v.nodes has movable memory only,
1868 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1869 *
1870 * policy->v.nodes is intersect with node_states[N_MEMORY].
1871 * so if the following test faile, it implies
1872 * policy->v.nodes has movable memory only.
1873 */
1874 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1875 dynamic_policy_zone = ZONE_MOVABLE;
1876
1877 return zone >= dynamic_policy_zone;
1878 }
1879
1880 /*
1881 * Return a nodemask representing a mempolicy for filtering nodes for
1882 * page allocation
1883 */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1884 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1885 {
1886 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1887 if (unlikely(policy->mode == MPOL_BIND) &&
1888 apply_policy_zone(policy, gfp_zone(gfp)) &&
1889 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1890 return &policy->v.nodes;
1891
1892 return NULL;
1893 }
1894
1895 /* Return the node id preferred by the given mempolicy, or the given id */
policy_node(gfp_t gfp,struct mempolicy * policy,int nd)1896 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1897 {
1898 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1899 nd = policy->v.preferred_node;
1900 else {
1901 /*
1902 * __GFP_THISNODE shouldn't even be used with the bind policy
1903 * because we might easily break the expectation to stay on the
1904 * requested node and not break the policy.
1905 */
1906 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1907 }
1908
1909 return nd;
1910 }
1911
1912 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1913 static unsigned interleave_nodes(struct mempolicy *policy)
1914 {
1915 unsigned next;
1916 struct task_struct *me = current;
1917
1918 next = next_node_in(me->il_prev, policy->v.nodes);
1919 if (next < MAX_NUMNODES)
1920 me->il_prev = next;
1921 return next;
1922 }
1923
1924 /*
1925 * Depending on the memory policy provide a node from which to allocate the
1926 * next slab entry.
1927 */
mempolicy_slab_node(void)1928 unsigned int mempolicy_slab_node(void)
1929 {
1930 struct mempolicy *policy;
1931 int node = numa_mem_id();
1932
1933 if (in_interrupt())
1934 return node;
1935
1936 policy = current->mempolicy;
1937 if (!policy || policy->flags & MPOL_F_LOCAL)
1938 return node;
1939
1940 switch (policy->mode) {
1941 case MPOL_PREFERRED:
1942 /*
1943 * handled MPOL_F_LOCAL above
1944 */
1945 return policy->v.preferred_node;
1946
1947 case MPOL_INTERLEAVE:
1948 return interleave_nodes(policy);
1949
1950 case MPOL_BIND: {
1951 struct zoneref *z;
1952
1953 /*
1954 * Follow bind policy behavior and start allocation at the
1955 * first node.
1956 */
1957 struct zonelist *zonelist;
1958 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1959 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1960 z = first_zones_zonelist(zonelist, highest_zoneidx,
1961 &policy->v.nodes);
1962 return z->zone ? zone_to_nid(z->zone) : node;
1963 }
1964
1965 default:
1966 BUG();
1967 }
1968 }
1969
1970 /*
1971 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1972 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1973 * number of present nodes.
1974 */
offset_il_node(struct mempolicy * pol,unsigned long n)1975 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1976 {
1977 unsigned nnodes = nodes_weight(pol->v.nodes);
1978 unsigned target;
1979 int i;
1980 int nid;
1981
1982 if (!nnodes)
1983 return numa_node_id();
1984 target = (unsigned int)n % nnodes;
1985 nid = first_node(pol->v.nodes);
1986 for (i = 0; i < target; i++)
1987 nid = next_node(nid, pol->v.nodes);
1988 return nid;
1989 }
1990
1991 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1992 static inline unsigned interleave_nid(struct mempolicy *pol,
1993 struct vm_area_struct *vma, unsigned long addr, int shift)
1994 {
1995 if (vma) {
1996 unsigned long off;
1997
1998 /*
1999 * for small pages, there is no difference between
2000 * shift and PAGE_SHIFT, so the bit-shift is safe.
2001 * for huge pages, since vm_pgoff is in units of small
2002 * pages, we need to shift off the always 0 bits to get
2003 * a useful offset.
2004 */
2005 BUG_ON(shift < PAGE_SHIFT);
2006 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2007 off += (addr - vma->vm_start) >> shift;
2008 return offset_il_node(pol, off);
2009 } else
2010 return interleave_nodes(pol);
2011 }
2012
2013 #ifdef CONFIG_HUGETLBFS
2014 /*
2015 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2016 * @vma: virtual memory area whose policy is sought
2017 * @addr: address in @vma for shared policy lookup and interleave policy
2018 * @gfp_flags: for requested zone
2019 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2020 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2021 *
2022 * Returns a nid suitable for a huge page allocation and a pointer
2023 * to the struct mempolicy for conditional unref after allocation.
2024 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2025 * @nodemask for filtering the zonelist.
2026 *
2027 * Must be protected by read_mems_allowed_begin()
2028 */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)2029 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2030 struct mempolicy **mpol, nodemask_t **nodemask)
2031 {
2032 int nid;
2033
2034 *mpol = get_vma_policy(vma, addr);
2035 *nodemask = NULL; /* assume !MPOL_BIND */
2036
2037 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2038 nid = interleave_nid(*mpol, vma, addr,
2039 huge_page_shift(hstate_vma(vma)));
2040 } else {
2041 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2042 if ((*mpol)->mode == MPOL_BIND)
2043 *nodemask = &(*mpol)->v.nodes;
2044 }
2045 return nid;
2046 }
2047
2048 /*
2049 * init_nodemask_of_mempolicy
2050 *
2051 * If the current task's mempolicy is "default" [NULL], return 'false'
2052 * to indicate default policy. Otherwise, extract the policy nodemask
2053 * for 'bind' or 'interleave' policy into the argument nodemask, or
2054 * initialize the argument nodemask to contain the single node for
2055 * 'preferred' or 'local' policy and return 'true' to indicate presence
2056 * of non-default mempolicy.
2057 *
2058 * We don't bother with reference counting the mempolicy [mpol_get/put]
2059 * because the current task is examining it's own mempolicy and a task's
2060 * mempolicy is only ever changed by the task itself.
2061 *
2062 * N.B., it is the caller's responsibility to free a returned nodemask.
2063 */
init_nodemask_of_mempolicy(nodemask_t * mask)2064 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2065 {
2066 struct mempolicy *mempolicy;
2067 int nid;
2068
2069 if (!(mask && current->mempolicy))
2070 return false;
2071
2072 task_lock(current);
2073 mempolicy = current->mempolicy;
2074 switch (mempolicy->mode) {
2075 case MPOL_PREFERRED:
2076 if (mempolicy->flags & MPOL_F_LOCAL)
2077 nid = numa_node_id();
2078 else
2079 nid = mempolicy->v.preferred_node;
2080 init_nodemask_of_node(mask, nid);
2081 break;
2082
2083 case MPOL_BIND:
2084 case MPOL_INTERLEAVE:
2085 *mask = mempolicy->v.nodes;
2086 break;
2087
2088 default:
2089 BUG();
2090 }
2091 task_unlock(current);
2092
2093 return true;
2094 }
2095 #endif
2096
2097 /*
2098 * mempolicy_nodemask_intersects
2099 *
2100 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2101 * policy. Otherwise, check for intersection between mask and the policy
2102 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2103 * policy, always return true since it may allocate elsewhere on fallback.
2104 *
2105 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2106 */
mempolicy_nodemask_intersects(struct task_struct * tsk,const nodemask_t * mask)2107 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2108 const nodemask_t *mask)
2109 {
2110 struct mempolicy *mempolicy;
2111 bool ret = true;
2112
2113 if (!mask)
2114 return ret;
2115 task_lock(tsk);
2116 mempolicy = tsk->mempolicy;
2117 if (!mempolicy)
2118 goto out;
2119
2120 switch (mempolicy->mode) {
2121 case MPOL_PREFERRED:
2122 /*
2123 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2124 * allocate from, they may fallback to other nodes when oom.
2125 * Thus, it's possible for tsk to have allocated memory from
2126 * nodes in mask.
2127 */
2128 break;
2129 case MPOL_BIND:
2130 case MPOL_INTERLEAVE:
2131 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2132 break;
2133 default:
2134 BUG();
2135 }
2136 out:
2137 task_unlock(tsk);
2138 return ret;
2139 }
2140
2141 /* Allocate a page in interleaved policy.
2142 Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)2143 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2144 unsigned nid)
2145 {
2146 struct page *page;
2147
2148 page = __alloc_pages(gfp, order, nid);
2149 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2150 if (!static_branch_likely(&vm_numa_stat_key))
2151 return page;
2152 if (page && page_to_nid(page) == nid) {
2153 preempt_disable();
2154 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2155 preempt_enable();
2156 }
2157 return page;
2158 }
2159
2160 /**
2161 * alloc_pages_vma - Allocate a page for a VMA.
2162 *
2163 * @gfp:
2164 * %GFP_USER user allocation.
2165 * %GFP_KERNEL kernel allocations,
2166 * %GFP_HIGHMEM highmem/user allocations,
2167 * %GFP_FS allocation should not call back into a file system.
2168 * %GFP_ATOMIC don't sleep.
2169 *
2170 * @order:Order of the GFP allocation.
2171 * @vma: Pointer to VMA or NULL if not available.
2172 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2173 * @node: Which node to prefer for allocation (modulo policy).
2174 * @hugepage: for hugepages try only the preferred node if possible
2175 *
2176 * This function allocates a page from the kernel page pool and applies
2177 * a NUMA policy associated with the VMA or the current process.
2178 * When VMA is not NULL caller must read-lock the mmap_lock of the
2179 * mm_struct of the VMA to prevent it from going away. Should be used for
2180 * all allocations for pages that will be mapped into user space. Returns
2181 * NULL when no page can be allocated.
2182 */
2183 struct page *
alloc_pages_vma(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,int node,bool hugepage)2184 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2185 unsigned long addr, int node, bool hugepage)
2186 {
2187 struct mempolicy *pol;
2188 struct page *page;
2189 int preferred_nid;
2190 nodemask_t *nmask;
2191
2192 pol = get_vma_policy(vma, addr);
2193
2194 if (pol->mode == MPOL_INTERLEAVE) {
2195 unsigned nid;
2196
2197 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2198 mpol_cond_put(pol);
2199 page = alloc_page_interleave(gfp, order, nid);
2200 goto out;
2201 }
2202
2203 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2204 int hpage_node = node;
2205
2206 /*
2207 * For hugepage allocation and non-interleave policy which
2208 * allows the current node (or other explicitly preferred
2209 * node) we only try to allocate from the current/preferred
2210 * node and don't fall back to other nodes, as the cost of
2211 * remote accesses would likely offset THP benefits.
2212 *
2213 * If the policy is interleave, or does not allow the current
2214 * node in its nodemask, we allocate the standard way.
2215 */
2216 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2217 hpage_node = pol->v.preferred_node;
2218
2219 nmask = policy_nodemask(gfp, pol);
2220 if (!nmask || node_isset(hpage_node, *nmask)) {
2221 mpol_cond_put(pol);
2222 /*
2223 * First, try to allocate THP only on local node, but
2224 * don't reclaim unnecessarily, just compact.
2225 */
2226 page = __alloc_pages_node(hpage_node,
2227 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2228
2229 /*
2230 * If hugepage allocations are configured to always
2231 * synchronous compact or the vma has been madvised
2232 * to prefer hugepage backing, retry allowing remote
2233 * memory with both reclaim and compact as well.
2234 */
2235 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2236 page = __alloc_pages_nodemask(gfp, order,
2237 hpage_node, nmask);
2238
2239 goto out;
2240 }
2241 }
2242
2243 nmask = policy_nodemask(gfp, pol);
2244 preferred_nid = policy_node(gfp, pol, node);
2245 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2246 mpol_cond_put(pol);
2247 out:
2248 return page;
2249 }
2250 EXPORT_SYMBOL(alloc_pages_vma);
2251
2252 /**
2253 * alloc_pages_current - Allocate pages.
2254 *
2255 * @gfp:
2256 * %GFP_USER user allocation,
2257 * %GFP_KERNEL kernel allocation,
2258 * %GFP_HIGHMEM highmem allocation,
2259 * %GFP_FS don't call back into a file system.
2260 * %GFP_ATOMIC don't sleep.
2261 * @order: Power of two of allocation size in pages. 0 is a single page.
2262 *
2263 * Allocate a page from the kernel page pool. When not in
2264 * interrupt context and apply the current process NUMA policy.
2265 * Returns NULL when no page can be allocated.
2266 */
alloc_pages_current(gfp_t gfp,unsigned order)2267 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2268 {
2269 struct mempolicy *pol = &default_policy;
2270 struct page *page;
2271
2272 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2273 pol = get_task_policy(current);
2274
2275 /*
2276 * No reference counting needed for current->mempolicy
2277 * nor system default_policy
2278 */
2279 if (pol->mode == MPOL_INTERLEAVE)
2280 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2281 else
2282 page = __alloc_pages_nodemask(gfp, order,
2283 policy_node(gfp, pol, numa_node_id()),
2284 policy_nodemask(gfp, pol));
2285
2286 return page;
2287 }
2288 EXPORT_SYMBOL(alloc_pages_current);
2289
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2290 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2291 {
2292 struct mempolicy *pol = mpol_dup(vma_policy(src));
2293
2294 if (IS_ERR(pol))
2295 return PTR_ERR(pol);
2296 dst->vm_policy = pol;
2297 return 0;
2298 }
2299
2300 /*
2301 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2302 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2303 * with the mems_allowed returned by cpuset_mems_allowed(). This
2304 * keeps mempolicies cpuset relative after its cpuset moves. See
2305 * further kernel/cpuset.c update_nodemask().
2306 *
2307 * current's mempolicy may be rebinded by the other task(the task that changes
2308 * cpuset's mems), so we needn't do rebind work for current task.
2309 */
2310
2311 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2312 struct mempolicy *__mpol_dup(struct mempolicy *old)
2313 {
2314 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2315
2316 if (!new)
2317 return ERR_PTR(-ENOMEM);
2318
2319 /* task's mempolicy is protected by alloc_lock */
2320 if (old == current->mempolicy) {
2321 task_lock(current);
2322 *new = *old;
2323 task_unlock(current);
2324 } else
2325 *new = *old;
2326
2327 if (current_cpuset_is_being_rebound()) {
2328 nodemask_t mems = cpuset_mems_allowed(current);
2329 mpol_rebind_policy(new, &mems);
2330 }
2331 atomic_set(&new->refcnt, 1);
2332 return new;
2333 }
2334
2335 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2336 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2337 {
2338 if (!a || !b)
2339 return false;
2340 if (a->mode != b->mode)
2341 return false;
2342 if (a->flags != b->flags)
2343 return false;
2344 if (mpol_store_user_nodemask(a))
2345 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2346 return false;
2347
2348 switch (a->mode) {
2349 case MPOL_BIND:
2350 case MPOL_INTERLEAVE:
2351 return !!nodes_equal(a->v.nodes, b->v.nodes);
2352 case MPOL_PREFERRED:
2353 /* a's ->flags is the same as b's */
2354 if (a->flags & MPOL_F_LOCAL)
2355 return true;
2356 return a->v.preferred_node == b->v.preferred_node;
2357 default:
2358 BUG();
2359 return false;
2360 }
2361 }
2362
2363 /*
2364 * Shared memory backing store policy support.
2365 *
2366 * Remember policies even when nobody has shared memory mapped.
2367 * The policies are kept in Red-Black tree linked from the inode.
2368 * They are protected by the sp->lock rwlock, which should be held
2369 * for any accesses to the tree.
2370 */
2371
2372 /*
2373 * lookup first element intersecting start-end. Caller holds sp->lock for
2374 * reading or for writing
2375 */
2376 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)2377 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2378 {
2379 struct rb_node *n = sp->root.rb_node;
2380
2381 while (n) {
2382 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2383
2384 if (start >= p->end)
2385 n = n->rb_right;
2386 else if (end <= p->start)
2387 n = n->rb_left;
2388 else
2389 break;
2390 }
2391 if (!n)
2392 return NULL;
2393 for (;;) {
2394 struct sp_node *w = NULL;
2395 struct rb_node *prev = rb_prev(n);
2396 if (!prev)
2397 break;
2398 w = rb_entry(prev, struct sp_node, nd);
2399 if (w->end <= start)
2400 break;
2401 n = prev;
2402 }
2403 return rb_entry(n, struct sp_node, nd);
2404 }
2405
2406 /*
2407 * Insert a new shared policy into the list. Caller holds sp->lock for
2408 * writing.
2409 */
sp_insert(struct shared_policy * sp,struct sp_node * new)2410 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2411 {
2412 struct rb_node **p = &sp->root.rb_node;
2413 struct rb_node *parent = NULL;
2414 struct sp_node *nd;
2415
2416 while (*p) {
2417 parent = *p;
2418 nd = rb_entry(parent, struct sp_node, nd);
2419 if (new->start < nd->start)
2420 p = &(*p)->rb_left;
2421 else if (new->end > nd->end)
2422 p = &(*p)->rb_right;
2423 else
2424 BUG();
2425 }
2426 rb_link_node(&new->nd, parent, p);
2427 rb_insert_color(&new->nd, &sp->root);
2428 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2429 new->policy ? new->policy->mode : 0);
2430 }
2431
2432 /* Find shared policy intersecting idx */
2433 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)2434 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2435 {
2436 struct mempolicy *pol = NULL;
2437 struct sp_node *sn;
2438
2439 if (!sp->root.rb_node)
2440 return NULL;
2441 read_lock(&sp->lock);
2442 sn = sp_lookup(sp, idx, idx+1);
2443 if (sn) {
2444 mpol_get(sn->policy);
2445 pol = sn->policy;
2446 }
2447 read_unlock(&sp->lock);
2448 return pol;
2449 }
2450
sp_free(struct sp_node * n)2451 static void sp_free(struct sp_node *n)
2452 {
2453 mpol_put(n->policy);
2454 kmem_cache_free(sn_cache, n);
2455 }
2456
2457 /**
2458 * mpol_misplaced - check whether current page node is valid in policy
2459 *
2460 * @page: page to be checked
2461 * @vma: vm area where page mapped
2462 * @addr: virtual address where page mapped
2463 *
2464 * Lookup current policy node id for vma,addr and "compare to" page's
2465 * node id.
2466 *
2467 * Returns:
2468 * -1 - not misplaced, page is in the right node
2469 * node - node id where the page should be
2470 *
2471 * Policy determination "mimics" alloc_page_vma().
2472 * Called from fault path where we know the vma and faulting address.
2473 */
mpol_misplaced(struct page * page,struct vm_area_struct * vma,unsigned long addr)2474 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2475 {
2476 struct mempolicy *pol;
2477 struct zoneref *z;
2478 int curnid = page_to_nid(page);
2479 unsigned long pgoff;
2480 int thiscpu = raw_smp_processor_id();
2481 int thisnid = cpu_to_node(thiscpu);
2482 int polnid = NUMA_NO_NODE;
2483 int ret = -1;
2484
2485 pol = get_vma_policy(vma, addr);
2486 if (!(pol->flags & MPOL_F_MOF))
2487 goto out;
2488
2489 switch (pol->mode) {
2490 case MPOL_INTERLEAVE:
2491 pgoff = vma->vm_pgoff;
2492 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2493 polnid = offset_il_node(pol, pgoff);
2494 break;
2495
2496 case MPOL_PREFERRED:
2497 if (pol->flags & MPOL_F_LOCAL)
2498 polnid = numa_node_id();
2499 else
2500 polnid = pol->v.preferred_node;
2501 break;
2502
2503 case MPOL_BIND:
2504
2505 /*
2506 * allows binding to multiple nodes.
2507 * use current page if in policy nodemask,
2508 * else select nearest allowed node, if any.
2509 * If no allowed nodes, use current [!misplaced].
2510 */
2511 if (node_isset(curnid, pol->v.nodes))
2512 goto out;
2513 z = first_zones_zonelist(
2514 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2515 gfp_zone(GFP_HIGHUSER),
2516 &pol->v.nodes);
2517 polnid = zone_to_nid(z->zone);
2518 break;
2519
2520 default:
2521 BUG();
2522 }
2523
2524 /* Migrate the page towards the node whose CPU is referencing it */
2525 if (pol->flags & MPOL_F_MORON) {
2526 polnid = thisnid;
2527
2528 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2529 goto out;
2530 }
2531
2532 if (curnid != polnid)
2533 ret = polnid;
2534 out:
2535 mpol_cond_put(pol);
2536
2537 return ret;
2538 }
2539
2540 /*
2541 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2542 * dropped after task->mempolicy is set to NULL so that any allocation done as
2543 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2544 * policy.
2545 */
mpol_put_task_policy(struct task_struct * task)2546 void mpol_put_task_policy(struct task_struct *task)
2547 {
2548 struct mempolicy *pol;
2549
2550 task_lock(task);
2551 pol = task->mempolicy;
2552 task->mempolicy = NULL;
2553 task_unlock(task);
2554 mpol_put(pol);
2555 }
2556
sp_delete(struct shared_policy * sp,struct sp_node * n)2557 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2558 {
2559 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2560 rb_erase(&n->nd, &sp->root);
2561 sp_free(n);
2562 }
2563
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2564 static void sp_node_init(struct sp_node *node, unsigned long start,
2565 unsigned long end, struct mempolicy *pol)
2566 {
2567 node->start = start;
2568 node->end = end;
2569 node->policy = pol;
2570 }
2571
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2572 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2573 struct mempolicy *pol)
2574 {
2575 struct sp_node *n;
2576 struct mempolicy *newpol;
2577
2578 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2579 if (!n)
2580 return NULL;
2581
2582 newpol = mpol_dup(pol);
2583 if (IS_ERR(newpol)) {
2584 kmem_cache_free(sn_cache, n);
2585 return NULL;
2586 }
2587 newpol->flags |= MPOL_F_SHARED;
2588 sp_node_init(n, start, end, newpol);
2589
2590 return n;
2591 }
2592
2593 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)2594 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2595 unsigned long end, struct sp_node *new)
2596 {
2597 struct sp_node *n;
2598 struct sp_node *n_new = NULL;
2599 struct mempolicy *mpol_new = NULL;
2600 int ret = 0;
2601
2602 restart:
2603 write_lock(&sp->lock);
2604 n = sp_lookup(sp, start, end);
2605 /* Take care of old policies in the same range. */
2606 while (n && n->start < end) {
2607 struct rb_node *next = rb_next(&n->nd);
2608 if (n->start >= start) {
2609 if (n->end <= end)
2610 sp_delete(sp, n);
2611 else
2612 n->start = end;
2613 } else {
2614 /* Old policy spanning whole new range. */
2615 if (n->end > end) {
2616 if (!n_new)
2617 goto alloc_new;
2618
2619 *mpol_new = *n->policy;
2620 atomic_set(&mpol_new->refcnt, 1);
2621 sp_node_init(n_new, end, n->end, mpol_new);
2622 n->end = start;
2623 sp_insert(sp, n_new);
2624 n_new = NULL;
2625 mpol_new = NULL;
2626 break;
2627 } else
2628 n->end = start;
2629 }
2630 if (!next)
2631 break;
2632 n = rb_entry(next, struct sp_node, nd);
2633 }
2634 if (new)
2635 sp_insert(sp, new);
2636 write_unlock(&sp->lock);
2637 ret = 0;
2638
2639 err_out:
2640 if (mpol_new)
2641 mpol_put(mpol_new);
2642 if (n_new)
2643 kmem_cache_free(sn_cache, n_new);
2644
2645 return ret;
2646
2647 alloc_new:
2648 write_unlock(&sp->lock);
2649 ret = -ENOMEM;
2650 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2651 if (!n_new)
2652 goto err_out;
2653 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2654 if (!mpol_new)
2655 goto err_out;
2656 atomic_set(&mpol_new->refcnt, 1);
2657 goto restart;
2658 }
2659
2660 /**
2661 * mpol_shared_policy_init - initialize shared policy for inode
2662 * @sp: pointer to inode shared policy
2663 * @mpol: struct mempolicy to install
2664 *
2665 * Install non-NULL @mpol in inode's shared policy rb-tree.
2666 * On entry, the current task has a reference on a non-NULL @mpol.
2667 * This must be released on exit.
2668 * This is called at get_inode() calls and we can use GFP_KERNEL.
2669 */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2670 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2671 {
2672 int ret;
2673
2674 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2675 rwlock_init(&sp->lock);
2676
2677 if (mpol) {
2678 struct vm_area_struct pvma;
2679 struct mempolicy *new;
2680 NODEMASK_SCRATCH(scratch);
2681
2682 if (!scratch)
2683 goto put_mpol;
2684 /* contextualize the tmpfs mount point mempolicy */
2685 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2686 if (IS_ERR(new))
2687 goto free_scratch; /* no valid nodemask intersection */
2688
2689 task_lock(current);
2690 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2691 task_unlock(current);
2692 if (ret)
2693 goto put_new;
2694
2695 /* Create pseudo-vma that contains just the policy */
2696 vma_init(&pvma, NULL);
2697 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2698 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2699
2700 put_new:
2701 mpol_put(new); /* drop initial ref */
2702 free_scratch:
2703 NODEMASK_SCRATCH_FREE(scratch);
2704 put_mpol:
2705 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2706 }
2707 }
2708
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)2709 int mpol_set_shared_policy(struct shared_policy *info,
2710 struct vm_area_struct *vma, struct mempolicy *npol)
2711 {
2712 int err;
2713 struct sp_node *new = NULL;
2714 unsigned long sz = vma_pages(vma);
2715
2716 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2717 vma->vm_pgoff,
2718 sz, npol ? npol->mode : -1,
2719 npol ? npol->flags : -1,
2720 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2721
2722 if (npol) {
2723 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2724 if (!new)
2725 return -ENOMEM;
2726 }
2727 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2728 if (err && new)
2729 sp_free(new);
2730 return err;
2731 }
2732
2733 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)2734 void mpol_free_shared_policy(struct shared_policy *p)
2735 {
2736 struct sp_node *n;
2737 struct rb_node *next;
2738
2739 if (!p->root.rb_node)
2740 return;
2741 write_lock(&p->lock);
2742 next = rb_first(&p->root);
2743 while (next) {
2744 n = rb_entry(next, struct sp_node, nd);
2745 next = rb_next(&n->nd);
2746 sp_delete(p, n);
2747 }
2748 write_unlock(&p->lock);
2749 }
2750
2751 #ifdef CONFIG_NUMA_BALANCING
2752 static int __initdata numabalancing_override;
2753
check_numabalancing_enable(void)2754 static void __init check_numabalancing_enable(void)
2755 {
2756 bool numabalancing_default = false;
2757
2758 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2759 numabalancing_default = true;
2760
2761 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2762 if (numabalancing_override)
2763 set_numabalancing_state(numabalancing_override == 1);
2764
2765 if (num_online_nodes() > 1 && !numabalancing_override) {
2766 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2767 numabalancing_default ? "Enabling" : "Disabling");
2768 set_numabalancing_state(numabalancing_default);
2769 }
2770 }
2771
setup_numabalancing(char * str)2772 static int __init setup_numabalancing(char *str)
2773 {
2774 int ret = 0;
2775 if (!str)
2776 goto out;
2777
2778 if (!strcmp(str, "enable")) {
2779 numabalancing_override = 1;
2780 ret = 1;
2781 } else if (!strcmp(str, "disable")) {
2782 numabalancing_override = -1;
2783 ret = 1;
2784 }
2785 out:
2786 if (!ret)
2787 pr_warn("Unable to parse numa_balancing=\n");
2788
2789 return ret;
2790 }
2791 __setup("numa_balancing=", setup_numabalancing);
2792 #else
check_numabalancing_enable(void)2793 static inline void __init check_numabalancing_enable(void)
2794 {
2795 }
2796 #endif /* CONFIG_NUMA_BALANCING */
2797
2798 /* assumes fs == KERNEL_DS */
numa_policy_init(void)2799 void __init numa_policy_init(void)
2800 {
2801 nodemask_t interleave_nodes;
2802 unsigned long largest = 0;
2803 int nid, prefer = 0;
2804
2805 policy_cache = kmem_cache_create("numa_policy",
2806 sizeof(struct mempolicy),
2807 0, SLAB_PANIC, NULL);
2808
2809 sn_cache = kmem_cache_create("shared_policy_node",
2810 sizeof(struct sp_node),
2811 0, SLAB_PANIC, NULL);
2812
2813 for_each_node(nid) {
2814 preferred_node_policy[nid] = (struct mempolicy) {
2815 .refcnt = ATOMIC_INIT(1),
2816 .mode = MPOL_PREFERRED,
2817 .flags = MPOL_F_MOF | MPOL_F_MORON,
2818 .v = { .preferred_node = nid, },
2819 };
2820 }
2821
2822 /*
2823 * Set interleaving policy for system init. Interleaving is only
2824 * enabled across suitably sized nodes (default is >= 16MB), or
2825 * fall back to the largest node if they're all smaller.
2826 */
2827 nodes_clear(interleave_nodes);
2828 for_each_node_state(nid, N_MEMORY) {
2829 unsigned long total_pages = node_present_pages(nid);
2830
2831 /* Preserve the largest node */
2832 if (largest < total_pages) {
2833 largest = total_pages;
2834 prefer = nid;
2835 }
2836
2837 /* Interleave this node? */
2838 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2839 node_set(nid, interleave_nodes);
2840 }
2841
2842 /* All too small, use the largest */
2843 if (unlikely(nodes_empty(interleave_nodes)))
2844 node_set(prefer, interleave_nodes);
2845
2846 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2847 pr_err("%s: interleaving failed\n", __func__);
2848
2849 check_numabalancing_enable();
2850 }
2851
2852 /* Reset policy of current process to default */
numa_default_policy(void)2853 void numa_default_policy(void)
2854 {
2855 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2856 }
2857
2858 /*
2859 * Parse and format mempolicy from/to strings
2860 */
2861
2862 /*
2863 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2864 */
2865 static const char * const policy_modes[] =
2866 {
2867 [MPOL_DEFAULT] = "default",
2868 [MPOL_PREFERRED] = "prefer",
2869 [MPOL_BIND] = "bind",
2870 [MPOL_INTERLEAVE] = "interleave",
2871 [MPOL_LOCAL] = "local",
2872 };
2873
2874
2875 #ifdef CONFIG_TMPFS
2876 /**
2877 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2878 * @str: string containing mempolicy to parse
2879 * @mpol: pointer to struct mempolicy pointer, returned on success.
2880 *
2881 * Format of input:
2882 * <mode>[=<flags>][:<nodelist>]
2883 *
2884 * On success, returns 0, else 1
2885 */
mpol_parse_str(char * str,struct mempolicy ** mpol)2886 int mpol_parse_str(char *str, struct mempolicy **mpol)
2887 {
2888 struct mempolicy *new = NULL;
2889 unsigned short mode_flags;
2890 nodemask_t nodes;
2891 char *nodelist = strchr(str, ':');
2892 char *flags = strchr(str, '=');
2893 int err = 1, mode;
2894
2895 if (flags)
2896 *flags++ = '\0'; /* terminate mode string */
2897
2898 if (nodelist) {
2899 /* NUL-terminate mode or flags string */
2900 *nodelist++ = '\0';
2901 if (nodelist_parse(nodelist, nodes))
2902 goto out;
2903 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2904 goto out;
2905 } else
2906 nodes_clear(nodes);
2907
2908 mode = match_string(policy_modes, MPOL_MAX, str);
2909 if (mode < 0)
2910 goto out;
2911
2912 switch (mode) {
2913 case MPOL_PREFERRED:
2914 /*
2915 * Insist on a nodelist of one node only, although later
2916 * we use first_node(nodes) to grab a single node, so here
2917 * nodelist (or nodes) cannot be empty.
2918 */
2919 if (nodelist) {
2920 char *rest = nodelist;
2921 while (isdigit(*rest))
2922 rest++;
2923 if (*rest)
2924 goto out;
2925 if (nodes_empty(nodes))
2926 goto out;
2927 }
2928 break;
2929 case MPOL_INTERLEAVE:
2930 /*
2931 * Default to online nodes with memory if no nodelist
2932 */
2933 if (!nodelist)
2934 nodes = node_states[N_MEMORY];
2935 break;
2936 case MPOL_LOCAL:
2937 /*
2938 * Don't allow a nodelist; mpol_new() checks flags
2939 */
2940 if (nodelist)
2941 goto out;
2942 mode = MPOL_PREFERRED;
2943 break;
2944 case MPOL_DEFAULT:
2945 /*
2946 * Insist on a empty nodelist
2947 */
2948 if (!nodelist)
2949 err = 0;
2950 goto out;
2951 case MPOL_BIND:
2952 /*
2953 * Insist on a nodelist
2954 */
2955 if (!nodelist)
2956 goto out;
2957 }
2958
2959 mode_flags = 0;
2960 if (flags) {
2961 /*
2962 * Currently, we only support two mutually exclusive
2963 * mode flags.
2964 */
2965 if (!strcmp(flags, "static"))
2966 mode_flags |= MPOL_F_STATIC_NODES;
2967 else if (!strcmp(flags, "relative"))
2968 mode_flags |= MPOL_F_RELATIVE_NODES;
2969 else
2970 goto out;
2971 }
2972
2973 new = mpol_new(mode, mode_flags, &nodes);
2974 if (IS_ERR(new))
2975 goto out;
2976
2977 /*
2978 * Save nodes for mpol_to_str() to show the tmpfs mount options
2979 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2980 */
2981 if (mode != MPOL_PREFERRED)
2982 new->v.nodes = nodes;
2983 else if (nodelist)
2984 new->v.preferred_node = first_node(nodes);
2985 else
2986 new->flags |= MPOL_F_LOCAL;
2987
2988 /*
2989 * Save nodes for contextualization: this will be used to "clone"
2990 * the mempolicy in a specific context [cpuset] at a later time.
2991 */
2992 new->w.user_nodemask = nodes;
2993
2994 err = 0;
2995
2996 out:
2997 /* Restore string for error message */
2998 if (nodelist)
2999 *--nodelist = ':';
3000 if (flags)
3001 *--flags = '=';
3002 if (!err)
3003 *mpol = new;
3004 return err;
3005 }
3006 #endif /* CONFIG_TMPFS */
3007
3008 /**
3009 * mpol_to_str - format a mempolicy structure for printing
3010 * @buffer: to contain formatted mempolicy string
3011 * @maxlen: length of @buffer
3012 * @pol: pointer to mempolicy to be formatted
3013 *
3014 * Convert @pol into a string. If @buffer is too short, truncate the string.
3015 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3016 * longest flag, "relative", and to display at least a few node ids.
3017 */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)3018 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3019 {
3020 char *p = buffer;
3021 nodemask_t nodes = NODE_MASK_NONE;
3022 unsigned short mode = MPOL_DEFAULT;
3023 unsigned short flags = 0;
3024
3025 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3026 mode = pol->mode;
3027 flags = pol->flags;
3028 }
3029
3030 switch (mode) {
3031 case MPOL_DEFAULT:
3032 break;
3033 case MPOL_PREFERRED:
3034 if (flags & MPOL_F_LOCAL)
3035 mode = MPOL_LOCAL;
3036 else
3037 node_set(pol->v.preferred_node, nodes);
3038 break;
3039 case MPOL_BIND:
3040 case MPOL_INTERLEAVE:
3041 nodes = pol->v.nodes;
3042 break;
3043 default:
3044 WARN_ON_ONCE(1);
3045 snprintf(p, maxlen, "unknown");
3046 return;
3047 }
3048
3049 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3050
3051 if (flags & MPOL_MODE_FLAGS) {
3052 p += snprintf(p, buffer + maxlen - p, "=");
3053
3054 /*
3055 * Currently, the only defined flags are mutually exclusive
3056 */
3057 if (flags & MPOL_F_STATIC_NODES)
3058 p += snprintf(p, buffer + maxlen - p, "static");
3059 else if (flags & MPOL_F_RELATIVE_NODES)
3060 p += snprintf(p, buffer + maxlen - p, "relative");
3061 }
3062
3063 if (!nodes_empty(nodes))
3064 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3065 nodemask_pr_args(&nodes));
3066 }
3067