1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/mlock.c
4 *
5 * (C) Copyright 1995 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
7 */
8
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/page_pinner.h>
21 #include <linux/export.h>
22 #include <linux/rmap.h>
23 #include <linux/mmzone.h>
24 #include <linux/hugetlb.h>
25 #include <linux/memcontrol.h>
26 #include <linux/mm_inline.h>
27
28 #include "internal.h"
29
can_do_mlock(void)30 bool can_do_mlock(void)
31 {
32 if (rlimit(RLIMIT_MEMLOCK) != 0)
33 return true;
34 if (capable(CAP_IPC_LOCK))
35 return true;
36 return false;
37 }
38 EXPORT_SYMBOL(can_do_mlock);
39
40 /*
41 * Mlocked pages are marked with PageMlocked() flag for efficient testing
42 * in vmscan and, possibly, the fault path; and to support semi-accurate
43 * statistics.
44 *
45 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
46 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
47 * The unevictable list is an LRU sibling list to the [in]active lists.
48 * PageUnevictable is set to indicate the unevictable state.
49 *
50 * When lazy mlocking via vmscan, it is important to ensure that the
51 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
52 * may have mlocked a page that is being munlocked. So lazy mlock must take
53 * the mmap_lock for read, and verify that the vma really is locked
54 * (see mm/rmap.c).
55 */
56
57 /*
58 * LRU accounting for clear_page_mlock()
59 */
clear_page_mlock(struct page * page)60 void clear_page_mlock(struct page *page)
61 {
62 int nr_pages;
63
64 if (!TestClearPageMlocked(page))
65 return;
66
67 nr_pages = thp_nr_pages(page);
68 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
69 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
70 /*
71 * The previous TestClearPageMlocked() corresponds to the smp_mb()
72 * in __pagevec_lru_add_fn().
73 *
74 * See __pagevec_lru_add_fn for more explanation.
75 */
76 if (!isolate_lru_page(page)) {
77 putback_lru_page(page);
78 } else {
79 /*
80 * We lost the race. the page already moved to evictable list.
81 */
82 if (PageUnevictable(page))
83 count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
84 }
85 }
86
87 /*
88 * Mark page as mlocked if not already.
89 * If page on LRU, isolate and putback to move to unevictable list.
90 */
mlock_vma_page(struct page * page)91 void mlock_vma_page(struct page *page)
92 {
93 /* Serialize with page migration */
94 BUG_ON(!PageLocked(page));
95
96 VM_BUG_ON_PAGE(PageTail(page), page);
97 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
98
99 if (!TestSetPageMlocked(page)) {
100 int nr_pages = thp_nr_pages(page);
101
102 mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
103 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
104 if (!isolate_lru_page(page))
105 putback_lru_page(page);
106 }
107 }
108
109 /*
110 * Isolate a page from LRU with optional get_page() pin.
111 * Assumes lru_lock already held and page already pinned.
112 */
__munlock_isolate_lru_page(struct page * page,bool getpage)113 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
114 {
115 if (PageLRU(page)) {
116 struct lruvec *lruvec;
117
118 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
119 if (getpage)
120 get_page(page);
121 ClearPageLRU(page);
122 del_page_from_lru_list(page, lruvec, page_lru(page));
123 return true;
124 }
125
126 return false;
127 }
128
129 /*
130 * Finish munlock after successful page isolation
131 *
132 * Page must be locked. This is a wrapper for try_to_munlock()
133 * and putback_lru_page() with munlock accounting.
134 */
__munlock_isolated_page(struct page * page)135 static void __munlock_isolated_page(struct page *page)
136 {
137 /*
138 * Optimization: if the page was mapped just once, that's our mapping
139 * and we don't need to check all the other vmas.
140 */
141 if (page_mapcount(page) > 1)
142 try_to_munlock(page);
143
144 /* Did try_to_unlock() succeed or punt? */
145 if (!PageMlocked(page))
146 count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
147
148 putback_lru_page(page);
149 }
150
151 /*
152 * Accounting for page isolation fail during munlock
153 *
154 * Performs accounting when page isolation fails in munlock. There is nothing
155 * else to do because it means some other task has already removed the page
156 * from the LRU. putback_lru_page() will take care of removing the page from
157 * the unevictable list, if necessary. vmscan [page_referenced()] will move
158 * the page back to the unevictable list if some other vma has it mlocked.
159 */
__munlock_isolation_failed(struct page * page)160 static void __munlock_isolation_failed(struct page *page)
161 {
162 int nr_pages = thp_nr_pages(page);
163
164 if (PageUnevictable(page))
165 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
166 else
167 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
168 }
169
170 /**
171 * munlock_vma_page - munlock a vma page
172 * @page: page to be unlocked, either a normal page or THP page head
173 *
174 * returns the size of the page as a page mask (0 for normal page,
175 * HPAGE_PMD_NR - 1 for THP head page)
176 *
177 * called from munlock()/munmap() path with page supposedly on the LRU.
178 * When we munlock a page, because the vma where we found the page is being
179 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
180 * page locked so that we can leave it on the unevictable lru list and not
181 * bother vmscan with it. However, to walk the page's rmap list in
182 * try_to_munlock() we must isolate the page from the LRU. If some other
183 * task has removed the page from the LRU, we won't be able to do that.
184 * So we clear the PageMlocked as we might not get another chance. If we
185 * can't isolate the page, we leave it for putback_lru_page() and vmscan
186 * [page_referenced()/try_to_unmap()] to deal with.
187 */
munlock_vma_page(struct page * page)188 unsigned int munlock_vma_page(struct page *page)
189 {
190 int nr_pages;
191 pg_data_t *pgdat = page_pgdat(page);
192
193 /* For try_to_munlock() and to serialize with page migration */
194 BUG_ON(!PageLocked(page));
195
196 VM_BUG_ON_PAGE(PageTail(page), page);
197
198 /*
199 * Serialize with any parallel __split_huge_page_refcount() which
200 * might otherwise copy PageMlocked to part of the tail pages before
201 * we clear it in the head page. It also stabilizes thp_nr_pages().
202 */
203 spin_lock_irq(&pgdat->lru_lock);
204
205 if (!TestClearPageMlocked(page)) {
206 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
207 nr_pages = 1;
208 goto unlock_out;
209 }
210
211 nr_pages = thp_nr_pages(page);
212 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
213
214 if (__munlock_isolate_lru_page(page, true)) {
215 spin_unlock_irq(&pgdat->lru_lock);
216 __munlock_isolated_page(page);
217 goto out;
218 }
219 __munlock_isolation_failed(page);
220
221 unlock_out:
222 spin_unlock_irq(&pgdat->lru_lock);
223
224 out:
225 return nr_pages - 1;
226 }
227
228 /*
229 * convert get_user_pages() return value to posix mlock() error
230 */
__mlock_posix_error_return(long retval)231 static int __mlock_posix_error_return(long retval)
232 {
233 if (retval == -EFAULT)
234 retval = -ENOMEM;
235 else if (retval == -ENOMEM)
236 retval = -EAGAIN;
237 return retval;
238 }
239
240 /*
241 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
242 *
243 * The fast path is available only for evictable pages with single mapping.
244 * Then we can bypass the per-cpu pvec and get better performance.
245 * when mapcount > 1 we need try_to_munlock() which can fail.
246 * when !page_evictable(), we need the full redo logic of putback_lru_page to
247 * avoid leaving evictable page in unevictable list.
248 *
249 * In case of success, @page is added to @pvec and @pgrescued is incremented
250 * in case that the page was previously unevictable. @page is also unlocked.
251 */
__putback_lru_fast_prepare(struct page * page,struct pagevec * pvec,int * pgrescued)252 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
253 int *pgrescued)
254 {
255 VM_BUG_ON_PAGE(PageLRU(page), page);
256 VM_BUG_ON_PAGE(!PageLocked(page), page);
257
258 if (page_mapcount(page) <= 1 && page_evictable(page)) {
259 pagevec_add(pvec, page);
260 if (TestClearPageUnevictable(page))
261 (*pgrescued)++;
262 unlock_page(page);
263 return true;
264 }
265
266 return false;
267 }
268
269 /*
270 * Putback multiple evictable pages to the LRU
271 *
272 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
273 * the pages might have meanwhile become unevictable but that is OK.
274 */
__putback_lru_fast(struct pagevec * pvec,int pgrescued)275 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
276 {
277 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
278 /*
279 *__pagevec_lru_add() calls release_pages() so we don't call
280 * put_page() explicitly
281 */
282 __pagevec_lru_add(pvec);
283 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
284 }
285
286 /*
287 * Munlock a batch of pages from the same zone
288 *
289 * The work is split to two main phases. First phase clears the Mlocked flag
290 * and attempts to isolate the pages, all under a single zone lru lock.
291 * The second phase finishes the munlock only for pages where isolation
292 * succeeded.
293 *
294 * Note that the pagevec may be modified during the process.
295 */
__munlock_pagevec(struct pagevec * pvec,struct zone * zone)296 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
297 {
298 int i;
299 int nr = pagevec_count(pvec);
300 int delta_munlocked = -nr;
301 struct pagevec pvec_putback;
302 int pgrescued = 0;
303
304 pagevec_init(&pvec_putback);
305
306 /* Phase 1: page isolation */
307 spin_lock_irq(&zone->zone_pgdat->lru_lock);
308 for (i = 0; i < nr; i++) {
309 struct page *page = pvec->pages[i];
310
311 if (TestClearPageMlocked(page)) {
312 /*
313 * We already have pin from follow_page_mask()
314 * so we can spare the get_page() here.
315 */
316 if (__munlock_isolate_lru_page(page, false))
317 continue;
318 else
319 __munlock_isolation_failed(page);
320 } else {
321 delta_munlocked++;
322 }
323
324 /*
325 * We won't be munlocking this page in the next phase
326 * but we still need to release the follow_page_mask()
327 * pin. We cannot do it under lru_lock however. If it's
328 * the last pin, __page_cache_release() would deadlock.
329 */
330 pagevec_add(&pvec_putback, pvec->pages[i]);
331 pvec->pages[i] = NULL;
332 }
333 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
334 spin_unlock_irq(&zone->zone_pgdat->lru_lock);
335
336 /* Now we can release pins of pages that we are not munlocking */
337 pagevec_release(&pvec_putback);
338
339 /* Phase 2: page munlock */
340 for (i = 0; i < nr; i++) {
341 struct page *page = pvec->pages[i];
342
343 if (page) {
344 lock_page(page);
345 if (!__putback_lru_fast_prepare(page, &pvec_putback,
346 &pgrescued)) {
347 /*
348 * Slow path. We don't want to lose the last
349 * pin before unlock_page()
350 */
351 get_page(page); /* for putback_lru_page() */
352 __munlock_isolated_page(page);
353 unlock_page(page);
354 put_page(page); /* from follow_page_mask() */
355 }
356 }
357 }
358
359 /*
360 * Phase 3: page putback for pages that qualified for the fast path
361 * This will also call put_page() to return pin from follow_page_mask()
362 */
363 if (pagevec_count(&pvec_putback))
364 __putback_lru_fast(&pvec_putback, pgrescued);
365 }
366
367 /*
368 * Fill up pagevec for __munlock_pagevec using pte walk
369 *
370 * The function expects that the struct page corresponding to @start address is
371 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
372 *
373 * The rest of @pvec is filled by subsequent pages within the same pmd and same
374 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
375 * pages also get pinned.
376 *
377 * Returns the address of the next page that should be scanned. This equals
378 * @start + PAGE_SIZE when no page could be added by the pte walk.
379 */
__munlock_pagevec_fill(struct pagevec * pvec,struct vm_area_struct * vma,struct zone * zone,unsigned long start,unsigned long end)380 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
381 struct vm_area_struct *vma, struct zone *zone,
382 unsigned long start, unsigned long end)
383 {
384 pte_t *pte;
385 spinlock_t *ptl;
386
387 /*
388 * Initialize pte walk starting at the already pinned page where we
389 * are sure that there is a pte, as it was pinned under the same
390 * mmap_lock write op.
391 */
392 pte = get_locked_pte(vma->vm_mm, start, &ptl);
393 /* Make sure we do not cross the page table boundary */
394 end = pgd_addr_end(start, end);
395 end = p4d_addr_end(start, end);
396 end = pud_addr_end(start, end);
397 end = pmd_addr_end(start, end);
398
399 /* The page next to the pinned page is the first we will try to get */
400 start += PAGE_SIZE;
401 while (start < end) {
402 struct page *page = NULL;
403 pte++;
404 if (pte_present(*pte))
405 page = vm_normal_page(vma, start, *pte);
406 /*
407 * Break if page could not be obtained or the page's node+zone does not
408 * match
409 */
410 if (!page || page_zone(page) != zone)
411 break;
412
413 /*
414 * Do not use pagevec for PTE-mapped THP,
415 * munlock_vma_pages_range() will handle them.
416 */
417 if (PageTransCompound(page))
418 break;
419
420 get_page(page);
421 /*
422 * Increase the address that will be returned *before* the
423 * eventual break due to pvec becoming full by adding the page
424 */
425 start += PAGE_SIZE;
426 if (pagevec_add(pvec, page) == 0)
427 break;
428 }
429 pte_unmap_unlock(pte, ptl);
430 return start;
431 }
432
433 /*
434 * munlock_vma_pages_range() - munlock all pages in the vma range.'
435 * @vma - vma containing range to be munlock()ed.
436 * @start - start address in @vma of the range
437 * @end - end of range in @vma.
438 *
439 * For mremap(), munmap() and exit().
440 *
441 * Called with @vma VM_LOCKED.
442 *
443 * Returns with VM_LOCKED cleared. Callers must be prepared to
444 * deal with this.
445 *
446 * We don't save and restore VM_LOCKED here because pages are
447 * still on lru. In unmap path, pages might be scanned by reclaim
448 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
449 * free them. This will result in freeing mlocked pages.
450 */
munlock_vma_pages_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)451 void munlock_vma_pages_range(struct vm_area_struct *vma,
452 unsigned long start, unsigned long end)
453 {
454 vm_write_begin(vma);
455 WRITE_ONCE(vma->vm_flags, vma->vm_flags & VM_LOCKED_CLEAR_MASK);
456 vm_write_end(vma);
457
458 while (start < end) {
459 struct page *page;
460 unsigned int page_mask = 0;
461 unsigned long page_increm;
462 struct pagevec pvec;
463 struct zone *zone;
464
465 pagevec_init(&pvec);
466 /*
467 * Although FOLL_DUMP is intended for get_dump_page(),
468 * it just so happens that its special treatment of the
469 * ZERO_PAGE (returning an error instead of doing get_page)
470 * suits munlock very well (and if somehow an abnormal page
471 * has sneaked into the range, we won't oops here: great).
472 */
473 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
474 if (page && !IS_ERR(page)) {
475 /*
476 * munlock_vma_pages_range uses follow_page(FOLL_GET)
477 * so it need to use put_user_page but the munlock
478 * path is quite complicated to deal with each put
479 * sites correctly so just unattribute them to avoid
480 * false positive at this moment.
481 */
482 reset_page_pinner(page, compound_order(page));
483 if (PageTransTail(page)) {
484 VM_BUG_ON_PAGE(PageMlocked(page), page);
485 put_page(page); /* follow_page_mask() */
486 } else if (PageTransHuge(page)) {
487 lock_page(page);
488 /*
489 * Any THP page found by follow_page_mask() may
490 * have gotten split before reaching
491 * munlock_vma_page(), so we need to compute
492 * the page_mask here instead.
493 */
494 page_mask = munlock_vma_page(page);
495 unlock_page(page);
496 put_page(page); /* follow_page_mask() */
497 } else {
498 /*
499 * Non-huge pages are handled in batches via
500 * pagevec. The pin from follow_page_mask()
501 * prevents them from collapsing by THP.
502 */
503 pagevec_add(&pvec, page);
504 zone = page_zone(page);
505
506 /*
507 * Try to fill the rest of pagevec using fast
508 * pte walk. This will also update start to
509 * the next page to process. Then munlock the
510 * pagevec.
511 */
512 start = __munlock_pagevec_fill(&pvec, vma,
513 zone, start, end);
514 __munlock_pagevec(&pvec, zone);
515 goto next;
516 }
517 }
518 page_increm = 1 + page_mask;
519 start += page_increm * PAGE_SIZE;
520 next:
521 cond_resched();
522 }
523 }
524
525 /*
526 * mlock_fixup - handle mlock[all]/munlock[all] requests.
527 *
528 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
529 * munlock is a no-op. However, for some special vmas, we go ahead and
530 * populate the ptes.
531 *
532 * For vmas that pass the filters, merge/split as appropriate.
533 */
mlock_fixup(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,vm_flags_t newflags)534 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
535 unsigned long start, unsigned long end, vm_flags_t newflags)
536 {
537 struct mm_struct *mm = vma->vm_mm;
538 pgoff_t pgoff;
539 int nr_pages;
540 int ret = 0;
541 int lock = !!(newflags & VM_LOCKED);
542 vm_flags_t old_flags = vma->vm_flags;
543
544 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
545 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
546 vma_is_dax(vma))
547 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
548 goto out;
549
550 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
551 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
552 vma->vm_file, pgoff, vma_policy(vma),
553 vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
554 if (*prev) {
555 vma = *prev;
556 goto success;
557 }
558
559 if (start != vma->vm_start) {
560 ret = split_vma(mm, vma, start, 1);
561 if (ret)
562 goto out;
563 }
564
565 if (end != vma->vm_end) {
566 ret = split_vma(mm, vma, end, 0);
567 if (ret)
568 goto out;
569 }
570
571 success:
572 /*
573 * Keep track of amount of locked VM.
574 */
575 nr_pages = (end - start) >> PAGE_SHIFT;
576 if (!lock)
577 nr_pages = -nr_pages;
578 else if (old_flags & VM_LOCKED)
579 nr_pages = 0;
580 mm->locked_vm += nr_pages;
581
582 /*
583 * vm_flags is protected by the mmap_lock held in write mode.
584 * It's okay if try_to_unmap_one unmaps a page just after we
585 * set VM_LOCKED, populate_vma_page_range will bring it back.
586 */
587 if (lock) {
588 vm_write_begin(vma);
589 WRITE_ONCE(vma->vm_flags, newflags);
590 vm_write_end(vma);
591 } else
592 munlock_vma_pages_range(vma, start, end);
593
594 out:
595 *prev = vma;
596 return ret;
597 }
598
apply_vma_lock_flags(unsigned long start,size_t len,vm_flags_t flags)599 static int apply_vma_lock_flags(unsigned long start, size_t len,
600 vm_flags_t flags)
601 {
602 unsigned long nstart, end, tmp;
603 struct vm_area_struct * vma, * prev;
604 int error;
605
606 VM_BUG_ON(offset_in_page(start));
607 VM_BUG_ON(len != PAGE_ALIGN(len));
608 end = start + len;
609 if (end < start)
610 return -EINVAL;
611 if (end == start)
612 return 0;
613 vma = find_vma(current->mm, start);
614 if (!vma || vma->vm_start > start)
615 return -ENOMEM;
616
617 prev = vma->vm_prev;
618 if (start > vma->vm_start)
619 prev = vma;
620
621 for (nstart = start ; ; ) {
622 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
623
624 newflags |= flags;
625
626 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
627 tmp = vma->vm_end;
628 if (tmp > end)
629 tmp = end;
630 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
631 if (error)
632 break;
633 nstart = tmp;
634 if (nstart < prev->vm_end)
635 nstart = prev->vm_end;
636 if (nstart >= end)
637 break;
638
639 vma = prev->vm_next;
640 if (!vma || vma->vm_start != nstart) {
641 error = -ENOMEM;
642 break;
643 }
644 }
645 return error;
646 }
647
648 /*
649 * Go through vma areas and sum size of mlocked
650 * vma pages, as return value.
651 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
652 * is also counted.
653 * Return value: previously mlocked page counts
654 */
count_mm_mlocked_page_nr(struct mm_struct * mm,unsigned long start,size_t len)655 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
656 unsigned long start, size_t len)
657 {
658 struct vm_area_struct *vma;
659 unsigned long count = 0;
660
661 if (mm == NULL)
662 mm = current->mm;
663
664 vma = find_vma(mm, start);
665 if (vma == NULL)
666 vma = mm->mmap;
667
668 for (; vma ; vma = vma->vm_next) {
669 if (start >= vma->vm_end)
670 continue;
671 if (start + len <= vma->vm_start)
672 break;
673 if (vma->vm_flags & VM_LOCKED) {
674 if (start > vma->vm_start)
675 count -= (start - vma->vm_start);
676 if (start + len < vma->vm_end) {
677 count += start + len - vma->vm_start;
678 break;
679 }
680 count += vma->vm_end - vma->vm_start;
681 }
682 }
683
684 return count >> PAGE_SHIFT;
685 }
686
do_mlock(unsigned long start,size_t len,vm_flags_t flags)687 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
688 {
689 unsigned long locked;
690 unsigned long lock_limit;
691 int error = -ENOMEM;
692
693 start = untagged_addr(start);
694
695 if (!can_do_mlock())
696 return -EPERM;
697
698 len = PAGE_ALIGN(len + (offset_in_page(start)));
699 start &= PAGE_MASK;
700
701 lock_limit = rlimit(RLIMIT_MEMLOCK);
702 lock_limit >>= PAGE_SHIFT;
703 locked = len >> PAGE_SHIFT;
704
705 if (mmap_write_lock_killable(current->mm))
706 return -EINTR;
707
708 locked += current->mm->locked_vm;
709 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
710 /*
711 * It is possible that the regions requested intersect with
712 * previously mlocked areas, that part area in "mm->locked_vm"
713 * should not be counted to new mlock increment count. So check
714 * and adjust locked count if necessary.
715 */
716 locked -= count_mm_mlocked_page_nr(current->mm,
717 start, len);
718 }
719
720 /* check against resource limits */
721 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
722 error = apply_vma_lock_flags(start, len, flags);
723
724 mmap_write_unlock(current->mm);
725 if (error)
726 return error;
727
728 error = __mm_populate(start, len, 0);
729 if (error)
730 return __mlock_posix_error_return(error);
731 return 0;
732 }
733
SYSCALL_DEFINE2(mlock,unsigned long,start,size_t,len)734 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
735 {
736 return do_mlock(start, len, VM_LOCKED);
737 }
738
SYSCALL_DEFINE3(mlock2,unsigned long,start,size_t,len,int,flags)739 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
740 {
741 vm_flags_t vm_flags = VM_LOCKED;
742
743 if (flags & ~MLOCK_ONFAULT)
744 return -EINVAL;
745
746 if (flags & MLOCK_ONFAULT)
747 vm_flags |= VM_LOCKONFAULT;
748
749 return do_mlock(start, len, vm_flags);
750 }
751
SYSCALL_DEFINE2(munlock,unsigned long,start,size_t,len)752 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
753 {
754 int ret;
755
756 start = untagged_addr(start);
757
758 len = PAGE_ALIGN(len + (offset_in_page(start)));
759 start &= PAGE_MASK;
760
761 if (mmap_write_lock_killable(current->mm))
762 return -EINTR;
763 ret = apply_vma_lock_flags(start, len, 0);
764 mmap_write_unlock(current->mm);
765
766 return ret;
767 }
768
769 /*
770 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
771 * and translate into the appropriate modifications to mm->def_flags and/or the
772 * flags for all current VMAs.
773 *
774 * There are a couple of subtleties with this. If mlockall() is called multiple
775 * times with different flags, the values do not necessarily stack. If mlockall
776 * is called once including the MCL_FUTURE flag and then a second time without
777 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
778 */
apply_mlockall_flags(int flags)779 static int apply_mlockall_flags(int flags)
780 {
781 struct vm_area_struct * vma, * prev = NULL;
782 vm_flags_t to_add = 0;
783
784 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
785 if (flags & MCL_FUTURE) {
786 current->mm->def_flags |= VM_LOCKED;
787
788 if (flags & MCL_ONFAULT)
789 current->mm->def_flags |= VM_LOCKONFAULT;
790
791 if (!(flags & MCL_CURRENT))
792 goto out;
793 }
794
795 if (flags & MCL_CURRENT) {
796 to_add |= VM_LOCKED;
797 if (flags & MCL_ONFAULT)
798 to_add |= VM_LOCKONFAULT;
799 }
800
801 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
802 vm_flags_t newflags;
803
804 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
805 newflags |= to_add;
806
807 /* Ignore errors */
808 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
809 cond_resched();
810 }
811 out:
812 return 0;
813 }
814
SYSCALL_DEFINE1(mlockall,int,flags)815 SYSCALL_DEFINE1(mlockall, int, flags)
816 {
817 unsigned long lock_limit;
818 int ret;
819
820 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
821 flags == MCL_ONFAULT)
822 return -EINVAL;
823
824 if (!can_do_mlock())
825 return -EPERM;
826
827 lock_limit = rlimit(RLIMIT_MEMLOCK);
828 lock_limit >>= PAGE_SHIFT;
829
830 if (mmap_write_lock_killable(current->mm))
831 return -EINTR;
832
833 ret = -ENOMEM;
834 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
835 capable(CAP_IPC_LOCK))
836 ret = apply_mlockall_flags(flags);
837 mmap_write_unlock(current->mm);
838 if (!ret && (flags & MCL_CURRENT))
839 mm_populate(0, TASK_SIZE);
840
841 return ret;
842 }
843
SYSCALL_DEFINE0(munlockall)844 SYSCALL_DEFINE0(munlockall)
845 {
846 int ret;
847
848 if (mmap_write_lock_killable(current->mm))
849 return -EINTR;
850 ret = apply_mlockall_flags(0);
851 mmap_write_unlock(current->mm);
852 return ret;
853 }
854
855 /*
856 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
857 * shm segments) get accounted against the user_struct instead.
858 */
859 static DEFINE_SPINLOCK(shmlock_user_lock);
860
user_shm_lock(size_t size,struct user_struct * user)861 int user_shm_lock(size_t size, struct user_struct *user)
862 {
863 unsigned long lock_limit, locked;
864 int allowed = 0;
865
866 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
867 lock_limit = rlimit(RLIMIT_MEMLOCK);
868 if (lock_limit == RLIM_INFINITY)
869 allowed = 1;
870 lock_limit >>= PAGE_SHIFT;
871 spin_lock(&shmlock_user_lock);
872 if (!allowed &&
873 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
874 goto out;
875 get_uid(user);
876 user->locked_shm += locked;
877 allowed = 1;
878 out:
879 spin_unlock(&shmlock_user_lock);
880 return allowed;
881 }
882
user_shm_unlock(size_t size,struct user_struct * user)883 void user_shm_unlock(size_t size, struct user_struct *user)
884 {
885 spin_lock(&shmlock_user_lock);
886 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
887 spin_unlock(&shmlock_user_lock);
888 free_uid(user);
889 }
890