• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/mlock.c
4  *
5  *  (C) Copyright 1995 Linus Torvalds
6  *  (C) Copyright 2002 Christoph Hellwig
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mman.h>
11 #include <linux/mm.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/page_pinner.h>
21 #include <linux/export.h>
22 #include <linux/rmap.h>
23 #include <linux/mmzone.h>
24 #include <linux/hugetlb.h>
25 #include <linux/memcontrol.h>
26 #include <linux/mm_inline.h>
27 
28 #include "internal.h"
29 
can_do_mlock(void)30 bool can_do_mlock(void)
31 {
32 	if (rlimit(RLIMIT_MEMLOCK) != 0)
33 		return true;
34 	if (capable(CAP_IPC_LOCK))
35 		return true;
36 	return false;
37 }
38 EXPORT_SYMBOL(can_do_mlock);
39 
40 /*
41  * Mlocked pages are marked with PageMlocked() flag for efficient testing
42  * in vmscan and, possibly, the fault path; and to support semi-accurate
43  * statistics.
44  *
45  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
46  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
47  * The unevictable list is an LRU sibling list to the [in]active lists.
48  * PageUnevictable is set to indicate the unevictable state.
49  *
50  * When lazy mlocking via vmscan, it is important to ensure that the
51  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
52  * may have mlocked a page that is being munlocked. So lazy mlock must take
53  * the mmap_lock for read, and verify that the vma really is locked
54  * (see mm/rmap.c).
55  */
56 
57 /*
58  *  LRU accounting for clear_page_mlock()
59  */
clear_page_mlock(struct page * page)60 void clear_page_mlock(struct page *page)
61 {
62 	int nr_pages;
63 
64 	if (!TestClearPageMlocked(page))
65 		return;
66 
67 	nr_pages = thp_nr_pages(page);
68 	mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
69 	count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
70 	/*
71 	 * The previous TestClearPageMlocked() corresponds to the smp_mb()
72 	 * in __pagevec_lru_add_fn().
73 	 *
74 	 * See __pagevec_lru_add_fn for more explanation.
75 	 */
76 	if (!isolate_lru_page(page)) {
77 		putback_lru_page(page);
78 	} else {
79 		/*
80 		 * We lost the race. the page already moved to evictable list.
81 		 */
82 		if (PageUnevictable(page))
83 			count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
84 	}
85 }
86 
87 /*
88  * Mark page as mlocked if not already.
89  * If page on LRU, isolate and putback to move to unevictable list.
90  */
mlock_vma_page(struct page * page)91 void mlock_vma_page(struct page *page)
92 {
93 	/* Serialize with page migration */
94 	BUG_ON(!PageLocked(page));
95 
96 	VM_BUG_ON_PAGE(PageTail(page), page);
97 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
98 
99 	if (!TestSetPageMlocked(page)) {
100 		int nr_pages = thp_nr_pages(page);
101 
102 		mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
103 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
104 		if (!isolate_lru_page(page))
105 			putback_lru_page(page);
106 	}
107 }
108 
109 /*
110  * Isolate a page from LRU with optional get_page() pin.
111  * Assumes lru_lock already held and page already pinned.
112  */
__munlock_isolate_lru_page(struct page * page,bool getpage)113 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
114 {
115 	if (PageLRU(page)) {
116 		struct lruvec *lruvec;
117 
118 		lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
119 		if (getpage)
120 			get_page(page);
121 		ClearPageLRU(page);
122 		del_page_from_lru_list(page, lruvec, page_lru(page));
123 		return true;
124 	}
125 
126 	return false;
127 }
128 
129 /*
130  * Finish munlock after successful page isolation
131  *
132  * Page must be locked. This is a wrapper for try_to_munlock()
133  * and putback_lru_page() with munlock accounting.
134  */
__munlock_isolated_page(struct page * page)135 static void __munlock_isolated_page(struct page *page)
136 {
137 	/*
138 	 * Optimization: if the page was mapped just once, that's our mapping
139 	 * and we don't need to check all the other vmas.
140 	 */
141 	if (page_mapcount(page) > 1)
142 		try_to_munlock(page);
143 
144 	/* Did try_to_unlock() succeed or punt? */
145 	if (!PageMlocked(page))
146 		count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
147 
148 	putback_lru_page(page);
149 }
150 
151 /*
152  * Accounting for page isolation fail during munlock
153  *
154  * Performs accounting when page isolation fails in munlock. There is nothing
155  * else to do because it means some other task has already removed the page
156  * from the LRU. putback_lru_page() will take care of removing the page from
157  * the unevictable list, if necessary. vmscan [page_referenced()] will move
158  * the page back to the unevictable list if some other vma has it mlocked.
159  */
__munlock_isolation_failed(struct page * page)160 static void __munlock_isolation_failed(struct page *page)
161 {
162 	int nr_pages = thp_nr_pages(page);
163 
164 	if (PageUnevictable(page))
165 		__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
166 	else
167 		__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
168 }
169 
170 /**
171  * munlock_vma_page - munlock a vma page
172  * @page: page to be unlocked, either a normal page or THP page head
173  *
174  * returns the size of the page as a page mask (0 for normal page,
175  *         HPAGE_PMD_NR - 1 for THP head page)
176  *
177  * called from munlock()/munmap() path with page supposedly on the LRU.
178  * When we munlock a page, because the vma where we found the page is being
179  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
180  * page locked so that we can leave it on the unevictable lru list and not
181  * bother vmscan with it.  However, to walk the page's rmap list in
182  * try_to_munlock() we must isolate the page from the LRU.  If some other
183  * task has removed the page from the LRU, we won't be able to do that.
184  * So we clear the PageMlocked as we might not get another chance.  If we
185  * can't isolate the page, we leave it for putback_lru_page() and vmscan
186  * [page_referenced()/try_to_unmap()] to deal with.
187  */
munlock_vma_page(struct page * page)188 unsigned int munlock_vma_page(struct page *page)
189 {
190 	int nr_pages;
191 	pg_data_t *pgdat = page_pgdat(page);
192 
193 	/* For try_to_munlock() and to serialize with page migration */
194 	BUG_ON(!PageLocked(page));
195 
196 	VM_BUG_ON_PAGE(PageTail(page), page);
197 
198 	/*
199 	 * Serialize with any parallel __split_huge_page_refcount() which
200 	 * might otherwise copy PageMlocked to part of the tail pages before
201 	 * we clear it in the head page. It also stabilizes thp_nr_pages().
202 	 */
203 	spin_lock_irq(&pgdat->lru_lock);
204 
205 	if (!TestClearPageMlocked(page)) {
206 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
207 		nr_pages = 1;
208 		goto unlock_out;
209 	}
210 
211 	nr_pages = thp_nr_pages(page);
212 	__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
213 
214 	if (__munlock_isolate_lru_page(page, true)) {
215 		spin_unlock_irq(&pgdat->lru_lock);
216 		__munlock_isolated_page(page);
217 		goto out;
218 	}
219 	__munlock_isolation_failed(page);
220 
221 unlock_out:
222 	spin_unlock_irq(&pgdat->lru_lock);
223 
224 out:
225 	return nr_pages - 1;
226 }
227 
228 /*
229  * convert get_user_pages() return value to posix mlock() error
230  */
__mlock_posix_error_return(long retval)231 static int __mlock_posix_error_return(long retval)
232 {
233 	if (retval == -EFAULT)
234 		retval = -ENOMEM;
235 	else if (retval == -ENOMEM)
236 		retval = -EAGAIN;
237 	return retval;
238 }
239 
240 /*
241  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
242  *
243  * The fast path is available only for evictable pages with single mapping.
244  * Then we can bypass the per-cpu pvec and get better performance.
245  * when mapcount > 1 we need try_to_munlock() which can fail.
246  * when !page_evictable(), we need the full redo logic of putback_lru_page to
247  * avoid leaving evictable page in unevictable list.
248  *
249  * In case of success, @page is added to @pvec and @pgrescued is incremented
250  * in case that the page was previously unevictable. @page is also unlocked.
251  */
__putback_lru_fast_prepare(struct page * page,struct pagevec * pvec,int * pgrescued)252 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
253 		int *pgrescued)
254 {
255 	VM_BUG_ON_PAGE(PageLRU(page), page);
256 	VM_BUG_ON_PAGE(!PageLocked(page), page);
257 
258 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
259 		pagevec_add(pvec, page);
260 		if (TestClearPageUnevictable(page))
261 			(*pgrescued)++;
262 		unlock_page(page);
263 		return true;
264 	}
265 
266 	return false;
267 }
268 
269 /*
270  * Putback multiple evictable pages to the LRU
271  *
272  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
273  * the pages might have meanwhile become unevictable but that is OK.
274  */
__putback_lru_fast(struct pagevec * pvec,int pgrescued)275 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
276 {
277 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
278 	/*
279 	 *__pagevec_lru_add() calls release_pages() so we don't call
280 	 * put_page() explicitly
281 	 */
282 	__pagevec_lru_add(pvec);
283 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
284 }
285 
286 /*
287  * Munlock a batch of pages from the same zone
288  *
289  * The work is split to two main phases. First phase clears the Mlocked flag
290  * and attempts to isolate the pages, all under a single zone lru lock.
291  * The second phase finishes the munlock only for pages where isolation
292  * succeeded.
293  *
294  * Note that the pagevec may be modified during the process.
295  */
__munlock_pagevec(struct pagevec * pvec,struct zone * zone)296 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
297 {
298 	int i;
299 	int nr = pagevec_count(pvec);
300 	int delta_munlocked = -nr;
301 	struct pagevec pvec_putback;
302 	int pgrescued = 0;
303 
304 	pagevec_init(&pvec_putback);
305 
306 	/* Phase 1: page isolation */
307 	spin_lock_irq(&zone->zone_pgdat->lru_lock);
308 	for (i = 0; i < nr; i++) {
309 		struct page *page = pvec->pages[i];
310 
311 		if (TestClearPageMlocked(page)) {
312 			/*
313 			 * We already have pin from follow_page_mask()
314 			 * so we can spare the get_page() here.
315 			 */
316 			if (__munlock_isolate_lru_page(page, false))
317 				continue;
318 			else
319 				__munlock_isolation_failed(page);
320 		} else {
321 			delta_munlocked++;
322 		}
323 
324 		/*
325 		 * We won't be munlocking this page in the next phase
326 		 * but we still need to release the follow_page_mask()
327 		 * pin. We cannot do it under lru_lock however. If it's
328 		 * the last pin, __page_cache_release() would deadlock.
329 		 */
330 		pagevec_add(&pvec_putback, pvec->pages[i]);
331 		pvec->pages[i] = NULL;
332 	}
333 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
334 	spin_unlock_irq(&zone->zone_pgdat->lru_lock);
335 
336 	/* Now we can release pins of pages that we are not munlocking */
337 	pagevec_release(&pvec_putback);
338 
339 	/* Phase 2: page munlock */
340 	for (i = 0; i < nr; i++) {
341 		struct page *page = pvec->pages[i];
342 
343 		if (page) {
344 			lock_page(page);
345 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
346 					&pgrescued)) {
347 				/*
348 				 * Slow path. We don't want to lose the last
349 				 * pin before unlock_page()
350 				 */
351 				get_page(page); /* for putback_lru_page() */
352 				__munlock_isolated_page(page);
353 				unlock_page(page);
354 				put_page(page); /* from follow_page_mask() */
355 			}
356 		}
357 	}
358 
359 	/*
360 	 * Phase 3: page putback for pages that qualified for the fast path
361 	 * This will also call put_page() to return pin from follow_page_mask()
362 	 */
363 	if (pagevec_count(&pvec_putback))
364 		__putback_lru_fast(&pvec_putback, pgrescued);
365 }
366 
367 /*
368  * Fill up pagevec for __munlock_pagevec using pte walk
369  *
370  * The function expects that the struct page corresponding to @start address is
371  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
372  *
373  * The rest of @pvec is filled by subsequent pages within the same pmd and same
374  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
375  * pages also get pinned.
376  *
377  * Returns the address of the next page that should be scanned. This equals
378  * @start + PAGE_SIZE when no page could be added by the pte walk.
379  */
__munlock_pagevec_fill(struct pagevec * pvec,struct vm_area_struct * vma,struct zone * zone,unsigned long start,unsigned long end)380 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
381 			struct vm_area_struct *vma, struct zone *zone,
382 			unsigned long start, unsigned long end)
383 {
384 	pte_t *pte;
385 	spinlock_t *ptl;
386 
387 	/*
388 	 * Initialize pte walk starting at the already pinned page where we
389 	 * are sure that there is a pte, as it was pinned under the same
390 	 * mmap_lock write op.
391 	 */
392 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
393 	/* Make sure we do not cross the page table boundary */
394 	end = pgd_addr_end(start, end);
395 	end = p4d_addr_end(start, end);
396 	end = pud_addr_end(start, end);
397 	end = pmd_addr_end(start, end);
398 
399 	/* The page next to the pinned page is the first we will try to get */
400 	start += PAGE_SIZE;
401 	while (start < end) {
402 		struct page *page = NULL;
403 		pte++;
404 		if (pte_present(*pte))
405 			page = vm_normal_page(vma, start, *pte);
406 		/*
407 		 * Break if page could not be obtained or the page's node+zone does not
408 		 * match
409 		 */
410 		if (!page || page_zone(page) != zone)
411 			break;
412 
413 		/*
414 		 * Do not use pagevec for PTE-mapped THP,
415 		 * munlock_vma_pages_range() will handle them.
416 		 */
417 		if (PageTransCompound(page))
418 			break;
419 
420 		get_page(page);
421 		/*
422 		 * Increase the address that will be returned *before* the
423 		 * eventual break due to pvec becoming full by adding the page
424 		 */
425 		start += PAGE_SIZE;
426 		if (pagevec_add(pvec, page) == 0)
427 			break;
428 	}
429 	pte_unmap_unlock(pte, ptl);
430 	return start;
431 }
432 
433 /*
434  * munlock_vma_pages_range() - munlock all pages in the vma range.'
435  * @vma - vma containing range to be munlock()ed.
436  * @start - start address in @vma of the range
437  * @end - end of range in @vma.
438  *
439  *  For mremap(), munmap() and exit().
440  *
441  * Called with @vma VM_LOCKED.
442  *
443  * Returns with VM_LOCKED cleared.  Callers must be prepared to
444  * deal with this.
445  *
446  * We don't save and restore VM_LOCKED here because pages are
447  * still on lru.  In unmap path, pages might be scanned by reclaim
448  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
449  * free them.  This will result in freeing mlocked pages.
450  */
munlock_vma_pages_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)451 void munlock_vma_pages_range(struct vm_area_struct *vma,
452 			     unsigned long start, unsigned long end)
453 {
454 	vm_write_begin(vma);
455 	WRITE_ONCE(vma->vm_flags, vma->vm_flags & VM_LOCKED_CLEAR_MASK);
456 	vm_write_end(vma);
457 
458 	while (start < end) {
459 		struct page *page;
460 		unsigned int page_mask = 0;
461 		unsigned long page_increm;
462 		struct pagevec pvec;
463 		struct zone *zone;
464 
465 		pagevec_init(&pvec);
466 		/*
467 		 * Although FOLL_DUMP is intended for get_dump_page(),
468 		 * it just so happens that its special treatment of the
469 		 * ZERO_PAGE (returning an error instead of doing get_page)
470 		 * suits munlock very well (and if somehow an abnormal page
471 		 * has sneaked into the range, we won't oops here: great).
472 		 */
473 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
474 		if (page && !IS_ERR(page)) {
475 			/*
476 			 * munlock_vma_pages_range uses follow_page(FOLL_GET)
477 			 * so it need to use put_user_page but the munlock
478 			 * path is quite complicated to deal with each put
479 			 * sites correctly so just unattribute them to avoid
480 			 * false positive at this moment.
481 			 */
482 			reset_page_pinner(page, compound_order(page));
483 			if (PageTransTail(page)) {
484 				VM_BUG_ON_PAGE(PageMlocked(page), page);
485 				put_page(page); /* follow_page_mask() */
486 			} else if (PageTransHuge(page)) {
487 				lock_page(page);
488 				/*
489 				 * Any THP page found by follow_page_mask() may
490 				 * have gotten split before reaching
491 				 * munlock_vma_page(), so we need to compute
492 				 * the page_mask here instead.
493 				 */
494 				page_mask = munlock_vma_page(page);
495 				unlock_page(page);
496 				put_page(page); /* follow_page_mask() */
497 			} else {
498 				/*
499 				 * Non-huge pages are handled in batches via
500 				 * pagevec. The pin from follow_page_mask()
501 				 * prevents them from collapsing by THP.
502 				 */
503 				pagevec_add(&pvec, page);
504 				zone = page_zone(page);
505 
506 				/*
507 				 * Try to fill the rest of pagevec using fast
508 				 * pte walk. This will also update start to
509 				 * the next page to process. Then munlock the
510 				 * pagevec.
511 				 */
512 				start = __munlock_pagevec_fill(&pvec, vma,
513 						zone, start, end);
514 				__munlock_pagevec(&pvec, zone);
515 				goto next;
516 			}
517 		}
518 		page_increm = 1 + page_mask;
519 		start += page_increm * PAGE_SIZE;
520 next:
521 		cond_resched();
522 	}
523 }
524 
525 /*
526  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
527  *
528  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
529  * munlock is a no-op.  However, for some special vmas, we go ahead and
530  * populate the ptes.
531  *
532  * For vmas that pass the filters, merge/split as appropriate.
533  */
mlock_fixup(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,vm_flags_t newflags)534 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
535 	unsigned long start, unsigned long end, vm_flags_t newflags)
536 {
537 	struct mm_struct *mm = vma->vm_mm;
538 	pgoff_t pgoff;
539 	int nr_pages;
540 	int ret = 0;
541 	int lock = !!(newflags & VM_LOCKED);
542 	vm_flags_t old_flags = vma->vm_flags;
543 
544 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
545 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
546 	    vma_is_dax(vma))
547 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
548 		goto out;
549 
550 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
551 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
552 			  vma->vm_file, pgoff, vma_policy(vma),
553 			  vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
554 	if (*prev) {
555 		vma = *prev;
556 		goto success;
557 	}
558 
559 	if (start != vma->vm_start) {
560 		ret = split_vma(mm, vma, start, 1);
561 		if (ret)
562 			goto out;
563 	}
564 
565 	if (end != vma->vm_end) {
566 		ret = split_vma(mm, vma, end, 0);
567 		if (ret)
568 			goto out;
569 	}
570 
571 success:
572 	/*
573 	 * Keep track of amount of locked VM.
574 	 */
575 	nr_pages = (end - start) >> PAGE_SHIFT;
576 	if (!lock)
577 		nr_pages = -nr_pages;
578 	else if (old_flags & VM_LOCKED)
579 		nr_pages = 0;
580 	mm->locked_vm += nr_pages;
581 
582 	/*
583 	 * vm_flags is protected by the mmap_lock held in write mode.
584 	 * It's okay if try_to_unmap_one unmaps a page just after we
585 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
586 	 */
587 	if (lock) {
588 		vm_write_begin(vma);
589 		WRITE_ONCE(vma->vm_flags, newflags);
590 		vm_write_end(vma);
591 	} else
592 		munlock_vma_pages_range(vma, start, end);
593 
594 out:
595 	*prev = vma;
596 	return ret;
597 }
598 
apply_vma_lock_flags(unsigned long start,size_t len,vm_flags_t flags)599 static int apply_vma_lock_flags(unsigned long start, size_t len,
600 				vm_flags_t flags)
601 {
602 	unsigned long nstart, end, tmp;
603 	struct vm_area_struct * vma, * prev;
604 	int error;
605 
606 	VM_BUG_ON(offset_in_page(start));
607 	VM_BUG_ON(len != PAGE_ALIGN(len));
608 	end = start + len;
609 	if (end < start)
610 		return -EINVAL;
611 	if (end == start)
612 		return 0;
613 	vma = find_vma(current->mm, start);
614 	if (!vma || vma->vm_start > start)
615 		return -ENOMEM;
616 
617 	prev = vma->vm_prev;
618 	if (start > vma->vm_start)
619 		prev = vma;
620 
621 	for (nstart = start ; ; ) {
622 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
623 
624 		newflags |= flags;
625 
626 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
627 		tmp = vma->vm_end;
628 		if (tmp > end)
629 			tmp = end;
630 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
631 		if (error)
632 			break;
633 		nstart = tmp;
634 		if (nstart < prev->vm_end)
635 			nstart = prev->vm_end;
636 		if (nstart >= end)
637 			break;
638 
639 		vma = prev->vm_next;
640 		if (!vma || vma->vm_start != nstart) {
641 			error = -ENOMEM;
642 			break;
643 		}
644 	}
645 	return error;
646 }
647 
648 /*
649  * Go through vma areas and sum size of mlocked
650  * vma pages, as return value.
651  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
652  * is also counted.
653  * Return value: previously mlocked page counts
654  */
count_mm_mlocked_page_nr(struct mm_struct * mm,unsigned long start,size_t len)655 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
656 		unsigned long start, size_t len)
657 {
658 	struct vm_area_struct *vma;
659 	unsigned long count = 0;
660 
661 	if (mm == NULL)
662 		mm = current->mm;
663 
664 	vma = find_vma(mm, start);
665 	if (vma == NULL)
666 		vma = mm->mmap;
667 
668 	for (; vma ; vma = vma->vm_next) {
669 		if (start >= vma->vm_end)
670 			continue;
671 		if (start + len <=  vma->vm_start)
672 			break;
673 		if (vma->vm_flags & VM_LOCKED) {
674 			if (start > vma->vm_start)
675 				count -= (start - vma->vm_start);
676 			if (start + len < vma->vm_end) {
677 				count += start + len - vma->vm_start;
678 				break;
679 			}
680 			count += vma->vm_end - vma->vm_start;
681 		}
682 	}
683 
684 	return count >> PAGE_SHIFT;
685 }
686 
do_mlock(unsigned long start,size_t len,vm_flags_t flags)687 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
688 {
689 	unsigned long locked;
690 	unsigned long lock_limit;
691 	int error = -ENOMEM;
692 
693 	start = untagged_addr(start);
694 
695 	if (!can_do_mlock())
696 		return -EPERM;
697 
698 	len = PAGE_ALIGN(len + (offset_in_page(start)));
699 	start &= PAGE_MASK;
700 
701 	lock_limit = rlimit(RLIMIT_MEMLOCK);
702 	lock_limit >>= PAGE_SHIFT;
703 	locked = len >> PAGE_SHIFT;
704 
705 	if (mmap_write_lock_killable(current->mm))
706 		return -EINTR;
707 
708 	locked += current->mm->locked_vm;
709 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
710 		/*
711 		 * It is possible that the regions requested intersect with
712 		 * previously mlocked areas, that part area in "mm->locked_vm"
713 		 * should not be counted to new mlock increment count. So check
714 		 * and adjust locked count if necessary.
715 		 */
716 		locked -= count_mm_mlocked_page_nr(current->mm,
717 				start, len);
718 	}
719 
720 	/* check against resource limits */
721 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
722 		error = apply_vma_lock_flags(start, len, flags);
723 
724 	mmap_write_unlock(current->mm);
725 	if (error)
726 		return error;
727 
728 	error = __mm_populate(start, len, 0);
729 	if (error)
730 		return __mlock_posix_error_return(error);
731 	return 0;
732 }
733 
SYSCALL_DEFINE2(mlock,unsigned long,start,size_t,len)734 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
735 {
736 	return do_mlock(start, len, VM_LOCKED);
737 }
738 
SYSCALL_DEFINE3(mlock2,unsigned long,start,size_t,len,int,flags)739 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
740 {
741 	vm_flags_t vm_flags = VM_LOCKED;
742 
743 	if (flags & ~MLOCK_ONFAULT)
744 		return -EINVAL;
745 
746 	if (flags & MLOCK_ONFAULT)
747 		vm_flags |= VM_LOCKONFAULT;
748 
749 	return do_mlock(start, len, vm_flags);
750 }
751 
SYSCALL_DEFINE2(munlock,unsigned long,start,size_t,len)752 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
753 {
754 	int ret;
755 
756 	start = untagged_addr(start);
757 
758 	len = PAGE_ALIGN(len + (offset_in_page(start)));
759 	start &= PAGE_MASK;
760 
761 	if (mmap_write_lock_killable(current->mm))
762 		return -EINTR;
763 	ret = apply_vma_lock_flags(start, len, 0);
764 	mmap_write_unlock(current->mm);
765 
766 	return ret;
767 }
768 
769 /*
770  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
771  * and translate into the appropriate modifications to mm->def_flags and/or the
772  * flags for all current VMAs.
773  *
774  * There are a couple of subtleties with this.  If mlockall() is called multiple
775  * times with different flags, the values do not necessarily stack.  If mlockall
776  * is called once including the MCL_FUTURE flag and then a second time without
777  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
778  */
apply_mlockall_flags(int flags)779 static int apply_mlockall_flags(int flags)
780 {
781 	struct vm_area_struct * vma, * prev = NULL;
782 	vm_flags_t to_add = 0;
783 
784 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
785 	if (flags & MCL_FUTURE) {
786 		current->mm->def_flags |= VM_LOCKED;
787 
788 		if (flags & MCL_ONFAULT)
789 			current->mm->def_flags |= VM_LOCKONFAULT;
790 
791 		if (!(flags & MCL_CURRENT))
792 			goto out;
793 	}
794 
795 	if (flags & MCL_CURRENT) {
796 		to_add |= VM_LOCKED;
797 		if (flags & MCL_ONFAULT)
798 			to_add |= VM_LOCKONFAULT;
799 	}
800 
801 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
802 		vm_flags_t newflags;
803 
804 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
805 		newflags |= to_add;
806 
807 		/* Ignore errors */
808 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
809 		cond_resched();
810 	}
811 out:
812 	return 0;
813 }
814 
SYSCALL_DEFINE1(mlockall,int,flags)815 SYSCALL_DEFINE1(mlockall, int, flags)
816 {
817 	unsigned long lock_limit;
818 	int ret;
819 
820 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
821 	    flags == MCL_ONFAULT)
822 		return -EINVAL;
823 
824 	if (!can_do_mlock())
825 		return -EPERM;
826 
827 	lock_limit = rlimit(RLIMIT_MEMLOCK);
828 	lock_limit >>= PAGE_SHIFT;
829 
830 	if (mmap_write_lock_killable(current->mm))
831 		return -EINTR;
832 
833 	ret = -ENOMEM;
834 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
835 	    capable(CAP_IPC_LOCK))
836 		ret = apply_mlockall_flags(flags);
837 	mmap_write_unlock(current->mm);
838 	if (!ret && (flags & MCL_CURRENT))
839 		mm_populate(0, TASK_SIZE);
840 
841 	return ret;
842 }
843 
SYSCALL_DEFINE0(munlockall)844 SYSCALL_DEFINE0(munlockall)
845 {
846 	int ret;
847 
848 	if (mmap_write_lock_killable(current->mm))
849 		return -EINTR;
850 	ret = apply_mlockall_flags(0);
851 	mmap_write_unlock(current->mm);
852 	return ret;
853 }
854 
855 /*
856  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
857  * shm segments) get accounted against the user_struct instead.
858  */
859 static DEFINE_SPINLOCK(shmlock_user_lock);
860 
user_shm_lock(size_t size,struct user_struct * user)861 int user_shm_lock(size_t size, struct user_struct *user)
862 {
863 	unsigned long lock_limit, locked;
864 	int allowed = 0;
865 
866 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
867 	lock_limit = rlimit(RLIMIT_MEMLOCK);
868 	if (lock_limit == RLIM_INFINITY)
869 		allowed = 1;
870 	lock_limit >>= PAGE_SHIFT;
871 	spin_lock(&shmlock_user_lock);
872 	if (!allowed &&
873 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
874 		goto out;
875 	get_uid(user);
876 	user->locked_shm += locked;
877 	allowed = 1;
878 out:
879 	spin_unlock(&shmlock_user_lock);
880 	return allowed;
881 }
882 
user_shm_unlock(size_t size,struct user_struct * user)883 void user_shm_unlock(size_t size, struct user_struct *user)
884 {
885 	spin_lock(&shmlock_user_lock);
886 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
887 	spin_unlock(&shmlock_user_lock);
888 	free_uid(user);
889 }
890