1 /*
2 * Copyright 2018 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22 #include "nouveau_svm.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dmem.h"
26
27 #include <nvif/notify.h>
28 #include <nvif/object.h>
29 #include <nvif/vmm.h>
30
31 #include <nvif/class.h>
32 #include <nvif/clb069.h>
33 #include <nvif/ifc00d.h>
34
35 #include <linux/sched/mm.h>
36 #include <linux/sort.h>
37 #include <linux/hmm.h>
38
39 struct nouveau_svm {
40 struct nouveau_drm *drm;
41 struct mutex mutex;
42 struct list_head inst;
43
44 struct nouveau_svm_fault_buffer {
45 int id;
46 struct nvif_object object;
47 u32 entries;
48 u32 getaddr;
49 u32 putaddr;
50 u32 get;
51 u32 put;
52 struct nvif_notify notify;
53
54 struct nouveau_svm_fault {
55 u64 inst;
56 u64 addr;
57 u64 time;
58 u32 engine;
59 u8 gpc;
60 u8 hub;
61 u8 access;
62 u8 client;
63 u8 fault;
64 struct nouveau_svmm *svmm;
65 } **fault;
66 int fault_nr;
67 } buffer[1];
68 };
69
70 #define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a)
71 #define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a)
72
73 struct nouveau_pfnmap_args {
74 struct nvif_ioctl_v0 i;
75 struct nvif_ioctl_mthd_v0 m;
76 struct nvif_vmm_pfnmap_v0 p;
77 };
78
79 struct nouveau_ivmm {
80 struct nouveau_svmm *svmm;
81 u64 inst;
82 struct list_head head;
83 };
84
85 static struct nouveau_ivmm *
nouveau_ivmm_find(struct nouveau_svm * svm,u64 inst)86 nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst)
87 {
88 struct nouveau_ivmm *ivmm;
89 list_for_each_entry(ivmm, &svm->inst, head) {
90 if (ivmm->inst == inst)
91 return ivmm;
92 }
93 return NULL;
94 }
95
96 #define SVMM_DBG(s,f,a...) \
97 NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
98 #define SVMM_ERR(s,f,a...) \
99 NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
100
101 int
nouveau_svmm_bind(struct drm_device * dev,void * data,struct drm_file * file_priv)102 nouveau_svmm_bind(struct drm_device *dev, void *data,
103 struct drm_file *file_priv)
104 {
105 struct nouveau_cli *cli = nouveau_cli(file_priv);
106 struct drm_nouveau_svm_bind *args = data;
107 unsigned target, cmd, priority;
108 unsigned long addr, end;
109 struct mm_struct *mm;
110
111 args->va_start &= PAGE_MASK;
112 args->va_end = ALIGN(args->va_end, PAGE_SIZE);
113
114 /* Sanity check arguments */
115 if (args->reserved0 || args->reserved1)
116 return -EINVAL;
117 if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK))
118 return -EINVAL;
119 if (args->va_start >= args->va_end)
120 return -EINVAL;
121
122 cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT;
123 cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK;
124 switch (cmd) {
125 case NOUVEAU_SVM_BIND_COMMAND__MIGRATE:
126 break;
127 default:
128 return -EINVAL;
129 }
130
131 priority = args->header >> NOUVEAU_SVM_BIND_PRIORITY_SHIFT;
132 priority &= NOUVEAU_SVM_BIND_PRIORITY_MASK;
133
134 /* FIXME support CPU target ie all target value < GPU_VRAM */
135 target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT;
136 target &= NOUVEAU_SVM_BIND_TARGET_MASK;
137 switch (target) {
138 case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM:
139 break;
140 default:
141 return -EINVAL;
142 }
143
144 /*
145 * FIXME: For now refuse non 0 stride, we need to change the migrate
146 * kernel function to handle stride to avoid to create a mess within
147 * each device driver.
148 */
149 if (args->stride)
150 return -EINVAL;
151
152 /*
153 * Ok we are ask to do something sane, for now we only support migrate
154 * commands but we will add things like memory policy (what to do on
155 * page fault) and maybe some other commands.
156 */
157
158 mm = get_task_mm(current);
159 if (!mm) {
160 return -EINVAL;
161 }
162 mmap_read_lock(mm);
163
164 if (!cli->svm.svmm) {
165 mmap_read_unlock(mm);
166 mmput(mm);
167 return -EINVAL;
168 }
169
170 for (addr = args->va_start, end = args->va_end; addr < end;) {
171 struct vm_area_struct *vma;
172 unsigned long next;
173
174 vma = find_vma_intersection(mm, addr, end);
175 if (!vma)
176 break;
177
178 addr = max(addr, vma->vm_start);
179 next = min(vma->vm_end, end);
180 /* This is a best effort so we ignore errors */
181 nouveau_dmem_migrate_vma(cli->drm, cli->svm.svmm, vma, addr,
182 next);
183 addr = next;
184 }
185
186 /*
187 * FIXME Return the number of page we have migrated, again we need to
188 * update the migrate API to return that information so that we can
189 * report it to user space.
190 */
191 args->result = 0;
192
193 mmap_read_unlock(mm);
194 mmput(mm);
195
196 return 0;
197 }
198
199 /* Unlink channel instance from SVMM. */
200 void
nouveau_svmm_part(struct nouveau_svmm * svmm,u64 inst)201 nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst)
202 {
203 struct nouveau_ivmm *ivmm;
204 if (svmm) {
205 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
206 ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst);
207 if (ivmm) {
208 list_del(&ivmm->head);
209 kfree(ivmm);
210 }
211 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
212 }
213 }
214
215 /* Link channel instance to SVMM. */
216 int
nouveau_svmm_join(struct nouveau_svmm * svmm,u64 inst)217 nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst)
218 {
219 struct nouveau_ivmm *ivmm;
220 if (svmm) {
221 if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL)))
222 return -ENOMEM;
223 ivmm->svmm = svmm;
224 ivmm->inst = inst;
225
226 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
227 list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst);
228 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
229 }
230 return 0;
231 }
232
233 /* Invalidate SVMM address-range on GPU. */
234 void
nouveau_svmm_invalidate(struct nouveau_svmm * svmm,u64 start,u64 limit)235 nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit)
236 {
237 if (limit > start) {
238 bool super = svmm->vmm->vmm.object.client->super;
239 svmm->vmm->vmm.object.client->super = true;
240 nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR,
241 &(struct nvif_vmm_pfnclr_v0) {
242 .addr = start,
243 .size = limit - start,
244 }, sizeof(struct nvif_vmm_pfnclr_v0));
245 svmm->vmm->vmm.object.client->super = super;
246 }
247 }
248
249 static int
nouveau_svmm_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * update)250 nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn,
251 const struct mmu_notifier_range *update)
252 {
253 struct nouveau_svmm *svmm =
254 container_of(mn, struct nouveau_svmm, notifier);
255 unsigned long start = update->start;
256 unsigned long limit = update->end;
257
258 if (!mmu_notifier_range_blockable(update))
259 return -EAGAIN;
260
261 SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit);
262
263 mutex_lock(&svmm->mutex);
264 if (unlikely(!svmm->vmm))
265 goto out;
266
267 /*
268 * Ignore invalidation callbacks for device private pages since
269 * the invalidation is handled as part of the migration process.
270 */
271 if (update->event == MMU_NOTIFY_MIGRATE &&
272 update->migrate_pgmap_owner == svmm->vmm->cli->drm->dev)
273 goto out;
274
275 if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) {
276 if (start < svmm->unmanaged.start) {
277 nouveau_svmm_invalidate(svmm, start,
278 svmm->unmanaged.limit);
279 }
280 start = svmm->unmanaged.limit;
281 }
282
283 nouveau_svmm_invalidate(svmm, start, limit);
284
285 out:
286 mutex_unlock(&svmm->mutex);
287 return 0;
288 }
289
nouveau_svmm_free_notifier(struct mmu_notifier * mn)290 static void nouveau_svmm_free_notifier(struct mmu_notifier *mn)
291 {
292 kfree(container_of(mn, struct nouveau_svmm, notifier));
293 }
294
295 static const struct mmu_notifier_ops nouveau_mn_ops = {
296 .invalidate_range_start = nouveau_svmm_invalidate_range_start,
297 .free_notifier = nouveau_svmm_free_notifier,
298 };
299
300 void
nouveau_svmm_fini(struct nouveau_svmm ** psvmm)301 nouveau_svmm_fini(struct nouveau_svmm **psvmm)
302 {
303 struct nouveau_svmm *svmm = *psvmm;
304 if (svmm) {
305 mutex_lock(&svmm->mutex);
306 svmm->vmm = NULL;
307 mutex_unlock(&svmm->mutex);
308 mmu_notifier_put(&svmm->notifier);
309 *psvmm = NULL;
310 }
311 }
312
313 int
nouveau_svmm_init(struct drm_device * dev,void * data,struct drm_file * file_priv)314 nouveau_svmm_init(struct drm_device *dev, void *data,
315 struct drm_file *file_priv)
316 {
317 struct nouveau_cli *cli = nouveau_cli(file_priv);
318 struct nouveau_svmm *svmm;
319 struct drm_nouveau_svm_init *args = data;
320 int ret;
321
322 /* We need to fail if svm is disabled */
323 if (!cli->drm->svm)
324 return -ENOSYS;
325
326 /* Allocate tracking for SVM-enabled VMM. */
327 if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL)))
328 return -ENOMEM;
329 svmm->vmm = &cli->svm;
330 svmm->unmanaged.start = args->unmanaged_addr;
331 svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size;
332 mutex_init(&svmm->mutex);
333
334 /* Check that SVM isn't already enabled for the client. */
335 mutex_lock(&cli->mutex);
336 if (cli->svm.cli) {
337 ret = -EBUSY;
338 goto out_free;
339 }
340
341 /* Allocate a new GPU VMM that can support SVM (managed by the
342 * client, with replayable faults enabled).
343 *
344 * All future channel/memory allocations will make use of this
345 * VMM instead of the standard one.
346 */
347 ret = nvif_vmm_ctor(&cli->mmu, "svmVmm",
348 cli->vmm.vmm.object.oclass, true,
349 args->unmanaged_addr, args->unmanaged_size,
350 &(struct gp100_vmm_v0) {
351 .fault_replay = true,
352 }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm);
353 if (ret)
354 goto out_free;
355
356 mmap_write_lock(current->mm);
357 svmm->notifier.ops = &nouveau_mn_ops;
358 ret = __mmu_notifier_register(&svmm->notifier, current->mm);
359 if (ret)
360 goto out_mm_unlock;
361 /* Note, ownership of svmm transfers to mmu_notifier */
362
363 cli->svm.svmm = svmm;
364 cli->svm.cli = cli;
365 mmap_write_unlock(current->mm);
366 mutex_unlock(&cli->mutex);
367 return 0;
368
369 out_mm_unlock:
370 mmap_write_unlock(current->mm);
371 out_free:
372 mutex_unlock(&cli->mutex);
373 kfree(svmm);
374 return ret;
375 }
376
377 /* Issue fault replay for GPU to retry accesses that faulted previously. */
378 static void
nouveau_svm_fault_replay(struct nouveau_svm * svm)379 nouveau_svm_fault_replay(struct nouveau_svm *svm)
380 {
381 SVM_DBG(svm, "replay");
382 WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
383 GP100_VMM_VN_FAULT_REPLAY,
384 &(struct gp100_vmm_fault_replay_vn) {},
385 sizeof(struct gp100_vmm_fault_replay_vn)));
386 }
387
388 /* Cancel a replayable fault that could not be handled.
389 *
390 * Cancelling the fault will trigger recovery to reset the engine
391 * and kill the offending channel (ie. GPU SIGSEGV).
392 */
393 static void
nouveau_svm_fault_cancel(struct nouveau_svm * svm,u64 inst,u8 hub,u8 gpc,u8 client)394 nouveau_svm_fault_cancel(struct nouveau_svm *svm,
395 u64 inst, u8 hub, u8 gpc, u8 client)
396 {
397 SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client);
398 WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
399 GP100_VMM_VN_FAULT_CANCEL,
400 &(struct gp100_vmm_fault_cancel_v0) {
401 .hub = hub,
402 .gpc = gpc,
403 .client = client,
404 .inst = inst,
405 }, sizeof(struct gp100_vmm_fault_cancel_v0)));
406 }
407
408 static void
nouveau_svm_fault_cancel_fault(struct nouveau_svm * svm,struct nouveau_svm_fault * fault)409 nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm,
410 struct nouveau_svm_fault *fault)
411 {
412 nouveau_svm_fault_cancel(svm, fault->inst,
413 fault->hub,
414 fault->gpc,
415 fault->client);
416 }
417
418 static int
nouveau_svm_fault_cmp(const void * a,const void * b)419 nouveau_svm_fault_cmp(const void *a, const void *b)
420 {
421 const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a;
422 const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b;
423 int ret;
424 if ((ret = (s64)fa->inst - fb->inst))
425 return ret;
426 if ((ret = (s64)fa->addr - fb->addr))
427 return ret;
428 /*XXX: atomic? */
429 return (fa->access == 0 || fa->access == 3) -
430 (fb->access == 0 || fb->access == 3);
431 }
432
433 static void
nouveau_svm_fault_cache(struct nouveau_svm * svm,struct nouveau_svm_fault_buffer * buffer,u32 offset)434 nouveau_svm_fault_cache(struct nouveau_svm *svm,
435 struct nouveau_svm_fault_buffer *buffer, u32 offset)
436 {
437 struct nvif_object *memory = &buffer->object;
438 const u32 instlo = nvif_rd32(memory, offset + 0x00);
439 const u32 insthi = nvif_rd32(memory, offset + 0x04);
440 const u32 addrlo = nvif_rd32(memory, offset + 0x08);
441 const u32 addrhi = nvif_rd32(memory, offset + 0x0c);
442 const u32 timelo = nvif_rd32(memory, offset + 0x10);
443 const u32 timehi = nvif_rd32(memory, offset + 0x14);
444 const u32 engine = nvif_rd32(memory, offset + 0x18);
445 const u32 info = nvif_rd32(memory, offset + 0x1c);
446 const u64 inst = (u64)insthi << 32 | instlo;
447 const u8 gpc = (info & 0x1f000000) >> 24;
448 const u8 hub = (info & 0x00100000) >> 20;
449 const u8 client = (info & 0x00007f00) >> 8;
450 struct nouveau_svm_fault *fault;
451
452 //XXX: i think we're supposed to spin waiting */
453 if (WARN_ON(!(info & 0x80000000)))
454 return;
455
456 nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000);
457
458 if (!buffer->fault[buffer->fault_nr]) {
459 fault = kmalloc(sizeof(*fault), GFP_KERNEL);
460 if (WARN_ON(!fault)) {
461 nouveau_svm_fault_cancel(svm, inst, hub, gpc, client);
462 return;
463 }
464 buffer->fault[buffer->fault_nr] = fault;
465 }
466
467 fault = buffer->fault[buffer->fault_nr++];
468 fault->inst = inst;
469 fault->addr = (u64)addrhi << 32 | addrlo;
470 fault->time = (u64)timehi << 32 | timelo;
471 fault->engine = engine;
472 fault->gpc = gpc;
473 fault->hub = hub;
474 fault->access = (info & 0x000f0000) >> 16;
475 fault->client = client;
476 fault->fault = (info & 0x0000001f);
477
478 SVM_DBG(svm, "fault %016llx %016llx %02x",
479 fault->inst, fault->addr, fault->access);
480 }
481
482 struct svm_notifier {
483 struct mmu_interval_notifier notifier;
484 struct nouveau_svmm *svmm;
485 };
486
nouveau_svm_range_invalidate(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)487 static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni,
488 const struct mmu_notifier_range *range,
489 unsigned long cur_seq)
490 {
491 struct svm_notifier *sn =
492 container_of(mni, struct svm_notifier, notifier);
493
494 /*
495 * serializes the update to mni->invalidate_seq done by caller and
496 * prevents invalidation of the PTE from progressing while HW is being
497 * programmed. This is very hacky and only works because the normal
498 * notifier that does invalidation is always called after the range
499 * notifier.
500 */
501 if (mmu_notifier_range_blockable(range))
502 mutex_lock(&sn->svmm->mutex);
503 else if (!mutex_trylock(&sn->svmm->mutex))
504 return false;
505 mmu_interval_set_seq(mni, cur_seq);
506 mutex_unlock(&sn->svmm->mutex);
507 return true;
508 }
509
510 static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = {
511 .invalidate = nouveau_svm_range_invalidate,
512 };
513
nouveau_hmm_convert_pfn(struct nouveau_drm * drm,struct hmm_range * range,struct nouveau_pfnmap_args * args)514 static void nouveau_hmm_convert_pfn(struct nouveau_drm *drm,
515 struct hmm_range *range,
516 struct nouveau_pfnmap_args *args)
517 {
518 struct page *page;
519
520 /*
521 * The address prepared here is passed through nvif_object_ioctl()
522 * to an eventual DMA map in something like gp100_vmm_pgt_pfn()
523 *
524 * This is all just encoding the internal hmm representation into a
525 * different nouveau internal representation.
526 */
527 if (!(range->hmm_pfns[0] & HMM_PFN_VALID)) {
528 args->p.phys[0] = 0;
529 return;
530 }
531
532 page = hmm_pfn_to_page(range->hmm_pfns[0]);
533 /*
534 * Only map compound pages to the GPU if the CPU is also mapping the
535 * page as a compound page. Otherwise, the PTE protections might not be
536 * consistent (e.g., CPU only maps part of a compound page).
537 * Note that the underlying page might still be larger than the
538 * CPU mapping (e.g., a PUD sized compound page partially mapped with
539 * a PMD sized page table entry).
540 */
541 if (hmm_pfn_to_map_order(range->hmm_pfns[0])) {
542 unsigned long addr = args->p.addr;
543
544 args->p.page = hmm_pfn_to_map_order(range->hmm_pfns[0]) +
545 PAGE_SHIFT;
546 args->p.size = 1UL << args->p.page;
547 args->p.addr &= ~(args->p.size - 1);
548 page -= (addr - args->p.addr) >> PAGE_SHIFT;
549 }
550 if (is_device_private_page(page))
551 args->p.phys[0] = nouveau_dmem_page_addr(page) |
552 NVIF_VMM_PFNMAP_V0_V |
553 NVIF_VMM_PFNMAP_V0_VRAM;
554 else
555 args->p.phys[0] = page_to_phys(page) |
556 NVIF_VMM_PFNMAP_V0_V |
557 NVIF_VMM_PFNMAP_V0_HOST;
558 if (range->hmm_pfns[0] & HMM_PFN_WRITE)
559 args->p.phys[0] |= NVIF_VMM_PFNMAP_V0_W;
560 }
561
nouveau_range_fault(struct nouveau_svmm * svmm,struct nouveau_drm * drm,struct nouveau_pfnmap_args * args,u32 size,unsigned long hmm_flags,struct svm_notifier * notifier)562 static int nouveau_range_fault(struct nouveau_svmm *svmm,
563 struct nouveau_drm *drm,
564 struct nouveau_pfnmap_args *args, u32 size,
565 unsigned long hmm_flags,
566 struct svm_notifier *notifier)
567 {
568 unsigned long timeout =
569 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
570 /* Have HMM fault pages within the fault window to the GPU. */
571 unsigned long hmm_pfns[1];
572 struct hmm_range range = {
573 .notifier = ¬ifier->notifier,
574 .start = notifier->notifier.interval_tree.start,
575 .end = notifier->notifier.interval_tree.last + 1,
576 .default_flags = hmm_flags,
577 .hmm_pfns = hmm_pfns,
578 .dev_private_owner = drm->dev,
579 };
580 struct mm_struct *mm = notifier->notifier.mm;
581 int ret;
582
583 while (true) {
584 if (time_after(jiffies, timeout))
585 return -EBUSY;
586
587 range.notifier_seq = mmu_interval_read_begin(range.notifier);
588 mmap_read_lock(mm);
589 ret = hmm_range_fault(&range);
590 mmap_read_unlock(mm);
591 if (ret) {
592 if (ret == -EBUSY)
593 continue;
594 return ret;
595 }
596
597 mutex_lock(&svmm->mutex);
598 if (mmu_interval_read_retry(range.notifier,
599 range.notifier_seq)) {
600 mutex_unlock(&svmm->mutex);
601 continue;
602 }
603 break;
604 }
605
606 nouveau_hmm_convert_pfn(drm, &range, args);
607
608 svmm->vmm->vmm.object.client->super = true;
609 ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
610 svmm->vmm->vmm.object.client->super = false;
611 mutex_unlock(&svmm->mutex);
612
613 return ret;
614 }
615
616 static int
nouveau_svm_fault(struct nvif_notify * notify)617 nouveau_svm_fault(struct nvif_notify *notify)
618 {
619 struct nouveau_svm_fault_buffer *buffer =
620 container_of(notify, typeof(*buffer), notify);
621 struct nouveau_svm *svm =
622 container_of(buffer, typeof(*svm), buffer[buffer->id]);
623 struct nvif_object *device = &svm->drm->client.device.object;
624 struct nouveau_svmm *svmm;
625 struct {
626 struct nouveau_pfnmap_args i;
627 u64 phys[1];
628 } args;
629 unsigned long hmm_flags;
630 u64 inst, start, limit;
631 int fi, fn;
632 int replay = 0, ret;
633
634 /* Parse available fault buffer entries into a cache, and update
635 * the GET pointer so HW can reuse the entries.
636 */
637 SVM_DBG(svm, "fault handler");
638 if (buffer->get == buffer->put) {
639 buffer->put = nvif_rd32(device, buffer->putaddr);
640 buffer->get = nvif_rd32(device, buffer->getaddr);
641 if (buffer->get == buffer->put)
642 return NVIF_NOTIFY_KEEP;
643 }
644 buffer->fault_nr = 0;
645
646 SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put);
647 while (buffer->get != buffer->put) {
648 nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20);
649 if (++buffer->get == buffer->entries)
650 buffer->get = 0;
651 }
652 nvif_wr32(device, buffer->getaddr, buffer->get);
653 SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr);
654
655 /* Sort parsed faults by instance pointer to prevent unnecessary
656 * instance to SVMM translations, followed by address and access
657 * type to reduce the amount of work when handling the faults.
658 */
659 sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault),
660 nouveau_svm_fault_cmp, NULL);
661
662 /* Lookup SVMM structure for each unique instance pointer. */
663 mutex_lock(&svm->mutex);
664 for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) {
665 if (!svmm || buffer->fault[fi]->inst != inst) {
666 struct nouveau_ivmm *ivmm =
667 nouveau_ivmm_find(svm, buffer->fault[fi]->inst);
668 svmm = ivmm ? ivmm->svmm : NULL;
669 inst = buffer->fault[fi]->inst;
670 SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm);
671 }
672 buffer->fault[fi]->svmm = svmm;
673 }
674 mutex_unlock(&svm->mutex);
675
676 /* Process list of faults. */
677 args.i.i.version = 0;
678 args.i.i.type = NVIF_IOCTL_V0_MTHD;
679 args.i.m.version = 0;
680 args.i.m.method = NVIF_VMM_V0_PFNMAP;
681 args.i.p.version = 0;
682
683 for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) {
684 struct svm_notifier notifier;
685 struct mm_struct *mm;
686
687 /* Cancel any faults from non-SVM channels. */
688 if (!(svmm = buffer->fault[fi]->svmm)) {
689 nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
690 continue;
691 }
692 SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr);
693
694 /* We try and group handling of faults within a small
695 * window into a single update.
696 */
697 start = buffer->fault[fi]->addr;
698 limit = start + PAGE_SIZE;
699 if (start < svmm->unmanaged.limit)
700 limit = min_t(u64, limit, svmm->unmanaged.start);
701
702 /*
703 * Prepare the GPU-side update of all pages within the
704 * fault window, determining required pages and access
705 * permissions based on pending faults.
706 */
707 args.i.p.addr = start;
708 args.i.p.page = PAGE_SHIFT;
709 args.i.p.size = PAGE_SIZE;
710 /*
711 * Determine required permissions based on GPU fault
712 * access flags.
713 * XXX: atomic?
714 */
715 switch (buffer->fault[fi]->access) {
716 case 0: /* READ. */
717 hmm_flags = HMM_PFN_REQ_FAULT;
718 break;
719 case 3: /* PREFETCH. */
720 hmm_flags = 0;
721 break;
722 default:
723 hmm_flags = HMM_PFN_REQ_FAULT | HMM_PFN_REQ_WRITE;
724 break;
725 }
726
727 mm = svmm->notifier.mm;
728 if (!mmget_not_zero(mm)) {
729 nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
730 continue;
731 }
732
733 notifier.svmm = svmm;
734 ret = mmu_interval_notifier_insert(¬ifier.notifier, mm,
735 args.i.p.addr, args.i.p.size,
736 &nouveau_svm_mni_ops);
737 if (!ret) {
738 ret = nouveau_range_fault(svmm, svm->drm, &args.i,
739 sizeof(args), hmm_flags, ¬ifier);
740 mmu_interval_notifier_remove(¬ifier.notifier);
741 }
742 mmput(mm);
743
744 limit = args.i.p.addr + args.i.p.size;
745 for (fn = fi; ++fn < buffer->fault_nr; ) {
746 /* It's okay to skip over duplicate addresses from the
747 * same SVMM as faults are ordered by access type such
748 * that only the first one needs to be handled.
749 *
750 * ie. WRITE faults appear first, thus any handling of
751 * pending READ faults will already be satisfied.
752 * But if a large page is mapped, make sure subsequent
753 * fault addresses have sufficient access permission.
754 */
755 if (buffer->fault[fn]->svmm != svmm ||
756 buffer->fault[fn]->addr >= limit ||
757 (buffer->fault[fi]->access == 0 /* READ. */ &&
758 !(args.phys[0] & NVIF_VMM_PFNMAP_V0_V)) ||
759 (buffer->fault[fi]->access != 0 /* READ. */ &&
760 buffer->fault[fi]->access != 3 /* PREFETCH. */ &&
761 !(args.phys[0] & NVIF_VMM_PFNMAP_V0_W)))
762 break;
763 }
764
765 /* If handling failed completely, cancel all faults. */
766 if (ret) {
767 while (fi < fn) {
768 struct nouveau_svm_fault *fault =
769 buffer->fault[fi++];
770
771 nouveau_svm_fault_cancel_fault(svm, fault);
772 }
773 } else
774 replay++;
775 }
776
777 /* Issue fault replay to the GPU. */
778 if (replay)
779 nouveau_svm_fault_replay(svm);
780 return NVIF_NOTIFY_KEEP;
781 }
782
783 static struct nouveau_pfnmap_args *
nouveau_pfns_to_args(void * pfns)784 nouveau_pfns_to_args(void *pfns)
785 {
786 return container_of(pfns, struct nouveau_pfnmap_args, p.phys);
787 }
788
789 u64 *
nouveau_pfns_alloc(unsigned long npages)790 nouveau_pfns_alloc(unsigned long npages)
791 {
792 struct nouveau_pfnmap_args *args;
793
794 args = kzalloc(struct_size(args, p.phys, npages), GFP_KERNEL);
795 if (!args)
796 return NULL;
797
798 args->i.type = NVIF_IOCTL_V0_MTHD;
799 args->m.method = NVIF_VMM_V0_PFNMAP;
800 args->p.page = PAGE_SHIFT;
801
802 return args->p.phys;
803 }
804
805 void
nouveau_pfns_free(u64 * pfns)806 nouveau_pfns_free(u64 *pfns)
807 {
808 struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
809
810 kfree(args);
811 }
812
813 void
nouveau_pfns_map(struct nouveau_svmm * svmm,struct mm_struct * mm,unsigned long addr,u64 * pfns,unsigned long npages)814 nouveau_pfns_map(struct nouveau_svmm *svmm, struct mm_struct *mm,
815 unsigned long addr, u64 *pfns, unsigned long npages)
816 {
817 struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
818 int ret;
819
820 args->p.addr = addr;
821 args->p.size = npages << PAGE_SHIFT;
822
823 mutex_lock(&svmm->mutex);
824
825 svmm->vmm->vmm.object.client->super = true;
826 ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, sizeof(*args) +
827 npages * sizeof(args->p.phys[0]), NULL);
828 svmm->vmm->vmm.object.client->super = false;
829
830 mutex_unlock(&svmm->mutex);
831 }
832
833 static void
nouveau_svm_fault_buffer_fini(struct nouveau_svm * svm,int id)834 nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id)
835 {
836 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
837 nvif_notify_put(&buffer->notify);
838 }
839
840 static int
nouveau_svm_fault_buffer_init(struct nouveau_svm * svm,int id)841 nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id)
842 {
843 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
844 struct nvif_object *device = &svm->drm->client.device.object;
845 buffer->get = nvif_rd32(device, buffer->getaddr);
846 buffer->put = nvif_rd32(device, buffer->putaddr);
847 SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put);
848 return nvif_notify_get(&buffer->notify);
849 }
850
851 static void
nouveau_svm_fault_buffer_dtor(struct nouveau_svm * svm,int id)852 nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id)
853 {
854 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
855 int i;
856
857 if (buffer->fault) {
858 for (i = 0; buffer->fault[i] && i < buffer->entries; i++)
859 kfree(buffer->fault[i]);
860 kvfree(buffer->fault);
861 }
862
863 nouveau_svm_fault_buffer_fini(svm, id);
864
865 nvif_notify_dtor(&buffer->notify);
866 nvif_object_dtor(&buffer->object);
867 }
868
869 static int
nouveau_svm_fault_buffer_ctor(struct nouveau_svm * svm,s32 oclass,int id)870 nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id)
871 {
872 struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
873 struct nouveau_drm *drm = svm->drm;
874 struct nvif_object *device = &drm->client.device.object;
875 struct nvif_clb069_v0 args = {};
876 int ret;
877
878 buffer->id = id;
879
880 ret = nvif_object_ctor(device, "svmFaultBuffer", 0, oclass, &args,
881 sizeof(args), &buffer->object);
882 if (ret < 0) {
883 SVM_ERR(svm, "Fault buffer allocation failed: %d", ret);
884 return ret;
885 }
886
887 nvif_object_map(&buffer->object, NULL, 0);
888 buffer->entries = args.entries;
889 buffer->getaddr = args.get;
890 buffer->putaddr = args.put;
891
892 ret = nvif_notify_ctor(&buffer->object, "svmFault", nouveau_svm_fault,
893 true, NVB069_V0_NTFY_FAULT, NULL, 0, 0,
894 &buffer->notify);
895 if (ret)
896 return ret;
897
898 buffer->fault = kvzalloc(sizeof(*buffer->fault) * buffer->entries, GFP_KERNEL);
899 if (!buffer->fault)
900 return -ENOMEM;
901
902 return nouveau_svm_fault_buffer_init(svm, id);
903 }
904
905 void
nouveau_svm_resume(struct nouveau_drm * drm)906 nouveau_svm_resume(struct nouveau_drm *drm)
907 {
908 struct nouveau_svm *svm = drm->svm;
909 if (svm)
910 nouveau_svm_fault_buffer_init(svm, 0);
911 }
912
913 void
nouveau_svm_suspend(struct nouveau_drm * drm)914 nouveau_svm_suspend(struct nouveau_drm *drm)
915 {
916 struct nouveau_svm *svm = drm->svm;
917 if (svm)
918 nouveau_svm_fault_buffer_fini(svm, 0);
919 }
920
921 void
nouveau_svm_fini(struct nouveau_drm * drm)922 nouveau_svm_fini(struct nouveau_drm *drm)
923 {
924 struct nouveau_svm *svm = drm->svm;
925 if (svm) {
926 nouveau_svm_fault_buffer_dtor(svm, 0);
927 kfree(drm->svm);
928 drm->svm = NULL;
929 }
930 }
931
932 void
nouveau_svm_init(struct nouveau_drm * drm)933 nouveau_svm_init(struct nouveau_drm *drm)
934 {
935 static const struct nvif_mclass buffers[] = {
936 { VOLTA_FAULT_BUFFER_A, 0 },
937 { MAXWELL_FAULT_BUFFER_A, 0 },
938 {}
939 };
940 struct nouveau_svm *svm;
941 int ret;
942
943 /* Disable on Volta and newer until channel recovery is fixed,
944 * otherwise clients will have a trivial way to trash the GPU
945 * for everyone.
946 */
947 if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL)
948 return;
949
950 if (!(drm->svm = svm = kzalloc(sizeof(*drm->svm), GFP_KERNEL)))
951 return;
952
953 drm->svm->drm = drm;
954 mutex_init(&drm->svm->mutex);
955 INIT_LIST_HEAD(&drm->svm->inst);
956
957 ret = nvif_mclass(&drm->client.device.object, buffers);
958 if (ret < 0) {
959 SVM_DBG(svm, "No supported fault buffer class");
960 nouveau_svm_fini(drm);
961 return;
962 }
963
964 ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0);
965 if (ret) {
966 nouveau_svm_fini(drm);
967 return;
968 }
969
970 SVM_DBG(svm, "Initialised");
971 }
972