1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23 struct module *owner;
24 struct device dev;
25 int stride;
26 int word_size;
27 int id;
28 struct kref refcnt;
29 size_t size;
30 bool read_only;
31 bool root_only;
32 int flags;
33 enum nvmem_type type;
34 struct bin_attribute eeprom;
35 struct device *base_dev;
36 struct list_head cells;
37 nvmem_reg_read_t reg_read;
38 nvmem_reg_write_t reg_write;
39 struct gpio_desc *wp_gpio;
40 void *priv;
41 };
42
43 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44
45 #define FLAG_COMPAT BIT(0)
46
47 struct nvmem_cell {
48 const char *name;
49 int offset;
50 int bytes;
51 int bit_offset;
52 int nbits;
53 struct device_node *np;
54 struct nvmem_device *nvmem;
55 struct list_head node;
56 };
57
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60
61 static DEFINE_MUTEX(nvmem_cell_mutex);
62 static LIST_HEAD(nvmem_cell_tables);
63
64 static DEFINE_MUTEX(nvmem_lookup_mutex);
65 static LIST_HEAD(nvmem_lookup_list);
66
67 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)69 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
70 void *val, size_t bytes)
71 {
72 if (nvmem->reg_read)
73 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
74
75 return -EINVAL;
76 }
77
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)78 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
79 void *val, size_t bytes)
80 {
81 int ret;
82
83 if (nvmem->reg_write) {
84 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
85 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
86 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
87 return ret;
88 }
89
90 return -EINVAL;
91 }
92
93 #ifdef CONFIG_NVMEM_SYSFS
94 static const char * const nvmem_type_str[] = {
95 [NVMEM_TYPE_UNKNOWN] = "Unknown",
96 [NVMEM_TYPE_EEPROM] = "EEPROM",
97 [NVMEM_TYPE_OTP] = "OTP",
98 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
99 };
100
101 #ifdef CONFIG_DEBUG_LOCK_ALLOC
102 static struct lock_class_key eeprom_lock_key;
103 #endif
104
type_show(struct device * dev,struct device_attribute * attr,char * buf)105 static ssize_t type_show(struct device *dev,
106 struct device_attribute *attr, char *buf)
107 {
108 struct nvmem_device *nvmem = to_nvmem_device(dev);
109
110 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
111 }
112
113 static DEVICE_ATTR_RO(type);
114
115 static struct attribute *nvmem_attrs[] = {
116 &dev_attr_type.attr,
117 NULL,
118 };
119
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)120 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
121 struct bin_attribute *attr, char *buf,
122 loff_t pos, size_t count)
123 {
124 struct device *dev;
125 struct nvmem_device *nvmem;
126 int rc;
127
128 if (attr->private)
129 dev = attr->private;
130 else
131 dev = kobj_to_dev(kobj);
132 nvmem = to_nvmem_device(dev);
133
134 /* Stop the user from reading */
135 if (pos >= nvmem->size)
136 return 0;
137
138 if (!IS_ALIGNED(pos, nvmem->stride))
139 return -EINVAL;
140
141 if (count < nvmem->word_size)
142 return -EINVAL;
143
144 if (pos + count > nvmem->size)
145 count = nvmem->size - pos;
146
147 count = round_down(count, nvmem->word_size);
148
149 if (!nvmem->reg_read)
150 return -EPERM;
151
152 rc = nvmem_reg_read(nvmem, pos, buf, count);
153
154 if (rc)
155 return rc;
156
157 return count;
158 }
159
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)160 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
161 struct bin_attribute *attr, char *buf,
162 loff_t pos, size_t count)
163 {
164 struct device *dev;
165 struct nvmem_device *nvmem;
166 int rc;
167
168 if (attr->private)
169 dev = attr->private;
170 else
171 dev = kobj_to_dev(kobj);
172 nvmem = to_nvmem_device(dev);
173
174 /* Stop the user from writing */
175 if (pos >= nvmem->size)
176 return -EFBIG;
177
178 if (!IS_ALIGNED(pos, nvmem->stride))
179 return -EINVAL;
180
181 if (count < nvmem->word_size)
182 return -EINVAL;
183
184 if (pos + count > nvmem->size)
185 count = nvmem->size - pos;
186
187 count = round_down(count, nvmem->word_size);
188
189 if (!nvmem->reg_write)
190 return -EPERM;
191
192 rc = nvmem_reg_write(nvmem, pos, buf, count);
193
194 if (rc)
195 return rc;
196
197 return count;
198 }
199
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)200 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
201 {
202 umode_t mode = 0400;
203
204 if (!nvmem->root_only)
205 mode |= 0044;
206
207 if (!nvmem->read_only)
208 mode |= 0200;
209
210 if (!nvmem->reg_write)
211 mode &= ~0200;
212
213 if (!nvmem->reg_read)
214 mode &= ~0444;
215
216 return mode;
217 }
218
nvmem_bin_attr_is_visible(struct kobject * kobj,struct bin_attribute * attr,int i)219 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
220 struct bin_attribute *attr, int i)
221 {
222 struct device *dev = kobj_to_dev(kobj);
223 struct nvmem_device *nvmem = to_nvmem_device(dev);
224
225 attr->size = nvmem->size;
226
227 return nvmem_bin_attr_get_umode(nvmem);
228 }
229
230 /* default read/write permissions */
231 static struct bin_attribute bin_attr_rw_nvmem = {
232 .attr = {
233 .name = "nvmem",
234 .mode = 0644,
235 },
236 .read = bin_attr_nvmem_read,
237 .write = bin_attr_nvmem_write,
238 };
239
240 static struct bin_attribute *nvmem_bin_attributes[] = {
241 &bin_attr_rw_nvmem,
242 NULL,
243 };
244
245 static const struct attribute_group nvmem_bin_group = {
246 .bin_attrs = nvmem_bin_attributes,
247 .attrs = nvmem_attrs,
248 .is_bin_visible = nvmem_bin_attr_is_visible,
249 };
250
251 static const struct attribute_group *nvmem_dev_groups[] = {
252 &nvmem_bin_group,
253 NULL,
254 };
255
256 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
257 .attr = {
258 .name = "eeprom",
259 },
260 .read = bin_attr_nvmem_read,
261 .write = bin_attr_nvmem_write,
262 };
263
264 /*
265 * nvmem_setup_compat() - Create an additional binary entry in
266 * drivers sys directory, to be backwards compatible with the older
267 * drivers/misc/eeprom drivers.
268 */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)269 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
270 const struct nvmem_config *config)
271 {
272 int rval;
273
274 if (!config->compat)
275 return 0;
276
277 if (!config->base_dev)
278 return -EINVAL;
279
280 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
281 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
282 nvmem->eeprom.size = nvmem->size;
283 #ifdef CONFIG_DEBUG_LOCK_ALLOC
284 nvmem->eeprom.attr.key = &eeprom_lock_key;
285 #endif
286 nvmem->eeprom.private = &nvmem->dev;
287 nvmem->base_dev = config->base_dev;
288
289 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
290 if (rval) {
291 dev_err(&nvmem->dev,
292 "Failed to create eeprom binary file %d\n", rval);
293 return rval;
294 }
295
296 nvmem->flags |= FLAG_COMPAT;
297
298 return 0;
299 }
300
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)301 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
302 const struct nvmem_config *config)
303 {
304 if (config->compat)
305 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
306 }
307
308 #else /* CONFIG_NVMEM_SYSFS */
309
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)310 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
311 const struct nvmem_config *config)
312 {
313 return -ENOSYS;
314 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)315 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
316 const struct nvmem_config *config)
317 {
318 }
319
320 #endif /* CONFIG_NVMEM_SYSFS */
321
nvmem_release(struct device * dev)322 static void nvmem_release(struct device *dev)
323 {
324 struct nvmem_device *nvmem = to_nvmem_device(dev);
325
326 ida_free(&nvmem_ida, nvmem->id);
327 gpiod_put(nvmem->wp_gpio);
328 kfree(nvmem);
329 }
330
331 static const struct device_type nvmem_provider_type = {
332 .release = nvmem_release,
333 };
334
335 static struct bus_type nvmem_bus_type = {
336 .name = "nvmem",
337 };
338
nvmem_cell_drop(struct nvmem_cell * cell)339 static void nvmem_cell_drop(struct nvmem_cell *cell)
340 {
341 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
342 mutex_lock(&nvmem_mutex);
343 list_del(&cell->node);
344 mutex_unlock(&nvmem_mutex);
345 of_node_put(cell->np);
346 kfree_const(cell->name);
347 kfree(cell);
348 }
349
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)350 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
351 {
352 struct nvmem_cell *cell, *p;
353
354 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
355 nvmem_cell_drop(cell);
356 }
357
nvmem_cell_add(struct nvmem_cell * cell)358 static void nvmem_cell_add(struct nvmem_cell *cell)
359 {
360 mutex_lock(&nvmem_mutex);
361 list_add_tail(&cell->node, &cell->nvmem->cells);
362 mutex_unlock(&nvmem_mutex);
363 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
364 }
365
nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell * cell)366 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
367 const struct nvmem_cell_info *info,
368 struct nvmem_cell *cell)
369 {
370 cell->nvmem = nvmem;
371 cell->offset = info->offset;
372 cell->bytes = info->bytes;
373 cell->name = info->name;
374
375 cell->bit_offset = info->bit_offset;
376 cell->nbits = info->nbits;
377
378 if (cell->nbits)
379 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
380 BITS_PER_BYTE);
381
382 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
383 dev_err(&nvmem->dev,
384 "cell %s unaligned to nvmem stride %d\n",
385 cell->name ?: "<unknown>", nvmem->stride);
386 return -EINVAL;
387 }
388
389 return 0;
390 }
391
nvmem_cell_info_to_nvmem_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell * cell)392 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
393 const struct nvmem_cell_info *info,
394 struct nvmem_cell *cell)
395 {
396 int err;
397
398 err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
399 if (err)
400 return err;
401
402 cell->name = kstrdup_const(info->name, GFP_KERNEL);
403 if (!cell->name)
404 return -ENOMEM;
405
406 return 0;
407 }
408
409 /**
410 * nvmem_add_cells() - Add cell information to an nvmem device
411 *
412 * @nvmem: nvmem device to add cells to.
413 * @info: nvmem cell info to add to the device
414 * @ncells: number of cells in info
415 *
416 * Return: 0 or negative error code on failure.
417 */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)418 static int nvmem_add_cells(struct nvmem_device *nvmem,
419 const struct nvmem_cell_info *info,
420 int ncells)
421 {
422 struct nvmem_cell **cells;
423 int i, rval;
424
425 cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
426 if (!cells)
427 return -ENOMEM;
428
429 for (i = 0; i < ncells; i++) {
430 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
431 if (!cells[i]) {
432 rval = -ENOMEM;
433 goto err;
434 }
435
436 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
437 if (rval) {
438 kfree(cells[i]);
439 goto err;
440 }
441
442 nvmem_cell_add(cells[i]);
443 }
444
445 /* remove tmp array */
446 kfree(cells);
447
448 return 0;
449 err:
450 while (i--)
451 nvmem_cell_drop(cells[i]);
452
453 kfree(cells);
454
455 return rval;
456 }
457
458 /**
459 * nvmem_register_notifier() - Register a notifier block for nvmem events.
460 *
461 * @nb: notifier block to be called on nvmem events.
462 *
463 * Return: 0 on success, negative error number on failure.
464 */
nvmem_register_notifier(struct notifier_block * nb)465 int nvmem_register_notifier(struct notifier_block *nb)
466 {
467 return blocking_notifier_chain_register(&nvmem_notifier, nb);
468 }
469 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
470
471 /**
472 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
473 *
474 * @nb: notifier block to be unregistered.
475 *
476 * Return: 0 on success, negative error number on failure.
477 */
nvmem_unregister_notifier(struct notifier_block * nb)478 int nvmem_unregister_notifier(struct notifier_block *nb)
479 {
480 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
481 }
482 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
483
nvmem_add_cells_from_table(struct nvmem_device * nvmem)484 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
485 {
486 const struct nvmem_cell_info *info;
487 struct nvmem_cell_table *table;
488 struct nvmem_cell *cell;
489 int rval = 0, i;
490
491 mutex_lock(&nvmem_cell_mutex);
492 list_for_each_entry(table, &nvmem_cell_tables, node) {
493 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
494 for (i = 0; i < table->ncells; i++) {
495 info = &table->cells[i];
496
497 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
498 if (!cell) {
499 rval = -ENOMEM;
500 goto out;
501 }
502
503 rval = nvmem_cell_info_to_nvmem_cell(nvmem,
504 info,
505 cell);
506 if (rval) {
507 kfree(cell);
508 goto out;
509 }
510
511 nvmem_cell_add(cell);
512 }
513 }
514 }
515
516 out:
517 mutex_unlock(&nvmem_cell_mutex);
518 return rval;
519 }
520
521 static struct nvmem_cell *
nvmem_find_cell_by_name(struct nvmem_device * nvmem,const char * cell_id)522 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
523 {
524 struct nvmem_cell *iter, *cell = NULL;
525
526 mutex_lock(&nvmem_mutex);
527 list_for_each_entry(iter, &nvmem->cells, node) {
528 if (strcmp(cell_id, iter->name) == 0) {
529 cell = iter;
530 break;
531 }
532 }
533 mutex_unlock(&nvmem_mutex);
534
535 return cell;
536 }
537
nvmem_add_cells_from_of(struct nvmem_device * nvmem)538 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
539 {
540 struct device_node *parent, *child;
541 struct device *dev = &nvmem->dev;
542 struct nvmem_cell *cell;
543 const __be32 *addr;
544 int len;
545
546 parent = dev->of_node;
547
548 for_each_child_of_node(parent, child) {
549 addr = of_get_property(child, "reg", &len);
550 if (!addr)
551 continue;
552 if (len < 2 * sizeof(u32)) {
553 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
554 of_node_put(child);
555 return -EINVAL;
556 }
557
558 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
559 if (!cell) {
560 of_node_put(child);
561 return -ENOMEM;
562 }
563
564 cell->nvmem = nvmem;
565 cell->offset = be32_to_cpup(addr++);
566 cell->bytes = be32_to_cpup(addr);
567 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
568
569 addr = of_get_property(child, "bits", &len);
570 if (addr && len == (2 * sizeof(u32))) {
571 cell->bit_offset = be32_to_cpup(addr++);
572 cell->nbits = be32_to_cpup(addr);
573 }
574
575 if (cell->nbits)
576 cell->bytes = DIV_ROUND_UP(
577 cell->nbits + cell->bit_offset,
578 BITS_PER_BYTE);
579
580 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
581 dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
582 cell->name, nvmem->stride);
583 /* Cells already added will be freed later. */
584 kfree_const(cell->name);
585 kfree(cell);
586 of_node_put(child);
587 return -EINVAL;
588 }
589
590 cell->np = of_node_get(child);
591 nvmem_cell_add(cell);
592 }
593
594 return 0;
595 }
596
597 /**
598 * nvmem_register() - Register a nvmem device for given nvmem_config.
599 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
600 *
601 * @config: nvmem device configuration with which nvmem device is created.
602 *
603 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
604 * on success.
605 */
606
nvmem_register(const struct nvmem_config * config)607 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
608 {
609 struct nvmem_device *nvmem;
610 int rval;
611
612 if (!config->dev)
613 return ERR_PTR(-EINVAL);
614
615 if (!config->reg_read && !config->reg_write)
616 return ERR_PTR(-EINVAL);
617
618 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
619 if (!nvmem)
620 return ERR_PTR(-ENOMEM);
621
622 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
623 if (rval < 0) {
624 kfree(nvmem);
625 return ERR_PTR(rval);
626 }
627
628 nvmem->id = rval;
629
630 if (config->wp_gpio)
631 nvmem->wp_gpio = config->wp_gpio;
632 else
633 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
634 GPIOD_OUT_HIGH);
635 if (IS_ERR(nvmem->wp_gpio)) {
636 ida_free(&nvmem_ida, nvmem->id);
637 rval = PTR_ERR(nvmem->wp_gpio);
638 kfree(nvmem);
639 return ERR_PTR(rval);
640 }
641
642 kref_init(&nvmem->refcnt);
643 INIT_LIST_HEAD(&nvmem->cells);
644
645 nvmem->owner = config->owner;
646 if (!nvmem->owner && config->dev->driver)
647 nvmem->owner = config->dev->driver->owner;
648 nvmem->stride = config->stride ?: 1;
649 nvmem->word_size = config->word_size ?: 1;
650 nvmem->size = config->size;
651 nvmem->dev.type = &nvmem_provider_type;
652 nvmem->dev.bus = &nvmem_bus_type;
653 nvmem->dev.parent = config->dev;
654 nvmem->root_only = config->root_only;
655 nvmem->priv = config->priv;
656 nvmem->type = config->type;
657 nvmem->reg_read = config->reg_read;
658 nvmem->reg_write = config->reg_write;
659 if (!config->no_of_node)
660 nvmem->dev.of_node = config->dev->of_node;
661
662 switch (config->id) {
663 case NVMEM_DEVID_NONE:
664 rval = dev_set_name(&nvmem->dev, "%s", config->name);
665 break;
666 case NVMEM_DEVID_AUTO:
667 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
668 break;
669 default:
670 rval = dev_set_name(&nvmem->dev, "%s%d",
671 config->name ? : "nvmem",
672 config->name ? config->id : nvmem->id);
673 break;
674 }
675
676 if (rval) {
677 ida_free(&nvmem_ida, nvmem->id);
678 kfree(nvmem);
679 return ERR_PTR(rval);
680 }
681
682 nvmem->read_only = device_property_present(config->dev, "read-only") ||
683 config->read_only || !nvmem->reg_write;
684
685 #ifdef CONFIG_NVMEM_SYSFS
686 nvmem->dev.groups = nvmem_dev_groups;
687 #endif
688
689 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
690
691 rval = device_register(&nvmem->dev);
692 if (rval)
693 goto err_put_device;
694
695 if (config->compat) {
696 rval = nvmem_sysfs_setup_compat(nvmem, config);
697 if (rval)
698 goto err_device_del;
699 }
700
701 if (config->cells) {
702 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
703 if (rval)
704 goto err_remove_cells;
705 }
706
707 rval = nvmem_add_cells_from_table(nvmem);
708 if (rval)
709 goto err_remove_cells;
710
711 rval = nvmem_add_cells_from_of(nvmem);
712 if (rval)
713 goto err_remove_cells;
714
715 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
716
717 return nvmem;
718
719 err_remove_cells:
720 nvmem_device_remove_all_cells(nvmem);
721 if (config->compat)
722 nvmem_sysfs_remove_compat(nvmem, config);
723 err_device_del:
724 device_del(&nvmem->dev);
725 err_put_device:
726 put_device(&nvmem->dev);
727
728 return ERR_PTR(rval);
729 }
730 EXPORT_SYMBOL_GPL(nvmem_register);
731
nvmem_device_release(struct kref * kref)732 static void nvmem_device_release(struct kref *kref)
733 {
734 struct nvmem_device *nvmem;
735
736 nvmem = container_of(kref, struct nvmem_device, refcnt);
737
738 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
739
740 if (nvmem->flags & FLAG_COMPAT)
741 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
742
743 nvmem_device_remove_all_cells(nvmem);
744 device_unregister(&nvmem->dev);
745 }
746
747 /**
748 * nvmem_unregister() - Unregister previously registered nvmem device
749 *
750 * @nvmem: Pointer to previously registered nvmem device.
751 */
nvmem_unregister(struct nvmem_device * nvmem)752 void nvmem_unregister(struct nvmem_device *nvmem)
753 {
754 kref_put(&nvmem->refcnt, nvmem_device_release);
755 }
756 EXPORT_SYMBOL_GPL(nvmem_unregister);
757
devm_nvmem_release(struct device * dev,void * res)758 static void devm_nvmem_release(struct device *dev, void *res)
759 {
760 nvmem_unregister(*(struct nvmem_device **)res);
761 }
762
763 /**
764 * devm_nvmem_register() - Register a managed nvmem device for given
765 * nvmem_config.
766 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
767 *
768 * @dev: Device that uses the nvmem device.
769 * @config: nvmem device configuration with which nvmem device is created.
770 *
771 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
772 * on success.
773 */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)774 struct nvmem_device *devm_nvmem_register(struct device *dev,
775 const struct nvmem_config *config)
776 {
777 struct nvmem_device **ptr, *nvmem;
778
779 ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
780 if (!ptr)
781 return ERR_PTR(-ENOMEM);
782
783 nvmem = nvmem_register(config);
784
785 if (!IS_ERR(nvmem)) {
786 *ptr = nvmem;
787 devres_add(dev, ptr);
788 } else {
789 devres_free(ptr);
790 }
791
792 return nvmem;
793 }
794 EXPORT_SYMBOL_GPL(devm_nvmem_register);
795
devm_nvmem_match(struct device * dev,void * res,void * data)796 static int devm_nvmem_match(struct device *dev, void *res, void *data)
797 {
798 struct nvmem_device **r = res;
799
800 return *r == data;
801 }
802
803 /**
804 * devm_nvmem_unregister() - Unregister previously registered managed nvmem
805 * device.
806 *
807 * @dev: Device that uses the nvmem device.
808 * @nvmem: Pointer to previously registered nvmem device.
809 *
810 * Return: Will be negative on error or zero on success.
811 */
devm_nvmem_unregister(struct device * dev,struct nvmem_device * nvmem)812 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
813 {
814 return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
815 }
816 EXPORT_SYMBOL(devm_nvmem_unregister);
817
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))818 static struct nvmem_device *__nvmem_device_get(void *data,
819 int (*match)(struct device *dev, const void *data))
820 {
821 struct nvmem_device *nvmem = NULL;
822 struct device *dev;
823
824 mutex_lock(&nvmem_mutex);
825 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
826 if (dev)
827 nvmem = to_nvmem_device(dev);
828 mutex_unlock(&nvmem_mutex);
829 if (!nvmem)
830 return ERR_PTR(-EPROBE_DEFER);
831
832 if (!try_module_get(nvmem->owner)) {
833 dev_err(&nvmem->dev,
834 "could not increase module refcount for cell %s\n",
835 nvmem_dev_name(nvmem));
836
837 put_device(&nvmem->dev);
838 return ERR_PTR(-EINVAL);
839 }
840
841 kref_get(&nvmem->refcnt);
842
843 return nvmem;
844 }
845
__nvmem_device_put(struct nvmem_device * nvmem)846 static void __nvmem_device_put(struct nvmem_device *nvmem)
847 {
848 put_device(&nvmem->dev);
849 module_put(nvmem->owner);
850 kref_put(&nvmem->refcnt, nvmem_device_release);
851 }
852
853 #if IS_ENABLED(CONFIG_OF)
854 /**
855 * of_nvmem_device_get() - Get nvmem device from a given id
856 *
857 * @np: Device tree node that uses the nvmem device.
858 * @id: nvmem name from nvmem-names property.
859 *
860 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
861 * on success.
862 */
of_nvmem_device_get(struct device_node * np,const char * id)863 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
864 {
865
866 struct device_node *nvmem_np;
867 struct nvmem_device *nvmem;
868 int index = 0;
869
870 if (id)
871 index = of_property_match_string(np, "nvmem-names", id);
872
873 nvmem_np = of_parse_phandle(np, "nvmem", index);
874 if (!nvmem_np)
875 return ERR_PTR(-ENOENT);
876
877 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
878 of_node_put(nvmem_np);
879 return nvmem;
880 }
881 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
882 #endif
883
884 /**
885 * nvmem_device_get() - Get nvmem device from a given id
886 *
887 * @dev: Device that uses the nvmem device.
888 * @dev_name: name of the requested nvmem device.
889 *
890 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
891 * on success.
892 */
nvmem_device_get(struct device * dev,const char * dev_name)893 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
894 {
895 if (dev->of_node) { /* try dt first */
896 struct nvmem_device *nvmem;
897
898 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
899
900 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
901 return nvmem;
902
903 }
904
905 return __nvmem_device_get((void *)dev_name, device_match_name);
906 }
907 EXPORT_SYMBOL_GPL(nvmem_device_get);
908
909 /**
910 * nvmem_device_find() - Find nvmem device with matching function
911 *
912 * @data: Data to pass to match function
913 * @match: Callback function to check device
914 *
915 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
916 * on success.
917 */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))918 struct nvmem_device *nvmem_device_find(void *data,
919 int (*match)(struct device *dev, const void *data))
920 {
921 return __nvmem_device_get(data, match);
922 }
923 EXPORT_SYMBOL_GPL(nvmem_device_find);
924
devm_nvmem_device_match(struct device * dev,void * res,void * data)925 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
926 {
927 struct nvmem_device **nvmem = res;
928
929 if (WARN_ON(!nvmem || !*nvmem))
930 return 0;
931
932 return *nvmem == data;
933 }
934
devm_nvmem_device_release(struct device * dev,void * res)935 static void devm_nvmem_device_release(struct device *dev, void *res)
936 {
937 nvmem_device_put(*(struct nvmem_device **)res);
938 }
939
940 /**
941 * devm_nvmem_device_put() - put alredy got nvmem device
942 *
943 * @dev: Device that uses the nvmem device.
944 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
945 * that needs to be released.
946 */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)947 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
948 {
949 int ret;
950
951 ret = devres_release(dev, devm_nvmem_device_release,
952 devm_nvmem_device_match, nvmem);
953
954 WARN_ON(ret);
955 }
956 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
957
958 /**
959 * nvmem_device_put() - put alredy got nvmem device
960 *
961 * @nvmem: pointer to nvmem device that needs to be released.
962 */
nvmem_device_put(struct nvmem_device * nvmem)963 void nvmem_device_put(struct nvmem_device *nvmem)
964 {
965 __nvmem_device_put(nvmem);
966 }
967 EXPORT_SYMBOL_GPL(nvmem_device_put);
968
969 /**
970 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
971 *
972 * @dev: Device that requests the nvmem device.
973 * @id: name id for the requested nvmem device.
974 *
975 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
976 * on success. The nvmem_cell will be freed by the automatically once the
977 * device is freed.
978 */
devm_nvmem_device_get(struct device * dev,const char * id)979 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
980 {
981 struct nvmem_device **ptr, *nvmem;
982
983 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
984 if (!ptr)
985 return ERR_PTR(-ENOMEM);
986
987 nvmem = nvmem_device_get(dev, id);
988 if (!IS_ERR(nvmem)) {
989 *ptr = nvmem;
990 devres_add(dev, ptr);
991 } else {
992 devres_free(ptr);
993 }
994
995 return nvmem;
996 }
997 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
998
999 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1000 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1001 {
1002 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1003 struct nvmem_cell_lookup *lookup;
1004 struct nvmem_device *nvmem;
1005 const char *dev_id;
1006
1007 if (!dev)
1008 return ERR_PTR(-EINVAL);
1009
1010 dev_id = dev_name(dev);
1011
1012 mutex_lock(&nvmem_lookup_mutex);
1013
1014 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1015 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1016 (strcmp(lookup->con_id, con_id) == 0)) {
1017 /* This is the right entry. */
1018 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1019 device_match_name);
1020 if (IS_ERR(nvmem)) {
1021 /* Provider may not be registered yet. */
1022 cell = ERR_CAST(nvmem);
1023 break;
1024 }
1025
1026 cell = nvmem_find_cell_by_name(nvmem,
1027 lookup->cell_name);
1028 if (!cell) {
1029 __nvmem_device_put(nvmem);
1030 cell = ERR_PTR(-ENOENT);
1031 }
1032 break;
1033 }
1034 }
1035
1036 mutex_unlock(&nvmem_lookup_mutex);
1037 return cell;
1038 }
1039
1040 #if IS_ENABLED(CONFIG_OF)
1041 static struct nvmem_cell *
nvmem_find_cell_by_node(struct nvmem_device * nvmem,struct device_node * np)1042 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1043 {
1044 struct nvmem_cell *iter, *cell = NULL;
1045
1046 mutex_lock(&nvmem_mutex);
1047 list_for_each_entry(iter, &nvmem->cells, node) {
1048 if (np == iter->np) {
1049 cell = iter;
1050 break;
1051 }
1052 }
1053 mutex_unlock(&nvmem_mutex);
1054
1055 return cell;
1056 }
1057
1058 /**
1059 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1060 *
1061 * @np: Device tree node that uses the nvmem cell.
1062 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1063 * for the cell at index 0 (the lone cell with no accompanying
1064 * nvmem-cell-names property).
1065 *
1066 * Return: Will be an ERR_PTR() on error or a valid pointer
1067 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1068 * nvmem_cell_put().
1069 */
of_nvmem_cell_get(struct device_node * np,const char * id)1070 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1071 {
1072 struct device_node *cell_np, *nvmem_np;
1073 struct nvmem_device *nvmem;
1074 struct nvmem_cell *cell;
1075 int index = 0;
1076
1077 /* if cell name exists, find index to the name */
1078 if (id)
1079 index = of_property_match_string(np, "nvmem-cell-names", id);
1080
1081 cell_np = of_parse_phandle(np, "nvmem-cells", index);
1082 if (!cell_np)
1083 return ERR_PTR(-ENOENT);
1084
1085 nvmem_np = of_get_next_parent(cell_np);
1086 if (!nvmem_np)
1087 return ERR_PTR(-EINVAL);
1088
1089 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1090 of_node_put(nvmem_np);
1091 if (IS_ERR(nvmem))
1092 return ERR_CAST(nvmem);
1093
1094 cell = nvmem_find_cell_by_node(nvmem, cell_np);
1095 if (!cell) {
1096 __nvmem_device_put(nvmem);
1097 return ERR_PTR(-ENOENT);
1098 }
1099
1100 return cell;
1101 }
1102 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1103 #endif
1104
1105 /**
1106 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1107 *
1108 * @dev: Device that requests the nvmem cell.
1109 * @id: nvmem cell name to get (this corresponds with the name from the
1110 * nvmem-cell-names property for DT systems and with the con_id from
1111 * the lookup entry for non-DT systems).
1112 *
1113 * Return: Will be an ERR_PTR() on error or a valid pointer
1114 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1115 * nvmem_cell_put().
1116 */
nvmem_cell_get(struct device * dev,const char * id)1117 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1118 {
1119 struct nvmem_cell *cell;
1120
1121 if (dev->of_node) { /* try dt first */
1122 cell = of_nvmem_cell_get(dev->of_node, id);
1123 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1124 return cell;
1125 }
1126
1127 /* NULL cell id only allowed for device tree; invalid otherwise */
1128 if (!id)
1129 return ERR_PTR(-EINVAL);
1130
1131 return nvmem_cell_get_from_lookup(dev, id);
1132 }
1133 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1134
devm_nvmem_cell_release(struct device * dev,void * res)1135 static void devm_nvmem_cell_release(struct device *dev, void *res)
1136 {
1137 nvmem_cell_put(*(struct nvmem_cell **)res);
1138 }
1139
1140 /**
1141 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1142 *
1143 * @dev: Device that requests the nvmem cell.
1144 * @id: nvmem cell name id to get.
1145 *
1146 * Return: Will be an ERR_PTR() on error or a valid pointer
1147 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1148 * automatically once the device is freed.
1149 */
devm_nvmem_cell_get(struct device * dev,const char * id)1150 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1151 {
1152 struct nvmem_cell **ptr, *cell;
1153
1154 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1155 if (!ptr)
1156 return ERR_PTR(-ENOMEM);
1157
1158 cell = nvmem_cell_get(dev, id);
1159 if (!IS_ERR(cell)) {
1160 *ptr = cell;
1161 devres_add(dev, ptr);
1162 } else {
1163 devres_free(ptr);
1164 }
1165
1166 return cell;
1167 }
1168 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1169
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1170 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1171 {
1172 struct nvmem_cell **c = res;
1173
1174 if (WARN_ON(!c || !*c))
1175 return 0;
1176
1177 return *c == data;
1178 }
1179
1180 /**
1181 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1182 * from devm_nvmem_cell_get.
1183 *
1184 * @dev: Device that requests the nvmem cell.
1185 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1186 */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1187 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1188 {
1189 int ret;
1190
1191 ret = devres_release(dev, devm_nvmem_cell_release,
1192 devm_nvmem_cell_match, cell);
1193
1194 WARN_ON(ret);
1195 }
1196 EXPORT_SYMBOL(devm_nvmem_cell_put);
1197
1198 /**
1199 * nvmem_cell_put() - Release previously allocated nvmem cell.
1200 *
1201 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1202 */
nvmem_cell_put(struct nvmem_cell * cell)1203 void nvmem_cell_put(struct nvmem_cell *cell)
1204 {
1205 struct nvmem_device *nvmem = cell->nvmem;
1206
1207 __nvmem_device_put(nvmem);
1208 }
1209 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1210
nvmem_shift_read_buffer_in_place(struct nvmem_cell * cell,void * buf)1211 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1212 {
1213 u8 *p, *b;
1214 int i, extra, bit_offset = cell->bit_offset;
1215
1216 p = b = buf;
1217 if (bit_offset) {
1218 /* First shift */
1219 *b++ >>= bit_offset;
1220
1221 /* setup rest of the bytes if any */
1222 for (i = 1; i < cell->bytes; i++) {
1223 /* Get bits from next byte and shift them towards msb */
1224 *p |= *b << (BITS_PER_BYTE - bit_offset);
1225
1226 p = b;
1227 *b++ >>= bit_offset;
1228 }
1229 } else {
1230 /* point to the msb */
1231 p += cell->bytes - 1;
1232 }
1233
1234 /* result fits in less bytes */
1235 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1236 while (--extra >= 0)
1237 *p-- = 0;
1238
1239 /* clear msb bits if any leftover in the last byte */
1240 if (cell->nbits % BITS_PER_BYTE)
1241 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1242 }
1243
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell * cell,void * buf,size_t * len)1244 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1245 struct nvmem_cell *cell,
1246 void *buf, size_t *len)
1247 {
1248 int rc;
1249
1250 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1251
1252 if (rc)
1253 return rc;
1254
1255 /* shift bits in-place */
1256 if (cell->bit_offset || cell->nbits)
1257 nvmem_shift_read_buffer_in_place(cell, buf);
1258
1259 if (len)
1260 *len = cell->bytes;
1261
1262 return 0;
1263 }
1264
1265 /**
1266 * nvmem_cell_read() - Read a given nvmem cell
1267 *
1268 * @cell: nvmem cell to be read.
1269 * @len: pointer to length of cell which will be populated on successful read;
1270 * can be NULL.
1271 *
1272 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1273 * buffer should be freed by the consumer with a kfree().
1274 */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1275 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1276 {
1277 struct nvmem_device *nvmem = cell->nvmem;
1278 u8 *buf;
1279 int rc;
1280
1281 if (!nvmem)
1282 return ERR_PTR(-EINVAL);
1283
1284 buf = kzalloc(cell->bytes, GFP_KERNEL);
1285 if (!buf)
1286 return ERR_PTR(-ENOMEM);
1287
1288 rc = __nvmem_cell_read(nvmem, cell, buf, len);
1289 if (rc) {
1290 kfree(buf);
1291 return ERR_PTR(rc);
1292 }
1293
1294 return buf;
1295 }
1296 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1297
nvmem_cell_prepare_write_buffer(struct nvmem_cell * cell,u8 * _buf,int len)1298 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1299 u8 *_buf, int len)
1300 {
1301 struct nvmem_device *nvmem = cell->nvmem;
1302 int i, rc, nbits, bit_offset = cell->bit_offset;
1303 u8 v, *p, *buf, *b, pbyte, pbits;
1304
1305 nbits = cell->nbits;
1306 buf = kzalloc(cell->bytes, GFP_KERNEL);
1307 if (!buf)
1308 return ERR_PTR(-ENOMEM);
1309
1310 memcpy(buf, _buf, len);
1311 p = b = buf;
1312
1313 if (bit_offset) {
1314 pbyte = *b;
1315 *b <<= bit_offset;
1316
1317 /* setup the first byte with lsb bits from nvmem */
1318 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1319 if (rc)
1320 goto err;
1321 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1322
1323 /* setup rest of the byte if any */
1324 for (i = 1; i < cell->bytes; i++) {
1325 /* Get last byte bits and shift them towards lsb */
1326 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1327 pbyte = *b;
1328 p = b;
1329 *b <<= bit_offset;
1330 *b++ |= pbits;
1331 }
1332 }
1333
1334 /* if it's not end on byte boundary */
1335 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1336 /* setup the last byte with msb bits from nvmem */
1337 rc = nvmem_reg_read(nvmem,
1338 cell->offset + cell->bytes - 1, &v, 1);
1339 if (rc)
1340 goto err;
1341 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1342
1343 }
1344
1345 return buf;
1346 err:
1347 kfree(buf);
1348 return ERR_PTR(rc);
1349 }
1350
1351 /**
1352 * nvmem_cell_write() - Write to a given nvmem cell
1353 *
1354 * @cell: nvmem cell to be written.
1355 * @buf: Buffer to be written.
1356 * @len: length of buffer to be written to nvmem cell.
1357 *
1358 * Return: length of bytes written or negative on failure.
1359 */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1360 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1361 {
1362 struct nvmem_device *nvmem = cell->nvmem;
1363 int rc;
1364
1365 if (!nvmem || nvmem->read_only ||
1366 (cell->bit_offset == 0 && len != cell->bytes))
1367 return -EINVAL;
1368
1369 if (cell->bit_offset || cell->nbits) {
1370 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1371 if (IS_ERR(buf))
1372 return PTR_ERR(buf);
1373 }
1374
1375 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1376
1377 /* free the tmp buffer */
1378 if (cell->bit_offset || cell->nbits)
1379 kfree(buf);
1380
1381 if (rc)
1382 return rc;
1383
1384 return len;
1385 }
1386 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1387
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1388 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1389 void *val, size_t count)
1390 {
1391 struct nvmem_cell *cell;
1392 void *buf;
1393 size_t len;
1394
1395 cell = nvmem_cell_get(dev, cell_id);
1396 if (IS_ERR(cell))
1397 return PTR_ERR(cell);
1398
1399 buf = nvmem_cell_read(cell, &len);
1400 if (IS_ERR(buf)) {
1401 nvmem_cell_put(cell);
1402 return PTR_ERR(buf);
1403 }
1404 if (len != count) {
1405 kfree(buf);
1406 nvmem_cell_put(cell);
1407 return -EINVAL;
1408 }
1409 memcpy(val, buf, count);
1410 kfree(buf);
1411 nvmem_cell_put(cell);
1412
1413 return 0;
1414 }
1415
1416 /**
1417 * nvmem_cell_read_u8() - Read a cell value as a u8
1418 *
1419 * @dev: Device that requests the nvmem cell.
1420 * @cell_id: Name of nvmem cell to read.
1421 * @val: pointer to output value.
1422 *
1423 * Return: 0 on success or negative errno.
1424 */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1425 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1426 {
1427 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1428 }
1429 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1430
1431 /**
1432 * nvmem_cell_read_u16() - Read a cell value as a u16
1433 *
1434 * @dev: Device that requests the nvmem cell.
1435 * @cell_id: Name of nvmem cell to read.
1436 * @val: pointer to output value.
1437 *
1438 * Return: 0 on success or negative errno.
1439 */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1440 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1441 {
1442 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1443 }
1444 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1445
1446 /**
1447 * nvmem_cell_read_u32() - Read a cell value as a u32
1448 *
1449 * @dev: Device that requests the nvmem cell.
1450 * @cell_id: Name of nvmem cell to read.
1451 * @val: pointer to output value.
1452 *
1453 * Return: 0 on success or negative errno.
1454 */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1455 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1456 {
1457 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1458 }
1459 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1460
1461 /**
1462 * nvmem_cell_read_u64() - Read a cell value as a u64
1463 *
1464 * @dev: Device that requests the nvmem cell.
1465 * @cell_id: Name of nvmem cell to read.
1466 * @val: pointer to output value.
1467 *
1468 * Return: 0 on success or negative errno.
1469 */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1470 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1471 {
1472 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1473 }
1474 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1475
1476 /**
1477 * nvmem_device_cell_read() - Read a given nvmem device and cell
1478 *
1479 * @nvmem: nvmem device to read from.
1480 * @info: nvmem cell info to be read.
1481 * @buf: buffer pointer which will be populated on successful read.
1482 *
1483 * Return: length of successful bytes read on success and negative
1484 * error code on error.
1485 */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1486 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1487 struct nvmem_cell_info *info, void *buf)
1488 {
1489 struct nvmem_cell cell;
1490 int rc;
1491 ssize_t len;
1492
1493 if (!nvmem)
1494 return -EINVAL;
1495
1496 rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1497 if (rc)
1498 return rc;
1499
1500 rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1501 if (rc)
1502 return rc;
1503
1504 return len;
1505 }
1506 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1507
1508 /**
1509 * nvmem_device_cell_write() - Write cell to a given nvmem device
1510 *
1511 * @nvmem: nvmem device to be written to.
1512 * @info: nvmem cell info to be written.
1513 * @buf: buffer to be written to cell.
1514 *
1515 * Return: length of bytes written or negative error code on failure.
1516 */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1517 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1518 struct nvmem_cell_info *info, void *buf)
1519 {
1520 struct nvmem_cell cell;
1521 int rc;
1522
1523 if (!nvmem)
1524 return -EINVAL;
1525
1526 rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1527 if (rc)
1528 return rc;
1529
1530 return nvmem_cell_write(&cell, buf, cell.bytes);
1531 }
1532 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1533
1534 /**
1535 * nvmem_device_read() - Read from a given nvmem device
1536 *
1537 * @nvmem: nvmem device to read from.
1538 * @offset: offset in nvmem device.
1539 * @bytes: number of bytes to read.
1540 * @buf: buffer pointer which will be populated on successful read.
1541 *
1542 * Return: length of successful bytes read on success and negative
1543 * error code on error.
1544 */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)1545 int nvmem_device_read(struct nvmem_device *nvmem,
1546 unsigned int offset,
1547 size_t bytes, void *buf)
1548 {
1549 int rc;
1550
1551 if (!nvmem)
1552 return -EINVAL;
1553
1554 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1555
1556 if (rc)
1557 return rc;
1558
1559 return bytes;
1560 }
1561 EXPORT_SYMBOL_GPL(nvmem_device_read);
1562
1563 /**
1564 * nvmem_device_write() - Write cell to a given nvmem device
1565 *
1566 * @nvmem: nvmem device to be written to.
1567 * @offset: offset in nvmem device.
1568 * @bytes: number of bytes to write.
1569 * @buf: buffer to be written.
1570 *
1571 * Return: length of bytes written or negative error code on failure.
1572 */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)1573 int nvmem_device_write(struct nvmem_device *nvmem,
1574 unsigned int offset,
1575 size_t bytes, void *buf)
1576 {
1577 int rc;
1578
1579 if (!nvmem)
1580 return -EINVAL;
1581
1582 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1583
1584 if (rc)
1585 return rc;
1586
1587
1588 return bytes;
1589 }
1590 EXPORT_SYMBOL_GPL(nvmem_device_write);
1591
1592 /**
1593 * nvmem_add_cell_table() - register a table of cell info entries
1594 *
1595 * @table: table of cell info entries
1596 */
nvmem_add_cell_table(struct nvmem_cell_table * table)1597 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1598 {
1599 mutex_lock(&nvmem_cell_mutex);
1600 list_add_tail(&table->node, &nvmem_cell_tables);
1601 mutex_unlock(&nvmem_cell_mutex);
1602 }
1603 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1604
1605 /**
1606 * nvmem_del_cell_table() - remove a previously registered cell info table
1607 *
1608 * @table: table of cell info entries
1609 */
nvmem_del_cell_table(struct nvmem_cell_table * table)1610 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1611 {
1612 mutex_lock(&nvmem_cell_mutex);
1613 list_del(&table->node);
1614 mutex_unlock(&nvmem_cell_mutex);
1615 }
1616 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1617
1618 /**
1619 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1620 *
1621 * @entries: array of cell lookup entries
1622 * @nentries: number of cell lookup entries in the array
1623 */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)1624 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1625 {
1626 int i;
1627
1628 mutex_lock(&nvmem_lookup_mutex);
1629 for (i = 0; i < nentries; i++)
1630 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1631 mutex_unlock(&nvmem_lookup_mutex);
1632 }
1633 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1634
1635 /**
1636 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1637 * entries
1638 *
1639 * @entries: array of cell lookup entries
1640 * @nentries: number of cell lookup entries in the array
1641 */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)1642 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1643 {
1644 int i;
1645
1646 mutex_lock(&nvmem_lookup_mutex);
1647 for (i = 0; i < nentries; i++)
1648 list_del(&entries[i].node);
1649 mutex_unlock(&nvmem_lookup_mutex);
1650 }
1651 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1652
1653 /**
1654 * nvmem_dev_name() - Get the name of a given nvmem device.
1655 *
1656 * @nvmem: nvmem device.
1657 *
1658 * Return: name of the nvmem device.
1659 */
nvmem_dev_name(struct nvmem_device * nvmem)1660 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1661 {
1662 return dev_name(&nvmem->dev);
1663 }
1664 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1665
nvmem_init(void)1666 static int __init nvmem_init(void)
1667 {
1668 return bus_register(&nvmem_bus_type);
1669 }
1670
nvmem_exit(void)1671 static void __exit nvmem_exit(void)
1672 {
1673 bus_unregister(&nvmem_bus_type);
1674 }
1675
1676 subsys_initcall(nvmem_init);
1677 module_exit(nvmem_exit);
1678
1679 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1680 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1681 MODULE_DESCRIPTION("nvmem Driver Core");
1682 MODULE_LICENSE("GPL v2");
1683