• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13 
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18 
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 #define NVMET_LS_CTX_COUNT		256
24 
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27 
28 struct nvmet_fc_ls_iod {		/* for an LS RQST RCV */
29 	struct nvmefc_ls_rsp		*lsrsp;
30 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
31 
32 	struct list_head		ls_rcv_list; /* tgtport->ls_rcv_list */
33 
34 	struct nvmet_fc_tgtport		*tgtport;
35 	struct nvmet_fc_tgt_assoc	*assoc;
36 	void				*hosthandle;
37 
38 	union nvmefc_ls_requests	*rqstbuf;
39 	union nvmefc_ls_responses	*rspbuf;
40 	u16				rqstdatalen;
41 	dma_addr_t			rspdma;
42 
43 	struct scatterlist		sg[2];
44 
45 	struct work_struct		work;
46 } __aligned(sizeof(unsigned long long));
47 
48 struct nvmet_fc_ls_req_op {		/* for an LS RQST XMT */
49 	struct nvmefc_ls_req		ls_req;
50 
51 	struct nvmet_fc_tgtport		*tgtport;
52 	void				*hosthandle;
53 
54 	int				ls_error;
55 	struct list_head		lsreq_list; /* tgtport->ls_req_list */
56 	bool				req_queued;
57 };
58 
59 
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
62 
63 enum nvmet_fcp_datadir {
64 	NVMET_FCP_NODATA,
65 	NVMET_FCP_WRITE,
66 	NVMET_FCP_READ,
67 	NVMET_FCP_ABORTED,
68 };
69 
70 struct nvmet_fc_fcp_iod {
71 	struct nvmefc_tgt_fcp_req	*fcpreq;
72 
73 	struct nvme_fc_cmd_iu		cmdiubuf;
74 	struct nvme_fc_ersp_iu		rspiubuf;
75 	dma_addr_t			rspdma;
76 	struct scatterlist		*next_sg;
77 	struct scatterlist		*data_sg;
78 	int				data_sg_cnt;
79 	u32				offset;
80 	enum nvmet_fcp_datadir		io_dir;
81 	bool				active;
82 	bool				abort;
83 	bool				aborted;
84 	bool				writedataactive;
85 	spinlock_t			flock;
86 
87 	struct nvmet_req		req;
88 	struct work_struct		defer_work;
89 
90 	struct nvmet_fc_tgtport		*tgtport;
91 	struct nvmet_fc_tgt_queue	*queue;
92 
93 	struct list_head		fcp_list;	/* tgtport->fcp_list */
94 };
95 
96 struct nvmet_fc_tgtport {
97 	struct nvmet_fc_target_port	fc_target_port;
98 
99 	struct list_head		tgt_list; /* nvmet_fc_target_list */
100 	struct device			*dev;	/* dev for dma mapping */
101 	struct nvmet_fc_target_template	*ops;
102 
103 	struct nvmet_fc_ls_iod		*iod;
104 	spinlock_t			lock;
105 	struct list_head		ls_rcv_list;
106 	struct list_head		ls_req_list;
107 	struct list_head		ls_busylist;
108 	struct list_head		assoc_list;
109 	struct list_head		host_list;
110 	struct ida			assoc_cnt;
111 	struct nvmet_fc_port_entry	*pe;
112 	struct kref			ref;
113 	u32				max_sg_cnt;
114 };
115 
116 struct nvmet_fc_port_entry {
117 	struct nvmet_fc_tgtport		*tgtport;
118 	struct nvmet_port		*port;
119 	u64				node_name;
120 	u64				port_name;
121 	struct list_head		pe_list;
122 };
123 
124 struct nvmet_fc_defer_fcp_req {
125 	struct list_head		req_list;
126 	struct nvmefc_tgt_fcp_req	*fcp_req;
127 };
128 
129 struct nvmet_fc_tgt_queue {
130 	bool				ninetypercent;
131 	u16				qid;
132 	u16				sqsize;
133 	u16				ersp_ratio;
134 	__le16				sqhd;
135 	atomic_t			connected;
136 	atomic_t			sqtail;
137 	atomic_t			zrspcnt;
138 	atomic_t			rsn;
139 	spinlock_t			qlock;
140 	struct nvmet_cq			nvme_cq;
141 	struct nvmet_sq			nvme_sq;
142 	struct nvmet_fc_tgt_assoc	*assoc;
143 	struct list_head		fod_list;
144 	struct list_head		pending_cmd_list;
145 	struct list_head		avail_defer_list;
146 	struct workqueue_struct		*work_q;
147 	struct kref			ref;
148 	struct nvmet_fc_fcp_iod		fod[];		/* array of fcp_iods */
149 } __aligned(sizeof(unsigned long long));
150 
151 struct nvmet_fc_hostport {
152 	struct nvmet_fc_tgtport		*tgtport;
153 	void				*hosthandle;
154 	struct list_head		host_list;
155 	struct kref			ref;
156 	u8				invalid;
157 };
158 
159 struct nvmet_fc_tgt_assoc {
160 	u64				association_id;
161 	u32				a_id;
162 	atomic_t			terminating;
163 	struct nvmet_fc_tgtport		*tgtport;
164 	struct nvmet_fc_hostport	*hostport;
165 	struct nvmet_fc_ls_iod		*rcv_disconn;
166 	struct list_head		a_list;
167 	struct nvmet_fc_tgt_queue	*queues[NVMET_NR_QUEUES + 1];
168 	struct kref			ref;
169 	struct work_struct		del_work;
170 };
171 
172 
173 static inline int
nvmet_fc_iodnum(struct nvmet_fc_ls_iod * iodptr)174 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
175 {
176 	return (iodptr - iodptr->tgtport->iod);
177 }
178 
179 static inline int
nvmet_fc_fodnum(struct nvmet_fc_fcp_iod * fodptr)180 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
181 {
182 	return (fodptr - fodptr->queue->fod);
183 }
184 
185 
186 /*
187  * Association and Connection IDs:
188  *
189  * Association ID will have random number in upper 6 bytes and zero
190  *   in lower 2 bytes
191  *
192  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
193  *
194  * note: Association ID = Connection ID for queue 0
195  */
196 #define BYTES_FOR_QID			sizeof(u16)
197 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
198 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
199 
200 static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc * assoc,u16 qid)201 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
202 {
203 	return (assoc->association_id | qid);
204 }
205 
206 static inline u64
nvmet_fc_getassociationid(u64 connectionid)207 nvmet_fc_getassociationid(u64 connectionid)
208 {
209 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
210 }
211 
212 static inline u16
nvmet_fc_getqueueid(u64 connectionid)213 nvmet_fc_getqueueid(u64 connectionid)
214 {
215 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
216 }
217 
218 static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port * targetport)219 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
220 {
221 	return container_of(targetport, struct nvmet_fc_tgtport,
222 				 fc_target_port);
223 }
224 
225 static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req * nvme_req)226 nvmet_req_to_fod(struct nvmet_req *nvme_req)
227 {
228 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
229 }
230 
231 
232 /* *************************** Globals **************************** */
233 
234 
235 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
236 
237 static LIST_HEAD(nvmet_fc_target_list);
238 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
239 static LIST_HEAD(nvmet_fc_portentry_list);
240 
241 
242 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
243 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
244 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
245 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
246 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
247 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
248 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
249 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
250 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
251 					struct nvmet_fc_fcp_iod *fod);
252 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
253 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
254 				struct nvmet_fc_ls_iod *iod);
255 
256 
257 /* *********************** FC-NVME DMA Handling **************************** */
258 
259 /*
260  * The fcloop device passes in a NULL device pointer. Real LLD's will
261  * pass in a valid device pointer. If NULL is passed to the dma mapping
262  * routines, depending on the platform, it may or may not succeed, and
263  * may crash.
264  *
265  * As such:
266  * Wrapper all the dma routines and check the dev pointer.
267  *
268  * If simple mappings (return just a dma address, we'll noop them,
269  * returning a dma address of 0.
270  *
271  * On more complex mappings (dma_map_sg), a pseudo routine fills
272  * in the scatter list, setting all dma addresses to 0.
273  */
274 
275 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)276 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
277 		enum dma_data_direction dir)
278 {
279 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
280 }
281 
282 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)283 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
284 {
285 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
286 }
287 
288 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)289 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
290 	enum dma_data_direction dir)
291 {
292 	if (dev)
293 		dma_unmap_single(dev, addr, size, dir);
294 }
295 
296 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)297 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
298 		enum dma_data_direction dir)
299 {
300 	if (dev)
301 		dma_sync_single_for_cpu(dev, addr, size, dir);
302 }
303 
304 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)305 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
306 		enum dma_data_direction dir)
307 {
308 	if (dev)
309 		dma_sync_single_for_device(dev, addr, size, dir);
310 }
311 
312 /* pseudo dma_map_sg call */
313 static int
fc_map_sg(struct scatterlist * sg,int nents)314 fc_map_sg(struct scatterlist *sg, int nents)
315 {
316 	struct scatterlist *s;
317 	int i;
318 
319 	WARN_ON(nents == 0 || sg[0].length == 0);
320 
321 	for_each_sg(sg, s, nents, i) {
322 		s->dma_address = 0L;
323 #ifdef CONFIG_NEED_SG_DMA_LENGTH
324 		s->dma_length = s->length;
325 #endif
326 	}
327 	return nents;
328 }
329 
330 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)331 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
332 		enum dma_data_direction dir)
333 {
334 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
335 }
336 
337 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)338 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
339 		enum dma_data_direction dir)
340 {
341 	if (dev)
342 		dma_unmap_sg(dev, sg, nents, dir);
343 }
344 
345 
346 /* ********************** FC-NVME LS XMT Handling ************************* */
347 
348 
349 static void
__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op * lsop)350 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
351 {
352 	struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
353 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&tgtport->lock, flags);
357 
358 	if (!lsop->req_queued) {
359 		spin_unlock_irqrestore(&tgtport->lock, flags);
360 		goto out_puttgtport;
361 	}
362 
363 	list_del(&lsop->lsreq_list);
364 
365 	lsop->req_queued = false;
366 
367 	spin_unlock_irqrestore(&tgtport->lock, flags);
368 
369 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
370 				  (lsreq->rqstlen + lsreq->rsplen),
371 				  DMA_BIDIRECTIONAL);
372 
373 out_puttgtport:
374 	nvmet_fc_tgtport_put(tgtport);
375 }
376 
377 static int
__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))378 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
379 		struct nvmet_fc_ls_req_op *lsop,
380 		void (*done)(struct nvmefc_ls_req *req, int status))
381 {
382 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
383 	unsigned long flags;
384 	int ret = 0;
385 
386 	if (!tgtport->ops->ls_req)
387 		return -EOPNOTSUPP;
388 
389 	if (!nvmet_fc_tgtport_get(tgtport))
390 		return -ESHUTDOWN;
391 
392 	lsreq->done = done;
393 	lsop->req_queued = false;
394 	INIT_LIST_HEAD(&lsop->lsreq_list);
395 
396 	lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
397 				  lsreq->rqstlen + lsreq->rsplen,
398 				  DMA_BIDIRECTIONAL);
399 	if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
400 		ret = -EFAULT;
401 		goto out_puttgtport;
402 	}
403 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
404 
405 	spin_lock_irqsave(&tgtport->lock, flags);
406 
407 	list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
408 
409 	lsop->req_queued = true;
410 
411 	spin_unlock_irqrestore(&tgtport->lock, flags);
412 
413 	ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
414 				   lsreq);
415 	if (ret)
416 		goto out_unlink;
417 
418 	return 0;
419 
420 out_unlink:
421 	lsop->ls_error = ret;
422 	spin_lock_irqsave(&tgtport->lock, flags);
423 	lsop->req_queued = false;
424 	list_del(&lsop->lsreq_list);
425 	spin_unlock_irqrestore(&tgtport->lock, flags);
426 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
427 				  (lsreq->rqstlen + lsreq->rsplen),
428 				  DMA_BIDIRECTIONAL);
429 out_puttgtport:
430 	nvmet_fc_tgtport_put(tgtport);
431 
432 	return ret;
433 }
434 
435 static int
nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))436 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
437 		struct nvmet_fc_ls_req_op *lsop,
438 		void (*done)(struct nvmefc_ls_req *req, int status))
439 {
440 	/* don't wait for completion */
441 
442 	return __nvmet_fc_send_ls_req(tgtport, lsop, done);
443 }
444 
445 static void
nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)446 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
447 {
448 	struct nvmet_fc_ls_req_op *lsop =
449 		container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
450 
451 	__nvmet_fc_finish_ls_req(lsop);
452 
453 	/* fc-nvme target doesn't care about success or failure of cmd */
454 
455 	kfree(lsop);
456 }
457 
458 /*
459  * This routine sends a FC-NVME LS to disconnect (aka terminate)
460  * the FC-NVME Association.  Terminating the association also
461  * terminates the FC-NVME connections (per queue, both admin and io
462  * queues) that are part of the association. E.g. things are torn
463  * down, and the related FC-NVME Association ID and Connection IDs
464  * become invalid.
465  *
466  * The behavior of the fc-nvme target is such that it's
467  * understanding of the association and connections will implicitly
468  * be torn down. The action is implicit as it may be due to a loss of
469  * connectivity with the fc-nvme host, so the target may never get a
470  * response even if it tried.  As such, the action of this routine
471  * is to asynchronously send the LS, ignore any results of the LS, and
472  * continue on with terminating the association. If the fc-nvme host
473  * is present and receives the LS, it too can tear down.
474  */
475 static void
nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc * assoc)476 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
477 {
478 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
479 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
480 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
481 	struct nvmet_fc_ls_req_op *lsop;
482 	struct nvmefc_ls_req *lsreq;
483 	int ret;
484 
485 	/*
486 	 * If ls_req is NULL or no hosthandle, it's an older lldd and no
487 	 * message is normal. Otherwise, send unless the hostport has
488 	 * already been invalidated by the lldd.
489 	 */
490 	if (!tgtport->ops->ls_req || !assoc->hostport ||
491 	    assoc->hostport->invalid)
492 		return;
493 
494 	lsop = kzalloc((sizeof(*lsop) +
495 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
496 			tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
497 	if (!lsop) {
498 		dev_info(tgtport->dev,
499 			"{%d:%d} send Disconnect Association failed: ENOMEM\n",
500 			tgtport->fc_target_port.port_num, assoc->a_id);
501 		return;
502 	}
503 
504 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
505 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
506 	lsreq = &lsop->ls_req;
507 	if (tgtport->ops->lsrqst_priv_sz)
508 		lsreq->private = (void *)&discon_acc[1];
509 	else
510 		lsreq->private = NULL;
511 
512 	lsop->tgtport = tgtport;
513 	lsop->hosthandle = assoc->hostport->hosthandle;
514 
515 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
516 				assoc->association_id);
517 
518 	ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
519 				nvmet_fc_disconnect_assoc_done);
520 	if (ret) {
521 		dev_info(tgtport->dev,
522 			"{%d:%d} XMT Disconnect Association failed: %d\n",
523 			tgtport->fc_target_port.port_num, assoc->a_id, ret);
524 		kfree(lsop);
525 	}
526 }
527 
528 
529 /* *********************** FC-NVME Port Management ************************ */
530 
531 
532 static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport * tgtport)533 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
534 {
535 	struct nvmet_fc_ls_iod *iod;
536 	int i;
537 
538 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
539 			GFP_KERNEL);
540 	if (!iod)
541 		return -ENOMEM;
542 
543 	tgtport->iod = iod;
544 
545 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
546 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
547 		iod->tgtport = tgtport;
548 		list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
549 
550 		iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
551 				       sizeof(union nvmefc_ls_responses),
552 				       GFP_KERNEL);
553 		if (!iod->rqstbuf)
554 			goto out_fail;
555 
556 		iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
557 
558 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
559 						sizeof(*iod->rspbuf),
560 						DMA_TO_DEVICE);
561 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
562 			goto out_fail;
563 	}
564 
565 	return 0;
566 
567 out_fail:
568 	kfree(iod->rqstbuf);
569 	list_del(&iod->ls_rcv_list);
570 	for (iod--, i--; i >= 0; iod--, i--) {
571 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
572 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
573 		kfree(iod->rqstbuf);
574 		list_del(&iod->ls_rcv_list);
575 	}
576 
577 	kfree(iod);
578 
579 	return -EFAULT;
580 }
581 
582 static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport * tgtport)583 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
584 {
585 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
586 	int i;
587 
588 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
589 		fc_dma_unmap_single(tgtport->dev,
590 				iod->rspdma, sizeof(*iod->rspbuf),
591 				DMA_TO_DEVICE);
592 		kfree(iod->rqstbuf);
593 		list_del(&iod->ls_rcv_list);
594 	}
595 	kfree(tgtport->iod);
596 }
597 
598 static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport * tgtport)599 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
600 {
601 	struct nvmet_fc_ls_iod *iod;
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&tgtport->lock, flags);
605 	iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
606 					struct nvmet_fc_ls_iod, ls_rcv_list);
607 	if (iod)
608 		list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
609 	spin_unlock_irqrestore(&tgtport->lock, flags);
610 	return iod;
611 }
612 
613 
614 static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)615 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
616 			struct nvmet_fc_ls_iod *iod)
617 {
618 	unsigned long flags;
619 
620 	spin_lock_irqsave(&tgtport->lock, flags);
621 	list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
622 	spin_unlock_irqrestore(&tgtport->lock, flags);
623 }
624 
625 static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)626 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
627 				struct nvmet_fc_tgt_queue *queue)
628 {
629 	struct nvmet_fc_fcp_iod *fod = queue->fod;
630 	int i;
631 
632 	for (i = 0; i < queue->sqsize; fod++, i++) {
633 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
634 		fod->tgtport = tgtport;
635 		fod->queue = queue;
636 		fod->active = false;
637 		fod->abort = false;
638 		fod->aborted = false;
639 		fod->fcpreq = NULL;
640 		list_add_tail(&fod->fcp_list, &queue->fod_list);
641 		spin_lock_init(&fod->flock);
642 
643 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
644 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
645 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
646 			list_del(&fod->fcp_list);
647 			for (fod--, i--; i >= 0; fod--, i--) {
648 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
649 						sizeof(fod->rspiubuf),
650 						DMA_TO_DEVICE);
651 				fod->rspdma = 0L;
652 				list_del(&fod->fcp_list);
653 			}
654 
655 			return;
656 		}
657 	}
658 }
659 
660 static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)661 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
662 				struct nvmet_fc_tgt_queue *queue)
663 {
664 	struct nvmet_fc_fcp_iod *fod = queue->fod;
665 	int i;
666 
667 	for (i = 0; i < queue->sqsize; fod++, i++) {
668 		if (fod->rspdma)
669 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
670 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
671 	}
672 }
673 
674 static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue * queue)675 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
676 {
677 	struct nvmet_fc_fcp_iod *fod;
678 
679 	lockdep_assert_held(&queue->qlock);
680 
681 	fod = list_first_entry_or_null(&queue->fod_list,
682 					struct nvmet_fc_fcp_iod, fcp_list);
683 	if (fod) {
684 		list_del(&fod->fcp_list);
685 		fod->active = true;
686 		/*
687 		 * no queue reference is taken, as it was taken by the
688 		 * queue lookup just prior to the allocation. The iod
689 		 * will "inherit" that reference.
690 		 */
691 	}
692 	return fod;
693 }
694 
695 
696 static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue,struct nvmefc_tgt_fcp_req * fcpreq)697 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
698 		       struct nvmet_fc_tgt_queue *queue,
699 		       struct nvmefc_tgt_fcp_req *fcpreq)
700 {
701 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
702 
703 	/*
704 	 * put all admin cmds on hw queue id 0. All io commands go to
705 	 * the respective hw queue based on a modulo basis
706 	 */
707 	fcpreq->hwqid = queue->qid ?
708 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
709 
710 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
711 }
712 
713 static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct * work)714 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
715 {
716 	struct nvmet_fc_fcp_iod *fod =
717 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
718 
719 	/* Submit deferred IO for processing */
720 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
721 
722 }
723 
724 static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue * queue,struct nvmet_fc_fcp_iod * fod)725 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
726 			struct nvmet_fc_fcp_iod *fod)
727 {
728 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
729 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
730 	struct nvmet_fc_defer_fcp_req *deferfcp;
731 	unsigned long flags;
732 
733 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
734 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
735 
736 	fcpreq->nvmet_fc_private = NULL;
737 
738 	fod->active = false;
739 	fod->abort = false;
740 	fod->aborted = false;
741 	fod->writedataactive = false;
742 	fod->fcpreq = NULL;
743 
744 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
745 
746 	/* release the queue lookup reference on the completed IO */
747 	nvmet_fc_tgt_q_put(queue);
748 
749 	spin_lock_irqsave(&queue->qlock, flags);
750 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
751 				struct nvmet_fc_defer_fcp_req, req_list);
752 	if (!deferfcp) {
753 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
754 		spin_unlock_irqrestore(&queue->qlock, flags);
755 		return;
756 	}
757 
758 	/* Re-use the fod for the next pending cmd that was deferred */
759 	list_del(&deferfcp->req_list);
760 
761 	fcpreq = deferfcp->fcp_req;
762 
763 	/* deferfcp can be reused for another IO at a later date */
764 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
765 
766 	spin_unlock_irqrestore(&queue->qlock, flags);
767 
768 	/* Save NVME CMD IO in fod */
769 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
770 
771 	/* Setup new fcpreq to be processed */
772 	fcpreq->rspaddr = NULL;
773 	fcpreq->rsplen  = 0;
774 	fcpreq->nvmet_fc_private = fod;
775 	fod->fcpreq = fcpreq;
776 	fod->active = true;
777 
778 	/* inform LLDD IO is now being processed */
779 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
780 
781 	/*
782 	 * Leave the queue lookup get reference taken when
783 	 * fod was originally allocated.
784 	 */
785 
786 	queue_work(queue->work_q, &fod->defer_work);
787 }
788 
789 static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc * assoc,u16 qid,u16 sqsize)790 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
791 			u16 qid, u16 sqsize)
792 {
793 	struct nvmet_fc_tgt_queue *queue;
794 	unsigned long flags;
795 	int ret;
796 
797 	if (qid > NVMET_NR_QUEUES)
798 		return NULL;
799 
800 	queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
801 	if (!queue)
802 		return NULL;
803 
804 	if (!nvmet_fc_tgt_a_get(assoc))
805 		goto out_free_queue;
806 
807 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
808 				assoc->tgtport->fc_target_port.port_num,
809 				assoc->a_id, qid);
810 	if (!queue->work_q)
811 		goto out_a_put;
812 
813 	queue->qid = qid;
814 	queue->sqsize = sqsize;
815 	queue->assoc = assoc;
816 	INIT_LIST_HEAD(&queue->fod_list);
817 	INIT_LIST_HEAD(&queue->avail_defer_list);
818 	INIT_LIST_HEAD(&queue->pending_cmd_list);
819 	atomic_set(&queue->connected, 0);
820 	atomic_set(&queue->sqtail, 0);
821 	atomic_set(&queue->rsn, 1);
822 	atomic_set(&queue->zrspcnt, 0);
823 	spin_lock_init(&queue->qlock);
824 	kref_init(&queue->ref);
825 
826 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
827 
828 	ret = nvmet_sq_init(&queue->nvme_sq);
829 	if (ret)
830 		goto out_fail_iodlist;
831 
832 	WARN_ON(assoc->queues[qid]);
833 	spin_lock_irqsave(&assoc->tgtport->lock, flags);
834 	assoc->queues[qid] = queue;
835 	spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
836 
837 	return queue;
838 
839 out_fail_iodlist:
840 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
841 	destroy_workqueue(queue->work_q);
842 out_a_put:
843 	nvmet_fc_tgt_a_put(assoc);
844 out_free_queue:
845 	kfree(queue);
846 	return NULL;
847 }
848 
849 
850 static void
nvmet_fc_tgt_queue_free(struct kref * ref)851 nvmet_fc_tgt_queue_free(struct kref *ref)
852 {
853 	struct nvmet_fc_tgt_queue *queue =
854 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
855 	unsigned long flags;
856 
857 	spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
858 	queue->assoc->queues[queue->qid] = NULL;
859 	spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
860 
861 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
862 
863 	nvmet_fc_tgt_a_put(queue->assoc);
864 
865 	destroy_workqueue(queue->work_q);
866 
867 	kfree(queue);
868 }
869 
870 static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue * queue)871 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
872 {
873 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
874 }
875 
876 static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue * queue)877 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
878 {
879 	return kref_get_unless_zero(&queue->ref);
880 }
881 
882 
883 static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue * queue)884 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
885 {
886 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
887 	struct nvmet_fc_fcp_iod *fod = queue->fod;
888 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
889 	unsigned long flags;
890 	int i;
891 	bool disconnect;
892 
893 	disconnect = atomic_xchg(&queue->connected, 0);
894 
895 	/* if not connected, nothing to do */
896 	if (!disconnect)
897 		return;
898 
899 	spin_lock_irqsave(&queue->qlock, flags);
900 	/* abort outstanding io's */
901 	for (i = 0; i < queue->sqsize; fod++, i++) {
902 		if (fod->active) {
903 			spin_lock(&fod->flock);
904 			fod->abort = true;
905 			/*
906 			 * only call lldd abort routine if waiting for
907 			 * writedata. other outstanding ops should finish
908 			 * on their own.
909 			 */
910 			if (fod->writedataactive) {
911 				fod->aborted = true;
912 				spin_unlock(&fod->flock);
913 				tgtport->ops->fcp_abort(
914 					&tgtport->fc_target_port, fod->fcpreq);
915 			} else
916 				spin_unlock(&fod->flock);
917 		}
918 	}
919 
920 	/* Cleanup defer'ed IOs in queue */
921 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
922 				req_list) {
923 		list_del(&deferfcp->req_list);
924 		kfree(deferfcp);
925 	}
926 
927 	for (;;) {
928 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
929 				struct nvmet_fc_defer_fcp_req, req_list);
930 		if (!deferfcp)
931 			break;
932 
933 		list_del(&deferfcp->req_list);
934 		spin_unlock_irqrestore(&queue->qlock, flags);
935 
936 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
937 				deferfcp->fcp_req);
938 
939 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
940 				deferfcp->fcp_req);
941 
942 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
943 				deferfcp->fcp_req);
944 
945 		/* release the queue lookup reference */
946 		nvmet_fc_tgt_q_put(queue);
947 
948 		kfree(deferfcp);
949 
950 		spin_lock_irqsave(&queue->qlock, flags);
951 	}
952 	spin_unlock_irqrestore(&queue->qlock, flags);
953 
954 	flush_workqueue(queue->work_q);
955 
956 	nvmet_sq_destroy(&queue->nvme_sq);
957 
958 	nvmet_fc_tgt_q_put(queue);
959 }
960 
961 static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport * tgtport,u64 connection_id)962 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
963 				u64 connection_id)
964 {
965 	struct nvmet_fc_tgt_assoc *assoc;
966 	struct nvmet_fc_tgt_queue *queue;
967 	u64 association_id = nvmet_fc_getassociationid(connection_id);
968 	u16 qid = nvmet_fc_getqueueid(connection_id);
969 	unsigned long flags;
970 
971 	if (qid > NVMET_NR_QUEUES)
972 		return NULL;
973 
974 	spin_lock_irqsave(&tgtport->lock, flags);
975 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
976 		if (association_id == assoc->association_id) {
977 			queue = assoc->queues[qid];
978 			if (queue &&
979 			    (!atomic_read(&queue->connected) ||
980 			     !nvmet_fc_tgt_q_get(queue)))
981 				queue = NULL;
982 			spin_unlock_irqrestore(&tgtport->lock, flags);
983 			return queue;
984 		}
985 	}
986 	spin_unlock_irqrestore(&tgtport->lock, flags);
987 	return NULL;
988 }
989 
990 static void
nvmet_fc_hostport_free(struct kref * ref)991 nvmet_fc_hostport_free(struct kref *ref)
992 {
993 	struct nvmet_fc_hostport *hostport =
994 		container_of(ref, struct nvmet_fc_hostport, ref);
995 	struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
996 	unsigned long flags;
997 
998 	spin_lock_irqsave(&tgtport->lock, flags);
999 	list_del(&hostport->host_list);
1000 	spin_unlock_irqrestore(&tgtport->lock, flags);
1001 	if (tgtport->ops->host_release && hostport->invalid)
1002 		tgtport->ops->host_release(hostport->hosthandle);
1003 	kfree(hostport);
1004 	nvmet_fc_tgtport_put(tgtport);
1005 }
1006 
1007 static void
nvmet_fc_hostport_put(struct nvmet_fc_hostport * hostport)1008 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1009 {
1010 	kref_put(&hostport->ref, nvmet_fc_hostport_free);
1011 }
1012 
1013 static int
nvmet_fc_hostport_get(struct nvmet_fc_hostport * hostport)1014 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1015 {
1016 	return kref_get_unless_zero(&hostport->ref);
1017 }
1018 
1019 static void
nvmet_fc_free_hostport(struct nvmet_fc_hostport * hostport)1020 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1021 {
1022 	/* if LLDD not implemented, leave as NULL */
1023 	if (!hostport || !hostport->hosthandle)
1024 		return;
1025 
1026 	nvmet_fc_hostport_put(hostport);
1027 }
1028 
1029 static struct nvmet_fc_hostport *
nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1030 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1031 {
1032 	struct nvmet_fc_hostport *newhost, *host, *match = NULL;
1033 	unsigned long flags;
1034 
1035 	/* if LLDD not implemented, leave as NULL */
1036 	if (!hosthandle)
1037 		return NULL;
1038 
1039 	/* take reference for what will be the newly allocated hostport */
1040 	if (!nvmet_fc_tgtport_get(tgtport))
1041 		return ERR_PTR(-EINVAL);
1042 
1043 	newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1044 	if (!newhost) {
1045 		spin_lock_irqsave(&tgtport->lock, flags);
1046 		list_for_each_entry(host, &tgtport->host_list, host_list) {
1047 			if (host->hosthandle == hosthandle && !host->invalid) {
1048 				if (nvmet_fc_hostport_get(host)) {
1049 					match = host;
1050 					break;
1051 				}
1052 			}
1053 		}
1054 		spin_unlock_irqrestore(&tgtport->lock, flags);
1055 		/* no allocation - release reference */
1056 		nvmet_fc_tgtport_put(tgtport);
1057 		return (match) ? match : ERR_PTR(-ENOMEM);
1058 	}
1059 
1060 	newhost->tgtport = tgtport;
1061 	newhost->hosthandle = hosthandle;
1062 	INIT_LIST_HEAD(&newhost->host_list);
1063 	kref_init(&newhost->ref);
1064 
1065 	spin_lock_irqsave(&tgtport->lock, flags);
1066 	list_for_each_entry(host, &tgtport->host_list, host_list) {
1067 		if (host->hosthandle == hosthandle && !host->invalid) {
1068 			if (nvmet_fc_hostport_get(host)) {
1069 				match = host;
1070 				break;
1071 			}
1072 		}
1073 	}
1074 	if (match) {
1075 		kfree(newhost);
1076 		newhost = NULL;
1077 		/* releasing allocation - release reference */
1078 		nvmet_fc_tgtport_put(tgtport);
1079 	} else
1080 		list_add_tail(&newhost->host_list, &tgtport->host_list);
1081 	spin_unlock_irqrestore(&tgtport->lock, flags);
1082 
1083 	return (match) ? match : newhost;
1084 }
1085 
1086 static void
nvmet_fc_delete_assoc(struct work_struct * work)1087 nvmet_fc_delete_assoc(struct work_struct *work)
1088 {
1089 	struct nvmet_fc_tgt_assoc *assoc =
1090 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1091 
1092 	nvmet_fc_delete_target_assoc(assoc);
1093 	nvmet_fc_tgt_a_put(assoc);
1094 }
1095 
1096 static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1097 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1098 {
1099 	struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1100 	unsigned long flags;
1101 	u64 ran;
1102 	int idx;
1103 	bool needrandom = true;
1104 
1105 	if (!tgtport->pe)
1106 		return NULL;
1107 
1108 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1109 	if (!assoc)
1110 		return NULL;
1111 
1112 	idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
1113 	if (idx < 0)
1114 		goto out_free_assoc;
1115 
1116 	if (!nvmet_fc_tgtport_get(tgtport))
1117 		goto out_ida;
1118 
1119 	assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1120 	if (IS_ERR(assoc->hostport))
1121 		goto out_put;
1122 
1123 	assoc->tgtport = tgtport;
1124 	assoc->a_id = idx;
1125 	INIT_LIST_HEAD(&assoc->a_list);
1126 	kref_init(&assoc->ref);
1127 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
1128 	atomic_set(&assoc->terminating, 0);
1129 
1130 	while (needrandom) {
1131 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1132 		ran = ran << BYTES_FOR_QID_SHIFT;
1133 
1134 		spin_lock_irqsave(&tgtport->lock, flags);
1135 		needrandom = false;
1136 		list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1137 			if (ran == tmpassoc->association_id) {
1138 				needrandom = true;
1139 				break;
1140 			}
1141 		}
1142 		if (!needrandom) {
1143 			assoc->association_id = ran;
1144 			list_add_tail(&assoc->a_list, &tgtport->assoc_list);
1145 		}
1146 		spin_unlock_irqrestore(&tgtport->lock, flags);
1147 	}
1148 
1149 	return assoc;
1150 
1151 out_put:
1152 	nvmet_fc_tgtport_put(tgtport);
1153 out_ida:
1154 	ida_simple_remove(&tgtport->assoc_cnt, idx);
1155 out_free_assoc:
1156 	kfree(assoc);
1157 	return NULL;
1158 }
1159 
1160 static void
nvmet_fc_target_assoc_free(struct kref * ref)1161 nvmet_fc_target_assoc_free(struct kref *ref)
1162 {
1163 	struct nvmet_fc_tgt_assoc *assoc =
1164 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1165 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1166 	struct nvmet_fc_ls_iod	*oldls;
1167 	unsigned long flags;
1168 
1169 	/* Send Disconnect now that all i/o has completed */
1170 	nvmet_fc_xmt_disconnect_assoc(assoc);
1171 
1172 	nvmet_fc_free_hostport(assoc->hostport);
1173 	spin_lock_irqsave(&tgtport->lock, flags);
1174 	list_del(&assoc->a_list);
1175 	oldls = assoc->rcv_disconn;
1176 	spin_unlock_irqrestore(&tgtport->lock, flags);
1177 	/* if pending Rcv Disconnect Association LS, send rsp now */
1178 	if (oldls)
1179 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1180 	ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
1181 	dev_info(tgtport->dev,
1182 		"{%d:%d} Association freed\n",
1183 		tgtport->fc_target_port.port_num, assoc->a_id);
1184 	kfree(assoc);
1185 	nvmet_fc_tgtport_put(tgtport);
1186 }
1187 
1188 static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc * assoc)1189 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1190 {
1191 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1192 }
1193 
1194 static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc * assoc)1195 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1196 {
1197 	return kref_get_unless_zero(&assoc->ref);
1198 }
1199 
1200 static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc * assoc)1201 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1202 {
1203 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1204 	struct nvmet_fc_tgt_queue *queue;
1205 	unsigned long flags;
1206 	int i, terminating;
1207 
1208 	terminating = atomic_xchg(&assoc->terminating, 1);
1209 
1210 	/* if already terminating, do nothing */
1211 	if (terminating)
1212 		return;
1213 
1214 	spin_lock_irqsave(&tgtport->lock, flags);
1215 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1216 		queue = assoc->queues[i];
1217 		if (queue) {
1218 			if (!nvmet_fc_tgt_q_get(queue))
1219 				continue;
1220 			spin_unlock_irqrestore(&tgtport->lock, flags);
1221 			nvmet_fc_delete_target_queue(queue);
1222 			nvmet_fc_tgt_q_put(queue);
1223 			spin_lock_irqsave(&tgtport->lock, flags);
1224 		}
1225 	}
1226 	spin_unlock_irqrestore(&tgtport->lock, flags);
1227 
1228 	dev_info(tgtport->dev,
1229 		"{%d:%d} Association deleted\n",
1230 		tgtport->fc_target_port.port_num, assoc->a_id);
1231 
1232 	nvmet_fc_tgt_a_put(assoc);
1233 }
1234 
1235 static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport * tgtport,u64 association_id)1236 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1237 				u64 association_id)
1238 {
1239 	struct nvmet_fc_tgt_assoc *assoc;
1240 	struct nvmet_fc_tgt_assoc *ret = NULL;
1241 	unsigned long flags;
1242 
1243 	spin_lock_irqsave(&tgtport->lock, flags);
1244 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1245 		if (association_id == assoc->association_id) {
1246 			ret = assoc;
1247 			if (!nvmet_fc_tgt_a_get(assoc))
1248 				ret = NULL;
1249 			break;
1250 		}
1251 	}
1252 	spin_unlock_irqrestore(&tgtport->lock, flags);
1253 
1254 	return ret;
1255 }
1256 
1257 static void
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_port_entry * pe,struct nvmet_port * port)1258 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1259 			struct nvmet_fc_port_entry *pe,
1260 			struct nvmet_port *port)
1261 {
1262 	lockdep_assert_held(&nvmet_fc_tgtlock);
1263 
1264 	pe->tgtport = tgtport;
1265 	tgtport->pe = pe;
1266 
1267 	pe->port = port;
1268 	port->priv = pe;
1269 
1270 	pe->node_name = tgtport->fc_target_port.node_name;
1271 	pe->port_name = tgtport->fc_target_port.port_name;
1272 	INIT_LIST_HEAD(&pe->pe_list);
1273 
1274 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1275 }
1276 
1277 static void
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry * pe)1278 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1279 {
1280 	unsigned long flags;
1281 
1282 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1283 	if (pe->tgtport)
1284 		pe->tgtport->pe = NULL;
1285 	list_del(&pe->pe_list);
1286 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1287 }
1288 
1289 /*
1290  * called when a targetport deregisters. Breaks the relationship
1291  * with the nvmet port, but leaves the port_entry in place so that
1292  * re-registration can resume operation.
1293  */
1294 static void
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport * tgtport)1295 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1296 {
1297 	struct nvmet_fc_port_entry *pe;
1298 	unsigned long flags;
1299 
1300 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1301 	pe = tgtport->pe;
1302 	if (pe)
1303 		pe->tgtport = NULL;
1304 	tgtport->pe = NULL;
1305 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1306 }
1307 
1308 /*
1309  * called when a new targetport is registered. Looks in the
1310  * existing nvmet port_entries to see if the nvmet layer is
1311  * configured for the targetport's wwn's. (the targetport existed,
1312  * nvmet configured, the lldd unregistered the tgtport, and is now
1313  * reregistering the same targetport).  If so, set the nvmet port
1314  * port entry on the targetport.
1315  */
1316 static void
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport * tgtport)1317 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1318 {
1319 	struct nvmet_fc_port_entry *pe;
1320 	unsigned long flags;
1321 
1322 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1323 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1324 		if (tgtport->fc_target_port.node_name == pe->node_name &&
1325 		    tgtport->fc_target_port.port_name == pe->port_name) {
1326 			WARN_ON(pe->tgtport);
1327 			tgtport->pe = pe;
1328 			pe->tgtport = tgtport;
1329 			break;
1330 		}
1331 	}
1332 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1333 }
1334 
1335 /**
1336  * nvme_fc_register_targetport - transport entry point called by an
1337  *                              LLDD to register the existence of a local
1338  *                              NVME subystem FC port.
1339  * @pinfo:     pointer to information about the port to be registered
1340  * @template:  LLDD entrypoints and operational parameters for the port
1341  * @dev:       physical hardware device node port corresponds to. Will be
1342  *             used for DMA mappings
1343  * @portptr:   pointer to a local port pointer. Upon success, the routine
1344  *             will allocate a nvme_fc_local_port structure and place its
1345  *             address in the local port pointer. Upon failure, local port
1346  *             pointer will be set to NULL.
1347  *
1348  * Returns:
1349  * a completion status. Must be 0 upon success; a negative errno
1350  * (ex: -ENXIO) upon failure.
1351  */
1352 int
nvmet_fc_register_targetport(struct nvmet_fc_port_info * pinfo,struct nvmet_fc_target_template * template,struct device * dev,struct nvmet_fc_target_port ** portptr)1353 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1354 			struct nvmet_fc_target_template *template,
1355 			struct device *dev,
1356 			struct nvmet_fc_target_port **portptr)
1357 {
1358 	struct nvmet_fc_tgtport *newrec;
1359 	unsigned long flags;
1360 	int ret, idx;
1361 
1362 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1363 	    !template->fcp_abort ||
1364 	    !template->fcp_req_release || !template->targetport_delete ||
1365 	    !template->max_hw_queues || !template->max_sgl_segments ||
1366 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1367 		ret = -EINVAL;
1368 		goto out_regtgt_failed;
1369 	}
1370 
1371 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1372 			 GFP_KERNEL);
1373 	if (!newrec) {
1374 		ret = -ENOMEM;
1375 		goto out_regtgt_failed;
1376 	}
1377 
1378 	idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1379 	if (idx < 0) {
1380 		ret = -ENOSPC;
1381 		goto out_fail_kfree;
1382 	}
1383 
1384 	if (!get_device(dev) && dev) {
1385 		ret = -ENODEV;
1386 		goto out_ida_put;
1387 	}
1388 
1389 	newrec->fc_target_port.node_name = pinfo->node_name;
1390 	newrec->fc_target_port.port_name = pinfo->port_name;
1391 	if (template->target_priv_sz)
1392 		newrec->fc_target_port.private = &newrec[1];
1393 	else
1394 		newrec->fc_target_port.private = NULL;
1395 	newrec->fc_target_port.port_id = pinfo->port_id;
1396 	newrec->fc_target_port.port_num = idx;
1397 	INIT_LIST_HEAD(&newrec->tgt_list);
1398 	newrec->dev = dev;
1399 	newrec->ops = template;
1400 	spin_lock_init(&newrec->lock);
1401 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
1402 	INIT_LIST_HEAD(&newrec->ls_req_list);
1403 	INIT_LIST_HEAD(&newrec->ls_busylist);
1404 	INIT_LIST_HEAD(&newrec->assoc_list);
1405 	INIT_LIST_HEAD(&newrec->host_list);
1406 	kref_init(&newrec->ref);
1407 	ida_init(&newrec->assoc_cnt);
1408 	newrec->max_sg_cnt = template->max_sgl_segments;
1409 
1410 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1411 	if (ret) {
1412 		ret = -ENOMEM;
1413 		goto out_free_newrec;
1414 	}
1415 
1416 	nvmet_fc_portentry_rebind_tgt(newrec);
1417 
1418 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1419 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1420 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1421 
1422 	*portptr = &newrec->fc_target_port;
1423 	return 0;
1424 
1425 out_free_newrec:
1426 	put_device(dev);
1427 out_ida_put:
1428 	ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1429 out_fail_kfree:
1430 	kfree(newrec);
1431 out_regtgt_failed:
1432 	*portptr = NULL;
1433 	return ret;
1434 }
1435 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1436 
1437 
1438 static void
nvmet_fc_free_tgtport(struct kref * ref)1439 nvmet_fc_free_tgtport(struct kref *ref)
1440 {
1441 	struct nvmet_fc_tgtport *tgtport =
1442 		container_of(ref, struct nvmet_fc_tgtport, ref);
1443 	struct device *dev = tgtport->dev;
1444 	unsigned long flags;
1445 
1446 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1447 	list_del(&tgtport->tgt_list);
1448 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1449 
1450 	nvmet_fc_free_ls_iodlist(tgtport);
1451 
1452 	/* let the LLDD know we've finished tearing it down */
1453 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1454 
1455 	ida_simple_remove(&nvmet_fc_tgtport_cnt,
1456 			tgtport->fc_target_port.port_num);
1457 
1458 	ida_destroy(&tgtport->assoc_cnt);
1459 
1460 	kfree(tgtport);
1461 
1462 	put_device(dev);
1463 }
1464 
1465 static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport * tgtport)1466 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1467 {
1468 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1469 }
1470 
1471 static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport * tgtport)1472 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1473 {
1474 	return kref_get_unless_zero(&tgtport->ref);
1475 }
1476 
1477 static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport * tgtport)1478 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1479 {
1480 	struct nvmet_fc_tgt_assoc *assoc, *next;
1481 	unsigned long flags;
1482 
1483 	spin_lock_irqsave(&tgtport->lock, flags);
1484 	list_for_each_entry_safe(assoc, next,
1485 				&tgtport->assoc_list, a_list) {
1486 		if (!nvmet_fc_tgt_a_get(assoc))
1487 			continue;
1488 		if (!schedule_work(&assoc->del_work))
1489 			/* already deleting - release local reference */
1490 			nvmet_fc_tgt_a_put(assoc);
1491 	}
1492 	spin_unlock_irqrestore(&tgtport->lock, flags);
1493 }
1494 
1495 /**
1496  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1497  *                       to remove references to a hosthandle for LS's.
1498  *
1499  * The nvmet-fc layer ensures that any references to the hosthandle
1500  * on the targetport are forgotten (set to NULL).  The LLDD will
1501  * typically call this when a login with a remote host port has been
1502  * lost, thus LS's for the remote host port are no longer possible.
1503  *
1504  * If an LS request is outstanding to the targetport/hosthandle (or
1505  * issued concurrently with the call to invalidate the host), the
1506  * LLDD is responsible for terminating/aborting the LS and completing
1507  * the LS request. It is recommended that these terminations/aborts
1508  * occur after calling to invalidate the host handle to avoid additional
1509  * retries by the nvmet-fc transport. The nvmet-fc transport may
1510  * continue to reference host handle while it cleans up outstanding
1511  * NVME associations. The nvmet-fc transport will call the
1512  * ops->host_release() callback to notify the LLDD that all references
1513  * are complete and the related host handle can be recovered.
1514  * Note: if there are no references, the callback may be called before
1515  * the invalidate host call returns.
1516  *
1517  * @target_port: pointer to the (registered) target port that a prior
1518  *              LS was received on and which supplied the transport the
1519  *              hosthandle.
1520  * @hosthandle: the handle (pointer) that represents the host port
1521  *              that no longer has connectivity and that LS's should
1522  *              no longer be directed to.
1523  */
1524 void
nvmet_fc_invalidate_host(struct nvmet_fc_target_port * target_port,void * hosthandle)1525 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1526 			void *hosthandle)
1527 {
1528 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1529 	struct nvmet_fc_tgt_assoc *assoc, *next;
1530 	unsigned long flags;
1531 	bool noassoc = true;
1532 
1533 	spin_lock_irqsave(&tgtport->lock, flags);
1534 	list_for_each_entry_safe(assoc, next,
1535 				&tgtport->assoc_list, a_list) {
1536 		if (!assoc->hostport ||
1537 		    assoc->hostport->hosthandle != hosthandle)
1538 			continue;
1539 		if (!nvmet_fc_tgt_a_get(assoc))
1540 			continue;
1541 		assoc->hostport->invalid = 1;
1542 		noassoc = false;
1543 		if (!schedule_work(&assoc->del_work))
1544 			/* already deleting - release local reference */
1545 			nvmet_fc_tgt_a_put(assoc);
1546 	}
1547 	spin_unlock_irqrestore(&tgtport->lock, flags);
1548 
1549 	/* if there's nothing to wait for - call the callback */
1550 	if (noassoc && tgtport->ops->host_release)
1551 		tgtport->ops->host_release(hosthandle);
1552 }
1553 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1554 
1555 /*
1556  * nvmet layer has called to terminate an association
1557  */
1558 static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl * ctrl)1559 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1560 {
1561 	struct nvmet_fc_tgtport *tgtport, *next;
1562 	struct nvmet_fc_tgt_assoc *assoc;
1563 	struct nvmet_fc_tgt_queue *queue;
1564 	unsigned long flags;
1565 	bool found_ctrl = false;
1566 
1567 	/* this is a bit ugly, but don't want to make locks layered */
1568 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1569 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1570 			tgt_list) {
1571 		if (!nvmet_fc_tgtport_get(tgtport))
1572 			continue;
1573 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1574 
1575 		spin_lock_irqsave(&tgtport->lock, flags);
1576 		list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1577 			queue = assoc->queues[0];
1578 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1579 				if (nvmet_fc_tgt_a_get(assoc))
1580 					found_ctrl = true;
1581 				break;
1582 			}
1583 		}
1584 		spin_unlock_irqrestore(&tgtport->lock, flags);
1585 
1586 		nvmet_fc_tgtport_put(tgtport);
1587 
1588 		if (found_ctrl) {
1589 			if (!schedule_work(&assoc->del_work))
1590 				/* already deleting - release local reference */
1591 				nvmet_fc_tgt_a_put(assoc);
1592 			return;
1593 		}
1594 
1595 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1596 	}
1597 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1598 }
1599 
1600 /**
1601  * nvme_fc_unregister_targetport - transport entry point called by an
1602  *                              LLDD to deregister/remove a previously
1603  *                              registered a local NVME subsystem FC port.
1604  * @target_port: pointer to the (registered) target port that is to be
1605  *               deregistered.
1606  *
1607  * Returns:
1608  * a completion status. Must be 0 upon success; a negative errno
1609  * (ex: -ENXIO) upon failure.
1610  */
1611 int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port * target_port)1612 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1613 {
1614 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1615 
1616 	nvmet_fc_portentry_unbind_tgt(tgtport);
1617 
1618 	/* terminate any outstanding associations */
1619 	__nvmet_fc_free_assocs(tgtport);
1620 
1621 	/*
1622 	 * should terminate LS's as well. However, LS's will be generated
1623 	 * at the tail end of association termination, so they likely don't
1624 	 * exist yet. And even if they did, it's worthwhile to just let
1625 	 * them finish and targetport ref counting will clean things up.
1626 	 */
1627 
1628 	nvmet_fc_tgtport_put(tgtport);
1629 
1630 	return 0;
1631 }
1632 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1633 
1634 
1635 /* ********************** FC-NVME LS RCV Handling ************************* */
1636 
1637 
1638 static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1639 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1640 			struct nvmet_fc_ls_iod *iod)
1641 {
1642 	struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1643 	struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1644 	struct nvmet_fc_tgt_queue *queue;
1645 	int ret = 0;
1646 
1647 	memset(acc, 0, sizeof(*acc));
1648 
1649 	/*
1650 	 * FC-NVME spec changes. There are initiators sending different
1651 	 * lengths as padding sizes for Create Association Cmd descriptor
1652 	 * was incorrect.
1653 	 * Accept anything of "minimum" length. Assume format per 1.15
1654 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1655 	 * trailing pad length is.
1656 	 */
1657 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1658 		ret = VERR_CR_ASSOC_LEN;
1659 	else if (be32_to_cpu(rqst->desc_list_len) <
1660 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1661 		ret = VERR_CR_ASSOC_RQST_LEN;
1662 	else if (rqst->assoc_cmd.desc_tag !=
1663 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1664 		ret = VERR_CR_ASSOC_CMD;
1665 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1666 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1667 		ret = VERR_CR_ASSOC_CMD_LEN;
1668 	else if (!rqst->assoc_cmd.ersp_ratio ||
1669 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1670 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1671 		ret = VERR_ERSP_RATIO;
1672 
1673 	else {
1674 		/* new association w/ admin queue */
1675 		iod->assoc = nvmet_fc_alloc_target_assoc(
1676 						tgtport, iod->hosthandle);
1677 		if (!iod->assoc)
1678 			ret = VERR_ASSOC_ALLOC_FAIL;
1679 		else {
1680 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1681 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1682 			if (!queue) {
1683 				ret = VERR_QUEUE_ALLOC_FAIL;
1684 				nvmet_fc_tgt_a_put(iod->assoc);
1685 			}
1686 		}
1687 	}
1688 
1689 	if (ret) {
1690 		dev_err(tgtport->dev,
1691 			"Create Association LS failed: %s\n",
1692 			validation_errors[ret]);
1693 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1694 				sizeof(*acc), rqst->w0.ls_cmd,
1695 				FCNVME_RJT_RC_LOGIC,
1696 				FCNVME_RJT_EXP_NONE, 0);
1697 		return;
1698 	}
1699 
1700 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1701 	atomic_set(&queue->connected, 1);
1702 	queue->sqhd = 0;	/* best place to init value */
1703 
1704 	dev_info(tgtport->dev,
1705 		"{%d:%d} Association created\n",
1706 		tgtport->fc_target_port.port_num, iod->assoc->a_id);
1707 
1708 	/* format a response */
1709 
1710 	iod->lsrsp->rsplen = sizeof(*acc);
1711 
1712 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1713 			fcnvme_lsdesc_len(
1714 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1715 			FCNVME_LS_CREATE_ASSOCIATION);
1716 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1717 	acc->associd.desc_len =
1718 			fcnvme_lsdesc_len(
1719 				sizeof(struct fcnvme_lsdesc_assoc_id));
1720 	acc->associd.association_id =
1721 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1722 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1723 	acc->connectid.desc_len =
1724 			fcnvme_lsdesc_len(
1725 				sizeof(struct fcnvme_lsdesc_conn_id));
1726 	acc->connectid.connection_id = acc->associd.association_id;
1727 }
1728 
1729 static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1730 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1731 			struct nvmet_fc_ls_iod *iod)
1732 {
1733 	struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1734 	struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1735 	struct nvmet_fc_tgt_queue *queue;
1736 	int ret = 0;
1737 
1738 	memset(acc, 0, sizeof(*acc));
1739 
1740 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1741 		ret = VERR_CR_CONN_LEN;
1742 	else if (rqst->desc_list_len !=
1743 			fcnvme_lsdesc_len(
1744 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1745 		ret = VERR_CR_CONN_RQST_LEN;
1746 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1747 		ret = VERR_ASSOC_ID;
1748 	else if (rqst->associd.desc_len !=
1749 			fcnvme_lsdesc_len(
1750 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1751 		ret = VERR_ASSOC_ID_LEN;
1752 	else if (rqst->connect_cmd.desc_tag !=
1753 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1754 		ret = VERR_CR_CONN_CMD;
1755 	else if (rqst->connect_cmd.desc_len !=
1756 			fcnvme_lsdesc_len(
1757 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1758 		ret = VERR_CR_CONN_CMD_LEN;
1759 	else if (!rqst->connect_cmd.ersp_ratio ||
1760 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1761 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1762 		ret = VERR_ERSP_RATIO;
1763 
1764 	else {
1765 		/* new io queue */
1766 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1767 				be64_to_cpu(rqst->associd.association_id));
1768 		if (!iod->assoc)
1769 			ret = VERR_NO_ASSOC;
1770 		else {
1771 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1772 					be16_to_cpu(rqst->connect_cmd.qid),
1773 					be16_to_cpu(rqst->connect_cmd.sqsize));
1774 			if (!queue)
1775 				ret = VERR_QUEUE_ALLOC_FAIL;
1776 
1777 			/* release get taken in nvmet_fc_find_target_assoc */
1778 			nvmet_fc_tgt_a_put(iod->assoc);
1779 		}
1780 	}
1781 
1782 	if (ret) {
1783 		dev_err(tgtport->dev,
1784 			"Create Connection LS failed: %s\n",
1785 			validation_errors[ret]);
1786 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1787 				sizeof(*acc), rqst->w0.ls_cmd,
1788 				(ret == VERR_NO_ASSOC) ?
1789 					FCNVME_RJT_RC_INV_ASSOC :
1790 					FCNVME_RJT_RC_LOGIC,
1791 				FCNVME_RJT_EXP_NONE, 0);
1792 		return;
1793 	}
1794 
1795 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1796 	atomic_set(&queue->connected, 1);
1797 	queue->sqhd = 0;	/* best place to init value */
1798 
1799 	/* format a response */
1800 
1801 	iod->lsrsp->rsplen = sizeof(*acc);
1802 
1803 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1804 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1805 			FCNVME_LS_CREATE_CONNECTION);
1806 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1807 	acc->connectid.desc_len =
1808 			fcnvme_lsdesc_len(
1809 				sizeof(struct fcnvme_lsdesc_conn_id));
1810 	acc->connectid.connection_id =
1811 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1812 				be16_to_cpu(rqst->connect_cmd.qid)));
1813 }
1814 
1815 /*
1816  * Returns true if the LS response is to be transmit
1817  * Returns false if the LS response is to be delayed
1818  */
1819 static int
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1820 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1821 			struct nvmet_fc_ls_iod *iod)
1822 {
1823 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1824 						&iod->rqstbuf->rq_dis_assoc;
1825 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1826 						&iod->rspbuf->rsp_dis_assoc;
1827 	struct nvmet_fc_tgt_assoc *assoc = NULL;
1828 	struct nvmet_fc_ls_iod *oldls = NULL;
1829 	unsigned long flags;
1830 	int ret = 0;
1831 
1832 	memset(acc, 0, sizeof(*acc));
1833 
1834 	ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1835 	if (!ret) {
1836 		/* match an active association - takes an assoc ref if !NULL */
1837 		assoc = nvmet_fc_find_target_assoc(tgtport,
1838 				be64_to_cpu(rqst->associd.association_id));
1839 		iod->assoc = assoc;
1840 		if (!assoc)
1841 			ret = VERR_NO_ASSOC;
1842 	}
1843 
1844 	if (ret || !assoc) {
1845 		dev_err(tgtport->dev,
1846 			"Disconnect LS failed: %s\n",
1847 			validation_errors[ret]);
1848 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1849 				sizeof(*acc), rqst->w0.ls_cmd,
1850 				(ret == VERR_NO_ASSOC) ?
1851 					FCNVME_RJT_RC_INV_ASSOC :
1852 					FCNVME_RJT_RC_LOGIC,
1853 				FCNVME_RJT_EXP_NONE, 0);
1854 		return true;
1855 	}
1856 
1857 	/* format a response */
1858 
1859 	iod->lsrsp->rsplen = sizeof(*acc);
1860 
1861 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1862 			fcnvme_lsdesc_len(
1863 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1864 			FCNVME_LS_DISCONNECT_ASSOC);
1865 
1866 	/* release get taken in nvmet_fc_find_target_assoc */
1867 	nvmet_fc_tgt_a_put(assoc);
1868 
1869 	/*
1870 	 * The rules for LS response says the response cannot
1871 	 * go back until ABTS's have been sent for all outstanding
1872 	 * I/O and a Disconnect Association LS has been sent.
1873 	 * So... save off the Disconnect LS to send the response
1874 	 * later. If there was a prior LS already saved, replace
1875 	 * it with the newer one and send a can't perform reject
1876 	 * on the older one.
1877 	 */
1878 	spin_lock_irqsave(&tgtport->lock, flags);
1879 	oldls = assoc->rcv_disconn;
1880 	assoc->rcv_disconn = iod;
1881 	spin_unlock_irqrestore(&tgtport->lock, flags);
1882 
1883 	nvmet_fc_delete_target_assoc(assoc);
1884 
1885 	if (oldls) {
1886 		dev_info(tgtport->dev,
1887 			"{%d:%d} Multiple Disconnect Association LS's "
1888 			"received\n",
1889 			tgtport->fc_target_port.port_num, assoc->a_id);
1890 		/* overwrite good response with bogus failure */
1891 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1892 						sizeof(*iod->rspbuf),
1893 						/* ok to use rqst, LS is same */
1894 						rqst->w0.ls_cmd,
1895 						FCNVME_RJT_RC_UNAB,
1896 						FCNVME_RJT_EXP_NONE, 0);
1897 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1898 	}
1899 
1900 	return false;
1901 }
1902 
1903 
1904 /* *********************** NVME Ctrl Routines **************************** */
1905 
1906 
1907 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1908 
1909 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1910 
1911 static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1912 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1913 {
1914 	struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1915 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1916 
1917 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1918 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1919 	nvmet_fc_free_ls_iod(tgtport, iod);
1920 	nvmet_fc_tgtport_put(tgtport);
1921 }
1922 
1923 static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1924 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1925 				struct nvmet_fc_ls_iod *iod)
1926 {
1927 	int ret;
1928 
1929 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1930 				  sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1931 
1932 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1933 	if (ret)
1934 		nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1935 }
1936 
1937 /*
1938  * Actual processing routine for received FC-NVME LS Requests from the LLD
1939  */
1940 static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1941 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1942 			struct nvmet_fc_ls_iod *iod)
1943 {
1944 	struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1945 	bool sendrsp = true;
1946 
1947 	iod->lsrsp->nvme_fc_private = iod;
1948 	iod->lsrsp->rspbuf = iod->rspbuf;
1949 	iod->lsrsp->rspdma = iod->rspdma;
1950 	iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1951 	/* Be preventative. handlers will later set to valid length */
1952 	iod->lsrsp->rsplen = 0;
1953 
1954 	iod->assoc = NULL;
1955 
1956 	/*
1957 	 * handlers:
1958 	 *   parse request input, execute the request, and format the
1959 	 *   LS response
1960 	 */
1961 	switch (w0->ls_cmd) {
1962 	case FCNVME_LS_CREATE_ASSOCIATION:
1963 		/* Creates Association and initial Admin Queue/Connection */
1964 		nvmet_fc_ls_create_association(tgtport, iod);
1965 		break;
1966 	case FCNVME_LS_CREATE_CONNECTION:
1967 		/* Creates an IO Queue/Connection */
1968 		nvmet_fc_ls_create_connection(tgtport, iod);
1969 		break;
1970 	case FCNVME_LS_DISCONNECT_ASSOC:
1971 		/* Terminate a Queue/Connection or the Association */
1972 		sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1973 		break;
1974 	default:
1975 		iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1976 				sizeof(*iod->rspbuf), w0->ls_cmd,
1977 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1978 	}
1979 
1980 	if (sendrsp)
1981 		nvmet_fc_xmt_ls_rsp(tgtport, iod);
1982 }
1983 
1984 /*
1985  * Actual processing routine for received FC-NVME LS Requests from the LLD
1986  */
1987 static void
nvmet_fc_handle_ls_rqst_work(struct work_struct * work)1988 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1989 {
1990 	struct nvmet_fc_ls_iod *iod =
1991 		container_of(work, struct nvmet_fc_ls_iod, work);
1992 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1993 
1994 	nvmet_fc_handle_ls_rqst(tgtport, iod);
1995 }
1996 
1997 
1998 /**
1999  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2000  *                       upon the reception of a NVME LS request.
2001  *
2002  * The nvmet-fc layer will copy payload to an internal structure for
2003  * processing.  As such, upon completion of the routine, the LLDD may
2004  * immediately free/reuse the LS request buffer passed in the call.
2005  *
2006  * If this routine returns error, the LLDD should abort the exchange.
2007  *
2008  * @target_port: pointer to the (registered) target port the LS was
2009  *              received on.
2010  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2011  *              the exchange corresponding to the LS.
2012  * @lsreqbuf:   pointer to the buffer containing the LS Request
2013  * @lsreqbuf_len: length, in bytes, of the received LS request
2014  */
2015 int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port * target_port,void * hosthandle,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)2016 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2017 			void *hosthandle,
2018 			struct nvmefc_ls_rsp *lsrsp,
2019 			void *lsreqbuf, u32 lsreqbuf_len)
2020 {
2021 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2022 	struct nvmet_fc_ls_iod *iod;
2023 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2024 
2025 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2026 		dev_info(tgtport->dev,
2027 			"RCV %s LS failed: payload too large (%d)\n",
2028 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2029 				nvmefc_ls_names[w0->ls_cmd] : "",
2030 			lsreqbuf_len);
2031 		return -E2BIG;
2032 	}
2033 
2034 	if (!nvmet_fc_tgtport_get(tgtport)) {
2035 		dev_info(tgtport->dev,
2036 			"RCV %s LS failed: target deleting\n",
2037 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2038 				nvmefc_ls_names[w0->ls_cmd] : "");
2039 		return -ESHUTDOWN;
2040 	}
2041 
2042 	iod = nvmet_fc_alloc_ls_iod(tgtport);
2043 	if (!iod) {
2044 		dev_info(tgtport->dev,
2045 			"RCV %s LS failed: context allocation failed\n",
2046 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2047 				nvmefc_ls_names[w0->ls_cmd] : "");
2048 		nvmet_fc_tgtport_put(tgtport);
2049 		return -ENOENT;
2050 	}
2051 
2052 	iod->lsrsp = lsrsp;
2053 	iod->fcpreq = NULL;
2054 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2055 	iod->rqstdatalen = lsreqbuf_len;
2056 	iod->hosthandle = hosthandle;
2057 
2058 	schedule_work(&iod->work);
2059 
2060 	return 0;
2061 }
2062 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2063 
2064 
2065 /*
2066  * **********************
2067  * Start of FCP handling
2068  * **********************
2069  */
2070 
2071 static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2072 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2073 {
2074 	struct scatterlist *sg;
2075 	unsigned int nent;
2076 
2077 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2078 	if (!sg)
2079 		goto out;
2080 
2081 	fod->data_sg = sg;
2082 	fod->data_sg_cnt = nent;
2083 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2084 				((fod->io_dir == NVMET_FCP_WRITE) ?
2085 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2086 				/* note: write from initiator perspective */
2087 	fod->next_sg = fod->data_sg;
2088 
2089 	return 0;
2090 
2091 out:
2092 	return NVME_SC_INTERNAL;
2093 }
2094 
2095 static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2096 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2097 {
2098 	if (!fod->data_sg || !fod->data_sg_cnt)
2099 		return;
2100 
2101 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2102 				((fod->io_dir == NVMET_FCP_WRITE) ?
2103 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2104 	sgl_free(fod->data_sg);
2105 	fod->data_sg = NULL;
2106 	fod->data_sg_cnt = 0;
2107 }
2108 
2109 
2110 static bool
queue_90percent_full(struct nvmet_fc_tgt_queue * q,u32 sqhd)2111 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2112 {
2113 	u32 sqtail, used;
2114 
2115 	/* egad, this is ugly. And sqtail is just a best guess */
2116 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
2117 
2118 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2119 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2120 }
2121 
2122 /*
2123  * Prep RSP payload.
2124  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2125  */
2126 static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2127 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2128 				struct nvmet_fc_fcp_iod *fod)
2129 {
2130 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2131 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2132 	struct nvme_completion *cqe = &ersp->cqe;
2133 	u32 *cqewd = (u32 *)cqe;
2134 	bool send_ersp = false;
2135 	u32 rsn, rspcnt, xfr_length;
2136 
2137 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2138 		xfr_length = fod->req.transfer_len;
2139 	else
2140 		xfr_length = fod->offset;
2141 
2142 	/*
2143 	 * check to see if we can send a 0's rsp.
2144 	 *   Note: to send a 0's response, the NVME-FC host transport will
2145 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
2146 	 *   seen in an ersp), and command_id. Thus it will create a
2147 	 *   zero-filled CQE with those known fields filled in. Transport
2148 	 *   must send an ersp for any condition where the cqe won't match
2149 	 *   this.
2150 	 *
2151 	 * Here are the FC-NVME mandated cases where we must send an ersp:
2152 	 *  every N responses, where N=ersp_ratio
2153 	 *  force fabric commands to send ersp's (not in FC-NVME but good
2154 	 *    practice)
2155 	 *  normal cmds: any time status is non-zero, or status is zero
2156 	 *     but words 0 or 1 are non-zero.
2157 	 *  the SQ is 90% or more full
2158 	 *  the cmd is a fused command
2159 	 *  transferred data length not equal to cmd iu length
2160 	 */
2161 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2162 	if (!(rspcnt % fod->queue->ersp_ratio) ||
2163 	    nvme_is_fabrics((struct nvme_command *) sqe) ||
2164 	    xfr_length != fod->req.transfer_len ||
2165 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2166 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2167 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2168 		send_ersp = true;
2169 
2170 	/* re-set the fields */
2171 	fod->fcpreq->rspaddr = ersp;
2172 	fod->fcpreq->rspdma = fod->rspdma;
2173 
2174 	if (!send_ersp) {
2175 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2176 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2177 	} else {
2178 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2179 		rsn = atomic_inc_return(&fod->queue->rsn);
2180 		ersp->rsn = cpu_to_be32(rsn);
2181 		ersp->xfrd_len = cpu_to_be32(xfr_length);
2182 		fod->fcpreq->rsplen = sizeof(*ersp);
2183 	}
2184 
2185 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2186 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2187 }
2188 
2189 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2190 
2191 static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2192 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2193 				struct nvmet_fc_fcp_iod *fod)
2194 {
2195 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2196 
2197 	/* data no longer needed */
2198 	nvmet_fc_free_tgt_pgs(fod);
2199 
2200 	/*
2201 	 * if an ABTS was received or we issued the fcp_abort early
2202 	 * don't call abort routine again.
2203 	 */
2204 	/* no need to take lock - lock was taken earlier to get here */
2205 	if (!fod->aborted)
2206 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2207 
2208 	nvmet_fc_free_fcp_iod(fod->queue, fod);
2209 }
2210 
2211 static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2212 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2213 				struct nvmet_fc_fcp_iod *fod)
2214 {
2215 	int ret;
2216 
2217 	fod->fcpreq->op = NVMET_FCOP_RSP;
2218 	fod->fcpreq->timeout = 0;
2219 
2220 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
2221 
2222 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2223 	if (ret)
2224 		nvmet_fc_abort_op(tgtport, fod);
2225 }
2226 
2227 static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,u8 op)2228 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2229 				struct nvmet_fc_fcp_iod *fod, u8 op)
2230 {
2231 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2232 	struct scatterlist *sg = fod->next_sg;
2233 	unsigned long flags;
2234 	u32 remaininglen = fod->req.transfer_len - fod->offset;
2235 	u32 tlen = 0;
2236 	int ret;
2237 
2238 	fcpreq->op = op;
2239 	fcpreq->offset = fod->offset;
2240 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2241 
2242 	/*
2243 	 * for next sequence:
2244 	 *  break at a sg element boundary
2245 	 *  attempt to keep sequence length capped at
2246 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2247 	 *    be longer if a single sg element is larger
2248 	 *    than that amount. This is done to avoid creating
2249 	 *    a new sg list to use for the tgtport api.
2250 	 */
2251 	fcpreq->sg = sg;
2252 	fcpreq->sg_cnt = 0;
2253 	while (tlen < remaininglen &&
2254 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2255 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2256 		fcpreq->sg_cnt++;
2257 		tlen += sg_dma_len(sg);
2258 		sg = sg_next(sg);
2259 	}
2260 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2261 		fcpreq->sg_cnt++;
2262 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2263 		sg = sg_next(sg);
2264 	}
2265 	if (tlen < remaininglen)
2266 		fod->next_sg = sg;
2267 	else
2268 		fod->next_sg = NULL;
2269 
2270 	fcpreq->transfer_length = tlen;
2271 	fcpreq->transferred_length = 0;
2272 	fcpreq->fcp_error = 0;
2273 	fcpreq->rsplen = 0;
2274 
2275 	/*
2276 	 * If the last READDATA request: check if LLDD supports
2277 	 * combined xfr with response.
2278 	 */
2279 	if ((op == NVMET_FCOP_READDATA) &&
2280 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2281 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2282 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
2283 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
2284 	}
2285 
2286 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2287 	if (ret) {
2288 		/*
2289 		 * should be ok to set w/o lock as its in the thread of
2290 		 * execution (not an async timer routine) and doesn't
2291 		 * contend with any clearing action
2292 		 */
2293 		fod->abort = true;
2294 
2295 		if (op == NVMET_FCOP_WRITEDATA) {
2296 			spin_lock_irqsave(&fod->flock, flags);
2297 			fod->writedataactive = false;
2298 			spin_unlock_irqrestore(&fod->flock, flags);
2299 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2300 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2301 			fcpreq->fcp_error = ret;
2302 			fcpreq->transferred_length = 0;
2303 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2304 		}
2305 	}
2306 }
2307 
2308 static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod * fod,bool abort)2309 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2310 {
2311 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2312 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2313 
2314 	/* if in the middle of an io and we need to tear down */
2315 	if (abort) {
2316 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2317 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2318 			return true;
2319 		}
2320 
2321 		nvmet_fc_abort_op(tgtport, fod);
2322 		return true;
2323 	}
2324 
2325 	return false;
2326 }
2327 
2328 /*
2329  * actual done handler for FCP operations when completed by the lldd
2330  */
2331 static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod * fod)2332 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2333 {
2334 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2335 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2336 	unsigned long flags;
2337 	bool abort;
2338 
2339 	spin_lock_irqsave(&fod->flock, flags);
2340 	abort = fod->abort;
2341 	fod->writedataactive = false;
2342 	spin_unlock_irqrestore(&fod->flock, flags);
2343 
2344 	switch (fcpreq->op) {
2345 
2346 	case NVMET_FCOP_WRITEDATA:
2347 		if (__nvmet_fc_fod_op_abort(fod, abort))
2348 			return;
2349 		if (fcpreq->fcp_error ||
2350 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2351 			spin_lock_irqsave(&fod->flock, flags);
2352 			fod->abort = true;
2353 			spin_unlock_irqrestore(&fod->flock, flags);
2354 
2355 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2356 			return;
2357 		}
2358 
2359 		fod->offset += fcpreq->transferred_length;
2360 		if (fod->offset != fod->req.transfer_len) {
2361 			spin_lock_irqsave(&fod->flock, flags);
2362 			fod->writedataactive = true;
2363 			spin_unlock_irqrestore(&fod->flock, flags);
2364 
2365 			/* transfer the next chunk */
2366 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2367 						NVMET_FCOP_WRITEDATA);
2368 			return;
2369 		}
2370 
2371 		/* data transfer complete, resume with nvmet layer */
2372 		fod->req.execute(&fod->req);
2373 		break;
2374 
2375 	case NVMET_FCOP_READDATA:
2376 	case NVMET_FCOP_READDATA_RSP:
2377 		if (__nvmet_fc_fod_op_abort(fod, abort))
2378 			return;
2379 		if (fcpreq->fcp_error ||
2380 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2381 			nvmet_fc_abort_op(tgtport, fod);
2382 			return;
2383 		}
2384 
2385 		/* success */
2386 
2387 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2388 			/* data no longer needed */
2389 			nvmet_fc_free_tgt_pgs(fod);
2390 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2391 			return;
2392 		}
2393 
2394 		fod->offset += fcpreq->transferred_length;
2395 		if (fod->offset != fod->req.transfer_len) {
2396 			/* transfer the next chunk */
2397 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2398 						NVMET_FCOP_READDATA);
2399 			return;
2400 		}
2401 
2402 		/* data transfer complete, send response */
2403 
2404 		/* data no longer needed */
2405 		nvmet_fc_free_tgt_pgs(fod);
2406 
2407 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2408 
2409 		break;
2410 
2411 	case NVMET_FCOP_RSP:
2412 		if (__nvmet_fc_fod_op_abort(fod, abort))
2413 			return;
2414 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2415 		break;
2416 
2417 	default:
2418 		break;
2419 	}
2420 }
2421 
2422 static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req * fcpreq)2423 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2424 {
2425 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2426 
2427 	nvmet_fc_fod_op_done(fod);
2428 }
2429 
2430 /*
2431  * actual completion handler after execution by the nvmet layer
2432  */
2433 static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,int status)2434 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2435 			struct nvmet_fc_fcp_iod *fod, int status)
2436 {
2437 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2438 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2439 	unsigned long flags;
2440 	bool abort;
2441 
2442 	spin_lock_irqsave(&fod->flock, flags);
2443 	abort = fod->abort;
2444 	spin_unlock_irqrestore(&fod->flock, flags);
2445 
2446 	/* if we have a CQE, snoop the last sq_head value */
2447 	if (!status)
2448 		fod->queue->sqhd = cqe->sq_head;
2449 
2450 	if (abort) {
2451 		nvmet_fc_abort_op(tgtport, fod);
2452 		return;
2453 	}
2454 
2455 	/* if an error handling the cmd post initial parsing */
2456 	if (status) {
2457 		/* fudge up a failed CQE status for our transport error */
2458 		memset(cqe, 0, sizeof(*cqe));
2459 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2460 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2461 		cqe->command_id = sqe->command_id;
2462 		cqe->status = cpu_to_le16(status);
2463 	} else {
2464 
2465 		/*
2466 		 * try to push the data even if the SQE status is non-zero.
2467 		 * There may be a status where data still was intended to
2468 		 * be moved
2469 		 */
2470 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2471 			/* push the data over before sending rsp */
2472 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2473 						NVMET_FCOP_READDATA);
2474 			return;
2475 		}
2476 
2477 		/* writes & no data - fall thru */
2478 	}
2479 
2480 	/* data no longer needed */
2481 	nvmet_fc_free_tgt_pgs(fod);
2482 
2483 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2484 }
2485 
2486 
2487 static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req * nvme_req)2488 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2489 {
2490 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2491 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2492 
2493 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2494 }
2495 
2496 
2497 /*
2498  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2499  */
2500 static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2501 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2502 			struct nvmet_fc_fcp_iod *fod)
2503 {
2504 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2505 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2506 	int ret;
2507 
2508 	/*
2509 	 * Fused commands are currently not supported in the linux
2510 	 * implementation.
2511 	 *
2512 	 * As such, the implementation of the FC transport does not
2513 	 * look at the fused commands and order delivery to the upper
2514 	 * layer until we have both based on csn.
2515 	 */
2516 
2517 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2518 
2519 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2520 		fod->io_dir = NVMET_FCP_WRITE;
2521 		if (!nvme_is_write(&cmdiu->sqe))
2522 			goto transport_error;
2523 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2524 		fod->io_dir = NVMET_FCP_READ;
2525 		if (nvme_is_write(&cmdiu->sqe))
2526 			goto transport_error;
2527 	} else {
2528 		fod->io_dir = NVMET_FCP_NODATA;
2529 		if (xfrlen)
2530 			goto transport_error;
2531 	}
2532 
2533 	fod->req.cmd = &fod->cmdiubuf.sqe;
2534 	fod->req.cqe = &fod->rspiubuf.cqe;
2535 	if (!tgtport->pe)
2536 		goto transport_error;
2537 	fod->req.port = tgtport->pe->port;
2538 
2539 	/* clear any response payload */
2540 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2541 
2542 	fod->data_sg = NULL;
2543 	fod->data_sg_cnt = 0;
2544 
2545 	ret = nvmet_req_init(&fod->req,
2546 				&fod->queue->nvme_cq,
2547 				&fod->queue->nvme_sq,
2548 				&nvmet_fc_tgt_fcp_ops);
2549 	if (!ret) {
2550 		/* bad SQE content or invalid ctrl state */
2551 		/* nvmet layer has already called op done to send rsp. */
2552 		return;
2553 	}
2554 
2555 	fod->req.transfer_len = xfrlen;
2556 
2557 	/* keep a running counter of tail position */
2558 	atomic_inc(&fod->queue->sqtail);
2559 
2560 	if (fod->req.transfer_len) {
2561 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2562 		if (ret) {
2563 			nvmet_req_complete(&fod->req, ret);
2564 			return;
2565 		}
2566 	}
2567 	fod->req.sg = fod->data_sg;
2568 	fod->req.sg_cnt = fod->data_sg_cnt;
2569 	fod->offset = 0;
2570 
2571 	if (fod->io_dir == NVMET_FCP_WRITE) {
2572 		/* pull the data over before invoking nvmet layer */
2573 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2574 		return;
2575 	}
2576 
2577 	/*
2578 	 * Reads or no data:
2579 	 *
2580 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2581 	 * push the data
2582 	 */
2583 	fod->req.execute(&fod->req);
2584 	return;
2585 
2586 transport_error:
2587 	nvmet_fc_abort_op(tgtport, fod);
2588 }
2589 
2590 /**
2591  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2592  *                       upon the reception of a NVME FCP CMD IU.
2593  *
2594  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2595  * layer for processing.
2596  *
2597  * The nvmet_fc layer allocates a local job structure (struct
2598  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2599  * CMD IU buffer to the job structure. As such, on a successful
2600  * completion (returns 0), the LLDD may immediately free/reuse
2601  * the CMD IU buffer passed in the call.
2602  *
2603  * However, in some circumstances, due to the packetized nature of FC
2604  * and the api of the FC LLDD which may issue a hw command to send the
2605  * response, but the LLDD may not get the hw completion for that command
2606  * and upcall the nvmet_fc layer before a new command may be
2607  * asynchronously received - its possible for a command to be received
2608  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2609  * the appearance of more commands received than fits in the sq.
2610  * To alleviate this scenario, a temporary queue is maintained in the
2611  * transport for pending LLDD requests waiting for a queue job structure.
2612  * In these "overrun" cases, a temporary queue element is allocated
2613  * the LLDD request and CMD iu buffer information remembered, and the
2614  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2615  * structure is freed, it is immediately reallocated for anything on the
2616  * pending request list. The LLDDs defer_rcv() callback is called,
2617  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2618  * is then started normally with the transport.
2619  *
2620  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2621  * the completion as successful but must not reuse the CMD IU buffer
2622  * until the LLDD's defer_rcv() callback has been called for the
2623  * corresponding struct nvmefc_tgt_fcp_req pointer.
2624  *
2625  * If there is any other condition in which an error occurs, the
2626  * transport will return a non-zero status indicating the error.
2627  * In all cases other than -EOVERFLOW, the transport has not accepted the
2628  * request and the LLDD should abort the exchange.
2629  *
2630  * @target_port: pointer to the (registered) target port the FCP CMD IU
2631  *              was received on.
2632  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2633  *              the exchange corresponding to the FCP Exchange.
2634  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2635  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2636  */
2637 int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq,void * cmdiubuf,u32 cmdiubuf_len)2638 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2639 			struct nvmefc_tgt_fcp_req *fcpreq,
2640 			void *cmdiubuf, u32 cmdiubuf_len)
2641 {
2642 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2643 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2644 	struct nvmet_fc_tgt_queue *queue;
2645 	struct nvmet_fc_fcp_iod *fod;
2646 	struct nvmet_fc_defer_fcp_req *deferfcp;
2647 	unsigned long flags;
2648 
2649 	/* validate iu, so the connection id can be used to find the queue */
2650 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2651 			(cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2652 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2653 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2654 		return -EIO;
2655 
2656 	queue = nvmet_fc_find_target_queue(tgtport,
2657 				be64_to_cpu(cmdiu->connection_id));
2658 	if (!queue)
2659 		return -ENOTCONN;
2660 
2661 	/*
2662 	 * note: reference taken by find_target_queue
2663 	 * After successful fod allocation, the fod will inherit the
2664 	 * ownership of that reference and will remove the reference
2665 	 * when the fod is freed.
2666 	 */
2667 
2668 	spin_lock_irqsave(&queue->qlock, flags);
2669 
2670 	fod = nvmet_fc_alloc_fcp_iod(queue);
2671 	if (fod) {
2672 		spin_unlock_irqrestore(&queue->qlock, flags);
2673 
2674 		fcpreq->nvmet_fc_private = fod;
2675 		fod->fcpreq = fcpreq;
2676 
2677 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2678 
2679 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2680 
2681 		return 0;
2682 	}
2683 
2684 	if (!tgtport->ops->defer_rcv) {
2685 		spin_unlock_irqrestore(&queue->qlock, flags);
2686 		/* release the queue lookup reference */
2687 		nvmet_fc_tgt_q_put(queue);
2688 		return -ENOENT;
2689 	}
2690 
2691 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2692 			struct nvmet_fc_defer_fcp_req, req_list);
2693 	if (deferfcp) {
2694 		/* Just re-use one that was previously allocated */
2695 		list_del(&deferfcp->req_list);
2696 	} else {
2697 		spin_unlock_irqrestore(&queue->qlock, flags);
2698 
2699 		/* Now we need to dynamically allocate one */
2700 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2701 		if (!deferfcp) {
2702 			/* release the queue lookup reference */
2703 			nvmet_fc_tgt_q_put(queue);
2704 			return -ENOMEM;
2705 		}
2706 		spin_lock_irqsave(&queue->qlock, flags);
2707 	}
2708 
2709 	/* For now, use rspaddr / rsplen to save payload information */
2710 	fcpreq->rspaddr = cmdiubuf;
2711 	fcpreq->rsplen  = cmdiubuf_len;
2712 	deferfcp->fcp_req = fcpreq;
2713 
2714 	/* defer processing till a fod becomes available */
2715 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2716 
2717 	/* NOTE: the queue lookup reference is still valid */
2718 
2719 	spin_unlock_irqrestore(&queue->qlock, flags);
2720 
2721 	return -EOVERFLOW;
2722 }
2723 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2724 
2725 /**
2726  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2727  *                       upon the reception of an ABTS for a FCP command
2728  *
2729  * Notify the transport that an ABTS has been received for a FCP command
2730  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2731  * LLDD believes the command is still being worked on
2732  * (template_ops->fcp_req_release() has not been called).
2733  *
2734  * The transport will wait for any outstanding work (an op to the LLDD,
2735  * which the lldd should complete with error due to the ABTS; or the
2736  * completion from the nvmet layer of the nvme command), then will
2737  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2738  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2739  * to the ABTS either after return from this function (assuming any
2740  * outstanding op work has been terminated) or upon the callback being
2741  * called.
2742  *
2743  * @target_port: pointer to the (registered) target port the FCP CMD IU
2744  *              was received on.
2745  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2746  *              to the exchange that received the ABTS.
2747  */
2748 void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq)2749 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2750 			struct nvmefc_tgt_fcp_req *fcpreq)
2751 {
2752 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2753 	struct nvmet_fc_tgt_queue *queue;
2754 	unsigned long flags;
2755 
2756 	if (!fod || fod->fcpreq != fcpreq)
2757 		/* job appears to have already completed, ignore abort */
2758 		return;
2759 
2760 	queue = fod->queue;
2761 
2762 	spin_lock_irqsave(&queue->qlock, flags);
2763 	if (fod->active) {
2764 		/*
2765 		 * mark as abort. The abort handler, invoked upon completion
2766 		 * of any work, will detect the aborted status and do the
2767 		 * callback.
2768 		 */
2769 		spin_lock(&fod->flock);
2770 		fod->abort = true;
2771 		fod->aborted = true;
2772 		spin_unlock(&fod->flock);
2773 	}
2774 	spin_unlock_irqrestore(&queue->qlock, flags);
2775 }
2776 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2777 
2778 
2779 struct nvmet_fc_traddr {
2780 	u64	nn;
2781 	u64	pn;
2782 };
2783 
2784 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)2785 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2786 {
2787 	u64 token64;
2788 
2789 	if (match_u64(sstr, &token64))
2790 		return -EINVAL;
2791 	*val = token64;
2792 
2793 	return 0;
2794 }
2795 
2796 /*
2797  * This routine validates and extracts the WWN's from the TRADDR string.
2798  * As kernel parsers need the 0x to determine number base, universally
2799  * build string to parse with 0x prefix before parsing name strings.
2800  */
2801 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)2802 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2803 {
2804 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2805 	substring_t wwn = { name, &name[sizeof(name)-1] };
2806 	int nnoffset, pnoffset;
2807 
2808 	/* validate if string is one of the 2 allowed formats */
2809 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2810 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2811 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2812 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2813 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2814 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2815 						NVME_FC_TRADDR_OXNNLEN;
2816 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2817 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2818 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2819 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2820 		nnoffset = NVME_FC_TRADDR_NNLEN;
2821 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2822 	} else
2823 		goto out_einval;
2824 
2825 	name[0] = '0';
2826 	name[1] = 'x';
2827 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2828 
2829 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2830 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2831 		goto out_einval;
2832 
2833 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2834 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2835 		goto out_einval;
2836 
2837 	return 0;
2838 
2839 out_einval:
2840 	pr_warn("%s: bad traddr string\n", __func__);
2841 	return -EINVAL;
2842 }
2843 
2844 static int
nvmet_fc_add_port(struct nvmet_port * port)2845 nvmet_fc_add_port(struct nvmet_port *port)
2846 {
2847 	struct nvmet_fc_tgtport *tgtport;
2848 	struct nvmet_fc_port_entry *pe;
2849 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2850 	unsigned long flags;
2851 	int ret;
2852 
2853 	/* validate the address info */
2854 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2855 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2856 		return -EINVAL;
2857 
2858 	/* map the traddr address info to a target port */
2859 
2860 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2861 			sizeof(port->disc_addr.traddr));
2862 	if (ret)
2863 		return ret;
2864 
2865 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2866 	if (!pe)
2867 		return -ENOMEM;
2868 
2869 	ret = -ENXIO;
2870 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2871 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2872 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2873 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2874 			/* a FC port can only be 1 nvmet port id */
2875 			if (!tgtport->pe) {
2876 				nvmet_fc_portentry_bind(tgtport, pe, port);
2877 				ret = 0;
2878 			} else
2879 				ret = -EALREADY;
2880 			break;
2881 		}
2882 	}
2883 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2884 
2885 	if (ret)
2886 		kfree(pe);
2887 
2888 	return ret;
2889 }
2890 
2891 static void
nvmet_fc_remove_port(struct nvmet_port * port)2892 nvmet_fc_remove_port(struct nvmet_port *port)
2893 {
2894 	struct nvmet_fc_port_entry *pe = port->priv;
2895 
2896 	nvmet_fc_portentry_unbind(pe);
2897 
2898 	kfree(pe);
2899 }
2900 
2901 static void
nvmet_fc_discovery_chg(struct nvmet_port * port)2902 nvmet_fc_discovery_chg(struct nvmet_port *port)
2903 {
2904 	struct nvmet_fc_port_entry *pe = port->priv;
2905 	struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2906 
2907 	if (tgtport && tgtport->ops->discovery_event)
2908 		tgtport->ops->discovery_event(&tgtport->fc_target_port);
2909 }
2910 
2911 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2912 	.owner			= THIS_MODULE,
2913 	.type			= NVMF_TRTYPE_FC,
2914 	.msdbd			= 1,
2915 	.add_port		= nvmet_fc_add_port,
2916 	.remove_port		= nvmet_fc_remove_port,
2917 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2918 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2919 	.discovery_chg		= nvmet_fc_discovery_chg,
2920 };
2921 
nvmet_fc_init_module(void)2922 static int __init nvmet_fc_init_module(void)
2923 {
2924 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2925 }
2926 
nvmet_fc_exit_module(void)2927 static void __exit nvmet_fc_exit_module(void)
2928 {
2929 	/* sanity check - all lports should be removed */
2930 	if (!list_empty(&nvmet_fc_target_list))
2931 		pr_warn("%s: targetport list not empty\n", __func__);
2932 
2933 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2934 
2935 	ida_destroy(&nvmet_fc_tgtport_cnt);
2936 }
2937 
2938 module_init(nvmet_fc_init_module);
2939 module_exit(nvmet_fc_exit_module);
2940 
2941 MODULE_LICENSE("GPL v2");
2942