1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2007 Cavium Networks
7 * Copyright (C) 2008, 2009 Wind River Systems
8 * written by Ralf Baechle <ralf@linux-mips.org>
9 */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/memblock.h>
20 #include <linux/serial.h>
21 #include <linux/smp.h>
22 #include <linux/types.h>
23 #include <linux/string.h> /* for memset */
24 #include <linux/tty.h>
25 #include <linux/time.h>
26 #include <linux/platform_device.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial_8250.h>
29 #include <linux/of_fdt.h>
30 #include <linux/libfdt.h>
31 #include <linux/kexec.h>
32
33 #include <asm/processor.h>
34 #include <asm/reboot.h>
35 #include <asm/smp-ops.h>
36 #include <asm/irq_cpu.h>
37 #include <asm/mipsregs.h>
38 #include <asm/bootinfo.h>
39 #include <asm/sections.h>
40 #include <asm/fw/fw.h>
41 #include <asm/setup.h>
42 #include <asm/prom.h>
43 #include <asm/time.h>
44
45 #include <asm/octeon/octeon.h>
46 #include <asm/octeon/pci-octeon.h>
47 #include <asm/octeon/cvmx-rst-defs.h>
48
49 /*
50 * TRUE for devices having registers with little-endian byte
51 * order, FALSE for registers with native-endian byte order.
52 * PCI mandates little-endian, USB and SATA are configuraable,
53 * but we chose little-endian for these.
54 */
55 const bool octeon_should_swizzle_table[256] = {
56 [0x00] = true, /* bootbus/CF */
57 [0x1b] = true, /* PCI mmio window */
58 [0x1c] = true, /* PCI mmio window */
59 [0x1d] = true, /* PCI mmio window */
60 [0x1e] = true, /* PCI mmio window */
61 [0x68] = true, /* OCTEON III USB */
62 [0x69] = true, /* OCTEON III USB */
63 [0x6c] = true, /* OCTEON III SATA */
64 [0x6f] = true, /* OCTEON II USB */
65 };
66 EXPORT_SYMBOL(octeon_should_swizzle_table);
67
68 #ifdef CONFIG_PCI
69 extern void pci_console_init(const char *arg);
70 #endif
71
72 static unsigned long long max_memory = ULLONG_MAX;
73 static unsigned long long reserve_low_mem;
74
75 DEFINE_SEMAPHORE(octeon_bootbus_sem);
76 EXPORT_SYMBOL(octeon_bootbus_sem);
77
78 static struct octeon_boot_descriptor *octeon_boot_desc_ptr;
79
80 struct cvmx_bootinfo *octeon_bootinfo;
81 EXPORT_SYMBOL(octeon_bootinfo);
82
83 #ifdef CONFIG_KEXEC
84 #ifdef CONFIG_SMP
85 /*
86 * Wait for relocation code is prepared and send
87 * secondary CPUs to spin until kernel is relocated.
88 */
octeon_kexec_smp_down(void * ignored)89 static void octeon_kexec_smp_down(void *ignored)
90 {
91 int cpu = smp_processor_id();
92
93 local_irq_disable();
94 set_cpu_online(cpu, false);
95 while (!atomic_read(&kexec_ready_to_reboot))
96 cpu_relax();
97
98 asm volatile (
99 " sync \n"
100 " synci ($0) \n");
101
102 kexec_reboot();
103 }
104 #endif
105
106 #define OCTEON_DDR0_BASE (0x0ULL)
107 #define OCTEON_DDR0_SIZE (0x010000000ULL)
108 #define OCTEON_DDR1_BASE (0x410000000ULL)
109 #define OCTEON_DDR1_SIZE (0x010000000ULL)
110 #define OCTEON_DDR2_BASE (0x020000000ULL)
111 #define OCTEON_DDR2_SIZE (0x3e0000000ULL)
112 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
113
114 static struct kimage *kimage_ptr;
115
kexec_bootmem_init(uint64_t mem_size,uint32_t low_reserved_bytes)116 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
117 {
118 int64_t addr;
119 struct cvmx_bootmem_desc *bootmem_desc;
120
121 bootmem_desc = cvmx_bootmem_get_desc();
122
123 if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
124 mem_size = OCTEON_MAX_PHY_MEM_SIZE;
125 pr_err("Error: requested memory too large,"
126 "truncating to maximum size\n");
127 }
128
129 bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
130 bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
131
132 addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
133 bootmem_desc->head_addr = 0;
134
135 if (mem_size <= OCTEON_DDR0_SIZE) {
136 __cvmx_bootmem_phy_free(addr,
137 mem_size - reserve_low_mem -
138 low_reserved_bytes, 0);
139 return;
140 }
141
142 __cvmx_bootmem_phy_free(addr,
143 OCTEON_DDR0_SIZE - reserve_low_mem -
144 low_reserved_bytes, 0);
145
146 mem_size -= OCTEON_DDR0_SIZE;
147
148 if (mem_size > OCTEON_DDR1_SIZE) {
149 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
150 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
151 mem_size - OCTEON_DDR1_SIZE, 0);
152 } else
153 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
154 }
155
octeon_kexec_prepare(struct kimage * image)156 static int octeon_kexec_prepare(struct kimage *image)
157 {
158 int i;
159 char *bootloader = "kexec";
160
161 octeon_boot_desc_ptr->argc = 0;
162 for (i = 0; i < image->nr_segments; i++) {
163 if (!strncmp(bootloader, (char *)image->segment[i].buf,
164 strlen(bootloader))) {
165 /*
166 * convert command line string to array
167 * of parameters (as bootloader does).
168 */
169 int argc = 0, offt;
170 char *str = (char *)image->segment[i].buf;
171 char *ptr = strchr(str, ' ');
172 while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
173 *ptr = '\0';
174 if (ptr[1] != ' ') {
175 offt = (int)(ptr - str + 1);
176 octeon_boot_desc_ptr->argv[argc] =
177 image->segment[i].mem + offt;
178 argc++;
179 }
180 ptr = strchr(ptr + 1, ' ');
181 }
182 octeon_boot_desc_ptr->argc = argc;
183 break;
184 }
185 }
186
187 /*
188 * Information about segments will be needed during pre-boot memory
189 * initialization.
190 */
191 kimage_ptr = image;
192 return 0;
193 }
194
octeon_generic_shutdown(void)195 static void octeon_generic_shutdown(void)
196 {
197 int i;
198 #ifdef CONFIG_SMP
199 int cpu;
200 #endif
201 struct cvmx_bootmem_desc *bootmem_desc;
202 void *named_block_array_ptr;
203
204 bootmem_desc = cvmx_bootmem_get_desc();
205 named_block_array_ptr =
206 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
207
208 #ifdef CONFIG_SMP
209 /* disable watchdogs */
210 for_each_online_cpu(cpu)
211 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
212 #else
213 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
214 #endif
215 if (kimage_ptr != kexec_crash_image) {
216 memset(named_block_array_ptr,
217 0x0,
218 CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
219 sizeof(struct cvmx_bootmem_named_block_desc));
220 /*
221 * Mark all memory (except low 0x100000 bytes) as free.
222 * It is the same thing that bootloader does.
223 */
224 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
225 0x100000);
226 /*
227 * Allocate all segments to avoid their corruption during boot.
228 */
229 for (i = 0; i < kimage_ptr->nr_segments; i++)
230 cvmx_bootmem_alloc_address(
231 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
232 kimage_ptr->segment[i].mem - PAGE_SIZE,
233 PAGE_SIZE);
234 } else {
235 /*
236 * Do not mark all memory as free. Free only named sections
237 * leaving the rest of memory unchanged.
238 */
239 struct cvmx_bootmem_named_block_desc *ptr =
240 (struct cvmx_bootmem_named_block_desc *)
241 named_block_array_ptr;
242
243 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
244 if (ptr[i].size)
245 cvmx_bootmem_free_named(ptr[i].name);
246 }
247 kexec_args[2] = 1UL; /* running on octeon_main_processor */
248 kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
249 #ifdef CONFIG_SMP
250 secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
251 secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
252 #endif
253 }
254
octeon_shutdown(void)255 static void octeon_shutdown(void)
256 {
257 octeon_generic_shutdown();
258 #ifdef CONFIG_SMP
259 smp_call_function(octeon_kexec_smp_down, NULL, 0);
260 smp_wmb();
261 while (num_online_cpus() > 1) {
262 cpu_relax();
263 mdelay(1);
264 }
265 #endif
266 }
267
octeon_crash_shutdown(struct pt_regs * regs)268 static void octeon_crash_shutdown(struct pt_regs *regs)
269 {
270 octeon_generic_shutdown();
271 default_machine_crash_shutdown(regs);
272 }
273
274 #ifdef CONFIG_SMP
octeon_crash_smp_send_stop(void)275 void octeon_crash_smp_send_stop(void)
276 {
277 int cpu;
278
279 /* disable watchdogs */
280 for_each_online_cpu(cpu)
281 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
282 }
283 #endif
284
285 #endif /* CONFIG_KEXEC */
286
287 #ifdef CONFIG_CAVIUM_RESERVE32
288 uint64_t octeon_reserve32_memory;
289 EXPORT_SYMBOL(octeon_reserve32_memory);
290 #endif
291
292 #ifdef CONFIG_KEXEC
293 /* crashkernel cmdline parameter is parsed _after_ memory setup
294 * we also parse it here (workaround for EHB5200) */
295 static uint64_t crashk_size, crashk_base;
296 #endif
297
298 static int octeon_uart;
299
300 extern asmlinkage void handle_int(void);
301
302 /**
303 * Return non zero if we are currently running in the Octeon simulator
304 *
305 * Returns
306 */
octeon_is_simulation(void)307 int octeon_is_simulation(void)
308 {
309 return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
310 }
311 EXPORT_SYMBOL(octeon_is_simulation);
312
313 /**
314 * Return true if Octeon is in PCI Host mode. This means
315 * Linux can control the PCI bus.
316 *
317 * Returns Non zero if Octeon in host mode.
318 */
octeon_is_pci_host(void)319 int octeon_is_pci_host(void)
320 {
321 #ifdef CONFIG_PCI
322 return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
323 #else
324 return 0;
325 #endif
326 }
327
328 /**
329 * Get the clock rate of Octeon
330 *
331 * Returns Clock rate in HZ
332 */
octeon_get_clock_rate(void)333 uint64_t octeon_get_clock_rate(void)
334 {
335 struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
336
337 return sysinfo->cpu_clock_hz;
338 }
339 EXPORT_SYMBOL(octeon_get_clock_rate);
340
341 static u64 octeon_io_clock_rate;
342
octeon_get_io_clock_rate(void)343 u64 octeon_get_io_clock_rate(void)
344 {
345 return octeon_io_clock_rate;
346 }
347 EXPORT_SYMBOL(octeon_get_io_clock_rate);
348
349
350 /**
351 * Write to the LCD display connected to the bootbus. This display
352 * exists on most Cavium evaluation boards. If it doesn't exist, then
353 * this function doesn't do anything.
354 *
355 * @s: String to write
356 */
octeon_write_lcd(const char * s)357 static void octeon_write_lcd(const char *s)
358 {
359 if (octeon_bootinfo->led_display_base_addr) {
360 void __iomem *lcd_address =
361 ioremap(octeon_bootinfo->led_display_base_addr,
362 8);
363 int i;
364 for (i = 0; i < 8; i++, s++) {
365 if (*s)
366 iowrite8(*s, lcd_address + i);
367 else
368 iowrite8(' ', lcd_address + i);
369 }
370 iounmap(lcd_address);
371 }
372 }
373
374 /**
375 * Return the console uart passed by the bootloader
376 *
377 * Returns uart (0 or 1)
378 */
octeon_get_boot_uart(void)379 static int octeon_get_boot_uart(void)
380 {
381 return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
382 1 : 0;
383 }
384
385 /**
386 * Get the coremask Linux was booted on.
387 *
388 * Returns Core mask
389 */
octeon_get_boot_coremask(void)390 int octeon_get_boot_coremask(void)
391 {
392 return octeon_boot_desc_ptr->core_mask;
393 }
394
395 /**
396 * Check the hardware BIST results for a CPU
397 */
octeon_check_cpu_bist(void)398 void octeon_check_cpu_bist(void)
399 {
400 const int coreid = cvmx_get_core_num();
401 unsigned long long mask;
402 unsigned long long bist_val;
403
404 /* Check BIST results for COP0 registers */
405 mask = 0x1f00000000ull;
406 bist_val = read_octeon_c0_icacheerr();
407 if (bist_val & mask)
408 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
409 coreid, bist_val);
410
411 bist_val = read_octeon_c0_dcacheerr();
412 if (bist_val & 1)
413 pr_err("Core%d L1 Dcache parity error: "
414 "CacheErr(dcache) = 0x%llx\n",
415 coreid, bist_val);
416
417 mask = 0xfc00000000000000ull;
418 bist_val = read_c0_cvmmemctl();
419 if (bist_val & mask)
420 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
421 coreid, bist_val);
422
423 write_octeon_c0_dcacheerr(0);
424 }
425
426 /**
427 * Reboot Octeon
428 *
429 * @command: Command to pass to the bootloader. Currently ignored.
430 */
octeon_restart(char * command)431 static void octeon_restart(char *command)
432 {
433 /* Disable all watchdogs before soft reset. They don't get cleared */
434 #ifdef CONFIG_SMP
435 int cpu;
436 for_each_online_cpu(cpu)
437 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
438 #else
439 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
440 #endif
441
442 mb();
443 while (1)
444 if (OCTEON_IS_OCTEON3())
445 cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
446 else
447 cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
448 }
449
450
451 /**
452 * Permanently stop a core.
453 *
454 * @arg: Ignored.
455 */
octeon_kill_core(void * arg)456 static void octeon_kill_core(void *arg)
457 {
458 if (octeon_is_simulation())
459 /* A break instruction causes the simulator stop a core */
460 asm volatile ("break" ::: "memory");
461
462 local_irq_disable();
463 /* Disable watchdog on this core. */
464 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
465 /* Spin in a low power mode. */
466 while (true)
467 asm volatile ("wait" ::: "memory");
468 }
469
470
471 /**
472 * Halt the system
473 */
octeon_halt(void)474 static void octeon_halt(void)
475 {
476 smp_call_function(octeon_kill_core, NULL, 0);
477
478 switch (octeon_bootinfo->board_type) {
479 case CVMX_BOARD_TYPE_NAO38:
480 /* Driving a 1 to GPIO 12 shuts off this board */
481 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
482 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
483 break;
484 default:
485 octeon_write_lcd("PowerOff");
486 break;
487 }
488
489 octeon_kill_core(NULL);
490 }
491
492 static char __read_mostly octeon_system_type[80];
493
init_octeon_system_type(void)494 static void __init init_octeon_system_type(void)
495 {
496 char const *board_type;
497
498 board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
499 if (board_type == NULL) {
500 struct device_node *root;
501 int ret;
502
503 root = of_find_node_by_path("/");
504 ret = of_property_read_string(root, "model", &board_type);
505 of_node_put(root);
506 if (ret)
507 board_type = "Unsupported Board";
508 }
509
510 snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
511 board_type, octeon_model_get_string(read_c0_prid()));
512 }
513
514 /**
515 * Return a string representing the system type
516 *
517 * Returns
518 */
octeon_board_type_string(void)519 const char *octeon_board_type_string(void)
520 {
521 return octeon_system_type;
522 }
523
524 const char *get_system_type(void)
525 __attribute__ ((alias("octeon_board_type_string")));
526
octeon_user_io_init(void)527 void octeon_user_io_init(void)
528 {
529 union octeon_cvmemctl cvmmemctl;
530
531 /* Get the current settings for CP0_CVMMEMCTL_REG */
532 cvmmemctl.u64 = read_c0_cvmmemctl();
533 /* R/W If set, marked write-buffer entries time out the same
534 * as as other entries; if clear, marked write-buffer entries
535 * use the maximum timeout. */
536 cvmmemctl.s.dismarkwblongto = 1;
537 /* R/W If set, a merged store does not clear the write-buffer
538 * entry timeout state. */
539 cvmmemctl.s.dismrgclrwbto = 0;
540 /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
541 * word location for an IOBDMA. The other 8 bits come from the
542 * SCRADDR field of the IOBDMA. */
543 cvmmemctl.s.iobdmascrmsb = 0;
544 /* R/W If set, SYNCWS and SYNCS only order marked stores; if
545 * clear, SYNCWS and SYNCS only order unmarked
546 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
547 * set. */
548 cvmmemctl.s.syncwsmarked = 0;
549 /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
550 cvmmemctl.s.dissyncws = 0;
551 /* R/W If set, no stall happens on write buffer full. */
552 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
553 cvmmemctl.s.diswbfst = 1;
554 else
555 cvmmemctl.s.diswbfst = 0;
556 /* R/W If set (and SX set), supervisor-level loads/stores can
557 * use XKPHYS addresses with <48>==0 */
558 cvmmemctl.s.xkmemenas = 0;
559
560 /* R/W If set (and UX set), user-level loads/stores can use
561 * XKPHYS addresses with VA<48>==0 */
562 cvmmemctl.s.xkmemenau = 0;
563
564 /* R/W If set (and SX set), supervisor-level loads/stores can
565 * use XKPHYS addresses with VA<48>==1 */
566 cvmmemctl.s.xkioenas = 0;
567
568 /* R/W If set (and UX set), user-level loads/stores can use
569 * XKPHYS addresses with VA<48>==1 */
570 cvmmemctl.s.xkioenau = 0;
571
572 /* R/W If set, all stores act as SYNCW (NOMERGE must be set
573 * when this is set) RW, reset to 0. */
574 cvmmemctl.s.allsyncw = 0;
575
576 /* R/W If set, no stores merge, and all stores reach the
577 * coherent bus in order. */
578 cvmmemctl.s.nomerge = 0;
579 /* R/W Selects the bit in the counter used for DID time-outs 0
580 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
581 * between 1x and 2x this interval. For example, with
582 * DIDTTO=3, expiration interval is between 16K and 32K. */
583 cvmmemctl.s.didtto = 0;
584 /* R/W If set, the (mem) CSR clock never turns off. */
585 cvmmemctl.s.csrckalwys = 0;
586 /* R/W If set, mclk never turns off. */
587 cvmmemctl.s.mclkalwys = 0;
588 /* R/W Selects the bit in the counter used for write buffer
589 * flush time-outs (WBFLT+11) is the bit position in an
590 * internal counter used to determine expiration. The write
591 * buffer expires between 1x and 2x this interval. For
592 * example, with WBFLT = 0, a write buffer expires between 2K
593 * and 4K cycles after the write buffer entry is allocated. */
594 cvmmemctl.s.wbfltime = 0;
595 /* R/W If set, do not put Istream in the L2 cache. */
596 cvmmemctl.s.istrnol2 = 0;
597
598 /*
599 * R/W The write buffer threshold. As per erratum Core-14752
600 * for CN63XX, a sc/scd might fail if the write buffer is
601 * full. Lowering WBTHRESH greatly lowers the chances of the
602 * write buffer ever being full and triggering the erratum.
603 */
604 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
605 cvmmemctl.s.wbthresh = 4;
606 else
607 cvmmemctl.s.wbthresh = 10;
608
609 /* R/W If set, CVMSEG is available for loads/stores in
610 * kernel/debug mode. */
611 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
612 cvmmemctl.s.cvmsegenak = 1;
613 #else
614 cvmmemctl.s.cvmsegenak = 0;
615 #endif
616 /* R/W If set, CVMSEG is available for loads/stores in
617 * supervisor mode. */
618 cvmmemctl.s.cvmsegenas = 0;
619 /* R/W If set, CVMSEG is available for loads/stores in user
620 * mode. */
621 cvmmemctl.s.cvmsegenau = 0;
622
623 write_c0_cvmmemctl(cvmmemctl.u64);
624
625 /* Setup of CVMSEG is done in kernel-entry-init.h */
626 if (smp_processor_id() == 0)
627 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
628 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
629 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
630
631 if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
632 union cvmx_iob_fau_timeout fau_timeout;
633
634 /* Set a default for the hardware timeouts */
635 fau_timeout.u64 = 0;
636 fau_timeout.s.tout_val = 0xfff;
637 /* Disable tagwait FAU timeout */
638 fau_timeout.s.tout_enb = 0;
639 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
640 }
641
642 if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
643 !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
644 OCTEON_IS_MODEL(OCTEON_CN70XX)) {
645 union cvmx_pow_nw_tim nm_tim;
646
647 nm_tim.u64 = 0;
648 /* 4096 cycles */
649 nm_tim.s.nw_tim = 3;
650 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
651 }
652
653 write_octeon_c0_icacheerr(0);
654 write_c0_derraddr1(0);
655 }
656
657 /**
658 * Early entry point for arch setup
659 */
prom_init(void)660 void __init prom_init(void)
661 {
662 struct cvmx_sysinfo *sysinfo;
663 const char *arg;
664 char *p;
665 int i;
666 u64 t;
667 int argc;
668 #ifdef CONFIG_CAVIUM_RESERVE32
669 int64_t addr = -1;
670 #endif
671 /*
672 * The bootloader passes a pointer to the boot descriptor in
673 * $a3, this is available as fw_arg3.
674 */
675 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
676 octeon_bootinfo =
677 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
678 cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
679
680 sysinfo = cvmx_sysinfo_get();
681 memset(sysinfo, 0, sizeof(*sysinfo));
682 sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
683 sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
684
685 if ((octeon_bootinfo->major_version > 1) ||
686 (octeon_bootinfo->major_version == 1 &&
687 octeon_bootinfo->minor_version >= 4))
688 cvmx_coremask_copy(&sysinfo->core_mask,
689 &octeon_bootinfo->ext_core_mask);
690 else
691 cvmx_coremask_set64(&sysinfo->core_mask,
692 octeon_bootinfo->core_mask);
693
694 /* Some broken u-boot pass garbage in upper bits, clear them out */
695 if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
696 for (i = 512; i < 1024; i++)
697 cvmx_coremask_clear_core(&sysinfo->core_mask, i);
698
699 sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
700 sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
701 sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
702 sysinfo->board_type = octeon_bootinfo->board_type;
703 sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
704 sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
705 memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
706 sizeof(sysinfo->mac_addr_base));
707 sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
708 memcpy(sysinfo->board_serial_number,
709 octeon_bootinfo->board_serial_number,
710 sizeof(sysinfo->board_serial_number));
711 sysinfo->compact_flash_common_base_addr =
712 octeon_bootinfo->compact_flash_common_base_addr;
713 sysinfo->compact_flash_attribute_base_addr =
714 octeon_bootinfo->compact_flash_attribute_base_addr;
715 sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
716 sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
717 sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
718
719 if (OCTEON_IS_OCTEON2()) {
720 /* I/O clock runs at a different rate than the CPU. */
721 union cvmx_mio_rst_boot rst_boot;
722 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
723 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
724 } else if (OCTEON_IS_OCTEON3()) {
725 /* I/O clock runs at a different rate than the CPU. */
726 union cvmx_rst_boot rst_boot;
727 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
728 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
729 } else {
730 octeon_io_clock_rate = sysinfo->cpu_clock_hz;
731 }
732
733 t = read_c0_cvmctl();
734 if ((t & (1ull << 27)) == 0) {
735 /*
736 * Setup the multiplier save/restore code if
737 * CvmCtl[NOMUL] clear.
738 */
739 void *save;
740 void *save_end;
741 void *restore;
742 void *restore_end;
743 int save_len;
744 int restore_len;
745 int save_max = (char *)octeon_mult_save_end -
746 (char *)octeon_mult_save;
747 int restore_max = (char *)octeon_mult_restore_end -
748 (char *)octeon_mult_restore;
749 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
750 save = octeon_mult_save3;
751 save_end = octeon_mult_save3_end;
752 restore = octeon_mult_restore3;
753 restore_end = octeon_mult_restore3_end;
754 } else {
755 save = octeon_mult_save2;
756 save_end = octeon_mult_save2_end;
757 restore = octeon_mult_restore2;
758 restore_end = octeon_mult_restore2_end;
759 }
760 save_len = (char *)save_end - (char *)save;
761 restore_len = (char *)restore_end - (char *)restore;
762 if (!WARN_ON(save_len > save_max ||
763 restore_len > restore_max)) {
764 memcpy(octeon_mult_save, save, save_len);
765 memcpy(octeon_mult_restore, restore, restore_len);
766 }
767 }
768
769 /*
770 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
771 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
772 */
773 if (!octeon_is_simulation() &&
774 octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
775 cvmx_write_csr(CVMX_LED_EN, 0);
776 cvmx_write_csr(CVMX_LED_PRT, 0);
777 cvmx_write_csr(CVMX_LED_DBG, 0);
778 cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
779 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
780 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
781 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
782 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
783 cvmx_write_csr(CVMX_LED_EN, 1);
784 }
785 #ifdef CONFIG_CAVIUM_RESERVE32
786 /*
787 * We need to temporarily allocate all memory in the reserve32
788 * region. This makes sure the kernel doesn't allocate this
789 * memory when it is getting memory from the
790 * bootloader. Later, after the memory allocations are
791 * complete, the reserve32 will be freed.
792 *
793 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
794 * is in case we later use hugetlb entries with it.
795 */
796 addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
797 0, 0, 2 << 20,
798 "CAVIUM_RESERVE32", 0);
799 if (addr < 0)
800 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
801 else
802 octeon_reserve32_memory = addr;
803 #endif
804
805 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
806 if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
807 pr_info("Skipping L2 locking due to reduced L2 cache size\n");
808 } else {
809 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
810 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
811 /* TLB refill */
812 cvmx_l2c_lock_mem_region(ebase, 0x100);
813 #endif
814 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
815 /* General exception */
816 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
817 #endif
818 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
819 /* Interrupt handler */
820 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
821 #endif
822 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
823 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
824 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
825 #endif
826 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
827 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
828 #endif
829 }
830 #endif
831
832 octeon_check_cpu_bist();
833
834 octeon_uart = octeon_get_boot_uart();
835
836 #ifdef CONFIG_SMP
837 octeon_write_lcd("LinuxSMP");
838 #else
839 octeon_write_lcd("Linux");
840 #endif
841
842 octeon_setup_delays();
843
844 /*
845 * BIST should always be enabled when doing a soft reset. L2
846 * Cache locking for instance is not cleared unless BIST is
847 * enabled. Unfortunately due to a chip errata G-200 for
848 * Cn38XX and CN31XX, BIST must be disabled on these parts.
849 */
850 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
851 OCTEON_IS_MODEL(OCTEON_CN31XX))
852 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
853 else
854 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
855
856 /* Default to 64MB in the simulator to speed things up */
857 if (octeon_is_simulation())
858 max_memory = 64ull << 20;
859
860 arg = strstr(arcs_cmdline, "mem=");
861 if (arg) {
862 max_memory = memparse(arg + 4, &p);
863 if (max_memory == 0)
864 max_memory = 32ull << 30;
865 if (*p == '@')
866 reserve_low_mem = memparse(p + 1, &p);
867 }
868
869 arcs_cmdline[0] = 0;
870 argc = octeon_boot_desc_ptr->argc;
871 for (i = 0; i < argc; i++) {
872 const char *arg =
873 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
874 if ((strncmp(arg, "MEM=", 4) == 0) ||
875 (strncmp(arg, "mem=", 4) == 0)) {
876 max_memory = memparse(arg + 4, &p);
877 if (max_memory == 0)
878 max_memory = 32ull << 30;
879 if (*p == '@')
880 reserve_low_mem = memparse(p + 1, &p);
881 #ifdef CONFIG_KEXEC
882 } else if (strncmp(arg, "crashkernel=", 12) == 0) {
883 crashk_size = memparse(arg+12, &p);
884 if (*p == '@')
885 crashk_base = memparse(p+1, &p);
886 strcat(arcs_cmdline, " ");
887 strcat(arcs_cmdline, arg);
888 /*
889 * To do: switch parsing to new style, something like:
890 * parse_crashkernel(arg, sysinfo->system_dram_size,
891 * &crashk_size, &crashk_base);
892 */
893 #endif
894 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
895 sizeof(arcs_cmdline) - 1) {
896 strcat(arcs_cmdline, " ");
897 strcat(arcs_cmdline, arg);
898 }
899 }
900
901 if (strstr(arcs_cmdline, "console=") == NULL) {
902 if (octeon_uart == 1)
903 strcat(arcs_cmdline, " console=ttyS1,115200");
904 else
905 strcat(arcs_cmdline, " console=ttyS0,115200");
906 }
907
908 mips_hpt_frequency = octeon_get_clock_rate();
909
910 octeon_init_cvmcount();
911
912 _machine_restart = octeon_restart;
913 _machine_halt = octeon_halt;
914
915 #ifdef CONFIG_KEXEC
916 _machine_kexec_shutdown = octeon_shutdown;
917 _machine_crash_shutdown = octeon_crash_shutdown;
918 _machine_kexec_prepare = octeon_kexec_prepare;
919 #ifdef CONFIG_SMP
920 _crash_smp_send_stop = octeon_crash_smp_send_stop;
921 #endif
922 #endif
923
924 octeon_user_io_init();
925 octeon_setup_smp();
926 }
927
928 /* Exclude a single page from the regions obtained in plat_mem_setup. */
929 #ifndef CONFIG_CRASH_DUMP
memory_exclude_page(u64 addr,u64 * mem,u64 * size)930 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
931 {
932 if (addr > *mem && addr < *mem + *size) {
933 u64 inc = addr - *mem;
934 memblock_add(*mem, inc);
935 *mem += inc;
936 *size -= inc;
937 }
938
939 if (addr == *mem && *size > PAGE_SIZE) {
940 *mem += PAGE_SIZE;
941 *size -= PAGE_SIZE;
942 }
943 }
944 #endif /* CONFIG_CRASH_DUMP */
945
fw_init_cmdline(void)946 void __init fw_init_cmdline(void)
947 {
948 int i;
949
950 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
951 for (i = 0; i < octeon_boot_desc_ptr->argc; i++) {
952 const char *arg =
953 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
954 if (strlen(arcs_cmdline) + strlen(arg) + 1 <
955 sizeof(arcs_cmdline) - 1) {
956 strcat(arcs_cmdline, " ");
957 strcat(arcs_cmdline, arg);
958 }
959 }
960 }
961
plat_get_fdt(void)962 void __init *plat_get_fdt(void)
963 {
964 octeon_bootinfo =
965 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
966 return phys_to_virt(octeon_bootinfo->fdt_addr);
967 }
968
plat_mem_setup(void)969 void __init plat_mem_setup(void)
970 {
971 uint64_t mem_alloc_size;
972 uint64_t total;
973 uint64_t crashk_end;
974 #ifndef CONFIG_CRASH_DUMP
975 int64_t memory;
976 uint64_t kernel_start;
977 uint64_t kernel_size;
978 #endif
979
980 total = 0;
981 crashk_end = 0;
982
983 /*
984 * The Mips memory init uses the first memory location for
985 * some memory vectors. When SPARSEMEM is in use, it doesn't
986 * verify that the size is big enough for the final
987 * vectors. Making the smallest chuck 4MB seems to be enough
988 * to consistently work.
989 */
990 mem_alloc_size = 4 << 20;
991 if (mem_alloc_size > max_memory)
992 mem_alloc_size = max_memory;
993
994 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
995 #ifdef CONFIG_CRASH_DUMP
996 memblock_add(reserve_low_mem, max_memory);
997 total += max_memory;
998 #else
999 #ifdef CONFIG_KEXEC
1000 if (crashk_size > 0) {
1001 memblock_add(crashk_base, crashk_size);
1002 crashk_end = crashk_base + crashk_size;
1003 }
1004 #endif
1005 /*
1006 * When allocating memory, we want incrementing addresses,
1007 * which is handled by memblock
1008 */
1009 cvmx_bootmem_lock();
1010 while (total < max_memory) {
1011 memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
1012 __pa_symbol(&_end), -1,
1013 0x100000,
1014 CVMX_BOOTMEM_FLAG_NO_LOCKING);
1015 if (memory >= 0) {
1016 u64 size = mem_alloc_size;
1017 #ifdef CONFIG_KEXEC
1018 uint64_t end;
1019 #endif
1020
1021 /*
1022 * exclude a page at the beginning and end of
1023 * the 256MB PCIe 'hole' so the kernel will not
1024 * try to allocate multi-page buffers that
1025 * span the discontinuity.
1026 */
1027 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
1028 &memory, &size);
1029 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1030 CVMX_PCIE_BAR1_PHYS_SIZE,
1031 &memory, &size);
1032 #ifdef CONFIG_KEXEC
1033 end = memory + mem_alloc_size;
1034
1035 /*
1036 * This function automatically merges address regions
1037 * next to each other if they are received in
1038 * incrementing order
1039 */
1040 if (memory < crashk_base && end > crashk_end) {
1041 /* region is fully in */
1042 memblock_add(memory, crashk_base - memory);
1043 total += crashk_base - memory;
1044 memblock_add(crashk_end, end - crashk_end);
1045 total += end - crashk_end;
1046 continue;
1047 }
1048
1049 if (memory >= crashk_base && end <= crashk_end)
1050 /*
1051 * Entire memory region is within the new
1052 * kernel's memory, ignore it.
1053 */
1054 continue;
1055
1056 if (memory > crashk_base && memory < crashk_end &&
1057 end > crashk_end) {
1058 /*
1059 * Overlap with the beginning of the region,
1060 * reserve the beginning.
1061 */
1062 mem_alloc_size -= crashk_end - memory;
1063 memory = crashk_end;
1064 } else if (memory < crashk_base && end > crashk_base &&
1065 end < crashk_end)
1066 /*
1067 * Overlap with the beginning of the region,
1068 * chop of end.
1069 */
1070 mem_alloc_size -= end - crashk_base;
1071 #endif
1072 memblock_add(memory, mem_alloc_size);
1073 total += mem_alloc_size;
1074 /* Recovering mem_alloc_size */
1075 mem_alloc_size = 4 << 20;
1076 } else {
1077 break;
1078 }
1079 }
1080 cvmx_bootmem_unlock();
1081 /* Add the memory region for the kernel. */
1082 kernel_start = (unsigned long) _text;
1083 kernel_size = _end - _text;
1084
1085 /* Adjust for physical offset. */
1086 kernel_start &= ~0xffffffff80000000ULL;
1087 memblock_add(kernel_start, kernel_size);
1088 #endif /* CONFIG_CRASH_DUMP */
1089
1090 #ifdef CONFIG_CAVIUM_RESERVE32
1091 /*
1092 * Now that we've allocated the kernel memory it is safe to
1093 * free the reserved region. We free it here so that builtin
1094 * drivers can use the memory.
1095 */
1096 if (octeon_reserve32_memory)
1097 cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1098 #endif /* CONFIG_CAVIUM_RESERVE32 */
1099
1100 if (total == 0)
1101 panic("Unable to allocate memory from "
1102 "cvmx_bootmem_phy_alloc");
1103 }
1104
1105 /*
1106 * Emit one character to the boot UART. Exported for use by the
1107 * watchdog timer.
1108 */
prom_putchar(char c)1109 void prom_putchar(char c)
1110 {
1111 uint64_t lsrval;
1112
1113 /* Spin until there is room */
1114 do {
1115 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1116 } while ((lsrval & 0x20) == 0);
1117
1118 /* Write the byte */
1119 cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1120 }
1121 EXPORT_SYMBOL(prom_putchar);
1122
prom_free_prom_memory(void)1123 void __init prom_free_prom_memory(void)
1124 {
1125 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
1126 /* Check for presence of Core-14449 fix. */
1127 u32 insn;
1128 u32 *foo;
1129
1130 foo = &insn;
1131
1132 asm volatile("# before" : : : "memory");
1133 prefetch(foo);
1134 asm volatile(
1135 ".set push\n\t"
1136 ".set noreorder\n\t"
1137 "bal 1f\n\t"
1138 "nop\n"
1139 "1:\tlw %0,-12($31)\n\t"
1140 ".set pop\n\t"
1141 : "=r" (insn) : : "$31", "memory");
1142
1143 if ((insn >> 26) != 0x33)
1144 panic("No PREF instruction at Core-14449 probe point.");
1145
1146 if (((insn >> 16) & 0x1f) != 28)
1147 panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1148 "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1149 insn);
1150 }
1151 }
1152
1153 void __init octeon_fill_mac_addresses(void);
1154
device_tree_init(void)1155 void __init device_tree_init(void)
1156 {
1157 const void *fdt;
1158 bool do_prune;
1159 bool fill_mac;
1160
1161 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1162 if (!fdt_check_header(&__appended_dtb)) {
1163 fdt = &__appended_dtb;
1164 do_prune = false;
1165 fill_mac = true;
1166 pr_info("Using appended Device Tree.\n");
1167 } else
1168 #endif
1169 if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1170 fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1171 if (fdt_check_header(fdt))
1172 panic("Corrupt Device Tree passed to kernel.");
1173 do_prune = false;
1174 fill_mac = false;
1175 pr_info("Using passed Device Tree.\n");
1176 } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1177 fdt = &__dtb_octeon_68xx_begin;
1178 do_prune = true;
1179 fill_mac = true;
1180 } else {
1181 fdt = &__dtb_octeon_3xxx_begin;
1182 do_prune = true;
1183 fill_mac = true;
1184 }
1185
1186 initial_boot_params = (void *)fdt;
1187
1188 if (do_prune) {
1189 octeon_prune_device_tree();
1190 pr_info("Using internal Device Tree.\n");
1191 }
1192 if (fill_mac)
1193 octeon_fill_mac_addresses();
1194 unflatten_and_copy_device_tree();
1195 init_octeon_system_type();
1196 }
1197
1198 static int __initdata disable_octeon_edac_p;
1199
disable_octeon_edac(char * str)1200 static int __init disable_octeon_edac(char *str)
1201 {
1202 disable_octeon_edac_p = 1;
1203 return 0;
1204 }
1205 early_param("disable_octeon_edac", disable_octeon_edac);
1206
1207 static char *edac_device_names[] = {
1208 "octeon_l2c_edac",
1209 "octeon_pc_edac",
1210 };
1211
edac_devinit(void)1212 static int __init edac_devinit(void)
1213 {
1214 struct platform_device *dev;
1215 int i, err = 0;
1216 int num_lmc;
1217 char *name;
1218
1219 if (disable_octeon_edac_p)
1220 return 0;
1221
1222 for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1223 name = edac_device_names[i];
1224 dev = platform_device_register_simple(name, -1, NULL, 0);
1225 if (IS_ERR(dev)) {
1226 pr_err("Registration of %s failed!\n", name);
1227 err = PTR_ERR(dev);
1228 }
1229 }
1230
1231 num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1232 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1233 for (i = 0; i < num_lmc; i++) {
1234 dev = platform_device_register_simple("octeon_lmc_edac",
1235 i, NULL, 0);
1236 if (IS_ERR(dev)) {
1237 pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1238 err = PTR_ERR(dev);
1239 }
1240 }
1241
1242 return err;
1243 }
1244 device_initcall(edac_devinit);
1245
1246 static void __initdata *octeon_dummy_iospace;
1247
octeon_no_pci_init(void)1248 static int __init octeon_no_pci_init(void)
1249 {
1250 /*
1251 * Initially assume there is no PCI. The PCI/PCIe platform code will
1252 * later re-initialize these to correct values if they are present.
1253 */
1254 octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1255 set_io_port_base((unsigned long)octeon_dummy_iospace);
1256 ioport_resource.start = MAX_RESOURCE;
1257 ioport_resource.end = 0;
1258 return 0;
1259 }
1260 core_initcall(octeon_no_pci_init);
1261
octeon_no_pci_release(void)1262 static int __init octeon_no_pci_release(void)
1263 {
1264 /*
1265 * Release the allocated memory if a real IO space is there.
1266 */
1267 if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1268 vfree(octeon_dummy_iospace);
1269 return 0;
1270 }
1271 late_initcall(octeon_no_pci_release);
1272