1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2016 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more details.
17 ***********************************************************************/
18 #include <linux/pci.h>
19 #include <linux/netdevice.h>
20 #include <linux/vmalloc.h>
21 #include "liquidio_common.h"
22 #include "octeon_droq.h"
23 #include "octeon_iq.h"
24 #include "response_manager.h"
25 #include "octeon_device.h"
26 #include "octeon_main.h"
27 #include "octeon_network.h"
28 #include "cn66xx_regs.h"
29 #include "cn66xx_device.h"
30 #include "cn23xx_pf_device.h"
31 #include "cn23xx_vf_device.h"
32
33 /** Default configuration
34 * for CN66XX OCTEON Models.
35 */
36 static struct octeon_config default_cn66xx_conf = {
37 .card_type = LIO_210SV,
38 .card_name = LIO_210SV_NAME,
39
40 /** IQ attributes */
41 .iq = {
42 .max_iqs = CN6XXX_CFG_IO_QUEUES,
43 .pending_list_size =
44 (CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
45 .instr_type = OCTEON_64BYTE_INSTR,
46 .db_min = CN6XXX_DB_MIN,
47 .db_timeout = CN6XXX_DB_TIMEOUT,
48 }
49 ,
50
51 /** OQ attributes */
52 .oq = {
53 .max_oqs = CN6XXX_CFG_IO_QUEUES,
54 .refill_threshold = CN6XXX_OQ_REFIL_THRESHOLD,
55 .oq_intr_pkt = CN6XXX_OQ_INTR_PKT,
56 .oq_intr_time = CN6XXX_OQ_INTR_TIME,
57 .pkts_per_intr = CN6XXX_OQ_PKTSPER_INTR,
58 }
59 ,
60
61 .num_nic_ports = DEFAULT_NUM_NIC_PORTS_66XX,
62 .num_def_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
63 .num_def_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
64 .def_rx_buf_size = CN6XXX_OQ_BUF_SIZE,
65
66 /* For ethernet interface 0: Port cfg Attributes */
67 .nic_if_cfg[0] = {
68 /* Max Txqs: Half for each of the two ports :max_iq/2 */
69 .max_txqs = MAX_TXQS_PER_INTF,
70
71 /* Actual configured value. Range could be: 1...max_txqs */
72 .num_txqs = DEF_TXQS_PER_INTF,
73
74 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
75 .max_rxqs = MAX_RXQS_PER_INTF,
76
77 /* Actual configured value. Range could be: 1...max_rxqs */
78 .num_rxqs = DEF_RXQS_PER_INTF,
79
80 /* Num of desc for rx rings */
81 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
82
83 /* Num of desc for tx rings */
84 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
85
86 /* SKB size, We need not change buf size even for Jumbo frames.
87 * Octeon can send jumbo frames in 4 consecutive descriptors,
88 */
89 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
90
91 .base_queue = BASE_QUEUE_NOT_REQUESTED,
92
93 .gmx_port_id = 0,
94 },
95
96 .nic_if_cfg[1] = {
97 /* Max Txqs: Half for each of the two ports :max_iq/2 */
98 .max_txqs = MAX_TXQS_PER_INTF,
99
100 /* Actual configured value. Range could be: 1...max_txqs */
101 .num_txqs = DEF_TXQS_PER_INTF,
102
103 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
104 .max_rxqs = MAX_RXQS_PER_INTF,
105
106 /* Actual configured value. Range could be: 1...max_rxqs */
107 .num_rxqs = DEF_RXQS_PER_INTF,
108
109 /* Num of desc for rx rings */
110 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
111
112 /* Num of desc for tx rings */
113 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
114
115 /* SKB size, We need not change buf size even for Jumbo frames.
116 * Octeon can send jumbo frames in 4 consecutive descriptors,
117 */
118 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
119
120 .base_queue = BASE_QUEUE_NOT_REQUESTED,
121
122 .gmx_port_id = 1,
123 },
124
125 /** Miscellaneous attributes */
126 .misc = {
127 /* Host driver link query interval */
128 .oct_link_query_interval = 100,
129
130 /* Octeon link query interval */
131 .host_link_query_interval = 500,
132
133 .enable_sli_oq_bp = 0,
134
135 /* Control queue group */
136 .ctrlq_grp = 1,
137 }
138 ,
139 };
140
141 /** Default configuration
142 * for CN68XX OCTEON Model.
143 */
144
145 static struct octeon_config default_cn68xx_conf = {
146 .card_type = LIO_410NV,
147 .card_name = LIO_410NV_NAME,
148
149 /** IQ attributes */
150 .iq = {
151 .max_iqs = CN6XXX_CFG_IO_QUEUES,
152 .pending_list_size =
153 (CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
154 .instr_type = OCTEON_64BYTE_INSTR,
155 .db_min = CN6XXX_DB_MIN,
156 .db_timeout = CN6XXX_DB_TIMEOUT,
157 }
158 ,
159
160 /** OQ attributes */
161 .oq = {
162 .max_oqs = CN6XXX_CFG_IO_QUEUES,
163 .refill_threshold = CN6XXX_OQ_REFIL_THRESHOLD,
164 .oq_intr_pkt = CN6XXX_OQ_INTR_PKT,
165 .oq_intr_time = CN6XXX_OQ_INTR_TIME,
166 .pkts_per_intr = CN6XXX_OQ_PKTSPER_INTR,
167 }
168 ,
169
170 .num_nic_ports = DEFAULT_NUM_NIC_PORTS_68XX,
171 .num_def_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
172 .num_def_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
173 .def_rx_buf_size = CN6XXX_OQ_BUF_SIZE,
174
175 .nic_if_cfg[0] = {
176 /* Max Txqs: Half for each of the two ports :max_iq/2 */
177 .max_txqs = MAX_TXQS_PER_INTF,
178
179 /* Actual configured value. Range could be: 1...max_txqs */
180 .num_txqs = DEF_TXQS_PER_INTF,
181
182 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
183 .max_rxqs = MAX_RXQS_PER_INTF,
184
185 /* Actual configured value. Range could be: 1...max_rxqs */
186 .num_rxqs = DEF_RXQS_PER_INTF,
187
188 /* Num of desc for rx rings */
189 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
190
191 /* Num of desc for tx rings */
192 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
193
194 /* SKB size, We need not change buf size even for Jumbo frames.
195 * Octeon can send jumbo frames in 4 consecutive descriptors,
196 */
197 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
198
199 .base_queue = BASE_QUEUE_NOT_REQUESTED,
200
201 .gmx_port_id = 0,
202 },
203
204 .nic_if_cfg[1] = {
205 /* Max Txqs: Half for each of the two ports :max_iq/2 */
206 .max_txqs = MAX_TXQS_PER_INTF,
207
208 /* Actual configured value. Range could be: 1...max_txqs */
209 .num_txqs = DEF_TXQS_PER_INTF,
210
211 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
212 .max_rxqs = MAX_RXQS_PER_INTF,
213
214 /* Actual configured value. Range could be: 1...max_rxqs */
215 .num_rxqs = DEF_RXQS_PER_INTF,
216
217 /* Num of desc for rx rings */
218 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
219
220 /* Num of desc for tx rings */
221 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
222
223 /* SKB size, We need not change buf size even for Jumbo frames.
224 * Octeon can send jumbo frames in 4 consecutive descriptors,
225 */
226 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
227
228 .base_queue = BASE_QUEUE_NOT_REQUESTED,
229
230 .gmx_port_id = 1,
231 },
232
233 .nic_if_cfg[2] = {
234 /* Max Txqs: Half for each of the two ports :max_iq/2 */
235 .max_txqs = MAX_TXQS_PER_INTF,
236
237 /* Actual configured value. Range could be: 1...max_txqs */
238 .num_txqs = DEF_TXQS_PER_INTF,
239
240 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
241 .max_rxqs = MAX_RXQS_PER_INTF,
242
243 /* Actual configured value. Range could be: 1...max_rxqs */
244 .num_rxqs = DEF_RXQS_PER_INTF,
245
246 /* Num of desc for rx rings */
247 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
248
249 /* Num of desc for tx rings */
250 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
251
252 /* SKB size, We need not change buf size even for Jumbo frames.
253 * Octeon can send jumbo frames in 4 consecutive descriptors,
254 */
255 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
256
257 .base_queue = BASE_QUEUE_NOT_REQUESTED,
258
259 .gmx_port_id = 2,
260 },
261
262 .nic_if_cfg[3] = {
263 /* Max Txqs: Half for each of the two ports :max_iq/2 */
264 .max_txqs = MAX_TXQS_PER_INTF,
265
266 /* Actual configured value. Range could be: 1...max_txqs */
267 .num_txqs = DEF_TXQS_PER_INTF,
268
269 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
270 .max_rxqs = MAX_RXQS_PER_INTF,
271
272 /* Actual configured value. Range could be: 1...max_rxqs */
273 .num_rxqs = DEF_RXQS_PER_INTF,
274
275 /* Num of desc for rx rings */
276 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
277
278 /* Num of desc for tx rings */
279 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
280
281 /* SKB size, We need not change buf size even for Jumbo frames.
282 * Octeon can send jumbo frames in 4 consecutive descriptors,
283 */
284 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
285
286 .base_queue = BASE_QUEUE_NOT_REQUESTED,
287
288 .gmx_port_id = 3,
289 },
290
291 /** Miscellaneous attributes */
292 .misc = {
293 /* Host driver link query interval */
294 .oct_link_query_interval = 100,
295
296 /* Octeon link query interval */
297 .host_link_query_interval = 500,
298
299 .enable_sli_oq_bp = 0,
300
301 /* Control queue group */
302 .ctrlq_grp = 1,
303 }
304 ,
305 };
306
307 /** Default configuration
308 * for CN68XX OCTEON Model.
309 */
310 static struct octeon_config default_cn68xx_210nv_conf = {
311 .card_type = LIO_210NV,
312 .card_name = LIO_210NV_NAME,
313
314 /** IQ attributes */
315
316 .iq = {
317 .max_iqs = CN6XXX_CFG_IO_QUEUES,
318 .pending_list_size =
319 (CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
320 .instr_type = OCTEON_64BYTE_INSTR,
321 .db_min = CN6XXX_DB_MIN,
322 .db_timeout = CN6XXX_DB_TIMEOUT,
323 }
324 ,
325
326 /** OQ attributes */
327 .oq = {
328 .max_oqs = CN6XXX_CFG_IO_QUEUES,
329 .refill_threshold = CN6XXX_OQ_REFIL_THRESHOLD,
330 .oq_intr_pkt = CN6XXX_OQ_INTR_PKT,
331 .oq_intr_time = CN6XXX_OQ_INTR_TIME,
332 .pkts_per_intr = CN6XXX_OQ_PKTSPER_INTR,
333 }
334 ,
335
336 .num_nic_ports = DEFAULT_NUM_NIC_PORTS_68XX_210NV,
337 .num_def_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
338 .num_def_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
339 .def_rx_buf_size = CN6XXX_OQ_BUF_SIZE,
340
341 .nic_if_cfg[0] = {
342 /* Max Txqs: Half for each of the two ports :max_iq/2 */
343 .max_txqs = MAX_TXQS_PER_INTF,
344
345 /* Actual configured value. Range could be: 1...max_txqs */
346 .num_txqs = DEF_TXQS_PER_INTF,
347
348 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
349 .max_rxqs = MAX_RXQS_PER_INTF,
350
351 /* Actual configured value. Range could be: 1...max_rxqs */
352 .num_rxqs = DEF_RXQS_PER_INTF,
353
354 /* Num of desc for rx rings */
355 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
356
357 /* Num of desc for tx rings */
358 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
359
360 /* SKB size, We need not change buf size even for Jumbo frames.
361 * Octeon can send jumbo frames in 4 consecutive descriptors,
362 */
363 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
364
365 .base_queue = BASE_QUEUE_NOT_REQUESTED,
366
367 .gmx_port_id = 0,
368 },
369
370 .nic_if_cfg[1] = {
371 /* Max Txqs: Half for each of the two ports :max_iq/2 */
372 .max_txqs = MAX_TXQS_PER_INTF,
373
374 /* Actual configured value. Range could be: 1...max_txqs */
375 .num_txqs = DEF_TXQS_PER_INTF,
376
377 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
378 .max_rxqs = MAX_RXQS_PER_INTF,
379
380 /* Actual configured value. Range could be: 1...max_rxqs */
381 .num_rxqs = DEF_RXQS_PER_INTF,
382
383 /* Num of desc for rx rings */
384 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS,
385
386 /* Num of desc for tx rings */
387 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS,
388
389 /* SKB size, We need not change buf size even for Jumbo frames.
390 * Octeon can send jumbo frames in 4 consecutive descriptors,
391 */
392 .rx_buf_size = CN6XXX_OQ_BUF_SIZE,
393
394 .base_queue = BASE_QUEUE_NOT_REQUESTED,
395
396 .gmx_port_id = 1,
397 },
398
399 /** Miscellaneous attributes */
400 .misc = {
401 /* Host driver link query interval */
402 .oct_link_query_interval = 100,
403
404 /* Octeon link query interval */
405 .host_link_query_interval = 500,
406
407 .enable_sli_oq_bp = 0,
408
409 /* Control queue group */
410 .ctrlq_grp = 1,
411 }
412 ,
413 };
414
415 static struct octeon_config default_cn23xx_conf = {
416 .card_type = LIO_23XX,
417 .card_name = LIO_23XX_NAME,
418 /** IQ attributes */
419 .iq = {
420 .max_iqs = CN23XX_CFG_IO_QUEUES,
421 .pending_list_size = (CN23XX_DEFAULT_IQ_DESCRIPTORS *
422 CN23XX_CFG_IO_QUEUES),
423 .instr_type = OCTEON_64BYTE_INSTR,
424 .db_min = CN23XX_DB_MIN,
425 .db_timeout = CN23XX_DB_TIMEOUT,
426 .iq_intr_pkt = CN23XX_DEF_IQ_INTR_THRESHOLD,
427 },
428
429 /** OQ attributes */
430 .oq = {
431 .max_oqs = CN23XX_CFG_IO_QUEUES,
432 .pkts_per_intr = CN23XX_OQ_PKTSPER_INTR,
433 .refill_threshold = CN23XX_OQ_REFIL_THRESHOLD,
434 .oq_intr_pkt = CN23XX_OQ_INTR_PKT,
435 .oq_intr_time = CN23XX_OQ_INTR_TIME,
436 },
437
438 .num_nic_ports = DEFAULT_NUM_NIC_PORTS_23XX,
439 .num_def_rx_descs = CN23XX_DEFAULT_OQ_DESCRIPTORS,
440 .num_def_tx_descs = CN23XX_DEFAULT_IQ_DESCRIPTORS,
441 .def_rx_buf_size = CN23XX_OQ_BUF_SIZE,
442
443 /* For ethernet interface 0: Port cfg Attributes */
444 .nic_if_cfg[0] = {
445 /* Max Txqs: Half for each of the two ports :max_iq/2 */
446 .max_txqs = MAX_TXQS_PER_INTF,
447
448 /* Actual configured value. Range could be: 1...max_txqs */
449 .num_txqs = DEF_TXQS_PER_INTF,
450
451 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
452 .max_rxqs = MAX_RXQS_PER_INTF,
453
454 /* Actual configured value. Range could be: 1...max_rxqs */
455 .num_rxqs = DEF_RXQS_PER_INTF,
456
457 /* Num of desc for rx rings */
458 .num_rx_descs = CN23XX_DEFAULT_OQ_DESCRIPTORS,
459
460 /* Num of desc for tx rings */
461 .num_tx_descs = CN23XX_DEFAULT_IQ_DESCRIPTORS,
462
463 /* SKB size, We need not change buf size even for Jumbo frames.
464 * Octeon can send jumbo frames in 4 consecutive descriptors,
465 */
466 .rx_buf_size = CN23XX_OQ_BUF_SIZE,
467
468 .base_queue = BASE_QUEUE_NOT_REQUESTED,
469
470 .gmx_port_id = 0,
471 },
472
473 .nic_if_cfg[1] = {
474 /* Max Txqs: Half for each of the two ports :max_iq/2 */
475 .max_txqs = MAX_TXQS_PER_INTF,
476
477 /* Actual configured value. Range could be: 1...max_txqs */
478 .num_txqs = DEF_TXQS_PER_INTF,
479
480 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
481 .max_rxqs = MAX_RXQS_PER_INTF,
482
483 /* Actual configured value. Range could be: 1...max_rxqs */
484 .num_rxqs = DEF_RXQS_PER_INTF,
485
486 /* Num of desc for rx rings */
487 .num_rx_descs = CN23XX_DEFAULT_OQ_DESCRIPTORS,
488
489 /* Num of desc for tx rings */
490 .num_tx_descs = CN23XX_DEFAULT_IQ_DESCRIPTORS,
491
492 /* SKB size, We need not change buf size even for Jumbo frames.
493 * Octeon can send jumbo frames in 4 consecutive descriptors,
494 */
495 .rx_buf_size = CN23XX_OQ_BUF_SIZE,
496
497 .base_queue = BASE_QUEUE_NOT_REQUESTED,
498
499 .gmx_port_id = 1,
500 },
501
502 .misc = {
503 /* Host driver link query interval */
504 .oct_link_query_interval = 100,
505
506 /* Octeon link query interval */
507 .host_link_query_interval = 500,
508
509 .enable_sli_oq_bp = 0,
510
511 /* Control queue group */
512 .ctrlq_grp = 1,
513 }
514 };
515
516 static struct octeon_config_ptr {
517 u32 conf_type;
518 } oct_conf_info[MAX_OCTEON_DEVICES] = {
519 {
520 OCTEON_CONFIG_TYPE_DEFAULT,
521 }, {
522 OCTEON_CONFIG_TYPE_DEFAULT,
523 }, {
524 OCTEON_CONFIG_TYPE_DEFAULT,
525 }, {
526 OCTEON_CONFIG_TYPE_DEFAULT,
527 },
528 };
529
530 static char oct_dev_state_str[OCT_DEV_STATES + 1][32] = {
531 "BEGIN", "PCI-ENABLE-DONE", "PCI-MAP-DONE", "DISPATCH-INIT-DONE",
532 "IQ-INIT-DONE", "SCBUFF-POOL-INIT-DONE", "RESPLIST-INIT-DONE",
533 "DROQ-INIT-DONE", "MBOX-SETUP-DONE", "MSIX-ALLOC-VECTOR-DONE",
534 "INTR-SET-DONE", "IO-QUEUES-INIT-DONE", "CONSOLE-INIT-DONE",
535 "HOST-READY", "CORE-READY", "RUNNING", "IN-RESET",
536 "INVALID"
537 };
538
539 static char oct_dev_app_str[CVM_DRV_APP_COUNT + 1][32] = {
540 "BASE", "NIC", "UNKNOWN"};
541
542 static struct octeon_device *octeon_device[MAX_OCTEON_DEVICES];
543 static atomic_t adapter_refcounts[MAX_OCTEON_DEVICES];
544 static atomic_t adapter_fw_states[MAX_OCTEON_DEVICES];
545
546 static u32 octeon_device_count;
547 /* locks device array (i.e. octeon_device[]) */
548 static spinlock_t octeon_devices_lock;
549
550 static struct octeon_core_setup core_setup[MAX_OCTEON_DEVICES];
551
oct_set_config_info(int oct_id,int conf_type)552 static void oct_set_config_info(int oct_id, int conf_type)
553 {
554 if (conf_type < 0 || conf_type > (NUM_OCTEON_CONFS - 1))
555 conf_type = OCTEON_CONFIG_TYPE_DEFAULT;
556 oct_conf_info[oct_id].conf_type = conf_type;
557 }
558
octeon_init_device_list(int conf_type)559 void octeon_init_device_list(int conf_type)
560 {
561 int i;
562
563 memset(octeon_device, 0, (sizeof(void *) * MAX_OCTEON_DEVICES));
564 for (i = 0; i < MAX_OCTEON_DEVICES; i++)
565 oct_set_config_info(i, conf_type);
566 spin_lock_init(&octeon_devices_lock);
567 }
568
__retrieve_octeon_config_info(struct octeon_device * oct,u16 card_type)569 static void *__retrieve_octeon_config_info(struct octeon_device *oct,
570 u16 card_type)
571 {
572 u32 oct_id = oct->octeon_id;
573 void *ret = NULL;
574
575 switch (oct_conf_info[oct_id].conf_type) {
576 case OCTEON_CONFIG_TYPE_DEFAULT:
577 if (oct->chip_id == OCTEON_CN66XX) {
578 ret = &default_cn66xx_conf;
579 } else if ((oct->chip_id == OCTEON_CN68XX) &&
580 (card_type == LIO_210NV)) {
581 ret = &default_cn68xx_210nv_conf;
582 } else if ((oct->chip_id == OCTEON_CN68XX) &&
583 (card_type == LIO_410NV)) {
584 ret = &default_cn68xx_conf;
585 } else if (oct->chip_id == OCTEON_CN23XX_PF_VID) {
586 ret = &default_cn23xx_conf;
587 } else if (oct->chip_id == OCTEON_CN23XX_VF_VID) {
588 ret = &default_cn23xx_conf;
589 }
590 break;
591 default:
592 break;
593 }
594 return ret;
595 }
596
__verify_octeon_config_info(struct octeon_device * oct,void * conf)597 static int __verify_octeon_config_info(struct octeon_device *oct, void *conf)
598 {
599 switch (oct->chip_id) {
600 case OCTEON_CN66XX:
601 case OCTEON_CN68XX:
602 return lio_validate_cn6xxx_config_info(oct, conf);
603 case OCTEON_CN23XX_PF_VID:
604 case OCTEON_CN23XX_VF_VID:
605 return 0;
606 default:
607 break;
608 }
609
610 return 1;
611 }
612
oct_get_config_info(struct octeon_device * oct,u16 card_type)613 void *oct_get_config_info(struct octeon_device *oct, u16 card_type)
614 {
615 void *conf = NULL;
616
617 conf = __retrieve_octeon_config_info(oct, card_type);
618 if (!conf)
619 return NULL;
620
621 if (__verify_octeon_config_info(oct, conf)) {
622 dev_err(&oct->pci_dev->dev, "Configuration verification failed\n");
623 return NULL;
624 }
625
626 return conf;
627 }
628
lio_get_state_string(atomic_t * state_ptr)629 char *lio_get_state_string(atomic_t *state_ptr)
630 {
631 s32 istate = (s32)atomic_read(state_ptr);
632
633 if (istate > OCT_DEV_STATES || istate < 0)
634 return oct_dev_state_str[OCT_DEV_STATE_INVALID];
635 return oct_dev_state_str[istate];
636 }
637
get_oct_app_string(u32 app_mode)638 static char *get_oct_app_string(u32 app_mode)
639 {
640 if (app_mode <= CVM_DRV_APP_END)
641 return oct_dev_app_str[app_mode - CVM_DRV_APP_START];
642 return oct_dev_app_str[CVM_DRV_INVALID_APP - CVM_DRV_APP_START];
643 }
644
octeon_free_device_mem(struct octeon_device * oct)645 void octeon_free_device_mem(struct octeon_device *oct)
646 {
647 int i;
648
649 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
650 if (oct->io_qmask.oq & BIT_ULL(i))
651 vfree(oct->droq[i]);
652 }
653
654 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
655 if (oct->io_qmask.iq & BIT_ULL(i))
656 vfree(oct->instr_queue[i]);
657 }
658
659 i = oct->octeon_id;
660 vfree(oct);
661
662 octeon_device[i] = NULL;
663 octeon_device_count--;
664 }
665
octeon_allocate_device_mem(u32 pci_id,u32 priv_size)666 static struct octeon_device *octeon_allocate_device_mem(u32 pci_id,
667 u32 priv_size)
668 {
669 struct octeon_device *oct;
670 u8 *buf = NULL;
671 u32 octdevsize = 0, configsize = 0, size;
672
673 switch (pci_id) {
674 case OCTEON_CN68XX:
675 case OCTEON_CN66XX:
676 configsize = sizeof(struct octeon_cn6xxx);
677 break;
678
679 case OCTEON_CN23XX_PF_VID:
680 configsize = sizeof(struct octeon_cn23xx_pf);
681 break;
682 case OCTEON_CN23XX_VF_VID:
683 configsize = sizeof(struct octeon_cn23xx_vf);
684 break;
685 default:
686 pr_err("%s: Unknown PCI Device: 0x%x\n",
687 __func__,
688 pci_id);
689 return NULL;
690 }
691
692 if (configsize & 0x7)
693 configsize += (8 - (configsize & 0x7));
694
695 octdevsize = sizeof(struct octeon_device);
696 if (octdevsize & 0x7)
697 octdevsize += (8 - (octdevsize & 0x7));
698
699 if (priv_size & 0x7)
700 priv_size += (8 - (priv_size & 0x7));
701
702 size = octdevsize + priv_size + configsize +
703 (sizeof(struct octeon_dispatch) * DISPATCH_LIST_SIZE);
704
705 buf = vzalloc(size);
706 if (!buf)
707 return NULL;
708
709 oct = (struct octeon_device *)buf;
710 oct->priv = (void *)(buf + octdevsize);
711 oct->chip = (void *)(buf + octdevsize + priv_size);
712 oct->dispatch.dlist = (struct octeon_dispatch *)
713 (buf + octdevsize + priv_size + configsize);
714
715 return oct;
716 }
717
octeon_allocate_device(u32 pci_id,u32 priv_size)718 struct octeon_device *octeon_allocate_device(u32 pci_id,
719 u32 priv_size)
720 {
721 u32 oct_idx = 0;
722 struct octeon_device *oct = NULL;
723
724 spin_lock(&octeon_devices_lock);
725
726 for (oct_idx = 0; oct_idx < MAX_OCTEON_DEVICES; oct_idx++)
727 if (!octeon_device[oct_idx])
728 break;
729
730 if (oct_idx < MAX_OCTEON_DEVICES) {
731 oct = octeon_allocate_device_mem(pci_id, priv_size);
732 if (oct) {
733 octeon_device_count++;
734 octeon_device[oct_idx] = oct;
735 }
736 }
737
738 spin_unlock(&octeon_devices_lock);
739 if (!oct)
740 return NULL;
741
742 spin_lock_init(&oct->pci_win_lock);
743 spin_lock_init(&oct->mem_access_lock);
744
745 oct->octeon_id = oct_idx;
746 snprintf(oct->device_name, sizeof(oct->device_name),
747 "LiquidIO%d", (oct->octeon_id));
748
749 return oct;
750 }
751
752 /** Register a device's bus location at initialization time.
753 * @param octeon_dev - pointer to the octeon device structure.
754 * @param bus - PCIe bus #
755 * @param dev - PCIe device #
756 * @param func - PCIe function #
757 * @param is_pf - TRUE for PF, FALSE for VF
758 * @return reference count of device's adapter
759 */
octeon_register_device(struct octeon_device * oct,int bus,int dev,int func,int is_pf)760 int octeon_register_device(struct octeon_device *oct,
761 int bus, int dev, int func, int is_pf)
762 {
763 int idx, refcount;
764
765 oct->loc.bus = bus;
766 oct->loc.dev = dev;
767 oct->loc.func = func;
768
769 oct->adapter_refcount = &adapter_refcounts[oct->octeon_id];
770 atomic_set(oct->adapter_refcount, 0);
771
772 /* Like the reference count, the f/w state is shared 'per-adapter' */
773 oct->adapter_fw_state = &adapter_fw_states[oct->octeon_id];
774 atomic_set(oct->adapter_fw_state, FW_NEEDS_TO_BE_LOADED);
775
776 spin_lock(&octeon_devices_lock);
777 for (idx = (int)oct->octeon_id - 1; idx >= 0; idx--) {
778 if (!octeon_device[idx]) {
779 dev_err(&oct->pci_dev->dev,
780 "%s: Internal driver error, missing dev",
781 __func__);
782 spin_unlock(&octeon_devices_lock);
783 atomic_inc(oct->adapter_refcount);
784 return 1; /* here, refcount is guaranteed to be 1 */
785 }
786 /* If another device is at same bus/dev, use its refcounter
787 * (and f/w state variable).
788 */
789 if ((octeon_device[idx]->loc.bus == bus) &&
790 (octeon_device[idx]->loc.dev == dev)) {
791 oct->adapter_refcount =
792 octeon_device[idx]->adapter_refcount;
793 oct->adapter_fw_state =
794 octeon_device[idx]->adapter_fw_state;
795 break;
796 }
797 }
798 spin_unlock(&octeon_devices_lock);
799
800 atomic_inc(oct->adapter_refcount);
801 refcount = atomic_read(oct->adapter_refcount);
802
803 dev_dbg(&oct->pci_dev->dev, "%s: %02x:%02x:%d refcount %u", __func__,
804 oct->loc.bus, oct->loc.dev, oct->loc.func, refcount);
805
806 return refcount;
807 }
808
809 /** Deregister a device at de-initialization time.
810 * @param octeon_dev - pointer to the octeon device structure.
811 * @return reference count of device's adapter
812 */
octeon_deregister_device(struct octeon_device * oct)813 int octeon_deregister_device(struct octeon_device *oct)
814 {
815 int refcount;
816
817 atomic_dec(oct->adapter_refcount);
818 refcount = atomic_read(oct->adapter_refcount);
819
820 dev_dbg(&oct->pci_dev->dev, "%s: %04d:%02d:%d refcount %u", __func__,
821 oct->loc.bus, oct->loc.dev, oct->loc.func, refcount);
822
823 return refcount;
824 }
825
826 int
octeon_allocate_ioq_vector(struct octeon_device * oct,u32 num_ioqs)827 octeon_allocate_ioq_vector(struct octeon_device *oct, u32 num_ioqs)
828 {
829 struct octeon_ioq_vector *ioq_vector;
830 int cpu_num;
831 int size;
832 int i;
833
834 size = sizeof(struct octeon_ioq_vector) * num_ioqs;
835
836 oct->ioq_vector = vzalloc(size);
837 if (!oct->ioq_vector)
838 return -1;
839 for (i = 0; i < num_ioqs; i++) {
840 ioq_vector = &oct->ioq_vector[i];
841 ioq_vector->oct_dev = oct;
842 ioq_vector->iq_index = i;
843 ioq_vector->droq_index = i;
844 ioq_vector->mbox = oct->mbox[i];
845
846 cpu_num = i % num_online_cpus();
847 cpumask_set_cpu(cpu_num, &ioq_vector->affinity_mask);
848
849 if (oct->chip_id == OCTEON_CN23XX_PF_VID)
850 ioq_vector->ioq_num = i + oct->sriov_info.pf_srn;
851 else
852 ioq_vector->ioq_num = i;
853 }
854
855 return 0;
856 }
857
858 void
octeon_free_ioq_vector(struct octeon_device * oct)859 octeon_free_ioq_vector(struct octeon_device *oct)
860 {
861 vfree(oct->ioq_vector);
862 }
863
864 /* this function is only for setting up the first queue */
octeon_setup_instr_queues(struct octeon_device * oct)865 int octeon_setup_instr_queues(struct octeon_device *oct)
866 {
867 u32 num_descs = 0;
868 u32 iq_no = 0;
869 union oct_txpciq txpciq;
870 int numa_node = dev_to_node(&oct->pci_dev->dev);
871
872 if (OCTEON_CN6XXX(oct))
873 num_descs =
874 CFG_GET_NUM_DEF_TX_DESCS(CHIP_CONF(oct, cn6xxx));
875 else if (OCTEON_CN23XX_PF(oct))
876 num_descs = CFG_GET_NUM_DEF_TX_DESCS(CHIP_CONF(oct, cn23xx_pf));
877 else if (OCTEON_CN23XX_VF(oct))
878 num_descs = CFG_GET_NUM_DEF_TX_DESCS(CHIP_CONF(oct, cn23xx_vf));
879
880 oct->num_iqs = 0;
881
882 oct->instr_queue[0] = vzalloc_node(sizeof(*oct->instr_queue[0]),
883 numa_node);
884 if (!oct->instr_queue[0])
885 oct->instr_queue[0] =
886 vzalloc(sizeof(struct octeon_instr_queue));
887 if (!oct->instr_queue[0])
888 return 1;
889 memset(oct->instr_queue[0], 0, sizeof(struct octeon_instr_queue));
890 oct->instr_queue[0]->q_index = 0;
891 oct->instr_queue[0]->app_ctx = (void *)(size_t)0;
892 oct->instr_queue[0]->ifidx = 0;
893 txpciq.u64 = 0;
894 txpciq.s.q_no = iq_no;
895 txpciq.s.pkind = oct->pfvf_hsword.pkind;
896 txpciq.s.use_qpg = 0;
897 txpciq.s.qpg = 0;
898 if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
899 /* prevent memory leak */
900 vfree(oct->instr_queue[0]);
901 oct->instr_queue[0] = NULL;
902 return 1;
903 }
904
905 oct->num_iqs++;
906 return 0;
907 }
908
octeon_setup_output_queues(struct octeon_device * oct)909 int octeon_setup_output_queues(struct octeon_device *oct)
910 {
911 u32 num_descs = 0;
912 u32 desc_size = 0;
913 u32 oq_no = 0;
914 int numa_node = dev_to_node(&oct->pci_dev->dev);
915
916 if (OCTEON_CN6XXX(oct)) {
917 num_descs =
918 CFG_GET_NUM_DEF_RX_DESCS(CHIP_CONF(oct, cn6xxx));
919 desc_size =
920 CFG_GET_DEF_RX_BUF_SIZE(CHIP_CONF(oct, cn6xxx));
921 } else if (OCTEON_CN23XX_PF(oct)) {
922 num_descs = CFG_GET_NUM_DEF_RX_DESCS(CHIP_CONF(oct, cn23xx_pf));
923 desc_size = CFG_GET_DEF_RX_BUF_SIZE(CHIP_CONF(oct, cn23xx_pf));
924 } else if (OCTEON_CN23XX_VF(oct)) {
925 num_descs = CFG_GET_NUM_DEF_RX_DESCS(CHIP_CONF(oct, cn23xx_vf));
926 desc_size = CFG_GET_DEF_RX_BUF_SIZE(CHIP_CONF(oct, cn23xx_vf));
927 }
928 oct->num_oqs = 0;
929 oct->droq[0] = vzalloc_node(sizeof(*oct->droq[0]), numa_node);
930 if (!oct->droq[0])
931 oct->droq[0] = vzalloc(sizeof(*oct->droq[0]));
932 if (!oct->droq[0])
933 return 1;
934
935 if (octeon_init_droq(oct, oq_no, num_descs, desc_size, NULL)) {
936 vfree(oct->droq[oq_no]);
937 oct->droq[oq_no] = NULL;
938 return 1;
939 }
940 oct->num_oqs++;
941
942 return 0;
943 }
944
octeon_set_io_queues_off(struct octeon_device * oct)945 int octeon_set_io_queues_off(struct octeon_device *oct)
946 {
947 int loop = BUSY_READING_REG_VF_LOOP_COUNT;
948
949 if (OCTEON_CN6XXX(oct)) {
950 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
951 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
952 } else if (oct->chip_id == OCTEON_CN23XX_VF_VID) {
953 u32 q_no;
954
955 /* IOQs will already be in reset.
956 * If RST bit is set, wait for quiet bit to be set.
957 * Once quiet bit is set, clear the RST bit.
958 */
959 for (q_no = 0; q_no < oct->sriov_info.rings_per_vf; q_no++) {
960 u64 reg_val = octeon_read_csr64(
961 oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no));
962
963 while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) &&
964 !(reg_val & CN23XX_PKT_INPUT_CTL_QUIET) &&
965 loop) {
966 reg_val = octeon_read_csr64(
967 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
968 loop--;
969 }
970 if (!loop) {
971 dev_err(&oct->pci_dev->dev,
972 "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
973 q_no);
974 return -1;
975 }
976
977 reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST;
978 octeon_write_csr64(oct,
979 CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
980 reg_val);
981
982 reg_val = octeon_read_csr64(
983 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
984 if (reg_val & CN23XX_PKT_INPUT_CTL_RST) {
985 dev_err(&oct->pci_dev->dev,
986 "unable to reset qno %u\n", q_no);
987 return -1;
988 }
989 }
990 }
991 return 0;
992 }
993
octeon_set_droq_pkt_op(struct octeon_device * oct,u32 q_no,u32 enable)994 void octeon_set_droq_pkt_op(struct octeon_device *oct,
995 u32 q_no,
996 u32 enable)
997 {
998 u32 reg_val = 0;
999
1000 /* Disable the i/p and o/p queues for this Octeon. */
1001 if (OCTEON_CN6XXX(oct)) {
1002 reg_val = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
1003
1004 if (enable)
1005 reg_val = reg_val | (1 << q_no);
1006 else
1007 reg_val = reg_val & (~(1 << q_no));
1008
1009 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, reg_val);
1010 }
1011 }
1012
octeon_init_dispatch_list(struct octeon_device * oct)1013 int octeon_init_dispatch_list(struct octeon_device *oct)
1014 {
1015 u32 i;
1016
1017 oct->dispatch.count = 0;
1018
1019 for (i = 0; i < DISPATCH_LIST_SIZE; i++) {
1020 oct->dispatch.dlist[i].opcode = 0;
1021 INIT_LIST_HEAD(&oct->dispatch.dlist[i].list);
1022 }
1023
1024 for (i = 0; i <= REQTYPE_LAST; i++)
1025 octeon_register_reqtype_free_fn(oct, i, NULL);
1026
1027 spin_lock_init(&oct->dispatch.lock);
1028
1029 return 0;
1030 }
1031
octeon_delete_dispatch_list(struct octeon_device * oct)1032 void octeon_delete_dispatch_list(struct octeon_device *oct)
1033 {
1034 u32 i;
1035 struct list_head freelist, *temp, *tmp2;
1036
1037 INIT_LIST_HEAD(&freelist);
1038
1039 spin_lock_bh(&oct->dispatch.lock);
1040
1041 for (i = 0; i < DISPATCH_LIST_SIZE; i++) {
1042 struct list_head *dispatch;
1043
1044 dispatch = &oct->dispatch.dlist[i].list;
1045 while (dispatch->next != dispatch) {
1046 temp = dispatch->next;
1047 list_move_tail(temp, &freelist);
1048 }
1049
1050 oct->dispatch.dlist[i].opcode = 0;
1051 }
1052
1053 oct->dispatch.count = 0;
1054
1055 spin_unlock_bh(&oct->dispatch.lock);
1056
1057 list_for_each_safe(temp, tmp2, &freelist) {
1058 list_del(temp);
1059 kfree(temp);
1060 }
1061 }
1062
1063 octeon_dispatch_fn_t
octeon_get_dispatch(struct octeon_device * octeon_dev,u16 opcode,u16 subcode)1064 octeon_get_dispatch(struct octeon_device *octeon_dev, u16 opcode,
1065 u16 subcode)
1066 {
1067 u32 idx;
1068 struct list_head *dispatch;
1069 octeon_dispatch_fn_t fn = NULL;
1070 u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode);
1071
1072 idx = combined_opcode & OCTEON_OPCODE_MASK;
1073
1074 spin_lock_bh(&octeon_dev->dispatch.lock);
1075
1076 if (octeon_dev->dispatch.count == 0) {
1077 spin_unlock_bh(&octeon_dev->dispatch.lock);
1078 return NULL;
1079 }
1080
1081 if (!(octeon_dev->dispatch.dlist[idx].opcode)) {
1082 spin_unlock_bh(&octeon_dev->dispatch.lock);
1083 return NULL;
1084 }
1085
1086 if (octeon_dev->dispatch.dlist[idx].opcode == combined_opcode) {
1087 fn = octeon_dev->dispatch.dlist[idx].dispatch_fn;
1088 } else {
1089 list_for_each(dispatch,
1090 &octeon_dev->dispatch.dlist[idx].list) {
1091 if (((struct octeon_dispatch *)dispatch)->opcode ==
1092 combined_opcode) {
1093 fn = ((struct octeon_dispatch *)
1094 dispatch)->dispatch_fn;
1095 break;
1096 }
1097 }
1098 }
1099
1100 spin_unlock_bh(&octeon_dev->dispatch.lock);
1101 return fn;
1102 }
1103
1104 /* octeon_register_dispatch_fn
1105 * Parameters:
1106 * octeon_id - id of the octeon device.
1107 * opcode - opcode for which driver should call the registered function
1108 * subcode - subcode for which driver should call the registered function
1109 * fn - The function to call when a packet with "opcode" arrives in
1110 * octeon output queues.
1111 * fn_arg - The argument to be passed when calling function "fn".
1112 * Description:
1113 * Registers a function and its argument to be called when a packet
1114 * arrives in Octeon output queues with "opcode".
1115 * Returns:
1116 * Success: 0
1117 * Failure: 1
1118 * Locks:
1119 * No locks are held.
1120 */
1121 int
octeon_register_dispatch_fn(struct octeon_device * oct,u16 opcode,u16 subcode,octeon_dispatch_fn_t fn,void * fn_arg)1122 octeon_register_dispatch_fn(struct octeon_device *oct,
1123 u16 opcode,
1124 u16 subcode,
1125 octeon_dispatch_fn_t fn, void *fn_arg)
1126 {
1127 u32 idx;
1128 octeon_dispatch_fn_t pfn;
1129 u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode);
1130
1131 idx = combined_opcode & OCTEON_OPCODE_MASK;
1132
1133 spin_lock_bh(&oct->dispatch.lock);
1134 /* Add dispatch function to first level of lookup table */
1135 if (oct->dispatch.dlist[idx].opcode == 0) {
1136 oct->dispatch.dlist[idx].opcode = combined_opcode;
1137 oct->dispatch.dlist[idx].dispatch_fn = fn;
1138 oct->dispatch.dlist[idx].arg = fn_arg;
1139 oct->dispatch.count++;
1140 spin_unlock_bh(&oct->dispatch.lock);
1141 return 0;
1142 }
1143
1144 spin_unlock_bh(&oct->dispatch.lock);
1145
1146 /* Check if there was a function already registered for this
1147 * opcode/subcode.
1148 */
1149 pfn = octeon_get_dispatch(oct, opcode, subcode);
1150 if (!pfn) {
1151 struct octeon_dispatch *dispatch;
1152
1153 dev_dbg(&oct->pci_dev->dev,
1154 "Adding opcode to dispatch list linked list\n");
1155 dispatch = kmalloc(sizeof(*dispatch), GFP_KERNEL);
1156 if (!dispatch)
1157 return 1;
1158
1159 dispatch->opcode = combined_opcode;
1160 dispatch->dispatch_fn = fn;
1161 dispatch->arg = fn_arg;
1162
1163 /* Add dispatch function to linked list of fn ptrs
1164 * at the hashed index.
1165 */
1166 spin_lock_bh(&oct->dispatch.lock);
1167 list_add(&dispatch->list, &oct->dispatch.dlist[idx].list);
1168 oct->dispatch.count++;
1169 spin_unlock_bh(&oct->dispatch.lock);
1170
1171 } else {
1172 if (pfn == fn &&
1173 octeon_get_dispatch_arg(oct, opcode, subcode) == fn_arg)
1174 return 0;
1175
1176 dev_err(&oct->pci_dev->dev,
1177 "Found previously registered dispatch fn for opcode/subcode: %x/%x\n",
1178 opcode, subcode);
1179 return 1;
1180 }
1181
1182 return 0;
1183 }
1184
octeon_core_drv_init(struct octeon_recv_info * recv_info,void * buf)1185 int octeon_core_drv_init(struct octeon_recv_info *recv_info, void *buf)
1186 {
1187 u32 i;
1188 char app_name[16];
1189 struct octeon_device *oct = (struct octeon_device *)buf;
1190 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
1191 struct octeon_core_setup *cs = NULL;
1192 u32 num_nic_ports = 0;
1193
1194 if (OCTEON_CN6XXX(oct))
1195 num_nic_ports =
1196 CFG_GET_NUM_NIC_PORTS(CHIP_CONF(oct, cn6xxx));
1197 else if (OCTEON_CN23XX_PF(oct))
1198 num_nic_ports =
1199 CFG_GET_NUM_NIC_PORTS(CHIP_CONF(oct, cn23xx_pf));
1200
1201 if (atomic_read(&oct->status) >= OCT_DEV_RUNNING) {
1202 dev_err(&oct->pci_dev->dev, "Received CORE OK when device state is 0x%x\n",
1203 atomic_read(&oct->status));
1204 goto core_drv_init_err;
1205 }
1206
1207 strncpy(app_name,
1208 get_oct_app_string(
1209 (u32)recv_pkt->rh.r_core_drv_init.app_mode),
1210 sizeof(app_name) - 1);
1211 oct->app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1212 if (recv_pkt->rh.r_core_drv_init.app_mode == CVM_DRV_NIC_APP) {
1213 oct->fw_info.max_nic_ports =
1214 (u32)recv_pkt->rh.r_core_drv_init.max_nic_ports;
1215 oct->fw_info.num_gmx_ports =
1216 (u32)recv_pkt->rh.r_core_drv_init.num_gmx_ports;
1217 }
1218
1219 if (oct->fw_info.max_nic_ports < num_nic_ports) {
1220 dev_err(&oct->pci_dev->dev,
1221 "Config has more ports than firmware allows (%d > %d).\n",
1222 num_nic_ports, oct->fw_info.max_nic_ports);
1223 goto core_drv_init_err;
1224 }
1225 oct->fw_info.app_cap_flags = recv_pkt->rh.r_core_drv_init.app_cap_flags;
1226 oct->fw_info.app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1227 oct->pfvf_hsword.app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1228
1229 oct->pfvf_hsword.pkind = recv_pkt->rh.r_core_drv_init.pkind;
1230
1231 for (i = 0; i < oct->num_iqs; i++)
1232 oct->instr_queue[i]->txpciq.s.pkind = oct->pfvf_hsword.pkind;
1233
1234 atomic_set(&oct->status, OCT_DEV_CORE_OK);
1235
1236 cs = &core_setup[oct->octeon_id];
1237
1238 if (recv_pkt->buffer_size[0] != (sizeof(*cs) + OCT_DROQ_INFO_SIZE)) {
1239 dev_dbg(&oct->pci_dev->dev, "Core setup bytes expected %u found %d\n",
1240 (u32)sizeof(*cs),
1241 recv_pkt->buffer_size[0]);
1242 }
1243
1244 memcpy(cs, get_rbd(
1245 recv_pkt->buffer_ptr[0]) + OCT_DROQ_INFO_SIZE, sizeof(*cs));
1246
1247 strncpy(oct->boardinfo.name, cs->boardname, OCT_BOARD_NAME);
1248 strncpy(oct->boardinfo.serial_number, cs->board_serial_number,
1249 OCT_SERIAL_LEN);
1250
1251 octeon_swap_8B_data((u64 *)cs, (sizeof(*cs) >> 3));
1252
1253 oct->boardinfo.major = cs->board_rev_major;
1254 oct->boardinfo.minor = cs->board_rev_minor;
1255
1256 dev_info(&oct->pci_dev->dev,
1257 "Running %s (%llu Hz)\n",
1258 app_name, CVM_CAST64(cs->corefreq));
1259
1260 core_drv_init_err:
1261 for (i = 0; i < recv_pkt->buffer_count; i++)
1262 recv_buffer_free(recv_pkt->buffer_ptr[i]);
1263 octeon_free_recv_info(recv_info);
1264 return 0;
1265 }
1266
octeon_get_tx_qsize(struct octeon_device * oct,u32 q_no)1267 int octeon_get_tx_qsize(struct octeon_device *oct, u32 q_no)
1268
1269 {
1270 if (oct && (q_no < MAX_OCTEON_INSTR_QUEUES(oct)) &&
1271 (oct->io_qmask.iq & BIT_ULL(q_no)))
1272 return oct->instr_queue[q_no]->max_count;
1273
1274 return -1;
1275 }
1276
octeon_get_rx_qsize(struct octeon_device * oct,u32 q_no)1277 int octeon_get_rx_qsize(struct octeon_device *oct, u32 q_no)
1278 {
1279 if (oct && (q_no < MAX_OCTEON_OUTPUT_QUEUES(oct)) &&
1280 (oct->io_qmask.oq & BIT_ULL(q_no)))
1281 return oct->droq[q_no]->max_count;
1282 return -1;
1283 }
1284
1285 /* Retruns the host firmware handshake OCTEON specific configuration */
octeon_get_conf(struct octeon_device * oct)1286 struct octeon_config *octeon_get_conf(struct octeon_device *oct)
1287 {
1288 struct octeon_config *default_oct_conf = NULL;
1289
1290 /* check the OCTEON Device model & return the corresponding octeon
1291 * configuration
1292 */
1293
1294 if (OCTEON_CN6XXX(oct)) {
1295 default_oct_conf =
1296 (struct octeon_config *)(CHIP_CONF(oct, cn6xxx));
1297 } else if (OCTEON_CN23XX_PF(oct)) {
1298 default_oct_conf = (struct octeon_config *)
1299 (CHIP_CONF(oct, cn23xx_pf));
1300 } else if (OCTEON_CN23XX_VF(oct)) {
1301 default_oct_conf = (struct octeon_config *)
1302 (CHIP_CONF(oct, cn23xx_vf));
1303 }
1304 return default_oct_conf;
1305 }
1306
1307 /* scratch register address is same in all the OCT-II and CN70XX models */
1308 #define CNXX_SLI_SCRATCH1 0x3C0
1309
1310 /* Get the octeon device pointer.
1311 * @param octeon_id - The id for which the octeon device pointer is required.
1312 * @return Success: Octeon device pointer.
1313 * @return Failure: NULL.
1314 */
lio_get_device(u32 octeon_id)1315 struct octeon_device *lio_get_device(u32 octeon_id)
1316 {
1317 if (octeon_id >= MAX_OCTEON_DEVICES)
1318 return NULL;
1319 else
1320 return octeon_device[octeon_id];
1321 }
1322
lio_pci_readq(struct octeon_device * oct,u64 addr)1323 u64 lio_pci_readq(struct octeon_device *oct, u64 addr)
1324 {
1325 u64 val64;
1326 unsigned long flags;
1327 u32 addrhi;
1328
1329 spin_lock_irqsave(&oct->pci_win_lock, flags);
1330
1331 /* The windowed read happens when the LSB of the addr is written.
1332 * So write MSB first
1333 */
1334 addrhi = (addr >> 32);
1335 if ((oct->chip_id == OCTEON_CN66XX) ||
1336 (oct->chip_id == OCTEON_CN68XX) ||
1337 (oct->chip_id == OCTEON_CN23XX_PF_VID))
1338 addrhi |= 0x00060000;
1339 writel(addrhi, oct->reg_list.pci_win_rd_addr_hi);
1340
1341 /* Read back to preserve ordering of writes */
1342 readl(oct->reg_list.pci_win_rd_addr_hi);
1343
1344 writel(addr & 0xffffffff, oct->reg_list.pci_win_rd_addr_lo);
1345 readl(oct->reg_list.pci_win_rd_addr_lo);
1346
1347 val64 = readq(oct->reg_list.pci_win_rd_data);
1348
1349 spin_unlock_irqrestore(&oct->pci_win_lock, flags);
1350
1351 return val64;
1352 }
1353
lio_pci_writeq(struct octeon_device * oct,u64 val,u64 addr)1354 void lio_pci_writeq(struct octeon_device *oct,
1355 u64 val,
1356 u64 addr)
1357 {
1358 unsigned long flags;
1359
1360 spin_lock_irqsave(&oct->pci_win_lock, flags);
1361
1362 writeq(addr, oct->reg_list.pci_win_wr_addr);
1363
1364 /* The write happens when the LSB is written. So write MSB first. */
1365 writel(val >> 32, oct->reg_list.pci_win_wr_data_hi);
1366 /* Read the MSB to ensure ordering of writes. */
1367 readl(oct->reg_list.pci_win_wr_data_hi);
1368
1369 writel(val & 0xffffffff, oct->reg_list.pci_win_wr_data_lo);
1370
1371 spin_unlock_irqrestore(&oct->pci_win_lock, flags);
1372 }
1373
octeon_mem_access_ok(struct octeon_device * oct)1374 int octeon_mem_access_ok(struct octeon_device *oct)
1375 {
1376 u64 access_okay = 0;
1377 u64 lmc0_reset_ctl;
1378
1379 /* Check to make sure a DDR interface is enabled */
1380 if (OCTEON_CN23XX_PF(oct)) {
1381 lmc0_reset_ctl = lio_pci_readq(oct, CN23XX_LMC0_RESET_CTL);
1382 access_okay =
1383 (lmc0_reset_ctl & CN23XX_LMC0_RESET_CTL_DDR3RST_MASK);
1384 } else {
1385 lmc0_reset_ctl = lio_pci_readq(oct, CN6XXX_LMC0_RESET_CTL);
1386 access_okay =
1387 (lmc0_reset_ctl & CN6XXX_LMC0_RESET_CTL_DDR3RST_MASK);
1388 }
1389
1390 return access_okay ? 0 : 1;
1391 }
1392
octeon_wait_for_ddr_init(struct octeon_device * oct,u32 * timeout)1393 int octeon_wait_for_ddr_init(struct octeon_device *oct, u32 *timeout)
1394 {
1395 int ret = 1;
1396 u32 ms;
1397
1398 if (!timeout)
1399 return ret;
1400
1401 for (ms = 0; (ret != 0) && ((*timeout == 0) || (ms <= *timeout));
1402 ms += HZ / 10) {
1403 ret = octeon_mem_access_ok(oct);
1404
1405 /* wait 100 ms */
1406 if (ret)
1407 schedule_timeout_uninterruptible(HZ / 10);
1408 }
1409
1410 return ret;
1411 }
1412
1413 /* Get the octeon id assigned to the octeon device passed as argument.
1414 * This function is exported to other modules.
1415 * @param dev - octeon device pointer passed as a void *.
1416 * @return octeon device id
1417 */
lio_get_device_id(void * dev)1418 int lio_get_device_id(void *dev)
1419 {
1420 struct octeon_device *octeon_dev = (struct octeon_device *)dev;
1421 u32 i;
1422
1423 for (i = 0; i < MAX_OCTEON_DEVICES; i++)
1424 if (octeon_device[i] == octeon_dev)
1425 return octeon_dev->octeon_id;
1426 return -1;
1427 }
1428
lio_enable_irq(struct octeon_droq * droq,struct octeon_instr_queue * iq)1429 void lio_enable_irq(struct octeon_droq *droq, struct octeon_instr_queue *iq)
1430 {
1431 u64 instr_cnt;
1432 u32 pkts_pend;
1433 struct octeon_device *oct = NULL;
1434
1435 /* the whole thing needs to be atomic, ideally */
1436 if (droq) {
1437 pkts_pend = (u32)atomic_read(&droq->pkts_pending);
1438 writel(droq->pkt_count - pkts_pend, droq->pkts_sent_reg);
1439 droq->pkt_count = pkts_pend;
1440 oct = droq->oct_dev;
1441 }
1442 if (iq) {
1443 spin_lock_bh(&iq->lock);
1444 writel(iq->pkts_processed, iq->inst_cnt_reg);
1445 iq->pkt_in_done -= iq->pkts_processed;
1446 iq->pkts_processed = 0;
1447 /* this write needs to be flushed before we release the lock */
1448 spin_unlock_bh(&iq->lock);
1449 oct = iq->oct_dev;
1450 }
1451 /*write resend. Writing RESEND in SLI_PKTX_CNTS should be enough
1452 *to trigger tx interrupts as well, if they are pending.
1453 */
1454 if (oct && (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct))) {
1455 if (droq)
1456 writeq(CN23XX_INTR_RESEND, droq->pkts_sent_reg);
1457 /*we race with firmrware here. read and write the IN_DONE_CNTS*/
1458 else if (iq) {
1459 instr_cnt = readq(iq->inst_cnt_reg);
1460 writeq(((instr_cnt & 0xFFFFFFFF00000000ULL) |
1461 CN23XX_INTR_RESEND),
1462 iq->inst_cnt_reg);
1463 }
1464 }
1465 }
1466