1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2017 IBM Corp.
3 #include <linux/sched/mm.h>
4 #include <linux/mutex.h>
5 #include <linux/mm_types.h>
6 #include <linux/mmu_context.h>
7 #include <asm/copro.h>
8 #include <asm/pnv-ocxl.h>
9 #include <asm/xive.h>
10 #include <misc/ocxl.h>
11 #include "ocxl_internal.h"
12 #include "trace.h"
13
14
15 #define SPA_PASID_BITS 15
16 #define SPA_PASID_MAX ((1 << SPA_PASID_BITS) - 1)
17 #define SPA_PE_MASK SPA_PASID_MAX
18 #define SPA_SPA_SIZE_LOG 22 /* Each SPA is 4 Mb */
19
20 #define SPA_CFG_SF (1ull << (63-0))
21 #define SPA_CFG_TA (1ull << (63-1))
22 #define SPA_CFG_HV (1ull << (63-3))
23 #define SPA_CFG_UV (1ull << (63-4))
24 #define SPA_CFG_XLAT_hpt (0ull << (63-6)) /* Hashed page table (HPT) mode */
25 #define SPA_CFG_XLAT_roh (2ull << (63-6)) /* Radix on HPT mode */
26 #define SPA_CFG_XLAT_ror (3ull << (63-6)) /* Radix on Radix mode */
27 #define SPA_CFG_PR (1ull << (63-49))
28 #define SPA_CFG_TC (1ull << (63-54))
29 #define SPA_CFG_DR (1ull << (63-59))
30
31 #define SPA_XSL_TF (1ull << (63-3)) /* Translation fault */
32 #define SPA_XSL_S (1ull << (63-38)) /* Store operation */
33
34 #define SPA_PE_VALID 0x80000000
35
36
37 struct pe_data {
38 struct mm_struct *mm;
39 /* callback to trigger when a translation fault occurs */
40 void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr);
41 /* opaque pointer to be passed to the above callback */
42 void *xsl_err_data;
43 struct rcu_head rcu;
44 };
45
46 struct spa {
47 struct ocxl_process_element *spa_mem;
48 int spa_order;
49 struct mutex spa_lock;
50 struct radix_tree_root pe_tree; /* Maps PE handles to pe_data */
51 char *irq_name;
52 int virq;
53 void __iomem *reg_dsisr;
54 void __iomem *reg_dar;
55 void __iomem *reg_tfc;
56 void __iomem *reg_pe_handle;
57 /*
58 * The following field are used by the memory fault
59 * interrupt handler. We can only have one interrupt at a
60 * time. The NPU won't raise another interrupt until the
61 * previous one has been ack'd by writing to the TFC register
62 */
63 struct xsl_fault {
64 struct work_struct fault_work;
65 u64 pe;
66 u64 dsisr;
67 u64 dar;
68 struct pe_data pe_data;
69 } xsl_fault;
70 };
71
72 /*
73 * A opencapi link can be used be by several PCI functions. We have
74 * one link per device slot.
75 *
76 * A linked list of opencapi links should suffice, as there's a
77 * limited number of opencapi slots on a system and lookup is only
78 * done when the device is probed
79 */
80 struct ocxl_link {
81 struct list_head list;
82 struct kref ref;
83 int domain;
84 int bus;
85 int dev;
86 atomic_t irq_available;
87 struct spa *spa;
88 void *platform_data;
89 };
90 static struct list_head links_list = LIST_HEAD_INIT(links_list);
91 static DEFINE_MUTEX(links_list_lock);
92
93 enum xsl_response {
94 CONTINUE,
95 ADDRESS_ERROR,
96 RESTART,
97 };
98
99
read_irq(struct spa * spa,u64 * dsisr,u64 * dar,u64 * pe)100 static void read_irq(struct spa *spa, u64 *dsisr, u64 *dar, u64 *pe)
101 {
102 u64 reg;
103
104 *dsisr = in_be64(spa->reg_dsisr);
105 *dar = in_be64(spa->reg_dar);
106 reg = in_be64(spa->reg_pe_handle);
107 *pe = reg & SPA_PE_MASK;
108 }
109
ack_irq(struct spa * spa,enum xsl_response r)110 static void ack_irq(struct spa *spa, enum xsl_response r)
111 {
112 u64 reg = 0;
113
114 /* continue is not supported */
115 if (r == RESTART)
116 reg = PPC_BIT(31);
117 else if (r == ADDRESS_ERROR)
118 reg = PPC_BIT(30);
119 else
120 WARN(1, "Invalid irq response %d\n", r);
121
122 if (reg) {
123 trace_ocxl_fault_ack(spa->spa_mem, spa->xsl_fault.pe,
124 spa->xsl_fault.dsisr, spa->xsl_fault.dar, reg);
125 out_be64(spa->reg_tfc, reg);
126 }
127 }
128
xsl_fault_handler_bh(struct work_struct * fault_work)129 static void xsl_fault_handler_bh(struct work_struct *fault_work)
130 {
131 vm_fault_t flt = 0;
132 unsigned long access, flags, inv_flags = 0;
133 enum xsl_response r;
134 struct xsl_fault *fault = container_of(fault_work, struct xsl_fault,
135 fault_work);
136 struct spa *spa = container_of(fault, struct spa, xsl_fault);
137
138 int rc;
139
140 /*
141 * We must release a reference on mm_users whenever exiting this
142 * function (taken in the memory fault interrupt handler)
143 */
144 rc = copro_handle_mm_fault(fault->pe_data.mm, fault->dar, fault->dsisr,
145 &flt);
146 if (rc) {
147 pr_debug("copro_handle_mm_fault failed: %d\n", rc);
148 if (fault->pe_data.xsl_err_cb) {
149 fault->pe_data.xsl_err_cb(
150 fault->pe_data.xsl_err_data,
151 fault->dar, fault->dsisr);
152 }
153 r = ADDRESS_ERROR;
154 goto ack;
155 }
156
157 if (!radix_enabled()) {
158 /*
159 * update_mmu_cache() will not have loaded the hash
160 * since current->trap is not a 0x400 or 0x300, so
161 * just call hash_page_mm() here.
162 */
163 access = _PAGE_PRESENT | _PAGE_READ;
164 if (fault->dsisr & SPA_XSL_S)
165 access |= _PAGE_WRITE;
166
167 if (get_region_id(fault->dar) != USER_REGION_ID)
168 access |= _PAGE_PRIVILEGED;
169
170 local_irq_save(flags);
171 hash_page_mm(fault->pe_data.mm, fault->dar, access, 0x300,
172 inv_flags);
173 local_irq_restore(flags);
174 }
175 r = RESTART;
176 ack:
177 mmput(fault->pe_data.mm);
178 ack_irq(spa, r);
179 }
180
xsl_fault_handler(int irq,void * data)181 static irqreturn_t xsl_fault_handler(int irq, void *data)
182 {
183 struct ocxl_link *link = (struct ocxl_link *) data;
184 struct spa *spa = link->spa;
185 u64 dsisr, dar, pe_handle;
186 struct pe_data *pe_data;
187 struct ocxl_process_element *pe;
188 int pid;
189 bool schedule = false;
190
191 read_irq(spa, &dsisr, &dar, &pe_handle);
192 trace_ocxl_fault(spa->spa_mem, pe_handle, dsisr, dar, -1);
193
194 WARN_ON(pe_handle > SPA_PE_MASK);
195 pe = spa->spa_mem + pe_handle;
196 pid = be32_to_cpu(pe->pid);
197 /* We could be reading all null values here if the PE is being
198 * removed while an interrupt kicks in. It's not supposed to
199 * happen if the driver notified the AFU to terminate the
200 * PASID, and the AFU waited for pending operations before
201 * acknowledging. But even if it happens, we won't find a
202 * memory context below and fail silently, so it should be ok.
203 */
204 if (!(dsisr & SPA_XSL_TF)) {
205 WARN(1, "Invalid xsl interrupt fault register %#llx\n", dsisr);
206 ack_irq(spa, ADDRESS_ERROR);
207 return IRQ_HANDLED;
208 }
209
210 rcu_read_lock();
211 pe_data = radix_tree_lookup(&spa->pe_tree, pe_handle);
212 if (!pe_data) {
213 /*
214 * Could only happen if the driver didn't notify the
215 * AFU about PASID termination before removing the PE,
216 * or the AFU didn't wait for all memory access to
217 * have completed.
218 *
219 * Either way, we fail early, but we shouldn't log an
220 * error message, as it is a valid (if unexpected)
221 * scenario
222 */
223 rcu_read_unlock();
224 pr_debug("Unknown mm context for xsl interrupt\n");
225 ack_irq(spa, ADDRESS_ERROR);
226 return IRQ_HANDLED;
227 }
228
229 if (!pe_data->mm) {
230 /*
231 * translation fault from a kernel context - an OpenCAPI
232 * device tried to access a bad kernel address
233 */
234 rcu_read_unlock();
235 pr_warn("Unresolved OpenCAPI xsl fault in kernel context\n");
236 ack_irq(spa, ADDRESS_ERROR);
237 return IRQ_HANDLED;
238 }
239 WARN_ON(pe_data->mm->context.id != pid);
240
241 if (mmget_not_zero(pe_data->mm)) {
242 spa->xsl_fault.pe = pe_handle;
243 spa->xsl_fault.dar = dar;
244 spa->xsl_fault.dsisr = dsisr;
245 spa->xsl_fault.pe_data = *pe_data;
246 schedule = true;
247 /* mm_users count released by bottom half */
248 }
249 rcu_read_unlock();
250 if (schedule)
251 schedule_work(&spa->xsl_fault.fault_work);
252 else
253 ack_irq(spa, ADDRESS_ERROR);
254 return IRQ_HANDLED;
255 }
256
unmap_irq_registers(struct spa * spa)257 static void unmap_irq_registers(struct spa *spa)
258 {
259 pnv_ocxl_unmap_xsl_regs(spa->reg_dsisr, spa->reg_dar, spa->reg_tfc,
260 spa->reg_pe_handle);
261 }
262
map_irq_registers(struct pci_dev * dev,struct spa * spa)263 static int map_irq_registers(struct pci_dev *dev, struct spa *spa)
264 {
265 return pnv_ocxl_map_xsl_regs(dev, &spa->reg_dsisr, &spa->reg_dar,
266 &spa->reg_tfc, &spa->reg_pe_handle);
267 }
268
setup_xsl_irq(struct pci_dev * dev,struct ocxl_link * link)269 static int setup_xsl_irq(struct pci_dev *dev, struct ocxl_link *link)
270 {
271 struct spa *spa = link->spa;
272 int rc;
273 int hwirq;
274
275 rc = pnv_ocxl_get_xsl_irq(dev, &hwirq);
276 if (rc)
277 return rc;
278
279 rc = map_irq_registers(dev, spa);
280 if (rc)
281 return rc;
282
283 spa->irq_name = kasprintf(GFP_KERNEL, "ocxl-xsl-%x-%x-%x",
284 link->domain, link->bus, link->dev);
285 if (!spa->irq_name) {
286 dev_err(&dev->dev, "Can't allocate name for xsl interrupt\n");
287 rc = -ENOMEM;
288 goto err_xsl;
289 }
290 /*
291 * At some point, we'll need to look into allowing a higher
292 * number of interrupts. Could we have an IRQ domain per link?
293 */
294 spa->virq = irq_create_mapping(NULL, hwirq);
295 if (!spa->virq) {
296 dev_err(&dev->dev,
297 "irq_create_mapping failed for translation interrupt\n");
298 rc = -EINVAL;
299 goto err_name;
300 }
301
302 dev_dbg(&dev->dev, "hwirq %d mapped to virq %d\n", hwirq, spa->virq);
303
304 rc = request_irq(spa->virq, xsl_fault_handler, 0, spa->irq_name,
305 link);
306 if (rc) {
307 dev_err(&dev->dev,
308 "request_irq failed for translation interrupt: %d\n",
309 rc);
310 rc = -EINVAL;
311 goto err_mapping;
312 }
313 return 0;
314
315 err_mapping:
316 irq_dispose_mapping(spa->virq);
317 err_name:
318 kfree(spa->irq_name);
319 err_xsl:
320 unmap_irq_registers(spa);
321 return rc;
322 }
323
release_xsl_irq(struct ocxl_link * link)324 static void release_xsl_irq(struct ocxl_link *link)
325 {
326 struct spa *spa = link->spa;
327
328 if (spa->virq) {
329 free_irq(spa->virq, link);
330 irq_dispose_mapping(spa->virq);
331 }
332 kfree(spa->irq_name);
333 unmap_irq_registers(spa);
334 }
335
alloc_spa(struct pci_dev * dev,struct ocxl_link * link)336 static int alloc_spa(struct pci_dev *dev, struct ocxl_link *link)
337 {
338 struct spa *spa;
339
340 spa = kzalloc(sizeof(struct spa), GFP_KERNEL);
341 if (!spa)
342 return -ENOMEM;
343
344 mutex_init(&spa->spa_lock);
345 INIT_RADIX_TREE(&spa->pe_tree, GFP_KERNEL);
346 INIT_WORK(&spa->xsl_fault.fault_work, xsl_fault_handler_bh);
347
348 spa->spa_order = SPA_SPA_SIZE_LOG - PAGE_SHIFT;
349 spa->spa_mem = (struct ocxl_process_element *)
350 __get_free_pages(GFP_KERNEL | __GFP_ZERO, spa->spa_order);
351 if (!spa->spa_mem) {
352 dev_err(&dev->dev, "Can't allocate Shared Process Area\n");
353 kfree(spa);
354 return -ENOMEM;
355 }
356 pr_debug("Allocated SPA for %x:%x:%x at %p\n", link->domain, link->bus,
357 link->dev, spa->spa_mem);
358
359 link->spa = spa;
360 return 0;
361 }
362
free_spa(struct ocxl_link * link)363 static void free_spa(struct ocxl_link *link)
364 {
365 struct spa *spa = link->spa;
366
367 pr_debug("Freeing SPA for %x:%x:%x\n", link->domain, link->bus,
368 link->dev);
369
370 if (spa && spa->spa_mem) {
371 free_pages((unsigned long) spa->spa_mem, spa->spa_order);
372 kfree(spa);
373 link->spa = NULL;
374 }
375 }
376
alloc_link(struct pci_dev * dev,int PE_mask,struct ocxl_link ** out_link)377 static int alloc_link(struct pci_dev *dev, int PE_mask, struct ocxl_link **out_link)
378 {
379 struct ocxl_link *link;
380 int rc;
381
382 link = kzalloc(sizeof(struct ocxl_link), GFP_KERNEL);
383 if (!link)
384 return -ENOMEM;
385
386 kref_init(&link->ref);
387 link->domain = pci_domain_nr(dev->bus);
388 link->bus = dev->bus->number;
389 link->dev = PCI_SLOT(dev->devfn);
390 atomic_set(&link->irq_available, MAX_IRQ_PER_LINK);
391
392 rc = alloc_spa(dev, link);
393 if (rc)
394 goto err_free;
395
396 rc = setup_xsl_irq(dev, link);
397 if (rc)
398 goto err_spa;
399
400 /* platform specific hook */
401 rc = pnv_ocxl_spa_setup(dev, link->spa->spa_mem, PE_mask,
402 &link->platform_data);
403 if (rc)
404 goto err_xsl_irq;
405
406 *out_link = link;
407 return 0;
408
409 err_xsl_irq:
410 release_xsl_irq(link);
411 err_spa:
412 free_spa(link);
413 err_free:
414 kfree(link);
415 return rc;
416 }
417
free_link(struct ocxl_link * link)418 static void free_link(struct ocxl_link *link)
419 {
420 release_xsl_irq(link);
421 free_spa(link);
422 kfree(link);
423 }
424
ocxl_link_setup(struct pci_dev * dev,int PE_mask,void ** link_handle)425 int ocxl_link_setup(struct pci_dev *dev, int PE_mask, void **link_handle)
426 {
427 int rc = 0;
428 struct ocxl_link *link;
429
430 mutex_lock(&links_list_lock);
431 list_for_each_entry(link, &links_list, list) {
432 /* The functions of a device all share the same link */
433 if (link->domain == pci_domain_nr(dev->bus) &&
434 link->bus == dev->bus->number &&
435 link->dev == PCI_SLOT(dev->devfn)) {
436 kref_get(&link->ref);
437 *link_handle = link;
438 goto unlock;
439 }
440 }
441 rc = alloc_link(dev, PE_mask, &link);
442 if (rc)
443 goto unlock;
444
445 list_add(&link->list, &links_list);
446 *link_handle = link;
447 unlock:
448 mutex_unlock(&links_list_lock);
449 return rc;
450 }
451 EXPORT_SYMBOL_GPL(ocxl_link_setup);
452
release_xsl(struct kref * ref)453 static void release_xsl(struct kref *ref)
454 {
455 struct ocxl_link *link = container_of(ref, struct ocxl_link, ref);
456
457 list_del(&link->list);
458 /* call platform code before releasing data */
459 pnv_ocxl_spa_release(link->platform_data);
460 free_link(link);
461 }
462
ocxl_link_release(struct pci_dev * dev,void * link_handle)463 void ocxl_link_release(struct pci_dev *dev, void *link_handle)
464 {
465 struct ocxl_link *link = (struct ocxl_link *) link_handle;
466
467 mutex_lock(&links_list_lock);
468 kref_put(&link->ref, release_xsl);
469 mutex_unlock(&links_list_lock);
470 }
471 EXPORT_SYMBOL_GPL(ocxl_link_release);
472
calculate_cfg_state(bool kernel)473 static u64 calculate_cfg_state(bool kernel)
474 {
475 u64 state;
476
477 state = SPA_CFG_DR;
478 if (mfspr(SPRN_LPCR) & LPCR_TC)
479 state |= SPA_CFG_TC;
480 if (radix_enabled())
481 state |= SPA_CFG_XLAT_ror;
482 else
483 state |= SPA_CFG_XLAT_hpt;
484 state |= SPA_CFG_HV;
485 if (kernel) {
486 if (mfmsr() & MSR_SF)
487 state |= SPA_CFG_SF;
488 } else {
489 state |= SPA_CFG_PR;
490 if (!test_tsk_thread_flag(current, TIF_32BIT))
491 state |= SPA_CFG_SF;
492 }
493 return state;
494 }
495
ocxl_link_add_pe(void * link_handle,int pasid,u32 pidr,u32 tidr,u64 amr,struct mm_struct * mm,void (* xsl_err_cb)(void * data,u64 addr,u64 dsisr),void * xsl_err_data)496 int ocxl_link_add_pe(void *link_handle, int pasid, u32 pidr, u32 tidr,
497 u64 amr, struct mm_struct *mm,
498 void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr),
499 void *xsl_err_data)
500 {
501 struct ocxl_link *link = (struct ocxl_link *) link_handle;
502 struct spa *spa = link->spa;
503 struct ocxl_process_element *pe;
504 int pe_handle, rc = 0;
505 struct pe_data *pe_data;
506
507 BUILD_BUG_ON(sizeof(struct ocxl_process_element) != 128);
508 if (pasid > SPA_PASID_MAX)
509 return -EINVAL;
510
511 mutex_lock(&spa->spa_lock);
512 pe_handle = pasid & SPA_PE_MASK;
513 pe = spa->spa_mem + pe_handle;
514
515 if (pe->software_state) {
516 rc = -EBUSY;
517 goto unlock;
518 }
519
520 pe_data = kmalloc(sizeof(*pe_data), GFP_KERNEL);
521 if (!pe_data) {
522 rc = -ENOMEM;
523 goto unlock;
524 }
525
526 pe_data->mm = mm;
527 pe_data->xsl_err_cb = xsl_err_cb;
528 pe_data->xsl_err_data = xsl_err_data;
529
530 memset(pe, 0, sizeof(struct ocxl_process_element));
531 pe->config_state = cpu_to_be64(calculate_cfg_state(pidr == 0));
532 pe->lpid = cpu_to_be32(mfspr(SPRN_LPID));
533 pe->pid = cpu_to_be32(pidr);
534 pe->tid = cpu_to_be32(tidr);
535 pe->amr = cpu_to_be64(amr);
536 pe->software_state = cpu_to_be32(SPA_PE_VALID);
537
538 /*
539 * For user contexts, register a copro so that TLBIs are seen
540 * by the nest MMU. If we have a kernel context, TLBIs are
541 * already global.
542 */
543 if (mm)
544 mm_context_add_copro(mm);
545 /*
546 * Barrier is to make sure PE is visible in the SPA before it
547 * is used by the device. It also helps with the global TLBI
548 * invalidation
549 */
550 mb();
551 radix_tree_insert(&spa->pe_tree, pe_handle, pe_data);
552
553 /*
554 * The mm must stay valid for as long as the device uses it. We
555 * lower the count when the context is removed from the SPA.
556 *
557 * We grab mm_count (and not mm_users), as we don't want to
558 * end up in a circular dependency if a process mmaps its
559 * mmio, therefore incrementing the file ref count when
560 * calling mmap(), and forgets to unmap before exiting. In
561 * that scenario, when the kernel handles the death of the
562 * process, the file is not cleaned because unmap was not
563 * called, and the mm wouldn't be freed because we would still
564 * have a reference on mm_users. Incrementing mm_count solves
565 * the problem.
566 */
567 if (mm)
568 mmgrab(mm);
569 trace_ocxl_context_add(current->pid, spa->spa_mem, pasid, pidr, tidr);
570 unlock:
571 mutex_unlock(&spa->spa_lock);
572 return rc;
573 }
574 EXPORT_SYMBOL_GPL(ocxl_link_add_pe);
575
ocxl_link_update_pe(void * link_handle,int pasid,__u16 tid)576 int ocxl_link_update_pe(void *link_handle, int pasid, __u16 tid)
577 {
578 struct ocxl_link *link = (struct ocxl_link *) link_handle;
579 struct spa *spa = link->spa;
580 struct ocxl_process_element *pe;
581 int pe_handle, rc;
582
583 if (pasid > SPA_PASID_MAX)
584 return -EINVAL;
585
586 pe_handle = pasid & SPA_PE_MASK;
587 pe = spa->spa_mem + pe_handle;
588
589 mutex_lock(&spa->spa_lock);
590
591 pe->tid = cpu_to_be32(tid);
592
593 /*
594 * The barrier makes sure the PE is updated
595 * before we clear the NPU context cache below, so that the
596 * old PE cannot be reloaded erroneously.
597 */
598 mb();
599
600 /*
601 * hook to platform code
602 * On powerpc, the entry needs to be cleared from the context
603 * cache of the NPU.
604 */
605 rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle);
606 WARN_ON(rc);
607
608 mutex_unlock(&spa->spa_lock);
609 return rc;
610 }
611
ocxl_link_remove_pe(void * link_handle,int pasid)612 int ocxl_link_remove_pe(void *link_handle, int pasid)
613 {
614 struct ocxl_link *link = (struct ocxl_link *) link_handle;
615 struct spa *spa = link->spa;
616 struct ocxl_process_element *pe;
617 struct pe_data *pe_data;
618 int pe_handle, rc;
619
620 if (pasid > SPA_PASID_MAX)
621 return -EINVAL;
622
623 /*
624 * About synchronization with our memory fault handler:
625 *
626 * Before removing the PE, the driver is supposed to have
627 * notified the AFU, which should have cleaned up and make
628 * sure the PASID is no longer in use, including pending
629 * interrupts. However, there's no way to be sure...
630 *
631 * We clear the PE and remove the context from our radix
632 * tree. From that point on, any new interrupt for that
633 * context will fail silently, which is ok. As mentioned
634 * above, that's not expected, but it could happen if the
635 * driver or AFU didn't do the right thing.
636 *
637 * There could still be a bottom half running, but we don't
638 * need to wait/flush, as it is managing a reference count on
639 * the mm it reads from the radix tree.
640 */
641 pe_handle = pasid & SPA_PE_MASK;
642 pe = spa->spa_mem + pe_handle;
643
644 mutex_lock(&spa->spa_lock);
645
646 if (!(be32_to_cpu(pe->software_state) & SPA_PE_VALID)) {
647 rc = -EINVAL;
648 goto unlock;
649 }
650
651 trace_ocxl_context_remove(current->pid, spa->spa_mem, pasid,
652 be32_to_cpu(pe->pid), be32_to_cpu(pe->tid));
653
654 memset(pe, 0, sizeof(struct ocxl_process_element));
655 /*
656 * The barrier makes sure the PE is removed from the SPA
657 * before we clear the NPU context cache below, so that the
658 * old PE cannot be reloaded erroneously.
659 */
660 mb();
661
662 /*
663 * hook to platform code
664 * On powerpc, the entry needs to be cleared from the context
665 * cache of the NPU.
666 */
667 rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle);
668 WARN_ON(rc);
669
670 pe_data = radix_tree_delete(&spa->pe_tree, pe_handle);
671 if (!pe_data) {
672 WARN(1, "Couldn't find pe data when removing PE\n");
673 } else {
674 if (pe_data->mm) {
675 mm_context_remove_copro(pe_data->mm);
676 mmdrop(pe_data->mm);
677 }
678 kfree_rcu(pe_data, rcu);
679 }
680 unlock:
681 mutex_unlock(&spa->spa_lock);
682 return rc;
683 }
684 EXPORT_SYMBOL_GPL(ocxl_link_remove_pe);
685
ocxl_link_irq_alloc(void * link_handle,int * hw_irq)686 int ocxl_link_irq_alloc(void *link_handle, int *hw_irq)
687 {
688 struct ocxl_link *link = (struct ocxl_link *) link_handle;
689 int irq;
690
691 if (atomic_dec_if_positive(&link->irq_available) < 0)
692 return -ENOSPC;
693
694 irq = xive_native_alloc_irq();
695 if (!irq) {
696 atomic_inc(&link->irq_available);
697 return -ENXIO;
698 }
699
700 *hw_irq = irq;
701 return 0;
702 }
703 EXPORT_SYMBOL_GPL(ocxl_link_irq_alloc);
704
ocxl_link_free_irq(void * link_handle,int hw_irq)705 void ocxl_link_free_irq(void *link_handle, int hw_irq)
706 {
707 struct ocxl_link *link = (struct ocxl_link *) link_handle;
708
709 xive_native_free_irq(hw_irq);
710 atomic_inc(&link->irq_available);
711 }
712 EXPORT_SYMBOL_GPL(ocxl_link_free_irq);
713