1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * devfreq_cooling: Thermal cooling device implementation for devices using
4 * devfreq
5 *
6 * Copyright (C) 2014-2015 ARM Limited
7 *
8 * TODO:
9 * - If OPPs are added or removed after devfreq cooling has
10 * registered, the devfreq cooling won't react to it.
11 */
12
13 #include <linux/devfreq.h>
14 #include <linux/devfreq_cooling.h>
15 #include <linux/export.h>
16 #include <linux/idr.h>
17 #include <linux/slab.h>
18 #include <linux/pm_opp.h>
19 #include <linux/pm_qos.h>
20 #include <linux/thermal.h>
21
22 #include <trace/events/thermal.h>
23
24 #define HZ_PER_KHZ 1000
25 #define SCALE_ERROR_MITIGATION 100
26
27 static DEFINE_IDA(devfreq_ida);
28
29 /**
30 * struct devfreq_cooling_device - Devfreq cooling device
31 * @id: unique integer value corresponding to each
32 * devfreq_cooling_device registered.
33 * @cdev: Pointer to associated thermal cooling device.
34 * @devfreq: Pointer to associated devfreq device.
35 * @cooling_state: Current cooling state.
36 * @power_table: Pointer to table with maximum power draw for each
37 * cooling state. State is the index into the table, and
38 * the power is in mW.
39 * @freq_table: Pointer to a table with the frequencies sorted in descending
40 * order. You can index the table by cooling device state
41 * @freq_table_size: Size of the @freq_table and @power_table
42 * @power_ops: Pointer to devfreq_cooling_power, used to generate the
43 * @power_table.
44 * @res_util: Resource utilization scaling factor for the power.
45 * It is multiplied by 100 to minimize the error. It is used
46 * for estimation of the power budget instead of using
47 * 'utilization' (which is 'busy_time / 'total_time').
48 * The 'res_util' range is from 100 to (power_table[state] * 100)
49 * for the corresponding 'state'.
50 * @capped_state: index to cooling state with in dynamic power budget
51 * @req_max_freq: PM QoS request for limiting the maximum frequency
52 * of the devfreq device.
53 */
54 struct devfreq_cooling_device {
55 int id;
56 struct thermal_cooling_device *cdev;
57 struct devfreq *devfreq;
58 unsigned long cooling_state;
59 u32 *power_table;
60 u32 *freq_table;
61 size_t freq_table_size;
62 struct devfreq_cooling_power *power_ops;
63 u32 res_util;
64 int capped_state;
65 struct dev_pm_qos_request req_max_freq;
66 };
67
devfreq_cooling_get_max_state(struct thermal_cooling_device * cdev,unsigned long * state)68 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
69 unsigned long *state)
70 {
71 struct devfreq_cooling_device *dfc = cdev->devdata;
72
73 *state = dfc->freq_table_size - 1;
74
75 return 0;
76 }
77
devfreq_cooling_get_cur_state(struct thermal_cooling_device * cdev,unsigned long * state)78 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
79 unsigned long *state)
80 {
81 struct devfreq_cooling_device *dfc = cdev->devdata;
82
83 *state = dfc->cooling_state;
84
85 return 0;
86 }
87
devfreq_cooling_set_cur_state(struct thermal_cooling_device * cdev,unsigned long state)88 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
89 unsigned long state)
90 {
91 struct devfreq_cooling_device *dfc = cdev->devdata;
92 struct devfreq *df = dfc->devfreq;
93 struct device *dev = df->dev.parent;
94 unsigned long freq;
95
96 if (state == dfc->cooling_state)
97 return 0;
98
99 dev_dbg(dev, "Setting cooling state %lu\n", state);
100
101 if (state >= dfc->freq_table_size)
102 return -EINVAL;
103
104 freq = dfc->freq_table[state];
105
106 dev_pm_qos_update_request(&dfc->req_max_freq,
107 DIV_ROUND_UP(freq, HZ_PER_KHZ));
108
109 dfc->cooling_state = state;
110
111 return 0;
112 }
113
114 /**
115 * freq_get_state() - get the cooling state corresponding to a frequency
116 * @dfc: Pointer to devfreq cooling device
117 * @freq: frequency in Hz
118 *
119 * Return: the cooling state associated with the @freq, or
120 * THERMAL_CSTATE_INVALID if it wasn't found.
121 */
122 static unsigned long
freq_get_state(struct devfreq_cooling_device * dfc,unsigned long freq)123 freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
124 {
125 int i;
126
127 for (i = 0; i < dfc->freq_table_size; i++) {
128 if (dfc->freq_table[i] == freq)
129 return i;
130 }
131
132 return THERMAL_CSTATE_INVALID;
133 }
134
get_voltage(struct devfreq * df,unsigned long freq)135 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
136 {
137 struct device *dev = df->dev.parent;
138 unsigned long voltage;
139 struct dev_pm_opp *opp;
140
141 opp = dev_pm_opp_find_freq_exact(dev, freq, true);
142 if (PTR_ERR(opp) == -ERANGE)
143 opp = dev_pm_opp_find_freq_exact(dev, freq, false);
144
145 if (IS_ERR(opp)) {
146 dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
147 freq, PTR_ERR(opp));
148 return 0;
149 }
150
151 voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
152 dev_pm_opp_put(opp);
153
154 if (voltage == 0) {
155 dev_err_ratelimited(dev,
156 "Failed to get voltage for frequency %lu\n",
157 freq);
158 }
159
160 return voltage;
161 }
162
163 /**
164 * get_static_power() - calculate the static power
165 * @dfc: Pointer to devfreq cooling device
166 * @freq: Frequency in Hz
167 *
168 * Calculate the static power in milliwatts using the supplied
169 * get_static_power(). The current voltage is calculated using the
170 * OPP library. If no get_static_power() was supplied, assume the
171 * static power is negligible.
172 */
173 static unsigned long
get_static_power(struct devfreq_cooling_device * dfc,unsigned long freq)174 get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
175 {
176 struct devfreq *df = dfc->devfreq;
177 unsigned long voltage;
178
179 if (!dfc->power_ops->get_static_power)
180 return 0;
181
182 voltage = get_voltage(df, freq);
183
184 if (voltage == 0)
185 return 0;
186
187 return dfc->power_ops->get_static_power(df, voltage);
188 }
189
190 /**
191 * get_dynamic_power - calculate the dynamic power
192 * @dfc: Pointer to devfreq cooling device
193 * @freq: Frequency in Hz
194 * @voltage: Voltage in millivolts
195 *
196 * Calculate the dynamic power in milliwatts consumed by the device at
197 * frequency @freq and voltage @voltage. If the get_dynamic_power()
198 * was supplied as part of the devfreq_cooling_power struct, then that
199 * function is used. Otherwise, a simple power model (Pdyn = Coeff *
200 * Voltage^2 * Frequency) is used.
201 */
202 static unsigned long
get_dynamic_power(struct devfreq_cooling_device * dfc,unsigned long freq,unsigned long voltage)203 get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
204 unsigned long voltage)
205 {
206 u64 power;
207 u32 freq_mhz;
208 struct devfreq_cooling_power *dfc_power = dfc->power_ops;
209
210 if (dfc_power->get_dynamic_power)
211 return dfc_power->get_dynamic_power(dfc->devfreq, freq,
212 voltage);
213
214 freq_mhz = freq / 1000000;
215 power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
216 do_div(power, 1000000000);
217
218 return power;
219 }
220
221
get_total_power(struct devfreq_cooling_device * dfc,unsigned long freq,unsigned long voltage)222 static inline unsigned long get_total_power(struct devfreq_cooling_device *dfc,
223 unsigned long freq,
224 unsigned long voltage)
225 {
226 return get_static_power(dfc, freq) + get_dynamic_power(dfc, freq,
227 voltage);
228 }
229
230
devfreq_cooling_get_requested_power(struct thermal_cooling_device * cdev,u32 * power)231 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
232 u32 *power)
233 {
234 struct devfreq_cooling_device *dfc = cdev->devdata;
235 struct devfreq *df = dfc->devfreq;
236 struct devfreq_dev_status *status = &df->last_status;
237 unsigned long state;
238 unsigned long freq = status->current_frequency;
239 unsigned long voltage;
240 u32 dyn_power = 0;
241 u32 static_power = 0;
242 int res;
243
244 state = freq_get_state(dfc, freq);
245 if (state == THERMAL_CSTATE_INVALID) {
246 res = -EAGAIN;
247 goto fail;
248 }
249
250 if (dfc->power_ops->get_real_power) {
251 voltage = get_voltage(df, freq);
252 if (voltage == 0) {
253 res = -EINVAL;
254 goto fail;
255 }
256
257 res = dfc->power_ops->get_real_power(df, power, freq, voltage);
258 if (!res) {
259 state = dfc->capped_state;
260 dfc->res_util = dfc->power_table[state];
261 dfc->res_util *= SCALE_ERROR_MITIGATION;
262
263 if (*power > 1)
264 dfc->res_util /= *power;
265 } else {
266 goto fail;
267 }
268 } else {
269 dyn_power = dfc->power_table[state];
270
271 /* Scale dynamic power for utilization */
272 dyn_power *= status->busy_time;
273 dyn_power /= status->total_time;
274 /* Get static power */
275 static_power = get_static_power(dfc, freq);
276
277 *power = dyn_power + static_power;
278 }
279
280 trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
281 static_power, *power);
282
283 return 0;
284 fail:
285 /* It is safe to set max in this case */
286 dfc->res_util = SCALE_ERROR_MITIGATION;
287 return res;
288 }
289
devfreq_cooling_state2power(struct thermal_cooling_device * cdev,unsigned long state,u32 * power)290 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
291 unsigned long state,
292 u32 *power)
293 {
294 struct devfreq_cooling_device *dfc = cdev->devdata;
295 unsigned long freq;
296 u32 static_power;
297
298 if (state >= dfc->freq_table_size)
299 return -EINVAL;
300
301 freq = dfc->freq_table[state];
302 static_power = get_static_power(dfc, freq);
303
304 *power = dfc->power_table[state] + static_power;
305 return 0;
306 }
307
devfreq_cooling_power2state(struct thermal_cooling_device * cdev,u32 power,unsigned long * state)308 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
309 u32 power, unsigned long *state)
310 {
311 struct devfreq_cooling_device *dfc = cdev->devdata;
312 struct devfreq *df = dfc->devfreq;
313 struct devfreq_dev_status *status = &df->last_status;
314 unsigned long freq = status->current_frequency;
315 unsigned long busy_time;
316 s32 dyn_power;
317 u32 static_power;
318 s32 est_power;
319 int i;
320
321 if (dfc->power_ops->get_real_power) {
322 /* Scale for resource utilization */
323 est_power = power * dfc->res_util;
324 est_power /= SCALE_ERROR_MITIGATION;
325 } else {
326 static_power = get_static_power(dfc, freq);
327
328 dyn_power = power - static_power;
329 dyn_power = dyn_power > 0 ? dyn_power : 0;
330
331 /* Scale dynamic power for utilization */
332 busy_time = status->busy_time ?: 1;
333 est_power = (dyn_power * status->total_time) / busy_time;
334 }
335
336 /*
337 * Find the first cooling state that is within the power
338 * budget for dynamic power.
339 */
340 for (i = 0; i < dfc->freq_table_size - 1; i++)
341 if (est_power >= dfc->power_table[i])
342 break;
343
344 *state = i;
345 dfc->capped_state = i;
346 trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
347 return 0;
348 }
349
350 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
351 .get_max_state = devfreq_cooling_get_max_state,
352 .get_cur_state = devfreq_cooling_get_cur_state,
353 .set_cur_state = devfreq_cooling_set_cur_state,
354 };
355
356 /**
357 * devfreq_cooling_gen_tables() - Generate power and freq tables.
358 * @dfc: Pointer to devfreq cooling device.
359 *
360 * Generate power and frequency tables: the power table hold the
361 * device's maximum power usage at each cooling state (OPP). The
362 * static and dynamic power using the appropriate voltage and
363 * frequency for the state, is acquired from the struct
364 * devfreq_cooling_power, and summed to make the maximum power draw.
365 *
366 * The frequency table holds the frequencies in descending order.
367 * That way its indexed by cooling device state.
368 *
369 * The tables are malloced, and pointers put in dfc. They must be
370 * freed when unregistering the devfreq cooling device.
371 *
372 * Return: 0 on success, negative error code on failure.
373 */
devfreq_cooling_gen_tables(struct devfreq_cooling_device * dfc)374 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
375 {
376 struct devfreq *df = dfc->devfreq;
377 struct device *dev = df->dev.parent;
378 int ret, num_opps;
379 unsigned long freq;
380 u32 *power_table = NULL;
381 u32 *freq_table;
382 int i;
383
384 num_opps = dev_pm_opp_get_opp_count(dev);
385
386 if (dfc->power_ops) {
387 power_table = kcalloc(num_opps, sizeof(*power_table),
388 GFP_KERNEL);
389 if (!power_table)
390 return -ENOMEM;
391 }
392
393 freq_table = kcalloc(num_opps, sizeof(*freq_table),
394 GFP_KERNEL);
395 if (!freq_table) {
396 ret = -ENOMEM;
397 goto free_power_table;
398 }
399
400 for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
401 unsigned long power, voltage;
402 struct dev_pm_opp *opp;
403
404 opp = dev_pm_opp_find_freq_floor(dev, &freq);
405 if (IS_ERR(opp)) {
406 ret = PTR_ERR(opp);
407 goto free_tables;
408 }
409
410 voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
411 dev_pm_opp_put(opp);
412
413 if (dfc->power_ops) {
414 if (dfc->power_ops->get_real_power)
415 power = get_total_power(dfc, freq, voltage);
416 else
417 power = get_dynamic_power(dfc, freq, voltage);
418
419 dev_dbg(dev, "Power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
420 freq / 1000000, voltage, power, power);
421
422 power_table[i] = power;
423 }
424
425 freq_table[i] = freq;
426 }
427
428 if (dfc->power_ops)
429 dfc->power_table = power_table;
430
431 dfc->freq_table = freq_table;
432 dfc->freq_table_size = num_opps;
433
434 return 0;
435
436 free_tables:
437 kfree(freq_table);
438 free_power_table:
439 kfree(power_table);
440
441 return ret;
442 }
443
444 /**
445 * of_devfreq_cooling_register_power() - Register devfreq cooling device,
446 * with OF and power information.
447 * @np: Pointer to OF device_node.
448 * @df: Pointer to devfreq device.
449 * @dfc_power: Pointer to devfreq_cooling_power.
450 *
451 * Register a devfreq cooling device. The available OPPs must be
452 * registered on the device.
453 *
454 * If @dfc_power is provided, the cooling device is registered with the
455 * power extensions. For the power extensions to work correctly,
456 * devfreq should use the simple_ondemand governor, other governors
457 * are not currently supported.
458 */
459 struct thermal_cooling_device *
of_devfreq_cooling_register_power(struct device_node * np,struct devfreq * df,struct devfreq_cooling_power * dfc_power)460 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
461 struct devfreq_cooling_power *dfc_power)
462 {
463 struct thermal_cooling_device *cdev;
464 struct devfreq_cooling_device *dfc;
465 char dev_name[THERMAL_NAME_LENGTH];
466 int err;
467
468 dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
469 if (!dfc)
470 return ERR_PTR(-ENOMEM);
471
472 dfc->devfreq = df;
473
474 if (dfc_power) {
475 dfc->power_ops = dfc_power;
476
477 devfreq_cooling_ops.get_requested_power =
478 devfreq_cooling_get_requested_power;
479 devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
480 devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
481 }
482
483 err = devfreq_cooling_gen_tables(dfc);
484 if (err)
485 goto free_dfc;
486
487 err = dev_pm_qos_add_request(df->dev.parent, &dfc->req_max_freq,
488 DEV_PM_QOS_MAX_FREQUENCY,
489 PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
490 if (err < 0)
491 goto free_tables;
492
493 err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
494 if (err < 0)
495 goto remove_qos_req;
496 dfc->id = err;
497
498 snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
499
500 cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
501 &devfreq_cooling_ops);
502 if (IS_ERR(cdev)) {
503 err = PTR_ERR(cdev);
504 dev_err(df->dev.parent,
505 "Failed to register devfreq cooling device (%d)\n",
506 err);
507 goto release_ida;
508 }
509
510 dfc->cdev = cdev;
511
512 return cdev;
513
514 release_ida:
515 ida_simple_remove(&devfreq_ida, dfc->id);
516
517 remove_qos_req:
518 dev_pm_qos_remove_request(&dfc->req_max_freq);
519
520 free_tables:
521 kfree(dfc->power_table);
522 kfree(dfc->freq_table);
523 free_dfc:
524 kfree(dfc);
525
526 return ERR_PTR(err);
527 }
528 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
529
530 /**
531 * of_devfreq_cooling_register() - Register devfreq cooling device,
532 * with OF information.
533 * @np: Pointer to OF device_node.
534 * @df: Pointer to devfreq device.
535 */
536 struct thermal_cooling_device *
of_devfreq_cooling_register(struct device_node * np,struct devfreq * df)537 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
538 {
539 return of_devfreq_cooling_register_power(np, df, NULL);
540 }
541 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
542
543 /**
544 * devfreq_cooling_register() - Register devfreq cooling device.
545 * @df: Pointer to devfreq device.
546 */
devfreq_cooling_register(struct devfreq * df)547 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
548 {
549 return of_devfreq_cooling_register(NULL, df);
550 }
551 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
552
553 /**
554 * devfreq_cooling_unregister() - Unregister devfreq cooling device.
555 * @cdev: Pointer to devfreq cooling device to unregister.
556 */
devfreq_cooling_unregister(struct thermal_cooling_device * cdev)557 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
558 {
559 struct devfreq_cooling_device *dfc;
560
561 if (!cdev)
562 return;
563
564 dfc = cdev->devdata;
565
566 thermal_cooling_device_unregister(dfc->cdev);
567 ida_simple_remove(&devfreq_ida, dfc->id);
568 dev_pm_qos_remove_request(&dfc->req_max_freq);
569 kfree(dfc->power_table);
570 kfree(dfc->freq_table);
571
572 kfree(dfc);
573 }
574 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
575