1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
34 };
35
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <asm/local.h>
61
62 struct perf_callchain_entry {
63 __u64 nr;
64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
65 };
66
67 struct perf_callchain_entry_ctx {
68 struct perf_callchain_entry *entry;
69 u32 max_stack;
70 u32 nr;
71 short contexts;
72 bool contexts_maxed;
73 };
74
75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 unsigned long off, unsigned long len);
77
78 struct perf_raw_frag {
79 union {
80 struct perf_raw_frag *next;
81 unsigned long pad;
82 };
83 perf_copy_f copy;
84 void *data;
85 u32 size;
86 } __packed;
87
88 struct perf_raw_record {
89 struct perf_raw_frag frag;
90 u32 size;
91 };
92
93 /*
94 * branch stack layout:
95 * nr: number of taken branches stored in entries[]
96 * hw_idx: The low level index of raw branch records
97 * for the most recent branch.
98 * -1ULL means invalid/unknown.
99 *
100 * Note that nr can vary from sample to sample
101 * branches (to, from) are stored from most recent
102 * to least recent, i.e., entries[0] contains the most
103 * recent branch.
104 * The entries[] is an abstraction of raw branch records,
105 * which may not be stored in age order in HW, e.g. Intel LBR.
106 * The hw_idx is to expose the low level index of raw
107 * branch record for the most recent branch aka entries[0].
108 * The hw_idx index is between -1 (unknown) and max depth,
109 * which can be retrieved in /sys/devices/cpu/caps/branches.
110 * For the architectures whose raw branch records are
111 * already stored in age order, the hw_idx should be 0.
112 */
113 struct perf_branch_stack {
114 __u64 nr;
115 __u64 hw_idx;
116 struct perf_branch_entry entries[];
117 };
118
119 struct task_struct;
120
121 /*
122 * extra PMU register associated with an event
123 */
124 struct hw_perf_event_extra {
125 u64 config; /* register value */
126 unsigned int reg; /* register address or index */
127 int alloc; /* extra register already allocated */
128 int idx; /* index in shared_regs->regs[] */
129 };
130
131 /**
132 * struct hw_perf_event - performance event hardware details:
133 */
134 struct hw_perf_event {
135 #ifdef CONFIG_PERF_EVENTS
136 union {
137 struct { /* hardware */
138 u64 config;
139 u64 last_tag;
140 unsigned long config_base;
141 unsigned long event_base;
142 int event_base_rdpmc;
143 int idx;
144 int last_cpu;
145 int flags;
146
147 struct hw_perf_event_extra extra_reg;
148 struct hw_perf_event_extra branch_reg;
149 };
150 struct { /* software */
151 struct hrtimer hrtimer;
152 };
153 struct { /* tracepoint */
154 /* for tp_event->class */
155 struct list_head tp_list;
156 };
157 struct { /* amd_power */
158 u64 pwr_acc;
159 u64 ptsc;
160 };
161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
162 struct { /* breakpoint */
163 /*
164 * Crufty hack to avoid the chicken and egg
165 * problem hw_breakpoint has with context
166 * creation and event initalization.
167 */
168 struct arch_hw_breakpoint info;
169 struct list_head bp_list;
170 };
171 #endif
172 struct { /* amd_iommu */
173 u8 iommu_bank;
174 u8 iommu_cntr;
175 u16 padding;
176 u64 conf;
177 u64 conf1;
178 };
179 };
180 /*
181 * If the event is a per task event, this will point to the task in
182 * question. See the comment in perf_event_alloc().
183 */
184 struct task_struct *target;
185
186 /*
187 * PMU would store hardware filter configuration
188 * here.
189 */
190 void *addr_filters;
191
192 /* Last sync'ed generation of filters */
193 unsigned long addr_filters_gen;
194
195 /*
196 * hw_perf_event::state flags; used to track the PERF_EF_* state.
197 */
198 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
199 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
200 #define PERF_HES_ARCH 0x04
201
202 int state;
203
204 /*
205 * The last observed hardware counter value, updated with a
206 * local64_cmpxchg() such that pmu::read() can be called nested.
207 */
208 local64_t prev_count;
209
210 /*
211 * The period to start the next sample with.
212 */
213 u64 sample_period;
214
215 union {
216 struct { /* Sampling */
217 /*
218 * The period we started this sample with.
219 */
220 u64 last_period;
221
222 /*
223 * However much is left of the current period;
224 * note that this is a full 64bit value and
225 * allows for generation of periods longer
226 * than hardware might allow.
227 */
228 local64_t period_left;
229 };
230 struct { /* Topdown events counting for context switch */
231 u64 saved_metric;
232 u64 saved_slots;
233 };
234 };
235
236 /*
237 * State for throttling the event, see __perf_event_overflow() and
238 * perf_adjust_freq_unthr_context().
239 */
240 u64 interrupts_seq;
241 u64 interrupts;
242
243 /*
244 * State for freq target events, see __perf_event_overflow() and
245 * perf_adjust_freq_unthr_context().
246 */
247 u64 freq_time_stamp;
248 u64 freq_count_stamp;
249 #endif
250 };
251
252 struct perf_event;
253
254 /*
255 * Common implementation detail of pmu::{start,commit,cancel}_txn
256 */
257 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
258 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
259
260 /**
261 * pmu::capabilities flags
262 */
263 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
264 #define PERF_PMU_CAP_NO_NMI 0x02
265 #define PERF_PMU_CAP_AUX_NO_SG 0x04
266 #define PERF_PMU_CAP_EXTENDED_REGS 0x08
267 #define PERF_PMU_CAP_EXCLUSIVE 0x10
268 #define PERF_PMU_CAP_ITRACE 0x20
269 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
270 #define PERF_PMU_CAP_NO_EXCLUDE 0x80
271 #define PERF_PMU_CAP_AUX_OUTPUT 0x100
272
273 struct perf_output_handle;
274
275 /**
276 * struct pmu - generic performance monitoring unit
277 */
278 struct pmu {
279 struct list_head entry;
280
281 struct module *module;
282 struct device *dev;
283 const struct attribute_group **attr_groups;
284 const struct attribute_group **attr_update;
285 const char *name;
286 int type;
287
288 /*
289 * various common per-pmu feature flags
290 */
291 int capabilities;
292
293 int __percpu *pmu_disable_count;
294 struct perf_cpu_context __percpu *pmu_cpu_context;
295 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
296 int task_ctx_nr;
297 int hrtimer_interval_ms;
298
299 /* number of address filters this PMU can do */
300 unsigned int nr_addr_filters;
301
302 /*
303 * Fully disable/enable this PMU, can be used to protect from the PMI
304 * as well as for lazy/batch writing of the MSRs.
305 */
306 void (*pmu_enable) (struct pmu *pmu); /* optional */
307 void (*pmu_disable) (struct pmu *pmu); /* optional */
308
309 /*
310 * Try and initialize the event for this PMU.
311 *
312 * Returns:
313 * -ENOENT -- @event is not for this PMU
314 *
315 * -ENODEV -- @event is for this PMU but PMU not present
316 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
317 * -EINVAL -- @event is for this PMU but @event is not valid
318 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
319 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
320 *
321 * 0 -- @event is for this PMU and valid
322 *
323 * Other error return values are allowed.
324 */
325 int (*event_init) (struct perf_event *event);
326
327 /*
328 * Notification that the event was mapped or unmapped. Called
329 * in the context of the mapping task.
330 */
331 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
332 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
333
334 /*
335 * Flags for ->add()/->del()/ ->start()/->stop(). There are
336 * matching hw_perf_event::state flags.
337 */
338 #define PERF_EF_START 0x01 /* start the counter when adding */
339 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
340 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
341
342 /*
343 * Adds/Removes a counter to/from the PMU, can be done inside a
344 * transaction, see the ->*_txn() methods.
345 *
346 * The add/del callbacks will reserve all hardware resources required
347 * to service the event, this includes any counter constraint
348 * scheduling etc.
349 *
350 * Called with IRQs disabled and the PMU disabled on the CPU the event
351 * is on.
352 *
353 * ->add() called without PERF_EF_START should result in the same state
354 * as ->add() followed by ->stop().
355 *
356 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
357 * ->stop() that must deal with already being stopped without
358 * PERF_EF_UPDATE.
359 */
360 int (*add) (struct perf_event *event, int flags);
361 void (*del) (struct perf_event *event, int flags);
362
363 /*
364 * Starts/Stops a counter present on the PMU.
365 *
366 * The PMI handler should stop the counter when perf_event_overflow()
367 * returns !0. ->start() will be used to continue.
368 *
369 * Also used to change the sample period.
370 *
371 * Called with IRQs disabled and the PMU disabled on the CPU the event
372 * is on -- will be called from NMI context with the PMU generates
373 * NMIs.
374 *
375 * ->stop() with PERF_EF_UPDATE will read the counter and update
376 * period/count values like ->read() would.
377 *
378 * ->start() with PERF_EF_RELOAD will reprogram the counter
379 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
380 */
381 void (*start) (struct perf_event *event, int flags);
382 void (*stop) (struct perf_event *event, int flags);
383
384 /*
385 * Updates the counter value of the event.
386 *
387 * For sampling capable PMUs this will also update the software period
388 * hw_perf_event::period_left field.
389 */
390 void (*read) (struct perf_event *event);
391
392 /*
393 * Group events scheduling is treated as a transaction, add
394 * group events as a whole and perform one schedulability test.
395 * If the test fails, roll back the whole group
396 *
397 * Start the transaction, after this ->add() doesn't need to
398 * do schedulability tests.
399 *
400 * Optional.
401 */
402 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
403 /*
404 * If ->start_txn() disabled the ->add() schedulability test
405 * then ->commit_txn() is required to perform one. On success
406 * the transaction is closed. On error the transaction is kept
407 * open until ->cancel_txn() is called.
408 *
409 * Optional.
410 */
411 int (*commit_txn) (struct pmu *pmu);
412 /*
413 * Will cancel the transaction, assumes ->del() is called
414 * for each successful ->add() during the transaction.
415 *
416 * Optional.
417 */
418 void (*cancel_txn) (struct pmu *pmu);
419
420 /*
421 * Will return the value for perf_event_mmap_page::index for this event,
422 * if no implementation is provided it will default to: event->hw.idx + 1.
423 */
424 int (*event_idx) (struct perf_event *event); /*optional */
425
426 /*
427 * context-switches callback
428 */
429 void (*sched_task) (struct perf_event_context *ctx,
430 bool sched_in);
431
432 /*
433 * Kmem cache of PMU specific data
434 */
435 struct kmem_cache *task_ctx_cache;
436
437 /*
438 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
439 * can be synchronized using this function. See Intel LBR callstack support
440 * implementation and Perf core context switch handling callbacks for usage
441 * examples.
442 */
443 void (*swap_task_ctx) (struct perf_event_context *prev,
444 struct perf_event_context *next);
445 /* optional */
446
447 /*
448 * Set up pmu-private data structures for an AUX area
449 */
450 void *(*setup_aux) (struct perf_event *event, void **pages,
451 int nr_pages, bool overwrite);
452 /* optional */
453
454 /*
455 * Free pmu-private AUX data structures
456 */
457 void (*free_aux) (void *aux); /* optional */
458
459 /*
460 * Take a snapshot of the AUX buffer without touching the event
461 * state, so that preempting ->start()/->stop() callbacks does
462 * not interfere with their logic. Called in PMI context.
463 *
464 * Returns the size of AUX data copied to the output handle.
465 *
466 * Optional.
467 */
468 long (*snapshot_aux) (struct perf_event *event,
469 struct perf_output_handle *handle,
470 unsigned long size);
471
472 /*
473 * Validate address range filters: make sure the HW supports the
474 * requested configuration and number of filters; return 0 if the
475 * supplied filters are valid, -errno otherwise.
476 *
477 * Runs in the context of the ioctl()ing process and is not serialized
478 * with the rest of the PMU callbacks.
479 */
480 int (*addr_filters_validate) (struct list_head *filters);
481 /* optional */
482
483 /*
484 * Synchronize address range filter configuration:
485 * translate hw-agnostic filters into hardware configuration in
486 * event::hw::addr_filters.
487 *
488 * Runs as a part of filter sync sequence that is done in ->start()
489 * callback by calling perf_event_addr_filters_sync().
490 *
491 * May (and should) traverse event::addr_filters::list, for which its
492 * caller provides necessary serialization.
493 */
494 void (*addr_filters_sync) (struct perf_event *event);
495 /* optional */
496
497 /*
498 * Check if event can be used for aux_output purposes for
499 * events of this PMU.
500 *
501 * Runs from perf_event_open(). Should return 0 for "no match"
502 * or non-zero for "match".
503 */
504 int (*aux_output_match) (struct perf_event *event);
505 /* optional */
506
507 /*
508 * Filter events for PMU-specific reasons.
509 */
510 int (*filter_match) (struct perf_event *event); /* optional */
511
512 /*
513 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
514 */
515 int (*check_period) (struct perf_event *event, u64 value); /* optional */
516 };
517
518 enum perf_addr_filter_action_t {
519 PERF_ADDR_FILTER_ACTION_STOP = 0,
520 PERF_ADDR_FILTER_ACTION_START,
521 PERF_ADDR_FILTER_ACTION_FILTER,
522 };
523
524 /**
525 * struct perf_addr_filter - address range filter definition
526 * @entry: event's filter list linkage
527 * @path: object file's path for file-based filters
528 * @offset: filter range offset
529 * @size: filter range size (size==0 means single address trigger)
530 * @action: filter/start/stop
531 *
532 * This is a hardware-agnostic filter configuration as specified by the user.
533 */
534 struct perf_addr_filter {
535 struct list_head entry;
536 struct path path;
537 unsigned long offset;
538 unsigned long size;
539 enum perf_addr_filter_action_t action;
540 };
541
542 /**
543 * struct perf_addr_filters_head - container for address range filters
544 * @list: list of filters for this event
545 * @lock: spinlock that serializes accesses to the @list and event's
546 * (and its children's) filter generations.
547 * @nr_file_filters: number of file-based filters
548 *
549 * A child event will use parent's @list (and therefore @lock), so they are
550 * bundled together; see perf_event_addr_filters().
551 */
552 struct perf_addr_filters_head {
553 struct list_head list;
554 raw_spinlock_t lock;
555 unsigned int nr_file_filters;
556 };
557
558 struct perf_addr_filter_range {
559 unsigned long start;
560 unsigned long size;
561 };
562
563 /**
564 * enum perf_event_state - the states of an event:
565 */
566 enum perf_event_state {
567 PERF_EVENT_STATE_DEAD = -4,
568 PERF_EVENT_STATE_EXIT = -3,
569 PERF_EVENT_STATE_ERROR = -2,
570 PERF_EVENT_STATE_OFF = -1,
571 PERF_EVENT_STATE_INACTIVE = 0,
572 PERF_EVENT_STATE_ACTIVE = 1,
573 };
574
575 struct file;
576 struct perf_sample_data;
577
578 typedef void (*perf_overflow_handler_t)(struct perf_event *,
579 struct perf_sample_data *,
580 struct pt_regs *regs);
581
582 /*
583 * Event capabilities. For event_caps and groups caps.
584 *
585 * PERF_EV_CAP_SOFTWARE: Is a software event.
586 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
587 * from any CPU in the package where it is active.
588 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
589 * cannot be a group leader. If an event with this flag is detached from the
590 * group it is scheduled out and moved into an unrecoverable ERROR state.
591 */
592 #define PERF_EV_CAP_SOFTWARE BIT(0)
593 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
594 #define PERF_EV_CAP_SIBLING BIT(2)
595
596 #define SWEVENT_HLIST_BITS 8
597 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
598
599 struct swevent_hlist {
600 struct hlist_head heads[SWEVENT_HLIST_SIZE];
601 struct rcu_head rcu_head;
602 };
603
604 #define PERF_ATTACH_CONTEXT 0x01
605 #define PERF_ATTACH_GROUP 0x02
606 #define PERF_ATTACH_TASK 0x04
607 #define PERF_ATTACH_TASK_DATA 0x08
608 #define PERF_ATTACH_ITRACE 0x10
609 #define PERF_ATTACH_SCHED_CB 0x20
610
611 struct perf_cgroup;
612 struct perf_buffer;
613
614 struct pmu_event_list {
615 raw_spinlock_t lock;
616 struct list_head list;
617 };
618
619 #define for_each_sibling_event(sibling, event) \
620 if ((event)->group_leader == (event)) \
621 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
622
623 /**
624 * struct perf_event - performance event kernel representation:
625 */
626 struct perf_event {
627 #ifdef CONFIG_PERF_EVENTS
628 /*
629 * entry onto perf_event_context::event_list;
630 * modifications require ctx->lock
631 * RCU safe iterations.
632 */
633 struct list_head event_entry;
634
635 /*
636 * Locked for modification by both ctx->mutex and ctx->lock; holding
637 * either sufficies for read.
638 */
639 struct list_head sibling_list;
640 struct list_head active_list;
641 /*
642 * Node on the pinned or flexible tree located at the event context;
643 */
644 struct rb_node group_node;
645 u64 group_index;
646 /*
647 * We need storage to track the entries in perf_pmu_migrate_context; we
648 * cannot use the event_entry because of RCU and we want to keep the
649 * group in tact which avoids us using the other two entries.
650 */
651 struct list_head migrate_entry;
652
653 struct hlist_node hlist_entry;
654 struct list_head active_entry;
655 int nr_siblings;
656
657 /* Not serialized. Only written during event initialization. */
658 int event_caps;
659 /* The cumulative AND of all event_caps for events in this group. */
660 int group_caps;
661
662 #ifndef __GENKSYMS__
663 unsigned int group_generation;
664 #endif
665 struct perf_event *group_leader;
666 struct pmu *pmu;
667 void *pmu_private;
668
669 enum perf_event_state state;
670 unsigned int attach_state;
671 local64_t count;
672 atomic64_t child_count;
673
674 /*
675 * These are the total time in nanoseconds that the event
676 * has been enabled (i.e. eligible to run, and the task has
677 * been scheduled in, if this is a per-task event)
678 * and running (scheduled onto the CPU), respectively.
679 */
680 u64 total_time_enabled;
681 u64 total_time_running;
682 u64 tstamp;
683
684 /*
685 * timestamp shadows the actual context timing but it can
686 * be safely used in NMI interrupt context. It reflects the
687 * context time as it was when the event was last scheduled in,
688 * or when ctx_sched_in failed to schedule the event because we
689 * run out of PMC.
690 *
691 * ctx_time already accounts for ctx->timestamp. Therefore to
692 * compute ctx_time for a sample, simply add perf_clock().
693 */
694 u64 shadow_ctx_time;
695
696 struct perf_event_attr attr;
697 u16 header_size;
698 u16 id_header_size;
699 u16 read_size;
700 struct hw_perf_event hw;
701
702 struct perf_event_context *ctx;
703 atomic_long_t refcount;
704
705 /*
706 * These accumulate total time (in nanoseconds) that children
707 * events have been enabled and running, respectively.
708 */
709 atomic64_t child_total_time_enabled;
710 atomic64_t child_total_time_running;
711
712 /*
713 * Protect attach/detach and child_list:
714 */
715 struct mutex child_mutex;
716 struct list_head child_list;
717 struct perf_event *parent;
718
719 int oncpu;
720 int cpu;
721
722 struct list_head owner_entry;
723 struct task_struct *owner;
724
725 /* mmap bits */
726 struct mutex mmap_mutex;
727 atomic_t mmap_count;
728
729 struct perf_buffer *rb;
730 struct list_head rb_entry;
731 unsigned long rcu_batches;
732 int rcu_pending;
733
734 /* poll related */
735 wait_queue_head_t waitq;
736 struct fasync_struct *fasync;
737
738 /* delayed work for NMIs and such */
739 int pending_wakeup;
740 int pending_kill;
741 int pending_disable;
742 struct irq_work pending;
743
744 atomic_t event_limit;
745
746 /* address range filters */
747 struct perf_addr_filters_head addr_filters;
748 /* vma address array for file-based filders */
749 struct perf_addr_filter_range *addr_filter_ranges;
750 unsigned long addr_filters_gen;
751
752 /* for aux_output events */
753 struct perf_event *aux_event;
754
755 void (*destroy)(struct perf_event *);
756 struct rcu_head rcu_head;
757
758 struct pid_namespace *ns;
759 u64 id;
760
761 u64 (*clock)(void);
762 perf_overflow_handler_t overflow_handler;
763 void *overflow_handler_context;
764 #ifdef CONFIG_BPF_SYSCALL
765 perf_overflow_handler_t orig_overflow_handler;
766 struct bpf_prog *prog;
767 #endif
768
769 #ifdef CONFIG_EVENT_TRACING
770 struct trace_event_call *tp_event;
771 struct event_filter *filter;
772 #ifdef CONFIG_FUNCTION_TRACER
773 struct ftrace_ops ftrace_ops;
774 #endif
775 #endif
776
777 #ifdef CONFIG_CGROUP_PERF
778 struct perf_cgroup *cgrp; /* cgroup event is attach to */
779 #endif
780
781 #ifdef CONFIG_SECURITY
782 void *security;
783 #endif
784 struct list_head sb_list;
785 #endif /* CONFIG_PERF_EVENTS */
786 };
787
788
789 struct perf_event_groups {
790 struct rb_root tree;
791 u64 index;
792 };
793
794 /**
795 * struct perf_event_context - event context structure
796 *
797 * Used as a container for task events and CPU events as well:
798 */
799 struct perf_event_context {
800 struct pmu *pmu;
801 /*
802 * Protect the states of the events in the list,
803 * nr_active, and the list:
804 */
805 raw_spinlock_t lock;
806 /*
807 * Protect the list of events. Locking either mutex or lock
808 * is sufficient to ensure the list doesn't change; to change
809 * the list you need to lock both the mutex and the spinlock.
810 */
811 struct mutex mutex;
812
813 struct list_head active_ctx_list;
814 struct perf_event_groups pinned_groups;
815 struct perf_event_groups flexible_groups;
816 struct list_head event_list;
817
818 struct list_head pinned_active;
819 struct list_head flexible_active;
820
821 int nr_events;
822 int nr_active;
823 int is_active;
824 int nr_stat;
825 int nr_freq;
826 int rotate_disable;
827 /*
828 * Set when nr_events != nr_active, except tolerant to events not
829 * necessary to be active due to scheduling constraints, such as cgroups.
830 */
831 int rotate_necessary;
832 refcount_t refcount;
833 struct task_struct *task;
834
835 /*
836 * Context clock, runs when context enabled.
837 */
838 u64 time;
839 u64 timestamp;
840
841 /*
842 * These fields let us detect when two contexts have both
843 * been cloned (inherited) from a common ancestor.
844 */
845 struct perf_event_context *parent_ctx;
846 u64 parent_gen;
847 u64 generation;
848 int pin_count;
849 #ifdef CONFIG_CGROUP_PERF
850 int nr_cgroups; /* cgroup evts */
851 #endif
852 void *task_ctx_data; /* pmu specific data */
853 struct rcu_head rcu_head;
854 };
855
856 /*
857 * Number of contexts where an event can trigger:
858 * task, softirq, hardirq, nmi.
859 */
860 #define PERF_NR_CONTEXTS 4
861
862 /**
863 * struct perf_event_cpu_context - per cpu event context structure
864 */
865 struct perf_cpu_context {
866 struct perf_event_context ctx;
867 struct perf_event_context *task_ctx;
868 int active_oncpu;
869 int exclusive;
870
871 raw_spinlock_t hrtimer_lock;
872 struct hrtimer hrtimer;
873 ktime_t hrtimer_interval;
874 unsigned int hrtimer_active;
875
876 #ifdef CONFIG_CGROUP_PERF
877 struct perf_cgroup *cgrp;
878 struct list_head cgrp_cpuctx_entry;
879 #endif
880
881 struct list_head sched_cb_entry;
882 int sched_cb_usage;
883
884 int online;
885 /*
886 * Per-CPU storage for iterators used in visit_groups_merge. The default
887 * storage is of size 2 to hold the CPU and any CPU event iterators.
888 */
889 int heap_size;
890 struct perf_event **heap;
891 struct perf_event *heap_default[2];
892 };
893
894 struct perf_output_handle {
895 struct perf_event *event;
896 struct perf_buffer *rb;
897 unsigned long wakeup;
898 unsigned long size;
899 u64 aux_flags;
900 union {
901 void *addr;
902 unsigned long head;
903 };
904 int page;
905 };
906
907 struct bpf_perf_event_data_kern {
908 bpf_user_pt_regs_t *regs;
909 struct perf_sample_data *data;
910 struct perf_event *event;
911 };
912
913 #ifdef CONFIG_CGROUP_PERF
914
915 /*
916 * perf_cgroup_info keeps track of time_enabled for a cgroup.
917 * This is a per-cpu dynamically allocated data structure.
918 */
919 struct perf_cgroup_info {
920 u64 time;
921 u64 timestamp;
922 };
923
924 struct perf_cgroup {
925 struct cgroup_subsys_state css;
926 struct perf_cgroup_info __percpu *info;
927 };
928
929 /*
930 * Must ensure cgroup is pinned (css_get) before calling
931 * this function. In other words, we cannot call this function
932 * if there is no cgroup event for the current CPU context.
933 */
934 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)935 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
936 {
937 return container_of(task_css_check(task, perf_event_cgrp_id,
938 ctx ? lockdep_is_held(&ctx->lock)
939 : true),
940 struct perf_cgroup, css);
941 }
942 #endif /* CONFIG_CGROUP_PERF */
943
944 #ifdef CONFIG_PERF_EVENTS
945
946 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
947 struct perf_event *event);
948 extern void perf_aux_output_end(struct perf_output_handle *handle,
949 unsigned long size);
950 extern int perf_aux_output_skip(struct perf_output_handle *handle,
951 unsigned long size);
952 extern void *perf_get_aux(struct perf_output_handle *handle);
953 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
954 extern void perf_event_itrace_started(struct perf_event *event);
955
956 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
957 extern void perf_pmu_unregister(struct pmu *pmu);
958
959 extern int perf_num_counters(void);
960 extern const char *perf_pmu_name(void);
961 extern void __perf_event_task_sched_in(struct task_struct *prev,
962 struct task_struct *task);
963 extern void __perf_event_task_sched_out(struct task_struct *prev,
964 struct task_struct *next);
965 extern int perf_event_init_task(struct task_struct *child);
966 extern void perf_event_exit_task(struct task_struct *child);
967 extern void perf_event_free_task(struct task_struct *task);
968 extern void perf_event_delayed_put(struct task_struct *task);
969 extern struct file *perf_event_get(unsigned int fd);
970 extern const struct perf_event *perf_get_event(struct file *file);
971 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
972 extern void perf_event_print_debug(void);
973 extern void perf_pmu_disable(struct pmu *pmu);
974 extern void perf_pmu_enable(struct pmu *pmu);
975 extern void perf_sched_cb_dec(struct pmu *pmu);
976 extern void perf_sched_cb_inc(struct pmu *pmu);
977 extern int perf_event_task_disable(void);
978 extern int perf_event_task_enable(void);
979
980 extern void perf_pmu_resched(struct pmu *pmu);
981
982 extern int perf_event_refresh(struct perf_event *event, int refresh);
983 extern void perf_event_update_userpage(struct perf_event *event);
984 extern int perf_event_release_kernel(struct perf_event *event);
985 extern struct perf_event *
986 perf_event_create_kernel_counter(struct perf_event_attr *attr,
987 int cpu,
988 struct task_struct *task,
989 perf_overflow_handler_t callback,
990 void *context);
991 extern void perf_pmu_migrate_context(struct pmu *pmu,
992 int src_cpu, int dst_cpu);
993 int perf_event_read_local(struct perf_event *event, u64 *value,
994 u64 *enabled, u64 *running);
995 extern u64 perf_event_read_value(struct perf_event *event,
996 u64 *enabled, u64 *running);
997
998
999 struct perf_sample_data {
1000 /*
1001 * Fields set by perf_sample_data_init(), group so as to
1002 * minimize the cachelines touched.
1003 */
1004 u64 addr;
1005 struct perf_raw_record *raw;
1006 struct perf_branch_stack *br_stack;
1007 u64 period;
1008 u64 weight;
1009 u64 txn;
1010 union perf_mem_data_src data_src;
1011
1012 /*
1013 * The other fields, optionally {set,used} by
1014 * perf_{prepare,output}_sample().
1015 */
1016 u64 type;
1017 u64 ip;
1018 struct {
1019 u32 pid;
1020 u32 tid;
1021 } tid_entry;
1022 u64 time;
1023 u64 id;
1024 u64 stream_id;
1025 struct {
1026 u32 cpu;
1027 u32 reserved;
1028 } cpu_entry;
1029 struct perf_callchain_entry *callchain;
1030 u64 aux_size;
1031
1032 struct perf_regs regs_user;
1033 struct perf_regs regs_intr;
1034 u64 stack_user_size;
1035
1036 u64 phys_addr;
1037 u64 cgroup;
1038 } ____cacheline_aligned;
1039
1040 /* default value for data source */
1041 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1042 PERF_MEM_S(LVL, NA) |\
1043 PERF_MEM_S(SNOOP, NA) |\
1044 PERF_MEM_S(LOCK, NA) |\
1045 PERF_MEM_S(TLB, NA))
1046
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1047 static inline void perf_sample_data_init(struct perf_sample_data *data,
1048 u64 addr, u64 period)
1049 {
1050 /* remaining struct members initialized in perf_prepare_sample() */
1051 data->addr = addr;
1052 data->raw = NULL;
1053 data->br_stack = NULL;
1054 data->period = period;
1055 data->weight = 0;
1056 data->data_src.val = PERF_MEM_NA;
1057 data->txn = 0;
1058 }
1059
1060 extern void perf_output_sample(struct perf_output_handle *handle,
1061 struct perf_event_header *header,
1062 struct perf_sample_data *data,
1063 struct perf_event *event);
1064 extern void perf_prepare_sample(struct perf_event_header *header,
1065 struct perf_sample_data *data,
1066 struct perf_event *event,
1067 struct pt_regs *regs);
1068
1069 extern int perf_event_overflow(struct perf_event *event,
1070 struct perf_sample_data *data,
1071 struct pt_regs *regs);
1072
1073 extern void perf_event_output_forward(struct perf_event *event,
1074 struct perf_sample_data *data,
1075 struct pt_regs *regs);
1076 extern void perf_event_output_backward(struct perf_event *event,
1077 struct perf_sample_data *data,
1078 struct pt_regs *regs);
1079 extern int perf_event_output(struct perf_event *event,
1080 struct perf_sample_data *data,
1081 struct pt_regs *regs);
1082
1083 static inline bool
__is_default_overflow_handler(perf_overflow_handler_t overflow_handler)1084 __is_default_overflow_handler(perf_overflow_handler_t overflow_handler)
1085 {
1086 if (likely(overflow_handler == perf_event_output_forward))
1087 return true;
1088 if (unlikely(overflow_handler == perf_event_output_backward))
1089 return true;
1090 return false;
1091 }
1092
1093 #define is_default_overflow_handler(event) \
1094 __is_default_overflow_handler((event)->overflow_handler)
1095
1096 #ifdef CONFIG_BPF_SYSCALL
uses_default_overflow_handler(struct perf_event * event)1097 static inline bool uses_default_overflow_handler(struct perf_event *event)
1098 {
1099 if (likely(is_default_overflow_handler(event)))
1100 return true;
1101
1102 return __is_default_overflow_handler(event->orig_overflow_handler);
1103 }
1104 #else
1105 #define uses_default_overflow_handler(event) \
1106 is_default_overflow_handler(event)
1107 #endif
1108
1109 extern void
1110 perf_event_header__init_id(struct perf_event_header *header,
1111 struct perf_sample_data *data,
1112 struct perf_event *event);
1113 extern void
1114 perf_event__output_id_sample(struct perf_event *event,
1115 struct perf_output_handle *handle,
1116 struct perf_sample_data *sample);
1117
1118 extern void
1119 perf_log_lost_samples(struct perf_event *event, u64 lost);
1120
event_has_any_exclude_flag(struct perf_event * event)1121 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1122 {
1123 struct perf_event_attr *attr = &event->attr;
1124
1125 return attr->exclude_idle || attr->exclude_user ||
1126 attr->exclude_kernel || attr->exclude_hv ||
1127 attr->exclude_guest || attr->exclude_host;
1128 }
1129
is_sampling_event(struct perf_event * event)1130 static inline bool is_sampling_event(struct perf_event *event)
1131 {
1132 return event->attr.sample_period != 0;
1133 }
1134
1135 /*
1136 * Return 1 for a software event, 0 for a hardware event
1137 */
is_software_event(struct perf_event * event)1138 static inline int is_software_event(struct perf_event *event)
1139 {
1140 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1141 }
1142
1143 /*
1144 * Return 1 for event in sw context, 0 for event in hw context
1145 */
in_software_context(struct perf_event * event)1146 static inline int in_software_context(struct perf_event *event)
1147 {
1148 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1149 }
1150
is_exclusive_pmu(struct pmu * pmu)1151 static inline int is_exclusive_pmu(struct pmu *pmu)
1152 {
1153 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1154 }
1155
1156 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1157
1158 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1159 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1160
1161 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1162 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1163 #endif
1164
1165 /*
1166 * When generating a perf sample in-line, instead of from an interrupt /
1167 * exception, we lack a pt_regs. This is typically used from software events
1168 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1169 *
1170 * We typically don't need a full set, but (for x86) do require:
1171 * - ip for PERF_SAMPLE_IP
1172 * - cs for user_mode() tests
1173 * - sp for PERF_SAMPLE_CALLCHAIN
1174 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1175 *
1176 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1177 * things like PERF_SAMPLE_REGS_INTR.
1178 */
perf_fetch_caller_regs(struct pt_regs * regs)1179 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1180 {
1181 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1182 }
1183
1184 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1185 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1186 {
1187 if (static_key_false(&perf_swevent_enabled[event_id]))
1188 __perf_sw_event(event_id, nr, regs, addr);
1189 }
1190
1191 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1192
1193 /*
1194 * 'Special' version for the scheduler, it hard assumes no recursion,
1195 * which is guaranteed by us not actually scheduling inside other swevents
1196 * because those disable preemption.
1197 */
1198 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1199 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1200 {
1201 if (static_key_false(&perf_swevent_enabled[event_id])) {
1202 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1203
1204 perf_fetch_caller_regs(regs);
1205 ___perf_sw_event(event_id, nr, regs, addr);
1206 }
1207 }
1208
1209 extern struct static_key_false perf_sched_events;
1210
1211 static __always_inline bool
perf_sw_migrate_enabled(void)1212 perf_sw_migrate_enabled(void)
1213 {
1214 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1215 return true;
1216 return false;
1217 }
1218
perf_event_task_migrate(struct task_struct * task)1219 static inline void perf_event_task_migrate(struct task_struct *task)
1220 {
1221 if (perf_sw_migrate_enabled())
1222 task->sched_migrated = 1;
1223 }
1224
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1225 static inline void perf_event_task_sched_in(struct task_struct *prev,
1226 struct task_struct *task)
1227 {
1228 if (static_branch_unlikely(&perf_sched_events))
1229 __perf_event_task_sched_in(prev, task);
1230
1231 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1232 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1233
1234 perf_fetch_caller_regs(regs);
1235 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1236 task->sched_migrated = 0;
1237 }
1238 }
1239
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1240 static inline void perf_event_task_sched_out(struct task_struct *prev,
1241 struct task_struct *next)
1242 {
1243 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1244
1245 if (static_branch_unlikely(&perf_sched_events))
1246 __perf_event_task_sched_out(prev, next);
1247 }
1248
1249 extern void perf_event_mmap(struct vm_area_struct *vma);
1250
1251 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1252 bool unregister, const char *sym);
1253 extern void perf_event_bpf_event(struct bpf_prog *prog,
1254 enum perf_bpf_event_type type,
1255 u16 flags);
1256
1257 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
perf_get_guest_cbs(void)1258 static inline struct perf_guest_info_callbacks *perf_get_guest_cbs(void)
1259 {
1260 /*
1261 * Callbacks are RCU-protected and must be READ_ONCE to avoid reloading
1262 * the callbacks between a !NULL check and dereferences, to ensure
1263 * pending stores/changes to the callback pointers are visible before a
1264 * non-NULL perf_guest_cbs is visible to readers, and to prevent a
1265 * module from unloading callbacks while readers are active.
1266 */
1267 return rcu_dereference(perf_guest_cbs);
1268 }
1269 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1270 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1271
1272 extern void perf_event_exec(void);
1273 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1274 extern void perf_event_namespaces(struct task_struct *tsk);
1275 extern void perf_event_fork(struct task_struct *tsk);
1276 extern void perf_event_text_poke(const void *addr,
1277 const void *old_bytes, size_t old_len,
1278 const void *new_bytes, size_t new_len);
1279
1280 /* Callchains */
1281 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1282
1283 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1284 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1285 extern struct perf_callchain_entry *
1286 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1287 u32 max_stack, bool crosstask, bool add_mark);
1288 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1289 extern int get_callchain_buffers(int max_stack);
1290 extern void put_callchain_buffers(void);
1291 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1292 extern void put_callchain_entry(int rctx);
1293
1294 extern int sysctl_perf_event_max_stack;
1295 extern int sysctl_perf_event_max_contexts_per_stack;
1296
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1297 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1298 {
1299 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1300 struct perf_callchain_entry *entry = ctx->entry;
1301 entry->ip[entry->nr++] = ip;
1302 ++ctx->contexts;
1303 return 0;
1304 } else {
1305 ctx->contexts_maxed = true;
1306 return -1; /* no more room, stop walking the stack */
1307 }
1308 }
1309
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1310 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1311 {
1312 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1313 struct perf_callchain_entry *entry = ctx->entry;
1314 entry->ip[entry->nr++] = ip;
1315 ++ctx->nr;
1316 return 0;
1317 } else {
1318 return -1; /* no more room, stop walking the stack */
1319 }
1320 }
1321
1322 extern int sysctl_perf_event_paranoid;
1323 extern int sysctl_perf_event_mlock;
1324 extern int sysctl_perf_event_sample_rate;
1325 extern int sysctl_perf_cpu_time_max_percent;
1326
1327 extern void perf_sample_event_took(u64 sample_len_ns);
1328
1329 int perf_proc_update_handler(struct ctl_table *table, int write,
1330 void *buffer, size_t *lenp, loff_t *ppos);
1331 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1332 void *buffer, size_t *lenp, loff_t *ppos);
1333 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1334 void *buffer, size_t *lenp, loff_t *ppos);
1335
1336 /* Access to perf_event_open(2) syscall. */
1337 #define PERF_SECURITY_OPEN 0
1338
1339 /* Finer grained perf_event_open(2) access control. */
1340 #define PERF_SECURITY_CPU 1
1341 #define PERF_SECURITY_KERNEL 2
1342 #define PERF_SECURITY_TRACEPOINT 3
1343
perf_is_paranoid(void)1344 static inline int perf_is_paranoid(void)
1345 {
1346 return sysctl_perf_event_paranoid > -1;
1347 }
1348
perf_allow_kernel(struct perf_event_attr * attr)1349 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1350 {
1351 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1352 return -EACCES;
1353
1354 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1355 }
1356
perf_allow_cpu(struct perf_event_attr * attr)1357 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1358 {
1359 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1360 return -EACCES;
1361
1362 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1363 }
1364
perf_allow_tracepoint(struct perf_event_attr * attr)1365 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1366 {
1367 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1368 return -EPERM;
1369
1370 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1371 }
1372
1373 extern void perf_event_init(void);
1374 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1375 int entry_size, struct pt_regs *regs,
1376 struct hlist_head *head, int rctx,
1377 struct task_struct *task);
1378 extern void perf_bp_event(struct perf_event *event, void *data);
1379
1380 #ifndef perf_misc_flags
1381 # define perf_misc_flags(regs) \
1382 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1383 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1384 #endif
1385 #ifndef perf_arch_bpf_user_pt_regs
1386 # define perf_arch_bpf_user_pt_regs(regs) regs
1387 #endif
1388
has_branch_stack(struct perf_event * event)1389 static inline bool has_branch_stack(struct perf_event *event)
1390 {
1391 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1392 }
1393
needs_branch_stack(struct perf_event * event)1394 static inline bool needs_branch_stack(struct perf_event *event)
1395 {
1396 return event->attr.branch_sample_type != 0;
1397 }
1398
has_aux(struct perf_event * event)1399 static inline bool has_aux(struct perf_event *event)
1400 {
1401 return event->pmu->setup_aux;
1402 }
1403
is_write_backward(struct perf_event * event)1404 static inline bool is_write_backward(struct perf_event *event)
1405 {
1406 return !!event->attr.write_backward;
1407 }
1408
has_addr_filter(struct perf_event * event)1409 static inline bool has_addr_filter(struct perf_event *event)
1410 {
1411 return event->pmu->nr_addr_filters;
1412 }
1413
1414 /*
1415 * An inherited event uses parent's filters
1416 */
1417 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1418 perf_event_addr_filters(struct perf_event *event)
1419 {
1420 struct perf_addr_filters_head *ifh = &event->addr_filters;
1421
1422 if (event->parent)
1423 ifh = &event->parent->addr_filters;
1424
1425 return ifh;
1426 }
1427
1428 extern void perf_event_addr_filters_sync(struct perf_event *event);
1429
1430 extern int perf_output_begin(struct perf_output_handle *handle,
1431 struct perf_sample_data *data,
1432 struct perf_event *event, unsigned int size);
1433 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1434 struct perf_sample_data *data,
1435 struct perf_event *event,
1436 unsigned int size);
1437 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1438 struct perf_sample_data *data,
1439 struct perf_event *event,
1440 unsigned int size);
1441
1442 extern void perf_output_end(struct perf_output_handle *handle);
1443 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1444 const void *buf, unsigned int len);
1445 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1446 unsigned int len);
1447 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1448 struct perf_output_handle *handle,
1449 unsigned long from, unsigned long to);
1450 extern int perf_swevent_get_recursion_context(void);
1451 extern void perf_swevent_put_recursion_context(int rctx);
1452 extern u64 perf_swevent_set_period(struct perf_event *event);
1453 extern void perf_event_enable(struct perf_event *event);
1454 extern void perf_event_disable(struct perf_event *event);
1455 extern void perf_event_disable_local(struct perf_event *event);
1456 extern void perf_event_disable_inatomic(struct perf_event *event);
1457 extern void perf_event_task_tick(void);
1458 extern int perf_event_account_interrupt(struct perf_event *event);
1459 extern int perf_event_period(struct perf_event *event, u64 value);
1460 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1461 #else /* !CONFIG_PERF_EVENTS: */
1462 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1463 perf_aux_output_begin(struct perf_output_handle *handle,
1464 struct perf_event *event) { return NULL; }
1465 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1466 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1467 { }
1468 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1469 perf_aux_output_skip(struct perf_output_handle *handle,
1470 unsigned long size) { return -EINVAL; }
1471 static inline void *
perf_get_aux(struct perf_output_handle * handle)1472 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1473 static inline void
perf_event_task_migrate(struct task_struct * task)1474 perf_event_task_migrate(struct task_struct *task) { }
1475 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1476 perf_event_task_sched_in(struct task_struct *prev,
1477 struct task_struct *task) { }
1478 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1479 perf_event_task_sched_out(struct task_struct *prev,
1480 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child)1481 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
perf_event_exit_task(struct task_struct * child)1482 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1483 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1484 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1485 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1486 static inline const struct perf_event *perf_get_event(struct file *file)
1487 {
1488 return ERR_PTR(-EINVAL);
1489 }
perf_event_attrs(struct perf_event * event)1490 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1491 {
1492 return ERR_PTR(-EINVAL);
1493 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1494 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1495 u64 *enabled, u64 *running)
1496 {
1497 return -EINVAL;
1498 }
perf_event_print_debug(void)1499 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1500 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1501 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1502 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1503 {
1504 return -EINVAL;
1505 }
1506
1507 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1508 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1509 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1510 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1511 static inline void
perf_bp_event(struct perf_event * event,void * data)1512 perf_bp_event(struct perf_event *event, void *data) { }
1513
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1514 static inline int perf_register_guest_info_callbacks
1515 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1516 static inline int perf_unregister_guest_info_callbacks
1517 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1518
perf_event_mmap(struct vm_area_struct * vma)1519 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1520
1521 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1522 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1523 bool unregister, const char *sym) { }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1524 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1525 enum perf_bpf_event_type type,
1526 u16 flags) { }
perf_event_exec(void)1527 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1528 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1529 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1530 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1531 static inline void perf_event_text_poke(const void *addr,
1532 const void *old_bytes,
1533 size_t old_len,
1534 const void *new_bytes,
1535 size_t new_len) { }
perf_event_init(void)1536 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1537 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1538 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1539 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1540 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1541 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1542 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1543 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1544 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
perf_event_period(struct perf_event * event,u64 value)1545 static inline int perf_event_period(struct perf_event *event, u64 value)
1546 {
1547 return -EINVAL;
1548 }
perf_event_pause(struct perf_event * event,bool reset)1549 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1550 {
1551 return 0;
1552 }
1553 #endif
1554
1555 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1556 extern void perf_restore_debug_store(void);
1557 #else
perf_restore_debug_store(void)1558 static inline void perf_restore_debug_store(void) { }
1559 #endif
1560
perf_raw_frag_last(const struct perf_raw_frag * frag)1561 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1562 {
1563 return frag->pad < sizeof(u64);
1564 }
1565
1566 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1567
1568 struct perf_pmu_events_attr {
1569 struct device_attribute attr;
1570 u64 id;
1571 const char *event_str;
1572 };
1573
1574 struct perf_pmu_events_ht_attr {
1575 struct device_attribute attr;
1576 u64 id;
1577 const char *event_str_ht;
1578 const char *event_str_noht;
1579 };
1580
1581 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1582 char *page);
1583
1584 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1585 static struct perf_pmu_events_attr _var = { \
1586 .attr = __ATTR(_name, 0444, _show, NULL), \
1587 .id = _id, \
1588 };
1589
1590 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1591 static struct perf_pmu_events_attr _var = { \
1592 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1593 .id = 0, \
1594 .event_str = _str, \
1595 };
1596
1597 #define PMU_FORMAT_ATTR(_name, _format) \
1598 static ssize_t \
1599 _name##_show(struct device *dev, \
1600 struct device_attribute *attr, \
1601 char *page) \
1602 { \
1603 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1604 return sprintf(page, _format "\n"); \
1605 } \
1606 \
1607 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1608
1609 /* Performance counter hotplug functions */
1610 #ifdef CONFIG_PERF_EVENTS
1611 int perf_event_init_cpu(unsigned int cpu);
1612 int perf_event_exit_cpu(unsigned int cpu);
1613 #else
1614 #define perf_event_init_cpu NULL
1615 #define perf_event_exit_cpu NULL
1616 #endif
1617
1618 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1619 struct perf_event_mmap_page *userpg,
1620 u64 now);
1621
1622 #endif /* _LINUX_PERF_EVENT_H */
1623