• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18 
19 #include <net/dst.h>
20 #include <net/ip.h>
21 #include <net/ipv6.h>
22 #include <net/ip6_fib.h>
23 #include <net/checksum.h>
24 #include <net/dsfield.h>
25 #include <net/mpls.h>
26 #include <net/sctp/checksum.h>
27 
28 #include "datapath.h"
29 #include "flow.h"
30 #include "conntrack.h"
31 #include "vport.h"
32 #include "flow_netlink.h"
33 
34 struct deferred_action {
35 	struct sk_buff *skb;
36 	const struct nlattr *actions;
37 	int actions_len;
38 
39 	/* Store pkt_key clone when creating deferred action. */
40 	struct sw_flow_key pkt_key;
41 };
42 
43 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
44 struct ovs_frag_data {
45 	unsigned long dst;
46 	struct vport *vport;
47 	struct ovs_skb_cb cb;
48 	__be16 inner_protocol;
49 	u16 network_offset;	/* valid only for MPLS */
50 	u16 vlan_tci;
51 	__be16 vlan_proto;
52 	unsigned int l2_len;
53 	u8 mac_proto;
54 	u8 l2_data[MAX_L2_LEN];
55 };
56 
57 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
58 
59 #define DEFERRED_ACTION_FIFO_SIZE 10
60 #define OVS_RECURSION_LIMIT 5
61 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
62 struct action_fifo {
63 	int head;
64 	int tail;
65 	/* Deferred action fifo queue storage. */
66 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
67 };
68 
69 struct action_flow_keys {
70 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
71 };
72 
73 static struct action_fifo __percpu *action_fifos;
74 static struct action_flow_keys __percpu *flow_keys;
75 static DEFINE_PER_CPU(int, exec_actions_level);
76 
77 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
78  * space. Return NULL if out of key spaces.
79  */
clone_key(const struct sw_flow_key * key_)80 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
81 {
82 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
83 	int level = this_cpu_read(exec_actions_level);
84 	struct sw_flow_key *key = NULL;
85 
86 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
87 		key = &keys->key[level - 1];
88 		*key = *key_;
89 	}
90 
91 	return key;
92 }
93 
action_fifo_init(struct action_fifo * fifo)94 static void action_fifo_init(struct action_fifo *fifo)
95 {
96 	fifo->head = 0;
97 	fifo->tail = 0;
98 }
99 
action_fifo_is_empty(const struct action_fifo * fifo)100 static bool action_fifo_is_empty(const struct action_fifo *fifo)
101 {
102 	return (fifo->head == fifo->tail);
103 }
104 
action_fifo_get(struct action_fifo * fifo)105 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
106 {
107 	if (action_fifo_is_empty(fifo))
108 		return NULL;
109 
110 	return &fifo->fifo[fifo->tail++];
111 }
112 
action_fifo_put(struct action_fifo * fifo)113 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
114 {
115 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
116 		return NULL;
117 
118 	return &fifo->fifo[fifo->head++];
119 }
120 
121 /* Return true if fifo is not full */
add_deferred_actions(struct sk_buff * skb,const struct sw_flow_key * key,const struct nlattr * actions,const int actions_len)122 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
123 				    const struct sw_flow_key *key,
124 				    const struct nlattr *actions,
125 				    const int actions_len)
126 {
127 	struct action_fifo *fifo;
128 	struct deferred_action *da;
129 
130 	fifo = this_cpu_ptr(action_fifos);
131 	da = action_fifo_put(fifo);
132 	if (da) {
133 		da->skb = skb;
134 		da->actions = actions;
135 		da->actions_len = actions_len;
136 		da->pkt_key = *key;
137 	}
138 
139 	return da;
140 }
141 
invalidate_flow_key(struct sw_flow_key * key)142 static void invalidate_flow_key(struct sw_flow_key *key)
143 {
144 	key->mac_proto |= SW_FLOW_KEY_INVALID;
145 }
146 
is_flow_key_valid(const struct sw_flow_key * key)147 static bool is_flow_key_valid(const struct sw_flow_key *key)
148 {
149 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
150 }
151 
152 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
153 			 struct sw_flow_key *key,
154 			 u32 recirc_id,
155 			 const struct nlattr *actions, int len,
156 			 bool last, bool clone_flow_key);
157 
158 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
159 			      struct sw_flow_key *key,
160 			      const struct nlattr *attr, int len);
161 
push_mpls(struct sk_buff * skb,struct sw_flow_key * key,__be32 mpls_lse,__be16 mpls_ethertype,__u16 mac_len)162 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
163 		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
164 {
165 	int err;
166 
167 	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
168 	if (err)
169 		return err;
170 
171 	if (!mac_len)
172 		key->mac_proto = MAC_PROTO_NONE;
173 
174 	invalidate_flow_key(key);
175 	return 0;
176 }
177 
pop_mpls(struct sk_buff * skb,struct sw_flow_key * key,const __be16 ethertype)178 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
179 		    const __be16 ethertype)
180 {
181 	int err;
182 
183 	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
184 			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
185 	if (err)
186 		return err;
187 
188 	if (ethertype == htons(ETH_P_TEB))
189 		key->mac_proto = MAC_PROTO_ETHERNET;
190 
191 	invalidate_flow_key(key);
192 	return 0;
193 }
194 
set_mpls(struct sk_buff * skb,struct sw_flow_key * flow_key,const __be32 * mpls_lse,const __be32 * mask)195 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
196 		    const __be32 *mpls_lse, const __be32 *mask)
197 {
198 	struct mpls_shim_hdr *stack;
199 	__be32 lse;
200 	int err;
201 
202 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
203 		return -ENOMEM;
204 
205 	stack = mpls_hdr(skb);
206 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
207 	err = skb_mpls_update_lse(skb, lse);
208 	if (err)
209 		return err;
210 
211 	flow_key->mpls.lse[0] = lse;
212 	return 0;
213 }
214 
pop_vlan(struct sk_buff * skb,struct sw_flow_key * key)215 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
216 {
217 	int err;
218 
219 	err = skb_vlan_pop(skb);
220 	if (skb_vlan_tag_present(skb)) {
221 		invalidate_flow_key(key);
222 	} else {
223 		key->eth.vlan.tci = 0;
224 		key->eth.vlan.tpid = 0;
225 	}
226 	return err;
227 }
228 
push_vlan(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_vlan * vlan)229 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
230 		     const struct ovs_action_push_vlan *vlan)
231 {
232 	if (skb_vlan_tag_present(skb)) {
233 		invalidate_flow_key(key);
234 	} else {
235 		key->eth.vlan.tci = vlan->vlan_tci;
236 		key->eth.vlan.tpid = vlan->vlan_tpid;
237 	}
238 	return skb_vlan_push(skb, vlan->vlan_tpid,
239 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
240 }
241 
242 /* 'src' is already properly masked. */
ether_addr_copy_masked(u8 * dst_,const u8 * src_,const u8 * mask_)243 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
244 {
245 	u16 *dst = (u16 *)dst_;
246 	const u16 *src = (const u16 *)src_;
247 	const u16 *mask = (const u16 *)mask_;
248 
249 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
250 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
251 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
252 }
253 
set_eth_addr(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ethernet * key,const struct ovs_key_ethernet * mask)254 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
255 			const struct ovs_key_ethernet *key,
256 			const struct ovs_key_ethernet *mask)
257 {
258 	int err;
259 
260 	err = skb_ensure_writable(skb, ETH_HLEN);
261 	if (unlikely(err))
262 		return err;
263 
264 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
265 
266 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
267 			       mask->eth_src);
268 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
269 			       mask->eth_dst);
270 
271 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
272 
273 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
274 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
275 	return 0;
276 }
277 
278 /* pop_eth does not support VLAN packets as this action is never called
279  * for them.
280  */
pop_eth(struct sk_buff * skb,struct sw_flow_key * key)281 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
282 {
283 	int err;
284 
285 	err = skb_eth_pop(skb);
286 	if (err)
287 		return err;
288 
289 	/* safe right before invalidate_flow_key */
290 	key->mac_proto = MAC_PROTO_NONE;
291 	invalidate_flow_key(key);
292 	return 0;
293 }
294 
push_eth(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_eth * ethh)295 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
296 		    const struct ovs_action_push_eth *ethh)
297 {
298 	int err;
299 
300 	err = skb_eth_push(skb, ethh->addresses.eth_dst,
301 			   ethh->addresses.eth_src);
302 	if (err)
303 		return err;
304 
305 	/* safe right before invalidate_flow_key */
306 	key->mac_proto = MAC_PROTO_ETHERNET;
307 	invalidate_flow_key(key);
308 	return 0;
309 }
310 
push_nsh(struct sk_buff * skb,struct sw_flow_key * key,const struct nshhdr * nh)311 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
312 		    const struct nshhdr *nh)
313 {
314 	int err;
315 
316 	err = nsh_push(skb, nh);
317 	if (err)
318 		return err;
319 
320 	/* safe right before invalidate_flow_key */
321 	key->mac_proto = MAC_PROTO_NONE;
322 	invalidate_flow_key(key);
323 	return 0;
324 }
325 
pop_nsh(struct sk_buff * skb,struct sw_flow_key * key)326 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
327 {
328 	int err;
329 
330 	err = nsh_pop(skb);
331 	if (err)
332 		return err;
333 
334 	/* safe right before invalidate_flow_key */
335 	if (skb->protocol == htons(ETH_P_TEB))
336 		key->mac_proto = MAC_PROTO_ETHERNET;
337 	else
338 		key->mac_proto = MAC_PROTO_NONE;
339 	invalidate_flow_key(key);
340 	return 0;
341 }
342 
update_ip_l4_checksum(struct sk_buff * skb,struct iphdr * nh,__be32 addr,__be32 new_addr)343 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
344 				  __be32 addr, __be32 new_addr)
345 {
346 	int transport_len = skb->len - skb_transport_offset(skb);
347 
348 	if (nh->frag_off & htons(IP_OFFSET))
349 		return;
350 
351 	if (nh->protocol == IPPROTO_TCP) {
352 		if (likely(transport_len >= sizeof(struct tcphdr)))
353 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
354 						 addr, new_addr, true);
355 	} else if (nh->protocol == IPPROTO_UDP) {
356 		if (likely(transport_len >= sizeof(struct udphdr))) {
357 			struct udphdr *uh = udp_hdr(skb);
358 
359 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
360 				inet_proto_csum_replace4(&uh->check, skb,
361 							 addr, new_addr, true);
362 				if (!uh->check)
363 					uh->check = CSUM_MANGLED_0;
364 			}
365 		}
366 	}
367 }
368 
set_ip_addr(struct sk_buff * skb,struct iphdr * nh,__be32 * addr,__be32 new_addr)369 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
370 			__be32 *addr, __be32 new_addr)
371 {
372 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
373 	csum_replace4(&nh->check, *addr, new_addr);
374 	skb_clear_hash(skb);
375 	ovs_ct_clear(skb, NULL);
376 	*addr = new_addr;
377 }
378 
update_ipv6_checksum(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4])379 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
380 				 __be32 addr[4], const __be32 new_addr[4])
381 {
382 	int transport_len = skb->len - skb_transport_offset(skb);
383 
384 	if (l4_proto == NEXTHDR_TCP) {
385 		if (likely(transport_len >= sizeof(struct tcphdr)))
386 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
387 						  addr, new_addr, true);
388 	} else if (l4_proto == NEXTHDR_UDP) {
389 		if (likely(transport_len >= sizeof(struct udphdr))) {
390 			struct udphdr *uh = udp_hdr(skb);
391 
392 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
393 				inet_proto_csum_replace16(&uh->check, skb,
394 							  addr, new_addr, true);
395 				if (!uh->check)
396 					uh->check = CSUM_MANGLED_0;
397 			}
398 		}
399 	} else if (l4_proto == NEXTHDR_ICMP) {
400 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
401 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
402 						  skb, addr, new_addr, true);
403 	}
404 }
405 
mask_ipv6_addr(const __be32 old[4],const __be32 addr[4],const __be32 mask[4],__be32 masked[4])406 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
407 			   const __be32 mask[4], __be32 masked[4])
408 {
409 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
410 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
411 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
412 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
413 }
414 
set_ipv6_addr(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4],bool recalculate_csum)415 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
416 			  __be32 addr[4], const __be32 new_addr[4],
417 			  bool recalculate_csum)
418 {
419 	if (recalculate_csum)
420 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
421 
422 	skb_clear_hash(skb);
423 	ovs_ct_clear(skb, NULL);
424 	memcpy(addr, new_addr, sizeof(__be32[4]));
425 }
426 
set_ipv6_dsfield(struct sk_buff * skb,struct ipv6hdr * nh,u8 ipv6_tclass,u8 mask)427 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
428 {
429 	u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
430 
431 	ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
432 
433 	if (skb->ip_summed == CHECKSUM_COMPLETE)
434 		csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
435 			     (__force __wsum)(ipv6_tclass << 12));
436 
437 	ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
438 }
439 
set_ipv6_fl(struct sk_buff * skb,struct ipv6hdr * nh,u32 fl,u32 mask)440 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
441 {
442 	u32 ofl;
443 
444 	ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
445 	fl = OVS_MASKED(ofl, fl, mask);
446 
447 	/* Bits 21-24 are always unmasked, so this retains their values. */
448 	nh->flow_lbl[0] = (u8)(fl >> 16);
449 	nh->flow_lbl[1] = (u8)(fl >> 8);
450 	nh->flow_lbl[2] = (u8)fl;
451 
452 	if (skb->ip_summed == CHECKSUM_COMPLETE)
453 		csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
454 }
455 
set_ipv6_ttl(struct sk_buff * skb,struct ipv6hdr * nh,u8 new_ttl,u8 mask)456 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
457 {
458 	new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
459 
460 	if (skb->ip_summed == CHECKSUM_COMPLETE)
461 		csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
462 			     (__force __wsum)(new_ttl << 8));
463 	nh->hop_limit = new_ttl;
464 }
465 
set_ip_ttl(struct sk_buff * skb,struct iphdr * nh,u8 new_ttl,u8 mask)466 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
467 		       u8 mask)
468 {
469 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
470 
471 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
472 	nh->ttl = new_ttl;
473 }
474 
set_ipv4(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv4 * key,const struct ovs_key_ipv4 * mask)475 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
476 		    const struct ovs_key_ipv4 *key,
477 		    const struct ovs_key_ipv4 *mask)
478 {
479 	struct iphdr *nh;
480 	__be32 new_addr;
481 	int err;
482 
483 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
484 				  sizeof(struct iphdr));
485 	if (unlikely(err))
486 		return err;
487 
488 	nh = ip_hdr(skb);
489 
490 	/* Setting an IP addresses is typically only a side effect of
491 	 * matching on them in the current userspace implementation, so it
492 	 * makes sense to check if the value actually changed.
493 	 */
494 	if (mask->ipv4_src) {
495 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
496 
497 		if (unlikely(new_addr != nh->saddr)) {
498 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
499 			flow_key->ipv4.addr.src = new_addr;
500 		}
501 	}
502 	if (mask->ipv4_dst) {
503 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
504 
505 		if (unlikely(new_addr != nh->daddr)) {
506 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
507 			flow_key->ipv4.addr.dst = new_addr;
508 		}
509 	}
510 	if (mask->ipv4_tos) {
511 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
512 		flow_key->ip.tos = nh->tos;
513 	}
514 	if (mask->ipv4_ttl) {
515 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
516 		flow_key->ip.ttl = nh->ttl;
517 	}
518 
519 	return 0;
520 }
521 
is_ipv6_mask_nonzero(const __be32 addr[4])522 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
523 {
524 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
525 }
526 
set_ipv6(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv6 * key,const struct ovs_key_ipv6 * mask)527 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
528 		    const struct ovs_key_ipv6 *key,
529 		    const struct ovs_key_ipv6 *mask)
530 {
531 	struct ipv6hdr *nh;
532 	int err;
533 
534 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
535 				  sizeof(struct ipv6hdr));
536 	if (unlikely(err))
537 		return err;
538 
539 	nh = ipv6_hdr(skb);
540 
541 	/* Setting an IP addresses is typically only a side effect of
542 	 * matching on them in the current userspace implementation, so it
543 	 * makes sense to check if the value actually changed.
544 	 */
545 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
546 		__be32 *saddr = (__be32 *)&nh->saddr;
547 		__be32 masked[4];
548 
549 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
550 
551 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
552 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
553 				      true);
554 			memcpy(&flow_key->ipv6.addr.src, masked,
555 			       sizeof(flow_key->ipv6.addr.src));
556 		}
557 	}
558 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
559 		unsigned int offset = 0;
560 		int flags = IP6_FH_F_SKIP_RH;
561 		bool recalc_csum = true;
562 		__be32 *daddr = (__be32 *)&nh->daddr;
563 		__be32 masked[4];
564 
565 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
566 
567 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
568 			if (ipv6_ext_hdr(nh->nexthdr))
569 				recalc_csum = (ipv6_find_hdr(skb, &offset,
570 							     NEXTHDR_ROUTING,
571 							     NULL, &flags)
572 					       != NEXTHDR_ROUTING);
573 
574 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
575 				      recalc_csum);
576 			memcpy(&flow_key->ipv6.addr.dst, masked,
577 			       sizeof(flow_key->ipv6.addr.dst));
578 		}
579 	}
580 	if (mask->ipv6_tclass) {
581 		set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
582 		flow_key->ip.tos = ipv6_get_dsfield(nh);
583 	}
584 	if (mask->ipv6_label) {
585 		set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
586 			    ntohl(mask->ipv6_label));
587 		flow_key->ipv6.label =
588 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
589 	}
590 	if (mask->ipv6_hlimit) {
591 		set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
592 		flow_key->ip.ttl = nh->hop_limit;
593 	}
594 	return 0;
595 }
596 
set_nsh(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)597 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
598 		   const struct nlattr *a)
599 {
600 	struct nshhdr *nh;
601 	size_t length;
602 	int err;
603 	u8 flags;
604 	u8 ttl;
605 	int i;
606 
607 	struct ovs_key_nsh key;
608 	struct ovs_key_nsh mask;
609 
610 	err = nsh_key_from_nlattr(a, &key, &mask);
611 	if (err)
612 		return err;
613 
614 	/* Make sure the NSH base header is there */
615 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
616 		return -ENOMEM;
617 
618 	nh = nsh_hdr(skb);
619 	length = nsh_hdr_len(nh);
620 
621 	/* Make sure the whole NSH header is there */
622 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
623 				       length);
624 	if (unlikely(err))
625 		return err;
626 
627 	nh = nsh_hdr(skb);
628 	skb_postpull_rcsum(skb, nh, length);
629 	flags = nsh_get_flags(nh);
630 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
631 	flow_key->nsh.base.flags = flags;
632 	ttl = nsh_get_ttl(nh);
633 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
634 	flow_key->nsh.base.ttl = ttl;
635 	nsh_set_flags_and_ttl(nh, flags, ttl);
636 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
637 				  mask.base.path_hdr);
638 	flow_key->nsh.base.path_hdr = nh->path_hdr;
639 	switch (nh->mdtype) {
640 	case NSH_M_TYPE1:
641 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
642 			nh->md1.context[i] =
643 			    OVS_MASKED(nh->md1.context[i], key.context[i],
644 				       mask.context[i]);
645 		}
646 		memcpy(flow_key->nsh.context, nh->md1.context,
647 		       sizeof(nh->md1.context));
648 		break;
649 	case NSH_M_TYPE2:
650 		memset(flow_key->nsh.context, 0,
651 		       sizeof(flow_key->nsh.context));
652 		break;
653 	default:
654 		return -EINVAL;
655 	}
656 	skb_postpush_rcsum(skb, nh, length);
657 	return 0;
658 }
659 
660 /* Must follow skb_ensure_writable() since that can move the skb data. */
set_tp_port(struct sk_buff * skb,__be16 * port,__be16 new_port,__sum16 * check)661 static void set_tp_port(struct sk_buff *skb, __be16 *port,
662 			__be16 new_port, __sum16 *check)
663 {
664 	ovs_ct_clear(skb, NULL);
665 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
666 	*port = new_port;
667 }
668 
set_udp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_udp * key,const struct ovs_key_udp * mask)669 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
670 		   const struct ovs_key_udp *key,
671 		   const struct ovs_key_udp *mask)
672 {
673 	struct udphdr *uh;
674 	__be16 src, dst;
675 	int err;
676 
677 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
678 				  sizeof(struct udphdr));
679 	if (unlikely(err))
680 		return err;
681 
682 	uh = udp_hdr(skb);
683 	/* Either of the masks is non-zero, so do not bother checking them. */
684 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
685 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
686 
687 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
688 		if (likely(src != uh->source)) {
689 			set_tp_port(skb, &uh->source, src, &uh->check);
690 			flow_key->tp.src = src;
691 		}
692 		if (likely(dst != uh->dest)) {
693 			set_tp_port(skb, &uh->dest, dst, &uh->check);
694 			flow_key->tp.dst = dst;
695 		}
696 
697 		if (unlikely(!uh->check))
698 			uh->check = CSUM_MANGLED_0;
699 	} else {
700 		uh->source = src;
701 		uh->dest = dst;
702 		flow_key->tp.src = src;
703 		flow_key->tp.dst = dst;
704 		ovs_ct_clear(skb, NULL);
705 	}
706 
707 	skb_clear_hash(skb);
708 
709 	return 0;
710 }
711 
set_tcp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_tcp * key,const struct ovs_key_tcp * mask)712 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
713 		   const struct ovs_key_tcp *key,
714 		   const struct ovs_key_tcp *mask)
715 {
716 	struct tcphdr *th;
717 	__be16 src, dst;
718 	int err;
719 
720 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
721 				  sizeof(struct tcphdr));
722 	if (unlikely(err))
723 		return err;
724 
725 	th = tcp_hdr(skb);
726 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
727 	if (likely(src != th->source)) {
728 		set_tp_port(skb, &th->source, src, &th->check);
729 		flow_key->tp.src = src;
730 	}
731 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
732 	if (likely(dst != th->dest)) {
733 		set_tp_port(skb, &th->dest, dst, &th->check);
734 		flow_key->tp.dst = dst;
735 	}
736 	skb_clear_hash(skb);
737 
738 	return 0;
739 }
740 
set_sctp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_sctp * key,const struct ovs_key_sctp * mask)741 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
742 		    const struct ovs_key_sctp *key,
743 		    const struct ovs_key_sctp *mask)
744 {
745 	unsigned int sctphoff = skb_transport_offset(skb);
746 	struct sctphdr *sh;
747 	__le32 old_correct_csum, new_csum, old_csum;
748 	int err;
749 
750 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
751 	if (unlikely(err))
752 		return err;
753 
754 	sh = sctp_hdr(skb);
755 	old_csum = sh->checksum;
756 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
757 
758 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
759 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
760 
761 	new_csum = sctp_compute_cksum(skb, sctphoff);
762 
763 	/* Carry any checksum errors through. */
764 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
765 
766 	skb_clear_hash(skb);
767 	ovs_ct_clear(skb, NULL);
768 
769 	flow_key->tp.src = sh->source;
770 	flow_key->tp.dst = sh->dest;
771 
772 	return 0;
773 }
774 
ovs_vport_output(struct net * net,struct sock * sk,struct sk_buff * skb)775 static int ovs_vport_output(struct net *net, struct sock *sk,
776 			    struct sk_buff *skb)
777 {
778 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
779 	struct vport *vport = data->vport;
780 
781 	if (skb_cow_head(skb, data->l2_len) < 0) {
782 		kfree_skb(skb);
783 		return -ENOMEM;
784 	}
785 
786 	__skb_dst_copy(skb, data->dst);
787 	*OVS_CB(skb) = data->cb;
788 	skb->inner_protocol = data->inner_protocol;
789 	if (data->vlan_tci & VLAN_CFI_MASK)
790 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
791 	else
792 		__vlan_hwaccel_clear_tag(skb);
793 
794 	/* Reconstruct the MAC header.  */
795 	skb_push(skb, data->l2_len);
796 	memcpy(skb->data, &data->l2_data, data->l2_len);
797 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
798 	skb_reset_mac_header(skb);
799 
800 	if (eth_p_mpls(skb->protocol)) {
801 		skb->inner_network_header = skb->network_header;
802 		skb_set_network_header(skb, data->network_offset);
803 		skb_reset_mac_len(skb);
804 	}
805 
806 	ovs_vport_send(vport, skb, data->mac_proto);
807 	return 0;
808 }
809 
810 static unsigned int
ovs_dst_get_mtu(const struct dst_entry * dst)811 ovs_dst_get_mtu(const struct dst_entry *dst)
812 {
813 	return dst->dev->mtu;
814 }
815 
816 static struct dst_ops ovs_dst_ops = {
817 	.family = AF_UNSPEC,
818 	.mtu = ovs_dst_get_mtu,
819 };
820 
821 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
822  * ovs_vport_output(), which is called once per fragmented packet.
823  */
prepare_frag(struct vport * vport,struct sk_buff * skb,u16 orig_network_offset,u8 mac_proto)824 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
825 			 u16 orig_network_offset, u8 mac_proto)
826 {
827 	unsigned int hlen = skb_network_offset(skb);
828 	struct ovs_frag_data *data;
829 
830 	data = this_cpu_ptr(&ovs_frag_data_storage);
831 	data->dst = skb->_skb_refdst;
832 	data->vport = vport;
833 	data->cb = *OVS_CB(skb);
834 	data->inner_protocol = skb->inner_protocol;
835 	data->network_offset = orig_network_offset;
836 	if (skb_vlan_tag_present(skb))
837 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
838 	else
839 		data->vlan_tci = 0;
840 	data->vlan_proto = skb->vlan_proto;
841 	data->mac_proto = mac_proto;
842 	data->l2_len = hlen;
843 	memcpy(&data->l2_data, skb->data, hlen);
844 
845 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
846 	skb_pull(skb, hlen);
847 }
848 
ovs_fragment(struct net * net,struct vport * vport,struct sk_buff * skb,u16 mru,struct sw_flow_key * key)849 static void ovs_fragment(struct net *net, struct vport *vport,
850 			 struct sk_buff *skb, u16 mru,
851 			 struct sw_flow_key *key)
852 {
853 	u16 orig_network_offset = 0;
854 
855 	if (eth_p_mpls(skb->protocol)) {
856 		orig_network_offset = skb_network_offset(skb);
857 		skb->network_header = skb->inner_network_header;
858 	}
859 
860 	if (skb_network_offset(skb) > MAX_L2_LEN) {
861 		OVS_NLERR(1, "L2 header too long to fragment");
862 		goto err;
863 	}
864 
865 	if (key->eth.type == htons(ETH_P_IP)) {
866 		struct rtable ovs_rt = { 0 };
867 		unsigned long orig_dst;
868 
869 		prepare_frag(vport, skb, orig_network_offset,
870 			     ovs_key_mac_proto(key));
871 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
872 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
873 		ovs_rt.dst.dev = vport->dev;
874 
875 		orig_dst = skb->_skb_refdst;
876 		skb_dst_set_noref(skb, &ovs_rt.dst);
877 		IPCB(skb)->frag_max_size = mru;
878 
879 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
880 		refdst_drop(orig_dst);
881 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
882 		unsigned long orig_dst;
883 		struct rt6_info ovs_rt;
884 
885 		prepare_frag(vport, skb, orig_network_offset,
886 			     ovs_key_mac_proto(key));
887 		memset(&ovs_rt, 0, sizeof(ovs_rt));
888 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
889 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
890 		ovs_rt.dst.dev = vport->dev;
891 
892 		orig_dst = skb->_skb_refdst;
893 		skb_dst_set_noref(skb, &ovs_rt.dst);
894 		IP6CB(skb)->frag_max_size = mru;
895 
896 		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
897 		refdst_drop(orig_dst);
898 	} else {
899 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
900 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
901 			  vport->dev->mtu);
902 		goto err;
903 	}
904 
905 	return;
906 err:
907 	kfree_skb(skb);
908 }
909 
do_output(struct datapath * dp,struct sk_buff * skb,int out_port,struct sw_flow_key * key)910 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
911 		      struct sw_flow_key *key)
912 {
913 	struct vport *vport = ovs_vport_rcu(dp, out_port);
914 
915 	if (likely(vport)) {
916 		u16 mru = OVS_CB(skb)->mru;
917 		u32 cutlen = OVS_CB(skb)->cutlen;
918 
919 		if (unlikely(cutlen > 0)) {
920 			if (skb->len - cutlen > ovs_mac_header_len(key))
921 				pskb_trim(skb, skb->len - cutlen);
922 			else
923 				pskb_trim(skb, ovs_mac_header_len(key));
924 		}
925 
926 		if (likely(!mru ||
927 		           (skb->len <= mru + vport->dev->hard_header_len))) {
928 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
929 		} else if (mru <= vport->dev->mtu) {
930 			struct net *net = read_pnet(&dp->net);
931 
932 			ovs_fragment(net, vport, skb, mru, key);
933 		} else {
934 			kfree_skb(skb);
935 		}
936 	} else {
937 		kfree_skb(skb);
938 	}
939 }
940 
output_userspace(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,const struct nlattr * actions,int actions_len,uint32_t cutlen)941 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
942 			    struct sw_flow_key *key, const struct nlattr *attr,
943 			    const struct nlattr *actions, int actions_len,
944 			    uint32_t cutlen)
945 {
946 	struct dp_upcall_info upcall;
947 	const struct nlattr *a;
948 	int rem;
949 
950 	memset(&upcall, 0, sizeof(upcall));
951 	upcall.cmd = OVS_PACKET_CMD_ACTION;
952 	upcall.mru = OVS_CB(skb)->mru;
953 
954 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
955 	     a = nla_next(a, &rem)) {
956 		switch (nla_type(a)) {
957 		case OVS_USERSPACE_ATTR_USERDATA:
958 			upcall.userdata = a;
959 			break;
960 
961 		case OVS_USERSPACE_ATTR_PID:
962 			upcall.portid = nla_get_u32(a);
963 			break;
964 
965 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
966 			/* Get out tunnel info. */
967 			struct vport *vport;
968 
969 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
970 			if (vport) {
971 				int err;
972 
973 				err = dev_fill_metadata_dst(vport->dev, skb);
974 				if (!err)
975 					upcall.egress_tun_info = skb_tunnel_info(skb);
976 			}
977 
978 			break;
979 		}
980 
981 		case OVS_USERSPACE_ATTR_ACTIONS: {
982 			/* Include actions. */
983 			upcall.actions = actions;
984 			upcall.actions_len = actions_len;
985 			break;
986 		}
987 
988 		} /* End of switch. */
989 	}
990 
991 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
992 }
993 
dec_ttl_exception_handler(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)994 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
995 				     struct sw_flow_key *key,
996 				     const struct nlattr *attr, bool last)
997 {
998 	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
999 	struct nlattr *actions = nla_data(attr);
1000 
1001 	if (nla_len(actions))
1002 		return clone_execute(dp, skb, key, 0, nla_data(actions),
1003 				     nla_len(actions), last, false);
1004 
1005 	consume_skb(skb);
1006 	return 0;
1007 }
1008 
1009 /* When 'last' is true, sample() should always consume the 'skb'.
1010  * Otherwise, sample() should keep 'skb' intact regardless what
1011  * actions are executed within sample().
1012  */
sample(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1013 static int sample(struct datapath *dp, struct sk_buff *skb,
1014 		  struct sw_flow_key *key, const struct nlattr *attr,
1015 		  bool last)
1016 {
1017 	struct nlattr *actions;
1018 	struct nlattr *sample_arg;
1019 	int rem = nla_len(attr);
1020 	const struct sample_arg *arg;
1021 	bool clone_flow_key;
1022 
1023 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1024 	sample_arg = nla_data(attr);
1025 	arg = nla_data(sample_arg);
1026 	actions = nla_next(sample_arg, &rem);
1027 
1028 	if ((arg->probability != U32_MAX) &&
1029 	    (!arg->probability || prandom_u32() > arg->probability)) {
1030 		if (last)
1031 			consume_skb(skb);
1032 		return 0;
1033 	}
1034 
1035 	clone_flow_key = !arg->exec;
1036 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1037 			     clone_flow_key);
1038 }
1039 
1040 /* When 'last' is true, clone() should always consume the 'skb'.
1041  * Otherwise, clone() should keep 'skb' intact regardless what
1042  * actions are executed within clone().
1043  */
clone(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1044 static int clone(struct datapath *dp, struct sk_buff *skb,
1045 		 struct sw_flow_key *key, const struct nlattr *attr,
1046 		 bool last)
1047 {
1048 	struct nlattr *actions;
1049 	struct nlattr *clone_arg;
1050 	int rem = nla_len(attr);
1051 	bool dont_clone_flow_key;
1052 
1053 	/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1054 	clone_arg = nla_data(attr);
1055 	dont_clone_flow_key = nla_get_u32(clone_arg);
1056 	actions = nla_next(clone_arg, &rem);
1057 
1058 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1059 			     !dont_clone_flow_key);
1060 }
1061 
execute_hash(struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr)1062 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1063 			 const struct nlattr *attr)
1064 {
1065 	struct ovs_action_hash *hash_act = nla_data(attr);
1066 	u32 hash = 0;
1067 
1068 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1069 	hash = skb_get_hash(skb);
1070 	hash = jhash_1word(hash, hash_act->hash_basis);
1071 	if (!hash)
1072 		hash = 0x1;
1073 
1074 	key->ovs_flow_hash = hash;
1075 }
1076 
execute_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1077 static int execute_set_action(struct sk_buff *skb,
1078 			      struct sw_flow_key *flow_key,
1079 			      const struct nlattr *a)
1080 {
1081 	/* Only tunnel set execution is supported without a mask. */
1082 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1083 		struct ovs_tunnel_info *tun = nla_data(a);
1084 
1085 		skb_dst_drop(skb);
1086 		dst_hold((struct dst_entry *)tun->tun_dst);
1087 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1088 		return 0;
1089 	}
1090 
1091 	return -EINVAL;
1092 }
1093 
1094 /* Mask is at the midpoint of the data. */
1095 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1096 
execute_masked_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1097 static int execute_masked_set_action(struct sk_buff *skb,
1098 				     struct sw_flow_key *flow_key,
1099 				     const struct nlattr *a)
1100 {
1101 	int err = 0;
1102 
1103 	switch (nla_type(a)) {
1104 	case OVS_KEY_ATTR_PRIORITY:
1105 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1106 			       *get_mask(a, u32 *));
1107 		flow_key->phy.priority = skb->priority;
1108 		break;
1109 
1110 	case OVS_KEY_ATTR_SKB_MARK:
1111 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1112 		flow_key->phy.skb_mark = skb->mark;
1113 		break;
1114 
1115 	case OVS_KEY_ATTR_TUNNEL_INFO:
1116 		/* Masked data not supported for tunnel. */
1117 		err = -EINVAL;
1118 		break;
1119 
1120 	case OVS_KEY_ATTR_ETHERNET:
1121 		err = set_eth_addr(skb, flow_key, nla_data(a),
1122 				   get_mask(a, struct ovs_key_ethernet *));
1123 		break;
1124 
1125 	case OVS_KEY_ATTR_NSH:
1126 		err = set_nsh(skb, flow_key, a);
1127 		break;
1128 
1129 	case OVS_KEY_ATTR_IPV4:
1130 		err = set_ipv4(skb, flow_key, nla_data(a),
1131 			       get_mask(a, struct ovs_key_ipv4 *));
1132 		break;
1133 
1134 	case OVS_KEY_ATTR_IPV6:
1135 		err = set_ipv6(skb, flow_key, nla_data(a),
1136 			       get_mask(a, struct ovs_key_ipv6 *));
1137 		break;
1138 
1139 	case OVS_KEY_ATTR_TCP:
1140 		err = set_tcp(skb, flow_key, nla_data(a),
1141 			      get_mask(a, struct ovs_key_tcp *));
1142 		break;
1143 
1144 	case OVS_KEY_ATTR_UDP:
1145 		err = set_udp(skb, flow_key, nla_data(a),
1146 			      get_mask(a, struct ovs_key_udp *));
1147 		break;
1148 
1149 	case OVS_KEY_ATTR_SCTP:
1150 		err = set_sctp(skb, flow_key, nla_data(a),
1151 			       get_mask(a, struct ovs_key_sctp *));
1152 		break;
1153 
1154 	case OVS_KEY_ATTR_MPLS:
1155 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1156 								    __be32 *));
1157 		break;
1158 
1159 	case OVS_KEY_ATTR_CT_STATE:
1160 	case OVS_KEY_ATTR_CT_ZONE:
1161 	case OVS_KEY_ATTR_CT_MARK:
1162 	case OVS_KEY_ATTR_CT_LABELS:
1163 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1164 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1165 		err = -EINVAL;
1166 		break;
1167 	}
1168 
1169 	return err;
1170 }
1171 
execute_recirc(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * a,bool last)1172 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1173 			  struct sw_flow_key *key,
1174 			  const struct nlattr *a, bool last)
1175 {
1176 	u32 recirc_id;
1177 
1178 	if (!is_flow_key_valid(key)) {
1179 		int err;
1180 
1181 		err = ovs_flow_key_update(skb, key);
1182 		if (err)
1183 			return err;
1184 	}
1185 	BUG_ON(!is_flow_key_valid(key));
1186 
1187 	recirc_id = nla_get_u32(a);
1188 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1189 }
1190 
execute_check_pkt_len(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1191 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1192 				 struct sw_flow_key *key,
1193 				 const struct nlattr *attr, bool last)
1194 {
1195 	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1196 	const struct nlattr *actions, *cpl_arg;
1197 	int len, max_len, rem = nla_len(attr);
1198 	const struct check_pkt_len_arg *arg;
1199 	bool clone_flow_key;
1200 
1201 	/* The first netlink attribute in 'attr' is always
1202 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1203 	 */
1204 	cpl_arg = nla_data(attr);
1205 	arg = nla_data(cpl_arg);
1206 
1207 	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1208 	max_len = arg->pkt_len;
1209 
1210 	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1211 	    len <= max_len) {
1212 		/* Second netlink attribute in 'attr' is always
1213 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1214 		 */
1215 		actions = nla_next(cpl_arg, &rem);
1216 		clone_flow_key = !arg->exec_for_lesser_equal;
1217 	} else {
1218 		/* Third netlink attribute in 'attr' is always
1219 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1220 		 */
1221 		actions = nla_next(cpl_arg, &rem);
1222 		actions = nla_next(actions, &rem);
1223 		clone_flow_key = !arg->exec_for_greater;
1224 	}
1225 
1226 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1227 			     nla_len(actions), last, clone_flow_key);
1228 }
1229 
execute_dec_ttl(struct sk_buff * skb,struct sw_flow_key * key)1230 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1231 {
1232 	int err;
1233 
1234 	if (skb->protocol == htons(ETH_P_IPV6)) {
1235 		struct ipv6hdr *nh;
1236 
1237 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1238 					  sizeof(*nh));
1239 		if (unlikely(err))
1240 			return err;
1241 
1242 		nh = ipv6_hdr(skb);
1243 
1244 		if (nh->hop_limit <= 1)
1245 			return -EHOSTUNREACH;
1246 
1247 		key->ip.ttl = --nh->hop_limit;
1248 	} else if (skb->protocol == htons(ETH_P_IP)) {
1249 		struct iphdr *nh;
1250 		u8 old_ttl;
1251 
1252 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1253 					  sizeof(*nh));
1254 		if (unlikely(err))
1255 			return err;
1256 
1257 		nh = ip_hdr(skb);
1258 		if (nh->ttl <= 1)
1259 			return -EHOSTUNREACH;
1260 
1261 		old_ttl = nh->ttl--;
1262 		csum_replace2(&nh->check, htons(old_ttl << 8),
1263 			      htons(nh->ttl << 8));
1264 		key->ip.ttl = nh->ttl;
1265 	}
1266 	return 0;
1267 }
1268 
1269 /* Execute a list of actions against 'skb'. */
do_execute_actions(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,int len)1270 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1271 			      struct sw_flow_key *key,
1272 			      const struct nlattr *attr, int len)
1273 {
1274 	const struct nlattr *a;
1275 	int rem;
1276 
1277 	for (a = attr, rem = len; rem > 0;
1278 	     a = nla_next(a, &rem)) {
1279 		int err = 0;
1280 
1281 		switch (nla_type(a)) {
1282 		case OVS_ACTION_ATTR_OUTPUT: {
1283 			int port = nla_get_u32(a);
1284 			struct sk_buff *clone;
1285 
1286 			/* Every output action needs a separate clone
1287 			 * of 'skb', In case the output action is the
1288 			 * last action, cloning can be avoided.
1289 			 */
1290 			if (nla_is_last(a, rem)) {
1291 				do_output(dp, skb, port, key);
1292 				/* 'skb' has been used for output.
1293 				 */
1294 				return 0;
1295 			}
1296 
1297 			clone = skb_clone(skb, GFP_ATOMIC);
1298 			if (clone)
1299 				do_output(dp, clone, port, key);
1300 			OVS_CB(skb)->cutlen = 0;
1301 			break;
1302 		}
1303 
1304 		case OVS_ACTION_ATTR_TRUNC: {
1305 			struct ovs_action_trunc *trunc = nla_data(a);
1306 
1307 			if (skb->len > trunc->max_len)
1308 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1309 			break;
1310 		}
1311 
1312 		case OVS_ACTION_ATTR_USERSPACE:
1313 			output_userspace(dp, skb, key, a, attr,
1314 						     len, OVS_CB(skb)->cutlen);
1315 			OVS_CB(skb)->cutlen = 0;
1316 			break;
1317 
1318 		case OVS_ACTION_ATTR_HASH:
1319 			execute_hash(skb, key, a);
1320 			break;
1321 
1322 		case OVS_ACTION_ATTR_PUSH_MPLS: {
1323 			struct ovs_action_push_mpls *mpls = nla_data(a);
1324 
1325 			err = push_mpls(skb, key, mpls->mpls_lse,
1326 					mpls->mpls_ethertype, skb->mac_len);
1327 			break;
1328 		}
1329 		case OVS_ACTION_ATTR_ADD_MPLS: {
1330 			struct ovs_action_add_mpls *mpls = nla_data(a);
1331 			__u16 mac_len = 0;
1332 
1333 			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1334 				mac_len = skb->mac_len;
1335 
1336 			err = push_mpls(skb, key, mpls->mpls_lse,
1337 					mpls->mpls_ethertype, mac_len);
1338 			break;
1339 		}
1340 		case OVS_ACTION_ATTR_POP_MPLS:
1341 			err = pop_mpls(skb, key, nla_get_be16(a));
1342 			break;
1343 
1344 		case OVS_ACTION_ATTR_PUSH_VLAN:
1345 			err = push_vlan(skb, key, nla_data(a));
1346 			break;
1347 
1348 		case OVS_ACTION_ATTR_POP_VLAN:
1349 			err = pop_vlan(skb, key);
1350 			break;
1351 
1352 		case OVS_ACTION_ATTR_RECIRC: {
1353 			bool last = nla_is_last(a, rem);
1354 
1355 			err = execute_recirc(dp, skb, key, a, last);
1356 			if (last) {
1357 				/* If this is the last action, the skb has
1358 				 * been consumed or freed.
1359 				 * Return immediately.
1360 				 */
1361 				return err;
1362 			}
1363 			break;
1364 		}
1365 
1366 		case OVS_ACTION_ATTR_SET:
1367 			err = execute_set_action(skb, key, nla_data(a));
1368 			break;
1369 
1370 		case OVS_ACTION_ATTR_SET_MASKED:
1371 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1372 			err = execute_masked_set_action(skb, key, nla_data(a));
1373 			break;
1374 
1375 		case OVS_ACTION_ATTR_SAMPLE: {
1376 			bool last = nla_is_last(a, rem);
1377 
1378 			err = sample(dp, skb, key, a, last);
1379 			if (last)
1380 				return err;
1381 
1382 			break;
1383 		}
1384 
1385 		case OVS_ACTION_ATTR_CT:
1386 			if (!is_flow_key_valid(key)) {
1387 				err = ovs_flow_key_update(skb, key);
1388 				if (err)
1389 					return err;
1390 			}
1391 
1392 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1393 					     nla_data(a));
1394 
1395 			/* Hide stolen IP fragments from user space. */
1396 			if (err)
1397 				return err == -EINPROGRESS ? 0 : err;
1398 			break;
1399 
1400 		case OVS_ACTION_ATTR_CT_CLEAR:
1401 			err = ovs_ct_clear(skb, key);
1402 			break;
1403 
1404 		case OVS_ACTION_ATTR_PUSH_ETH:
1405 			err = push_eth(skb, key, nla_data(a));
1406 			break;
1407 
1408 		case OVS_ACTION_ATTR_POP_ETH:
1409 			err = pop_eth(skb, key);
1410 			break;
1411 
1412 		case OVS_ACTION_ATTR_PUSH_NSH: {
1413 			u8 buffer[NSH_HDR_MAX_LEN];
1414 			struct nshhdr *nh = (struct nshhdr *)buffer;
1415 
1416 			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1417 						  NSH_HDR_MAX_LEN);
1418 			if (unlikely(err))
1419 				break;
1420 			err = push_nsh(skb, key, nh);
1421 			break;
1422 		}
1423 
1424 		case OVS_ACTION_ATTR_POP_NSH:
1425 			err = pop_nsh(skb, key);
1426 			break;
1427 
1428 		case OVS_ACTION_ATTR_METER:
1429 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1430 				consume_skb(skb);
1431 				return 0;
1432 			}
1433 			break;
1434 
1435 		case OVS_ACTION_ATTR_CLONE: {
1436 			bool last = nla_is_last(a, rem);
1437 
1438 			err = clone(dp, skb, key, a, last);
1439 			if (last)
1440 				return err;
1441 
1442 			break;
1443 		}
1444 
1445 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1446 			bool last = nla_is_last(a, rem);
1447 
1448 			err = execute_check_pkt_len(dp, skb, key, a, last);
1449 			if (last)
1450 				return err;
1451 
1452 			break;
1453 		}
1454 
1455 		case OVS_ACTION_ATTR_DEC_TTL:
1456 			err = execute_dec_ttl(skb, key);
1457 			if (err == -EHOSTUNREACH) {
1458 				err = dec_ttl_exception_handler(dp, skb, key,
1459 								a, true);
1460 				return err;
1461 			}
1462 			break;
1463 		}
1464 
1465 		if (unlikely(err)) {
1466 			kfree_skb(skb);
1467 			return err;
1468 		}
1469 	}
1470 
1471 	consume_skb(skb);
1472 	return 0;
1473 }
1474 
1475 /* Execute the actions on the clone of the packet. The effect of the
1476  * execution does not affect the original 'skb' nor the original 'key'.
1477  *
1478  * The execution may be deferred in case the actions can not be executed
1479  * immediately.
1480  */
clone_execute(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,u32 recirc_id,const struct nlattr * actions,int len,bool last,bool clone_flow_key)1481 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1482 			 struct sw_flow_key *key, u32 recirc_id,
1483 			 const struct nlattr *actions, int len,
1484 			 bool last, bool clone_flow_key)
1485 {
1486 	struct deferred_action *da;
1487 	struct sw_flow_key *clone;
1488 
1489 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1490 	if (!skb) {
1491 		/* Out of memory, skip this action.
1492 		 */
1493 		return 0;
1494 	}
1495 
1496 	/* When clone_flow_key is false, the 'key' will not be change
1497 	 * by the actions, then the 'key' can be used directly.
1498 	 * Otherwise, try to clone key from the next recursion level of
1499 	 * 'flow_keys'. If clone is successful, execute the actions
1500 	 * without deferring.
1501 	 */
1502 	clone = clone_flow_key ? clone_key(key) : key;
1503 	if (clone) {
1504 		int err = 0;
1505 
1506 		if (actions) { /* Sample action */
1507 			if (clone_flow_key)
1508 				__this_cpu_inc(exec_actions_level);
1509 
1510 			err = do_execute_actions(dp, skb, clone,
1511 						 actions, len);
1512 
1513 			if (clone_flow_key)
1514 				__this_cpu_dec(exec_actions_level);
1515 		} else { /* Recirc action */
1516 			clone->recirc_id = recirc_id;
1517 			ovs_dp_process_packet(skb, clone);
1518 		}
1519 		return err;
1520 	}
1521 
1522 	/* Out of 'flow_keys' space. Defer actions */
1523 	da = add_deferred_actions(skb, key, actions, len);
1524 	if (da) {
1525 		if (!actions) { /* Recirc action */
1526 			key = &da->pkt_key;
1527 			key->recirc_id = recirc_id;
1528 		}
1529 	} else {
1530 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1531 		 * log an error.
1532 		 */
1533 		kfree_skb(skb);
1534 
1535 		if (net_ratelimit()) {
1536 			if (actions) { /* Sample action */
1537 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1538 					ovs_dp_name(dp));
1539 			} else {  /* Recirc action */
1540 				pr_warn("%s: deferred action limit reached, drop recirc action\n",
1541 					ovs_dp_name(dp));
1542 			}
1543 		}
1544 	}
1545 	return 0;
1546 }
1547 
process_deferred_actions(struct datapath * dp)1548 static void process_deferred_actions(struct datapath *dp)
1549 {
1550 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1551 
1552 	/* Do not touch the FIFO in case there is no deferred actions. */
1553 	if (action_fifo_is_empty(fifo))
1554 		return;
1555 
1556 	/* Finishing executing all deferred actions. */
1557 	do {
1558 		struct deferred_action *da = action_fifo_get(fifo);
1559 		struct sk_buff *skb = da->skb;
1560 		struct sw_flow_key *key = &da->pkt_key;
1561 		const struct nlattr *actions = da->actions;
1562 		int actions_len = da->actions_len;
1563 
1564 		if (actions)
1565 			do_execute_actions(dp, skb, key, actions, actions_len);
1566 		else
1567 			ovs_dp_process_packet(skb, key);
1568 	} while (!action_fifo_is_empty(fifo));
1569 
1570 	/* Reset FIFO for the next packet.  */
1571 	action_fifo_init(fifo);
1572 }
1573 
1574 /* Execute a list of actions against 'skb'. */
ovs_execute_actions(struct datapath * dp,struct sk_buff * skb,const struct sw_flow_actions * acts,struct sw_flow_key * key)1575 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1576 			const struct sw_flow_actions *acts,
1577 			struct sw_flow_key *key)
1578 {
1579 	int err, level;
1580 
1581 	level = __this_cpu_inc_return(exec_actions_level);
1582 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1583 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1584 				     ovs_dp_name(dp));
1585 		kfree_skb(skb);
1586 		err = -ENETDOWN;
1587 		goto out;
1588 	}
1589 
1590 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1591 	err = do_execute_actions(dp, skb, key,
1592 				 acts->actions, acts->actions_len);
1593 
1594 	if (level == 1)
1595 		process_deferred_actions(dp);
1596 
1597 out:
1598 	__this_cpu_dec(exec_actions_level);
1599 	return err;
1600 }
1601 
action_fifos_init(void)1602 int action_fifos_init(void)
1603 {
1604 	action_fifos = alloc_percpu(struct action_fifo);
1605 	if (!action_fifos)
1606 		return -ENOMEM;
1607 
1608 	flow_keys = alloc_percpu(struct action_flow_keys);
1609 	if (!flow_keys) {
1610 		free_percpu(action_fifos);
1611 		return -ENOMEM;
1612 	}
1613 
1614 	return 0;
1615 }
1616 
action_fifos_exit(void)1617 void action_fifos_exit(void)
1618 {
1619 	free_percpu(action_fifos);
1620 	free_percpu(flow_keys);
1621 }
1622