1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/tracepoint-defs.h>
14
15 /*
16 * The set of flags that only affect watermark checking and reclaim
17 * behaviour. This is used by the MM to obey the caller constraints
18 * about IO, FS and watermark checking while ignoring placement
19 * hints such as HIGHMEM usage.
20 */
21 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
24 __GFP_ATOMIC)
25
26 /* The GFP flags allowed during early boot */
27 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
28
29 /* Control allocation cpuset and node placement constraints */
30 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
31
32 /* Do not use these with a slab allocator */
33 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
34
35 void page_writeback_init(void);
36
37 vm_fault_t do_swap_page(struct vm_fault *vmf);
38
39 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
40 extern struct vm_area_struct *get_vma(struct mm_struct *mm,
41 unsigned long addr);
42 extern void put_vma(struct vm_area_struct *vma);
43
vma_has_changed(struct vm_fault * vmf)44 static inline bool vma_has_changed(struct vm_fault *vmf)
45 {
46 int ret = RB_EMPTY_NODE(&vmf->vma->vm_rb);
47 unsigned int seq = READ_ONCE(vmf->vma->vm_sequence.sequence);
48
49 /*
50 * Matches both the wmb in write_seqlock_{begin,end}() and
51 * the wmb in vma_rb_erase().
52 */
53 smp_rmb();
54
55 return ret || seq != vmf->sequence;
56 }
57 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
58
59 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
60 unsigned long floor, unsigned long ceiling);
61
can_madv_lru_vma(struct vm_area_struct * vma)62 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
63 {
64 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
65 }
66
67 void unmap_page_range(struct mmu_gather *tlb,
68 struct vm_area_struct *vma,
69 unsigned long addr, unsigned long end,
70 struct zap_details *details);
71
72 void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read,
73 unsigned long lookahead_size);
74 void force_page_cache_ra(struct readahead_control *, struct file_ra_state *,
75 unsigned long nr);
force_page_cache_readahead(struct address_space * mapping,struct file * file,pgoff_t index,unsigned long nr_to_read)76 static inline void force_page_cache_readahead(struct address_space *mapping,
77 struct file *file, pgoff_t index, unsigned long nr_to_read)
78 {
79 DEFINE_READAHEAD(ractl, file, mapping, index);
80 force_page_cache_ra(&ractl, &file->f_ra, nr_to_read);
81 }
82
83 struct page *find_get_entry(struct address_space *mapping, pgoff_t index);
84 struct page *find_lock_entry(struct address_space *mapping, pgoff_t index);
85
86 /**
87 * page_evictable - test whether a page is evictable
88 * @page: the page to test
89 *
90 * Test whether page is evictable--i.e., should be placed on active/inactive
91 * lists vs unevictable list.
92 *
93 * Reasons page might not be evictable:
94 * (1) page's mapping marked unevictable
95 * (2) page is part of an mlocked VMA
96 *
97 */
page_evictable(struct page * page)98 static inline bool page_evictable(struct page *page)
99 {
100 bool ret;
101
102 /* Prevent address_space of inode and swap cache from being freed */
103 rcu_read_lock();
104 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
105 rcu_read_unlock();
106 return ret;
107 }
108
109 /*
110 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
111 * a count of one.
112 */
set_page_refcounted(struct page * page)113 static inline void set_page_refcounted(struct page *page)
114 {
115 VM_BUG_ON_PAGE(PageTail(page), page);
116 VM_BUG_ON_PAGE(page_ref_count(page), page);
117 set_page_count(page, 1);
118 }
119
120 extern unsigned long highest_memmap_pfn;
121
122 /*
123 * Maximum number of reclaim retries without progress before the OOM
124 * killer is consider the only way forward.
125 */
126 #define MAX_RECLAIM_RETRIES 16
127
128 /*
129 * in mm/vmscan.c:
130 */
131 extern int isolate_lru_page(struct page *page);
132 extern void putback_lru_page(struct page *page);
133
134 /*
135 * in mm/rmap.c:
136 */
137 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
138
139 /*
140 * in mm/page_alloc.c
141 */
142
143 /*
144 * Structure for holding the mostly immutable allocation parameters passed
145 * between functions involved in allocations, including the alloc_pages*
146 * family of functions.
147 *
148 * nodemask, migratetype and highest_zoneidx are initialized only once in
149 * __alloc_pages_nodemask() and then never change.
150 *
151 * zonelist, preferred_zone and highest_zoneidx are set first in
152 * __alloc_pages_nodemask() for the fast path, and might be later changed
153 * in __alloc_pages_slowpath(). All other functions pass the whole structure
154 * by a const pointer.
155 */
156 struct alloc_context {
157 struct zonelist *zonelist;
158 nodemask_t *nodemask;
159 struct zoneref *preferred_zoneref;
160 int migratetype;
161
162 /*
163 * highest_zoneidx represents highest usable zone index of
164 * the allocation request. Due to the nature of the zone,
165 * memory on lower zone than the highest_zoneidx will be
166 * protected by lowmem_reserve[highest_zoneidx].
167 *
168 * highest_zoneidx is also used by reclaim/compaction to limit
169 * the target zone since higher zone than this index cannot be
170 * usable for this allocation request.
171 */
172 enum zone_type highest_zoneidx;
173 bool spread_dirty_pages;
174 };
175
176 /*
177 * Locate the struct page for both the matching buddy in our
178 * pair (buddy1) and the combined O(n+1) page they form (page).
179 *
180 * 1) Any buddy B1 will have an order O twin B2 which satisfies
181 * the following equation:
182 * B2 = B1 ^ (1 << O)
183 * For example, if the starting buddy (buddy2) is #8 its order
184 * 1 buddy is #10:
185 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
186 *
187 * 2) Any buddy B will have an order O+1 parent P which
188 * satisfies the following equation:
189 * P = B & ~(1 << O)
190 *
191 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
192 */
193 static inline unsigned long
__find_buddy_pfn(unsigned long page_pfn,unsigned int order)194 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
195 {
196 return page_pfn ^ (1 << order);
197 }
198
199 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
200 unsigned long end_pfn, struct zone *zone);
201
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)202 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
203 unsigned long end_pfn, struct zone *zone)
204 {
205 if (zone->contiguous)
206 return pfn_to_page(start_pfn);
207
208 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
209 }
210
211 extern int __isolate_free_page(struct page *page, unsigned int order);
212 extern void __putback_isolated_page(struct page *page, unsigned int order,
213 int mt);
214 extern void memblock_free_pages(struct page *page, unsigned long pfn,
215 unsigned int order);
216 extern void __free_pages_core(struct page *page, unsigned int order);
217 extern void prep_compound_page(struct page *page, unsigned int order);
218 extern void post_alloc_hook(struct page *page, unsigned int order,
219 gfp_t gfp_flags);
220 extern int user_min_free_kbytes;
221
222 extern void zone_pcp_update(struct zone *zone);
223 extern void zone_pcp_reset(struct zone *zone);
224
225 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
226
227 /*
228 * in mm/compaction.c
229 */
230 /*
231 * compact_control is used to track pages being migrated and the free pages
232 * they are being migrated to during memory compaction. The free_pfn starts
233 * at the end of a zone and migrate_pfn begins at the start. Movable pages
234 * are moved to the end of a zone during a compaction run and the run
235 * completes when free_pfn <= migrate_pfn
236 */
237 struct compact_control {
238 struct list_head freepages; /* List of free pages to migrate to */
239 struct list_head migratepages; /* List of pages being migrated */
240 unsigned int nr_freepages; /* Number of isolated free pages */
241 unsigned int nr_migratepages; /* Number of pages to migrate */
242 unsigned long free_pfn; /* isolate_freepages search base */
243 unsigned long migrate_pfn; /* isolate_migratepages search base */
244 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
245 struct zone *zone;
246 unsigned long total_migrate_scanned;
247 unsigned long total_free_scanned;
248 unsigned short fast_search_fail;/* failures to use free list searches */
249 short search_order; /* order to start a fast search at */
250 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
251 int order; /* order a direct compactor needs */
252 int migratetype; /* migratetype of direct compactor */
253 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
254 const int highest_zoneidx; /* zone index of a direct compactor */
255 enum migrate_mode mode; /* Async or sync migration mode */
256 bool ignore_skip_hint; /* Scan blocks even if marked skip */
257 bool no_set_skip_hint; /* Don't mark blocks for skipping */
258 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
259 bool direct_compaction; /* False from kcompactd or /proc/... */
260 bool proactive_compaction; /* kcompactd proactive compaction */
261 bool whole_zone; /* Whole zone should/has been scanned */
262 bool contended; /* Signal lock or sched contention */
263 bool rescan; /* Rescanning the same pageblock */
264 bool alloc_contig; /* alloc_contig_range allocation */
265 };
266
267 /*
268 * Used in direct compaction when a page should be taken from the freelists
269 * immediately when one is created during the free path.
270 */
271 struct capture_control {
272 struct compact_control *cc;
273 struct page *page;
274 };
275
276 unsigned long
277 isolate_freepages_range(struct compact_control *cc,
278 unsigned long start_pfn, unsigned long end_pfn);
279 unsigned long
280 isolate_migratepages_range(struct compact_control *cc,
281 unsigned long low_pfn, unsigned long end_pfn);
282 int find_suitable_fallback(struct free_area *area, unsigned int order,
283 int migratetype, bool only_stealable, bool *can_steal);
284
285 #endif
286
287 /*
288 * This function returns the order of a free page in the buddy system. In
289 * general, page_zone(page)->lock must be held by the caller to prevent the
290 * page from being allocated in parallel and returning garbage as the order.
291 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
292 * page cannot be allocated or merged in parallel. Alternatively, it must
293 * handle invalid values gracefully, and use buddy_order_unsafe() below.
294 */
buddy_order(struct page * page)295 static inline unsigned int buddy_order(struct page *page)
296 {
297 /* PageBuddy() must be checked by the caller */
298 return page_private(page);
299 }
300
301 /*
302 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
303 * PageBuddy() should be checked first by the caller to minimize race window,
304 * and invalid values must be handled gracefully.
305 *
306 * READ_ONCE is used so that if the caller assigns the result into a local
307 * variable and e.g. tests it for valid range before using, the compiler cannot
308 * decide to remove the variable and inline the page_private(page) multiple
309 * times, potentially observing different values in the tests and the actual
310 * use of the result.
311 */
312 #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
313
is_cow_mapping(vm_flags_t flags)314 static inline bool is_cow_mapping(vm_flags_t flags)
315 {
316 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
317 }
318
319 /*
320 * These three helpers classifies VMAs for virtual memory accounting.
321 */
322
323 /*
324 * Executable code area - executable, not writable, not stack
325 */
is_exec_mapping(vm_flags_t flags)326 static inline bool is_exec_mapping(vm_flags_t flags)
327 {
328 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
329 }
330
331 /*
332 * Stack area - atomatically grows in one direction
333 *
334 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
335 * do_mmap() forbids all other combinations.
336 */
is_stack_mapping(vm_flags_t flags)337 static inline bool is_stack_mapping(vm_flags_t flags)
338 {
339 return (flags & VM_STACK) == VM_STACK;
340 }
341
342 /*
343 * Data area - private, writable, not stack
344 */
is_data_mapping(vm_flags_t flags)345 static inline bool is_data_mapping(vm_flags_t flags)
346 {
347 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
348 }
349
350 /* mm/util.c */
351 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
352 struct vm_area_struct *prev);
353 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
354
355 #ifdef CONFIG_MMU
356 extern long populate_vma_page_range(struct vm_area_struct *vma,
357 unsigned long start, unsigned long end, int *nonblocking);
358 extern void munlock_vma_pages_range(struct vm_area_struct *vma,
359 unsigned long start, unsigned long end);
munlock_vma_pages_all(struct vm_area_struct * vma)360 static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
361 {
362 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
363 }
364
365 /*
366 * must be called with vma's mmap_lock held for read or write, and page locked.
367 */
368 extern void mlock_vma_page(struct page *page);
369 extern unsigned int munlock_vma_page(struct page *page);
370
371 /*
372 * Clear the page's PageMlocked(). This can be useful in a situation where
373 * we want to unconditionally remove a page from the pagecache -- e.g.,
374 * on truncation or freeing.
375 *
376 * It is legal to call this function for any page, mlocked or not.
377 * If called for a page that is still mapped by mlocked vmas, all we do
378 * is revert to lazy LRU behaviour -- semantics are not broken.
379 */
380 extern void clear_page_mlock(struct page *page);
381
382 /*
383 * mlock_migrate_page - called only from migrate_misplaced_transhuge_page()
384 * (because that does not go through the full procedure of migration ptes):
385 * to migrate the Mlocked page flag; update statistics.
386 */
mlock_migrate_page(struct page * newpage,struct page * page)387 static inline void mlock_migrate_page(struct page *newpage, struct page *page)
388 {
389 if (TestClearPageMlocked(page)) {
390 int nr_pages = thp_nr_pages(page);
391
392 /* Holding pmd lock, no change in irq context: __mod is safe */
393 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
394 SetPageMlocked(newpage);
395 __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
396 }
397 }
398
399 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
400
401 /*
402 * At what user virtual address is page expected in vma?
403 * Returns -EFAULT if all of the page is outside the range of vma.
404 * If page is a compound head, the entire compound page is considered.
405 */
406 static inline unsigned long
vma_address(struct page * page,struct vm_area_struct * vma)407 vma_address(struct page *page, struct vm_area_struct *vma)
408 {
409 pgoff_t pgoff;
410 unsigned long address;
411
412 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
413 pgoff = page_to_pgoff(page);
414 if (pgoff >= vma->vm_pgoff) {
415 address = vma->vm_start +
416 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
417 /* Check for address beyond vma (or wrapped through 0?) */
418 if (address < vma->vm_start || address >= vma->vm_end)
419 address = -EFAULT;
420 } else if (PageHead(page) &&
421 pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) {
422 /* Test above avoids possibility of wrap to 0 on 32-bit */
423 address = vma->vm_start;
424 } else {
425 address = -EFAULT;
426 }
427 return address;
428 }
429
430 /*
431 * Then at what user virtual address will none of the page be found in vma?
432 * Assumes that vma_address() already returned a good starting address.
433 * If page is a compound head, the entire compound page is considered.
434 */
435 static inline unsigned long
vma_address_end(struct page * page,struct vm_area_struct * vma)436 vma_address_end(struct page *page, struct vm_area_struct *vma)
437 {
438 pgoff_t pgoff;
439 unsigned long address;
440
441 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
442 pgoff = page_to_pgoff(page) + compound_nr(page);
443 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
444 /* Check for address beyond vma (or wrapped through 0?) */
445 if (address < vma->vm_start || address > vma->vm_end)
446 address = vma->vm_end;
447 return address;
448 }
449
maybe_unlock_mmap_for_io(struct vm_fault * vmf,struct file * fpin)450 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
451 struct file *fpin)
452 {
453 int flags = vmf->flags;
454
455 if (fpin)
456 return fpin;
457
458 /*
459 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
460 * anything, so we only pin the file and drop the mmap_lock if only
461 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
462 */
463 if (fault_flag_allow_retry_first(flags) &&
464 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
465 fpin = get_file(vmf->vma->vm_file);
466 mmap_read_unlock(vmf->vma->vm_mm);
467 }
468 return fpin;
469 }
470
471 #else /* !CONFIG_MMU */
clear_page_mlock(struct page * page)472 static inline void clear_page_mlock(struct page *page) { }
mlock_vma_page(struct page * page)473 static inline void mlock_vma_page(struct page *page) { }
mlock_migrate_page(struct page * new,struct page * old)474 static inline void mlock_migrate_page(struct page *new, struct page *old) { }
475
476 #endif /* !CONFIG_MMU */
477
478 /*
479 * Return the mem_map entry representing the 'offset' subpage within
480 * the maximally aligned gigantic page 'base'. Handle any discontiguity
481 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
482 */
mem_map_offset(struct page * base,int offset)483 static inline struct page *mem_map_offset(struct page *base, int offset)
484 {
485 if (unlikely(offset >= MAX_ORDER_NR_PAGES))
486 return nth_page(base, offset);
487 return base + offset;
488 }
489
490 /*
491 * Iterator over all subpages within the maximally aligned gigantic
492 * page 'base'. Handle any discontiguity in the mem_map.
493 */
mem_map_next(struct page * iter,struct page * base,int offset)494 static inline struct page *mem_map_next(struct page *iter,
495 struct page *base, int offset)
496 {
497 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
498 unsigned long pfn = page_to_pfn(base) + offset;
499 if (!pfn_valid(pfn))
500 return NULL;
501 return pfn_to_page(pfn);
502 }
503 return iter + 1;
504 }
505
506 /* Memory initialisation debug and verification */
507 enum mminit_level {
508 MMINIT_WARNING,
509 MMINIT_VERIFY,
510 MMINIT_TRACE
511 };
512
513 #ifdef CONFIG_DEBUG_MEMORY_INIT
514
515 extern int mminit_loglevel;
516
517 #define mminit_dprintk(level, prefix, fmt, arg...) \
518 do { \
519 if (level < mminit_loglevel) { \
520 if (level <= MMINIT_WARNING) \
521 pr_warn("mminit::" prefix " " fmt, ##arg); \
522 else \
523 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
524 } \
525 } while (0)
526
527 extern void mminit_verify_pageflags_layout(void);
528 extern void mminit_verify_zonelist(void);
529 #else
530
mminit_dprintk(enum mminit_level level,const char * prefix,const char * fmt,...)531 static inline void mminit_dprintk(enum mminit_level level,
532 const char *prefix, const char *fmt, ...)
533 {
534 }
535
mminit_verify_pageflags_layout(void)536 static inline void mminit_verify_pageflags_layout(void)
537 {
538 }
539
mminit_verify_zonelist(void)540 static inline void mminit_verify_zonelist(void)
541 {
542 }
543 #endif /* CONFIG_DEBUG_MEMORY_INIT */
544
545 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
546 #if defined(CONFIG_SPARSEMEM)
547 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
548 unsigned long *end_pfn);
549 #else
mminit_validate_memmodel_limits(unsigned long * start_pfn,unsigned long * end_pfn)550 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
551 unsigned long *end_pfn)
552 {
553 }
554 #endif /* CONFIG_SPARSEMEM */
555
556 #define NODE_RECLAIM_NOSCAN -2
557 #define NODE_RECLAIM_FULL -1
558 #define NODE_RECLAIM_SOME 0
559 #define NODE_RECLAIM_SUCCESS 1
560
561 #ifdef CONFIG_NUMA
562 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
563 #else
node_reclaim(struct pglist_data * pgdat,gfp_t mask,unsigned int order)564 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
565 unsigned int order)
566 {
567 return NODE_RECLAIM_NOSCAN;
568 }
569 #endif
570
571 extern int hwpoison_filter(struct page *p);
572
573 extern u32 hwpoison_filter_dev_major;
574 extern u32 hwpoison_filter_dev_minor;
575 extern u64 hwpoison_filter_flags_mask;
576 extern u64 hwpoison_filter_flags_value;
577 extern u64 hwpoison_filter_memcg;
578 extern u32 hwpoison_filter_enable;
579
580 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
581 unsigned long, unsigned long,
582 unsigned long, unsigned long);
583
584 extern void set_pageblock_order(void);
585 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
586 struct list_head *page_list);
587 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
588 #define ALLOC_WMARK_MIN WMARK_MIN
589 #define ALLOC_WMARK_LOW WMARK_LOW
590 #define ALLOC_WMARK_HIGH WMARK_HIGH
591 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
592
593 /* Mask to get the watermark bits */
594 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
595
596 /*
597 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
598 * cannot assume a reduced access to memory reserves is sufficient for
599 * !MMU
600 */
601 #ifdef CONFIG_MMU
602 #define ALLOC_OOM 0x08
603 #else
604 #define ALLOC_OOM ALLOC_NO_WATERMARKS
605 #endif
606
607 #define ALLOC_HARDER 0x10 /* try to alloc harder */
608 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
609 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
610 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
611 #ifdef CONFIG_ZONE_DMA32
612 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
613 #else
614 #define ALLOC_NOFRAGMENT 0x0
615 #endif
616 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
617
618 enum ttu_flags;
619 struct tlbflush_unmap_batch;
620
621
622 /*
623 * only for MM internal work items which do not depend on
624 * any allocations or locks which might depend on allocations
625 */
626 extern struct workqueue_struct *mm_percpu_wq;
627
628 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
629 void try_to_unmap_flush(void);
630 void try_to_unmap_flush_dirty(void);
631 void flush_tlb_batched_pending(struct mm_struct *mm);
632 #else
try_to_unmap_flush(void)633 static inline void try_to_unmap_flush(void)
634 {
635 }
try_to_unmap_flush_dirty(void)636 static inline void try_to_unmap_flush_dirty(void)
637 {
638 }
flush_tlb_batched_pending(struct mm_struct * mm)639 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
640 {
641 }
642 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
643
644 extern const struct trace_print_flags pageflag_names[];
645 extern const struct trace_print_flags vmaflag_names[];
646 extern const struct trace_print_flags gfpflag_names[];
647
is_migrate_highatomic(enum migratetype migratetype)648 static inline bool is_migrate_highatomic(enum migratetype migratetype)
649 {
650 return migratetype == MIGRATE_HIGHATOMIC;
651 }
652
is_migrate_highatomic_page(struct page * page)653 static inline bool is_migrate_highatomic_page(struct page *page)
654 {
655 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
656 }
657
658 void setup_zone_pageset(struct zone *zone);
659
660 struct migration_target_control {
661 int nid; /* preferred node id */
662 nodemask_t *nmask;
663 gfp_t gfp_mask;
664 };
665
666 #endif /* __MM_INTERNAL_H */
667