1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 #include <trace/hooks/mm.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 #include <trace/hooks/mm.h>
90
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/pagefault.h>
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NEED_MULTIPLE_NODES
99 /* use the per-pgdat data instead for discontigmem - mbligh */
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106
107 /*
108 * A number of key systems in x86 including ioremap() rely on the assumption
109 * that high_memory defines the upper bound on direct map memory, then end
110 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
111 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
112 * and ZONE_HIGHMEM.
113 */
114 void *high_memory;
115 EXPORT_SYMBOL(high_memory);
116
117 /*
118 * Randomize the address space (stacks, mmaps, brk, etc.).
119 *
120 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
121 * as ancient (libc5 based) binaries can segfault. )
122 */
123 int randomize_va_space __read_mostly =
124 #ifdef CONFIG_COMPAT_BRK
125 1;
126 #else
127 2;
128 #endif
129
130 #ifndef arch_faults_on_old_pte
arch_faults_on_old_pte(void)131 static inline bool arch_faults_on_old_pte(void)
132 {
133 /*
134 * Those arches which don't have hw access flag feature need to
135 * implement their own helper. By default, "true" means pagefault
136 * will be hit on old pte.
137 */
138 return true;
139 }
140 #endif
141
142 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)143 static inline bool arch_wants_old_prefaulted_pte(void)
144 {
145 /*
146 * Transitioning a PTE from 'old' to 'young' can be expensive on
147 * some architectures, even if it's performed in hardware. By
148 * default, "false" means prefaulted entries will be 'young'.
149 */
150 return false;
151 }
152 #endif
153
disable_randmaps(char * s)154 static int __init disable_randmaps(char *s)
155 {
156 randomize_va_space = 0;
157 return 1;
158 }
159 __setup("norandmaps", disable_randmaps);
160
161 unsigned long zero_pfn __read_mostly;
162 EXPORT_SYMBOL(zero_pfn);
163
164 unsigned long highest_memmap_pfn __read_mostly;
165
166 /*
167 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
168 */
init_zero_pfn(void)169 static int __init init_zero_pfn(void)
170 {
171 zero_pfn = page_to_pfn(ZERO_PAGE(0));
172 return 0;
173 }
174 early_initcall(init_zero_pfn);
175
176 /*
177 * Only trace rss_stat when there is a 512kb cross over.
178 * Smaller changes may be lost unless every small change is
179 * crossing into or returning to a 512kb boundary.
180 */
181 #define TRACE_MM_COUNTER_THRESHOLD 128
182
mm_trace_rss_stat(struct mm_struct * mm,int member,long count,long value)183 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count,
184 long value)
185 {
186 long thresh_mask = ~(TRACE_MM_COUNTER_THRESHOLD - 1);
187
188 /* Threshold roll-over, trace it */
189 if ((count & thresh_mask) != ((count - value) & thresh_mask))
190 trace_rss_stat(mm, member, count);
191 }
192 EXPORT_SYMBOL_GPL(mm_trace_rss_stat);
193
194 #if defined(SPLIT_RSS_COUNTING)
195
sync_mm_rss(struct mm_struct * mm)196 void sync_mm_rss(struct mm_struct *mm)
197 {
198 int i;
199
200 for (i = 0; i < NR_MM_COUNTERS; i++) {
201 if (current->rss_stat.count[i]) {
202 add_mm_counter(mm, i, current->rss_stat.count[i]);
203 current->rss_stat.count[i] = 0;
204 }
205 }
206 current->rss_stat.events = 0;
207 }
208
add_mm_counter_fast(struct mm_struct * mm,int member,int val)209 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
210 {
211 struct task_struct *task = current;
212
213 if (likely(task->mm == mm))
214 task->rss_stat.count[member] += val;
215 else
216 add_mm_counter(mm, member, val);
217 }
218 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
219 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
220
221 /* sync counter once per 64 page faults */
222 #define TASK_RSS_EVENTS_THRESH (64)
check_sync_rss_stat(struct task_struct * task)223 static void check_sync_rss_stat(struct task_struct *task)
224 {
225 if (unlikely(task != current))
226 return;
227 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
228 sync_mm_rss(task->mm);
229 }
230 #else /* SPLIT_RSS_COUNTING */
231
232 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
233 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
234
check_sync_rss_stat(struct task_struct * task)235 static void check_sync_rss_stat(struct task_struct *task)
236 {
237 }
238
239 #endif /* SPLIT_RSS_COUNTING */
240
241 /*
242 * Note: this doesn't free the actual pages themselves. That
243 * has been handled earlier when unmapping all the memory regions.
244 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)245 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
246 unsigned long addr)
247 {
248 pgtable_t token = pmd_pgtable(*pmd);
249 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
250 /*
251 * Ensure page table destruction is blocked if __pte_map_lock managed
252 * to take this lock. Without this barrier tlb_remove_table_rcu can
253 * destroy ptl after __pte_map_lock locked it and during unlock would
254 * cause a use-after-free.
255 */
256 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
257 spin_unlock(ptl);
258 #endif
259 pmd_clear(pmd);
260 pte_free_tlb(tlb, token, addr);
261 mm_dec_nr_ptes(tlb->mm);
262 }
263
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)264 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
265 unsigned long addr, unsigned long end,
266 unsigned long floor, unsigned long ceiling)
267 {
268 pmd_t *pmd;
269 unsigned long next;
270 unsigned long start;
271
272 start = addr;
273 pmd = pmd_offset(pud, addr);
274 do {
275 next = pmd_addr_end(addr, end);
276 if (pmd_none_or_clear_bad(pmd))
277 continue;
278 free_pte_range(tlb, pmd, addr);
279 } while (pmd++, addr = next, addr != end);
280
281 start &= PUD_MASK;
282 if (start < floor)
283 return;
284 if (ceiling) {
285 ceiling &= PUD_MASK;
286 if (!ceiling)
287 return;
288 }
289 if (end - 1 > ceiling - 1)
290 return;
291
292 pmd = pmd_offset(pud, start);
293 pud_clear(pud);
294 pmd_free_tlb(tlb, pmd, start);
295 mm_dec_nr_pmds(tlb->mm);
296 }
297
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)298 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
299 unsigned long addr, unsigned long end,
300 unsigned long floor, unsigned long ceiling)
301 {
302 pud_t *pud;
303 unsigned long next;
304 unsigned long start;
305
306 start = addr;
307 pud = pud_offset(p4d, addr);
308 do {
309 next = pud_addr_end(addr, end);
310 if (pud_none_or_clear_bad(pud))
311 continue;
312 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
313 } while (pud++, addr = next, addr != end);
314
315 start &= P4D_MASK;
316 if (start < floor)
317 return;
318 if (ceiling) {
319 ceiling &= P4D_MASK;
320 if (!ceiling)
321 return;
322 }
323 if (end - 1 > ceiling - 1)
324 return;
325
326 pud = pud_offset(p4d, start);
327 p4d_clear(p4d);
328 pud_free_tlb(tlb, pud, start);
329 mm_dec_nr_puds(tlb->mm);
330 }
331
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)332 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
333 unsigned long addr, unsigned long end,
334 unsigned long floor, unsigned long ceiling)
335 {
336 p4d_t *p4d;
337 unsigned long next;
338 unsigned long start;
339
340 start = addr;
341 p4d = p4d_offset(pgd, addr);
342 do {
343 next = p4d_addr_end(addr, end);
344 if (p4d_none_or_clear_bad(p4d))
345 continue;
346 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
347 } while (p4d++, addr = next, addr != end);
348
349 start &= PGDIR_MASK;
350 if (start < floor)
351 return;
352 if (ceiling) {
353 ceiling &= PGDIR_MASK;
354 if (!ceiling)
355 return;
356 }
357 if (end - 1 > ceiling - 1)
358 return;
359
360 p4d = p4d_offset(pgd, start);
361 pgd_clear(pgd);
362 p4d_free_tlb(tlb, p4d, start);
363 }
364
365 /*
366 * This function frees user-level page tables of a process.
367 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)368 void free_pgd_range(struct mmu_gather *tlb,
369 unsigned long addr, unsigned long end,
370 unsigned long floor, unsigned long ceiling)
371 {
372 pgd_t *pgd;
373 unsigned long next;
374
375 /*
376 * The next few lines have given us lots of grief...
377 *
378 * Why are we testing PMD* at this top level? Because often
379 * there will be no work to do at all, and we'd prefer not to
380 * go all the way down to the bottom just to discover that.
381 *
382 * Why all these "- 1"s? Because 0 represents both the bottom
383 * of the address space and the top of it (using -1 for the
384 * top wouldn't help much: the masks would do the wrong thing).
385 * The rule is that addr 0 and floor 0 refer to the bottom of
386 * the address space, but end 0 and ceiling 0 refer to the top
387 * Comparisons need to use "end - 1" and "ceiling - 1" (though
388 * that end 0 case should be mythical).
389 *
390 * Wherever addr is brought up or ceiling brought down, we must
391 * be careful to reject "the opposite 0" before it confuses the
392 * subsequent tests. But what about where end is brought down
393 * by PMD_SIZE below? no, end can't go down to 0 there.
394 *
395 * Whereas we round start (addr) and ceiling down, by different
396 * masks at different levels, in order to test whether a table
397 * now has no other vmas using it, so can be freed, we don't
398 * bother to round floor or end up - the tests don't need that.
399 */
400
401 addr &= PMD_MASK;
402 if (addr < floor) {
403 addr += PMD_SIZE;
404 if (!addr)
405 return;
406 }
407 if (ceiling) {
408 ceiling &= PMD_MASK;
409 if (!ceiling)
410 return;
411 }
412 if (end - 1 > ceiling - 1)
413 end -= PMD_SIZE;
414 if (addr > end - 1)
415 return;
416 /*
417 * We add page table cache pages with PAGE_SIZE,
418 * (see pte_free_tlb()), flush the tlb if we need
419 */
420 tlb_change_page_size(tlb, PAGE_SIZE);
421 pgd = pgd_offset(tlb->mm, addr);
422 do {
423 next = pgd_addr_end(addr, end);
424 if (pgd_none_or_clear_bad(pgd))
425 continue;
426 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
427 } while (pgd++, addr = next, addr != end);
428 }
429
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)430 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
431 unsigned long floor, unsigned long ceiling)
432 {
433 while (vma) {
434 struct vm_area_struct *next = vma->vm_next;
435 unsigned long addr = vma->vm_start;
436
437 /*
438 * Hide vma from rmap and truncate_pagecache before freeing
439 * pgtables
440 */
441 vm_write_begin(vma);
442 unlink_anon_vmas(vma);
443 vm_write_end(vma);
444 unlink_file_vma(vma);
445
446 if (is_vm_hugetlb_page(vma)) {
447 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
448 floor, next ? next->vm_start : ceiling);
449 } else {
450 /*
451 * Optimization: gather nearby vmas into one call down
452 */
453 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
454 && !is_vm_hugetlb_page(next)) {
455 vma = next;
456 next = vma->vm_next;
457 vm_write_begin(vma);
458 unlink_anon_vmas(vma);
459 vm_write_end(vma);
460 unlink_file_vma(vma);
461 }
462 free_pgd_range(tlb, addr, vma->vm_end,
463 floor, next ? next->vm_start : ceiling);
464 }
465 vma = next;
466 }
467 }
468
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)469 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
470 {
471 spinlock_t *ptl;
472 pgtable_t new = pte_alloc_one(mm);
473 if (!new)
474 return -ENOMEM;
475
476 /*
477 * Ensure all pte setup (eg. pte page lock and page clearing) are
478 * visible before the pte is made visible to other CPUs by being
479 * put into page tables.
480 *
481 * The other side of the story is the pointer chasing in the page
482 * table walking code (when walking the page table without locking;
483 * ie. most of the time). Fortunately, these data accesses consist
484 * of a chain of data-dependent loads, meaning most CPUs (alpha
485 * being the notable exception) will already guarantee loads are
486 * seen in-order. See the alpha page table accessors for the
487 * smp_rmb() barriers in page table walking code.
488 */
489 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
490
491 ptl = pmd_lock(mm, pmd);
492 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
493 mm_inc_nr_ptes(mm);
494 pmd_populate(mm, pmd, new);
495 new = NULL;
496 }
497 spin_unlock(ptl);
498 if (new)
499 pte_free(mm, new);
500 return 0;
501 }
502
__pte_alloc_kernel(pmd_t * pmd)503 int __pte_alloc_kernel(pmd_t *pmd)
504 {
505 pte_t *new = pte_alloc_one_kernel(&init_mm);
506 if (!new)
507 return -ENOMEM;
508
509 smp_wmb(); /* See comment in __pte_alloc */
510
511 spin_lock(&init_mm.page_table_lock);
512 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
513 pmd_populate_kernel(&init_mm, pmd, new);
514 new = NULL;
515 }
516 spin_unlock(&init_mm.page_table_lock);
517 if (new)
518 pte_free_kernel(&init_mm, new);
519 return 0;
520 }
521
init_rss_vec(int * rss)522 static inline void init_rss_vec(int *rss)
523 {
524 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
525 }
526
add_mm_rss_vec(struct mm_struct * mm,int * rss)527 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
528 {
529 int i;
530
531 if (current->mm == mm)
532 sync_mm_rss(mm);
533 for (i = 0; i < NR_MM_COUNTERS; i++)
534 if (rss[i])
535 add_mm_counter(mm, i, rss[i]);
536 }
537
538 /*
539 * This function is called to print an error when a bad pte
540 * is found. For example, we might have a PFN-mapped pte in
541 * a region that doesn't allow it.
542 *
543 * The calling function must still handle the error.
544 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)545 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
546 pte_t pte, struct page *page)
547 {
548 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
549 p4d_t *p4d = p4d_offset(pgd, addr);
550 pud_t *pud = pud_offset(p4d, addr);
551 pmd_t *pmd = pmd_offset(pud, addr);
552 struct address_space *mapping;
553 pgoff_t index;
554 static unsigned long resume;
555 static unsigned long nr_shown;
556 static unsigned long nr_unshown;
557
558 /*
559 * Allow a burst of 60 reports, then keep quiet for that minute;
560 * or allow a steady drip of one report per second.
561 */
562 if (nr_shown == 60) {
563 if (time_before(jiffies, resume)) {
564 nr_unshown++;
565 return;
566 }
567 if (nr_unshown) {
568 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
569 nr_unshown);
570 nr_unshown = 0;
571 }
572 nr_shown = 0;
573 }
574 if (nr_shown++ == 0)
575 resume = jiffies + 60 * HZ;
576
577 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
578 index = linear_page_index(vma, addr);
579
580 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
581 current->comm,
582 (long long)pte_val(pte), (long long)pmd_val(*pmd));
583 if (page)
584 dump_page(page, "bad pte");
585 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
586 (void *)addr, READ_ONCE(vma->vm_flags), vma->anon_vma, mapping, index);
587 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
588 vma->vm_file,
589 vma->vm_ops ? vma->vm_ops->fault : NULL,
590 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
591 mapping ? mapping->a_ops->readpage : NULL);
592 dump_stack();
593 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
594 }
595
596 /*
597 * __vm_normal_page -- This function gets the "struct page" associated with
598 * a pte.
599 *
600 * "Special" mappings do not wish to be associated with a "struct page" (either
601 * it doesn't exist, or it exists but they don't want to touch it). In this
602 * case, NULL is returned here. "Normal" mappings do have a struct page.
603 *
604 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
605 * pte bit, in which case this function is trivial. Secondly, an architecture
606 * may not have a spare pte bit, which requires a more complicated scheme,
607 * described below.
608 *
609 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
610 * special mapping (even if there are underlying and valid "struct pages").
611 * COWed pages of a VM_PFNMAP are always normal.
612 *
613 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
614 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
615 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
616 * mapping will always honor the rule
617 *
618 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
619 *
620 * And for normal mappings this is false.
621 *
622 * This restricts such mappings to be a linear translation from virtual address
623 * to pfn. To get around this restriction, we allow arbitrary mappings so long
624 * as the vma is not a COW mapping; in that case, we know that all ptes are
625 * special (because none can have been COWed).
626 *
627 *
628 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
629 *
630 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
631 * page" backing, however the difference is that _all_ pages with a struct
632 * page (that is, those where pfn_valid is true) are refcounted and considered
633 * normal pages by the VM. The disadvantage is that pages are refcounted
634 * (which can be slower and simply not an option for some PFNMAP users). The
635 * advantage is that we don't have to follow the strict linearity rule of
636 * PFNMAP mappings in order to support COWable mappings.
637 *
638 */
_vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte,unsigned long vma_flags)639 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
640 pte_t pte, unsigned long vma_flags)
641 {
642 unsigned long pfn = pte_pfn(pte);
643
644 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
645 if (likely(!pte_special(pte)))
646 goto check_pfn;
647 if (vma->vm_ops && vma->vm_ops->find_special_page)
648 return vma->vm_ops->find_special_page(vma, addr);
649 if (vma_flags & (VM_PFNMAP | VM_MIXEDMAP))
650 return NULL;
651 if (is_zero_pfn(pfn))
652 return NULL;
653 if (pte_devmap(pte))
654 return NULL;
655
656 print_bad_pte(vma, addr, pte, NULL);
657 return NULL;
658 }
659
660 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
661 /*
662 * This part should never get called when CONFIG_SPECULATIVE_PAGE_FAULT
663 * is set. This is mainly because we can't rely on vm_start.
664 */
665
666 if (unlikely(vma_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
667 if (vma_flags & VM_MIXEDMAP) {
668 if (!pfn_valid(pfn))
669 return NULL;
670 goto out;
671 } else {
672 unsigned long off;
673 off = (addr - vma->vm_start) >> PAGE_SHIFT;
674 if (pfn == vma->vm_pgoff + off)
675 return NULL;
676 if (!is_cow_mapping(vma_flags))
677 return NULL;
678 }
679 }
680
681 if (is_zero_pfn(pfn))
682 return NULL;
683
684 check_pfn:
685 if (unlikely(pfn > highest_memmap_pfn)) {
686 print_bad_pte(vma, addr, pte, NULL);
687 return NULL;
688 }
689
690 /*
691 * NOTE! We still have PageReserved() pages in the page tables.
692 * eg. VDSO mappings can cause them to exist.
693 */
694 out:
695 return pfn_to_page(pfn);
696 }
697
698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)699 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
700 pmd_t pmd)
701 {
702 unsigned long pfn = pmd_pfn(pmd);
703
704 /*
705 * There is no pmd_special() but there may be special pmds, e.g.
706 * in a direct-access (dax) mapping, so let's just replicate the
707 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
708 */
709 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
710 if (vma->vm_flags & VM_MIXEDMAP) {
711 if (!pfn_valid(pfn))
712 return NULL;
713 goto out;
714 } else {
715 unsigned long off;
716 off = (addr - vma->vm_start) >> PAGE_SHIFT;
717 if (pfn == vma->vm_pgoff + off)
718 return NULL;
719 if (!is_cow_mapping(vma->vm_flags))
720 return NULL;
721 }
722 }
723
724 if (pmd_devmap(pmd))
725 return NULL;
726 if (is_huge_zero_pmd(pmd))
727 return NULL;
728 if (unlikely(pfn > highest_memmap_pfn))
729 return NULL;
730
731 /*
732 * NOTE! We still have PageReserved() pages in the page tables.
733 * eg. VDSO mappings can cause them to exist.
734 */
735 out:
736 return pfn_to_page(pfn);
737 }
738 #endif
739
740 /*
741 * copy one vm_area from one task to the other. Assumes the page tables
742 * already present in the new task to be cleared in the whole range
743 * covered by this vma.
744 */
745
746 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)747 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
748 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
749 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
750 {
751 unsigned long vm_flags = dst_vma->vm_flags;
752 pte_t pte = *src_pte;
753 struct page *page;
754 swp_entry_t entry = pte_to_swp_entry(pte);
755
756 if (likely(!non_swap_entry(entry))) {
757 if (swap_duplicate(entry) < 0)
758 return entry.val;
759
760 /* make sure dst_mm is on swapoff's mmlist. */
761 if (unlikely(list_empty(&dst_mm->mmlist))) {
762 spin_lock(&mmlist_lock);
763 if (list_empty(&dst_mm->mmlist))
764 list_add(&dst_mm->mmlist,
765 &src_mm->mmlist);
766 spin_unlock(&mmlist_lock);
767 }
768 rss[MM_SWAPENTS]++;
769 } else if (is_migration_entry(entry)) {
770 page = migration_entry_to_page(entry);
771
772 rss[mm_counter(page)]++;
773
774 if (is_write_migration_entry(entry) &&
775 is_cow_mapping(vm_flags)) {
776 /*
777 * COW mappings require pages in both
778 * parent and child to be set to read.
779 */
780 make_migration_entry_read(&entry);
781 pte = swp_entry_to_pte(entry);
782 if (pte_swp_soft_dirty(*src_pte))
783 pte = pte_swp_mksoft_dirty(pte);
784 if (pte_swp_uffd_wp(*src_pte))
785 pte = pte_swp_mkuffd_wp(pte);
786 set_pte_at(src_mm, addr, src_pte, pte);
787 }
788 } else if (is_device_private_entry(entry)) {
789 page = device_private_entry_to_page(entry);
790
791 /*
792 * Update rss count even for unaddressable pages, as
793 * they should treated just like normal pages in this
794 * respect.
795 *
796 * We will likely want to have some new rss counters
797 * for unaddressable pages, at some point. But for now
798 * keep things as they are.
799 */
800 get_page(page);
801 rss[mm_counter(page)]++;
802 page_dup_rmap(page, false);
803
804 /*
805 * We do not preserve soft-dirty information, because so
806 * far, checkpoint/restore is the only feature that
807 * requires that. And checkpoint/restore does not work
808 * when a device driver is involved (you cannot easily
809 * save and restore device driver state).
810 */
811 if (is_write_device_private_entry(entry) &&
812 is_cow_mapping(vm_flags)) {
813 make_device_private_entry_read(&entry);
814 pte = swp_entry_to_pte(entry);
815 if (pte_swp_uffd_wp(*src_pte))
816 pte = pte_swp_mkuffd_wp(pte);
817 set_pte_at(src_mm, addr, src_pte, pte);
818 }
819 }
820 if (!userfaultfd_wp(dst_vma))
821 pte = pte_swp_clear_uffd_wp(pte);
822 set_pte_at(dst_mm, addr, dst_pte, pte);
823 return 0;
824 }
825
826 /*
827 * Copy a present and normal page if necessary.
828 *
829 * NOTE! The usual case is that this doesn't need to do
830 * anything, and can just return a positive value. That
831 * will let the caller know that it can just increase
832 * the page refcount and re-use the pte the traditional
833 * way.
834 *
835 * But _if_ we need to copy it because it needs to be
836 * pinned in the parent (and the child should get its own
837 * copy rather than just a reference to the same page),
838 * we'll do that here and return zero to let the caller
839 * know we're done.
840 *
841 * And if we need a pre-allocated page but don't yet have
842 * one, return a negative error to let the preallocation
843 * code know so that it can do so outside the page table
844 * lock.
845 */
846 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc,pte_t pte,struct page * page)847 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
848 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
849 struct page **prealloc, pte_t pte, struct page *page)
850 {
851 struct mm_struct *src_mm = src_vma->vm_mm;
852 struct page *new_page;
853
854 if (!is_cow_mapping(src_vma->vm_flags))
855 return 1;
856
857 /*
858 * What we want to do is to check whether this page may
859 * have been pinned by the parent process. If so,
860 * instead of wrprotect the pte on both sides, we copy
861 * the page immediately so that we'll always guarantee
862 * the pinned page won't be randomly replaced in the
863 * future.
864 *
865 * The page pinning checks are just "has this mm ever
866 * seen pinning", along with the (inexact) check of
867 * the page count. That might give false positives for
868 * for pinning, but it will work correctly.
869 */
870 if (likely(!atomic_read(&src_mm->has_pinned)))
871 return 1;
872 if (likely(!page_maybe_dma_pinned(page)))
873 return 1;
874
875 /*
876 * The vma->anon_vma of the child process may be NULL
877 * because the entire vma does not contain anonymous pages.
878 * A BUG will occur when the copy_present_page() passes
879 * a copy of a non-anonymous page of that vma to the
880 * page_add_new_anon_rmap() to set up new anonymous rmap.
881 * Return 1 if the page is not an anonymous page.
882 */
883 if (!PageAnon(page))
884 return 1;
885
886 new_page = *prealloc;
887 if (!new_page)
888 return -EAGAIN;
889
890 /*
891 * We have a prealloc page, all good! Take it
892 * over and copy the page & arm it.
893 */
894 *prealloc = NULL;
895 copy_user_highpage(new_page, page, addr, src_vma);
896 __SetPageUptodate(new_page);
897 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
898 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
899 rss[mm_counter(new_page)]++;
900
901 /* All done, just insert the new page copy in the child */
902 pte = mk_pte(new_page, dst_vma->vm_page_prot);
903 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma->vm_flags);
904 if (userfaultfd_pte_wp(dst_vma, *src_pte))
905 /* Uffd-wp needs to be delivered to dest pte as well */
906 pte = pte_wrprotect(pte_mkuffd_wp(pte));
907 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
908 return 0;
909 }
910
911 /*
912 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
913 * is required to copy this pte.
914 */
915 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc)916 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
917 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
918 struct page **prealloc)
919 {
920 struct mm_struct *src_mm = src_vma->vm_mm;
921 unsigned long vm_flags = src_vma->vm_flags;
922 pte_t pte = *src_pte;
923 struct page *page;
924
925 page = vm_normal_page(src_vma, addr, pte);
926 if (page) {
927 int retval;
928
929 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
930 addr, rss, prealloc, pte, page);
931 if (retval <= 0)
932 return retval;
933
934 get_page(page);
935 page_dup_rmap(page, false);
936 rss[mm_counter(page)]++;
937 }
938
939 /*
940 * If it's a COW mapping, write protect it both
941 * in the parent and the child
942 */
943 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
944 ptep_set_wrprotect(src_mm, addr, src_pte);
945 pte = pte_wrprotect(pte);
946 }
947
948 /*
949 * If it's a shared mapping, mark it clean in
950 * the child
951 */
952 if (vm_flags & VM_SHARED)
953 pte = pte_mkclean(pte);
954 pte = pte_mkold(pte);
955
956 if (!userfaultfd_wp(dst_vma))
957 pte = pte_clear_uffd_wp(pte);
958
959 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
960 return 0;
961 }
962
963 static inline struct page *
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)964 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
965 unsigned long addr)
966 {
967 struct page *new_page;
968
969 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
970 if (!new_page)
971 return NULL;
972
973 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
974 put_page(new_page);
975 return NULL;
976 }
977 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
978
979 return new_page;
980 }
981
982 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)983 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
984 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
985 unsigned long end)
986 {
987 struct mm_struct *dst_mm = dst_vma->vm_mm;
988 struct mm_struct *src_mm = src_vma->vm_mm;
989 pte_t *orig_src_pte, *orig_dst_pte;
990 pte_t *src_pte, *dst_pte;
991 spinlock_t *src_ptl, *dst_ptl;
992 int progress, ret = 0;
993 int rss[NR_MM_COUNTERS];
994 swp_entry_t entry = (swp_entry_t){0};
995 struct page *prealloc = NULL;
996
997 again:
998 progress = 0;
999 init_rss_vec(rss);
1000
1001 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1002 if (!dst_pte) {
1003 ret = -ENOMEM;
1004 goto out;
1005 }
1006 src_pte = pte_offset_map(src_pmd, addr);
1007 src_ptl = pte_lockptr(src_mm, src_pmd);
1008 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1009 orig_src_pte = src_pte;
1010 orig_dst_pte = dst_pte;
1011 arch_enter_lazy_mmu_mode();
1012
1013 do {
1014 /*
1015 * We are holding two locks at this point - either of them
1016 * could generate latencies in another task on another CPU.
1017 */
1018 if (progress >= 32) {
1019 progress = 0;
1020 if (need_resched() ||
1021 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1022 break;
1023 }
1024 if (pte_none(*src_pte)) {
1025 progress++;
1026 continue;
1027 }
1028 if (unlikely(!pte_present(*src_pte))) {
1029 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
1030 dst_pte, src_pte,
1031 dst_vma, src_vma,
1032 addr, rss);
1033 if (entry.val)
1034 break;
1035 progress += 8;
1036 continue;
1037 }
1038 /* copy_present_pte() will clear `*prealloc' if consumed */
1039 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1040 addr, rss, &prealloc);
1041 /*
1042 * If we need a pre-allocated page for this pte, drop the
1043 * locks, allocate, and try again.
1044 */
1045 if (unlikely(ret == -EAGAIN))
1046 break;
1047 if (unlikely(prealloc)) {
1048 /*
1049 * pre-alloc page cannot be reused by next time so as
1050 * to strictly follow mempolicy (e.g., alloc_page_vma()
1051 * will allocate page according to address). This
1052 * could only happen if one pinned pte changed.
1053 */
1054 put_page(prealloc);
1055 prealloc = NULL;
1056 }
1057 progress += 8;
1058 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1059
1060 arch_leave_lazy_mmu_mode();
1061 spin_unlock(src_ptl);
1062 pte_unmap(orig_src_pte);
1063 add_mm_rss_vec(dst_mm, rss);
1064 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1065 cond_resched();
1066
1067 if (entry.val) {
1068 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1069 ret = -ENOMEM;
1070 goto out;
1071 }
1072 entry.val = 0;
1073 } else if (ret) {
1074 WARN_ON_ONCE(ret != -EAGAIN);
1075 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1076 if (!prealloc)
1077 return -ENOMEM;
1078 /* We've captured and resolved the error. Reset, try again. */
1079 ret = 0;
1080 }
1081 if (addr != end)
1082 goto again;
1083 out:
1084 if (unlikely(prealloc))
1085 put_page(prealloc);
1086 return ret;
1087 }
1088
1089 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1090 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1091 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1092 unsigned long end)
1093 {
1094 struct mm_struct *dst_mm = dst_vma->vm_mm;
1095 struct mm_struct *src_mm = src_vma->vm_mm;
1096 pmd_t *src_pmd, *dst_pmd;
1097 unsigned long next;
1098
1099 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1100 if (!dst_pmd)
1101 return -ENOMEM;
1102 src_pmd = pmd_offset(src_pud, addr);
1103 do {
1104 next = pmd_addr_end(addr, end);
1105 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1106 || pmd_devmap(*src_pmd)) {
1107 int err;
1108 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1109 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1110 addr, dst_vma, src_vma);
1111 if (err == -ENOMEM)
1112 return -ENOMEM;
1113 if (!err)
1114 continue;
1115 /* fall through */
1116 }
1117 if (pmd_none_or_clear_bad(src_pmd))
1118 continue;
1119 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1120 addr, next))
1121 return -ENOMEM;
1122 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1123 return 0;
1124 }
1125
1126 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1127 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1128 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1129 unsigned long end)
1130 {
1131 struct mm_struct *dst_mm = dst_vma->vm_mm;
1132 struct mm_struct *src_mm = src_vma->vm_mm;
1133 pud_t *src_pud, *dst_pud;
1134 unsigned long next;
1135
1136 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1137 if (!dst_pud)
1138 return -ENOMEM;
1139 src_pud = pud_offset(src_p4d, addr);
1140 do {
1141 next = pud_addr_end(addr, end);
1142 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1143 int err;
1144
1145 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1146 err = copy_huge_pud(dst_mm, src_mm,
1147 dst_pud, src_pud, addr, src_vma);
1148 if (err == -ENOMEM)
1149 return -ENOMEM;
1150 if (!err)
1151 continue;
1152 /* fall through */
1153 }
1154 if (pud_none_or_clear_bad(src_pud))
1155 continue;
1156 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1157 addr, next))
1158 return -ENOMEM;
1159 } while (dst_pud++, src_pud++, addr = next, addr != end);
1160 return 0;
1161 }
1162
1163 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1164 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1165 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1166 unsigned long end)
1167 {
1168 struct mm_struct *dst_mm = dst_vma->vm_mm;
1169 p4d_t *src_p4d, *dst_p4d;
1170 unsigned long next;
1171
1172 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1173 if (!dst_p4d)
1174 return -ENOMEM;
1175 src_p4d = p4d_offset(src_pgd, addr);
1176 do {
1177 next = p4d_addr_end(addr, end);
1178 if (p4d_none_or_clear_bad(src_p4d))
1179 continue;
1180 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1181 addr, next))
1182 return -ENOMEM;
1183 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1184 return 0;
1185 }
1186
1187 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1188 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1189 {
1190 pgd_t *src_pgd, *dst_pgd;
1191 unsigned long next;
1192 unsigned long addr = src_vma->vm_start;
1193 unsigned long end = src_vma->vm_end;
1194 struct mm_struct *dst_mm = dst_vma->vm_mm;
1195 struct mm_struct *src_mm = src_vma->vm_mm;
1196 struct mmu_notifier_range range;
1197 bool is_cow;
1198 int ret;
1199
1200 /*
1201 * Don't copy ptes where a page fault will fill them correctly.
1202 * Fork becomes much lighter when there are big shared or private
1203 * readonly mappings. The tradeoff is that copy_page_range is more
1204 * efficient than faulting.
1205 */
1206 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1207 !src_vma->anon_vma)
1208 return 0;
1209
1210 if (is_vm_hugetlb_page(src_vma))
1211 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1212
1213 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1214 /*
1215 * We do not free on error cases below as remove_vma
1216 * gets called on error from higher level routine
1217 */
1218 ret = track_pfn_copy(src_vma);
1219 if (ret)
1220 return ret;
1221 }
1222
1223 /*
1224 * We need to invalidate the secondary MMU mappings only when
1225 * there could be a permission downgrade on the ptes of the
1226 * parent mm. And a permission downgrade will only happen if
1227 * is_cow_mapping() returns true.
1228 */
1229 is_cow = is_cow_mapping(src_vma->vm_flags);
1230
1231 if (is_cow) {
1232 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1233 0, src_vma, src_mm, addr, end);
1234 mmu_notifier_invalidate_range_start(&range);
1235 /*
1236 * Disabling preemption is not needed for the write side, as
1237 * the read side doesn't spin, but goes to the mmap_lock.
1238 *
1239 * Use the raw variant of the seqcount_t write API to avoid
1240 * lockdep complaining about preemptibility.
1241 */
1242 mmap_assert_write_locked(src_mm);
1243 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1244 }
1245
1246 ret = 0;
1247 dst_pgd = pgd_offset(dst_mm, addr);
1248 src_pgd = pgd_offset(src_mm, addr);
1249 do {
1250 next = pgd_addr_end(addr, end);
1251 if (pgd_none_or_clear_bad(src_pgd))
1252 continue;
1253 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1254 addr, next))) {
1255 ret = -ENOMEM;
1256 break;
1257 }
1258 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1259
1260 if (is_cow) {
1261 raw_write_seqcount_end(&src_mm->write_protect_seq);
1262 mmu_notifier_invalidate_range_end(&range);
1263 }
1264 return ret;
1265 }
1266
1267 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1268 static inline bool should_zap_cows(struct zap_details *details)
1269 {
1270 /* By default, zap all pages */
1271 if (!details)
1272 return true;
1273
1274 /* Or, we zap COWed pages only if the caller wants to */
1275 return !details->check_mapping;
1276 }
1277
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1278 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1279 struct vm_area_struct *vma, pmd_t *pmd,
1280 unsigned long addr, unsigned long end,
1281 struct zap_details *details)
1282 {
1283 struct mm_struct *mm = tlb->mm;
1284 int force_flush = 0;
1285 int rss[NR_MM_COUNTERS];
1286 spinlock_t *ptl;
1287 pte_t *start_pte;
1288 pte_t *pte;
1289 swp_entry_t entry;
1290
1291 tlb_change_page_size(tlb, PAGE_SIZE);
1292 again:
1293 init_rss_vec(rss);
1294 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1295 pte = start_pte;
1296 flush_tlb_batched_pending(mm);
1297 arch_enter_lazy_mmu_mode();
1298 do {
1299 pte_t ptent = *pte;
1300 if (pte_none(ptent))
1301 continue;
1302
1303 if (need_resched())
1304 break;
1305
1306 if (pte_present(ptent)) {
1307 struct page *page;
1308
1309 page = vm_normal_page(vma, addr, ptent);
1310 if (unlikely(details) && page) {
1311 /*
1312 * unmap_shared_mapping_pages() wants to
1313 * invalidate cache without truncating:
1314 * unmap shared but keep private pages.
1315 */
1316 if (details->check_mapping &&
1317 details->check_mapping != page_rmapping(page))
1318 continue;
1319 }
1320 ptent = ptep_get_and_clear_full(mm, addr, pte,
1321 tlb->fullmm);
1322 tlb_remove_tlb_entry(tlb, pte, addr);
1323 if (unlikely(!page))
1324 continue;
1325
1326 if (!PageAnon(page)) {
1327 if (pte_dirty(ptent)) {
1328 force_flush = 1;
1329 set_page_dirty(page);
1330 }
1331 if (pte_young(ptent) &&
1332 likely(!(vma->vm_flags & VM_SEQ_READ)))
1333 mark_page_accessed(page);
1334 }
1335 rss[mm_counter(page)]--;
1336 page_remove_rmap(page, false);
1337 if (unlikely(page_mapcount(page) < 0))
1338 print_bad_pte(vma, addr, ptent, page);
1339 if (unlikely(__tlb_remove_page(tlb, page)) ||
1340 lru_cache_disabled()) {
1341 force_flush = 1;
1342 addr += PAGE_SIZE;
1343 break;
1344 }
1345 continue;
1346 }
1347
1348 entry = pte_to_swp_entry(ptent);
1349 if (is_device_private_entry(entry)) {
1350 struct page *page = device_private_entry_to_page(entry);
1351
1352 if (unlikely(details && details->check_mapping)) {
1353 /*
1354 * unmap_shared_mapping_pages() wants to
1355 * invalidate cache without truncating:
1356 * unmap shared but keep private pages.
1357 */
1358 if (details->check_mapping !=
1359 page_rmapping(page))
1360 continue;
1361 }
1362
1363 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1364 rss[mm_counter(page)]--;
1365 page_remove_rmap(page, false);
1366 put_page(page);
1367 continue;
1368 }
1369
1370 if (!non_swap_entry(entry)) {
1371 /* Genuine swap entry, hence a private anon page */
1372 if (!should_zap_cows(details))
1373 continue;
1374 rss[MM_SWAPENTS]--;
1375 } else if (is_migration_entry(entry)) {
1376 struct page *page;
1377
1378 page = migration_entry_to_page(entry);
1379 if (details && details->check_mapping &&
1380 details->check_mapping != page_rmapping(page))
1381 continue;
1382 rss[mm_counter(page)]--;
1383 }
1384 if (unlikely(!free_swap_and_cache(entry)))
1385 print_bad_pte(vma, addr, ptent, NULL);
1386 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1387 } while (pte++, addr += PAGE_SIZE, addr != end);
1388
1389 add_mm_rss_vec(mm, rss);
1390 arch_leave_lazy_mmu_mode();
1391
1392 /* Do the actual TLB flush before dropping ptl */
1393 if (force_flush)
1394 tlb_flush_mmu_tlbonly(tlb);
1395 pte_unmap_unlock(start_pte, ptl);
1396
1397 /*
1398 * If we forced a TLB flush (either due to running out of
1399 * batch buffers or because we needed to flush dirty TLB
1400 * entries before releasing the ptl), free the batched
1401 * memory too. Restart if we didn't do everything.
1402 */
1403 if (force_flush) {
1404 force_flush = 0;
1405 tlb_flush_mmu(tlb);
1406 }
1407
1408 if (addr != end) {
1409 cond_resched();
1410 goto again;
1411 }
1412
1413 return addr;
1414 }
1415
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1416 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1417 struct vm_area_struct *vma, pud_t *pud,
1418 unsigned long addr, unsigned long end,
1419 struct zap_details *details)
1420 {
1421 pmd_t *pmd;
1422 unsigned long next;
1423
1424 pmd = pmd_offset(pud, addr);
1425 do {
1426 next = pmd_addr_end(addr, end);
1427 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1428 if (next - addr != HPAGE_PMD_SIZE)
1429 __split_huge_pmd(vma, pmd, addr, false, NULL);
1430 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1431 goto next;
1432 /* fall through */
1433 } else if (details && details->single_page &&
1434 PageTransCompound(details->single_page) &&
1435 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1436 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1437 /*
1438 * Take and drop THP pmd lock so that we cannot return
1439 * prematurely, while zap_huge_pmd() has cleared *pmd,
1440 * but not yet decremented compound_mapcount().
1441 */
1442 spin_unlock(ptl);
1443 }
1444
1445 /*
1446 * Here there can be other concurrent MADV_DONTNEED or
1447 * trans huge page faults running, and if the pmd is
1448 * none or trans huge it can change under us. This is
1449 * because MADV_DONTNEED holds the mmap_lock in read
1450 * mode.
1451 */
1452 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1453 goto next;
1454 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1455 next:
1456 cond_resched();
1457 } while (pmd++, addr = next, addr != end);
1458
1459 return addr;
1460 }
1461
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1462 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1463 struct vm_area_struct *vma, p4d_t *p4d,
1464 unsigned long addr, unsigned long end,
1465 struct zap_details *details)
1466 {
1467 pud_t *pud;
1468 unsigned long next;
1469
1470 pud = pud_offset(p4d, addr);
1471 do {
1472 next = pud_addr_end(addr, end);
1473 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1474 if (next - addr != HPAGE_PUD_SIZE) {
1475 mmap_assert_locked(tlb->mm);
1476 split_huge_pud(vma, pud, addr);
1477 } else if (zap_huge_pud(tlb, vma, pud, addr))
1478 goto next;
1479 /* fall through */
1480 }
1481 if (pud_none_or_clear_bad(pud))
1482 continue;
1483 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1484 next:
1485 cond_resched();
1486 } while (pud++, addr = next, addr != end);
1487
1488 return addr;
1489 }
1490
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1491 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1492 struct vm_area_struct *vma, pgd_t *pgd,
1493 unsigned long addr, unsigned long end,
1494 struct zap_details *details)
1495 {
1496 p4d_t *p4d;
1497 unsigned long next;
1498
1499 p4d = p4d_offset(pgd, addr);
1500 do {
1501 next = p4d_addr_end(addr, end);
1502 if (p4d_none_or_clear_bad(p4d))
1503 continue;
1504 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1505 } while (p4d++, addr = next, addr != end);
1506
1507 return addr;
1508 }
1509
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1510 void unmap_page_range(struct mmu_gather *tlb,
1511 struct vm_area_struct *vma,
1512 unsigned long addr, unsigned long end,
1513 struct zap_details *details)
1514 {
1515 pgd_t *pgd;
1516 unsigned long next;
1517
1518 BUG_ON(addr >= end);
1519 tlb_start_vma(tlb, vma);
1520 pgd = pgd_offset(vma->vm_mm, addr);
1521 do {
1522 next = pgd_addr_end(addr, end);
1523 if (pgd_none_or_clear_bad(pgd))
1524 continue;
1525 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1526 } while (pgd++, addr = next, addr != end);
1527 tlb_end_vma(tlb, vma);
1528 }
1529
1530
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1531 static void unmap_single_vma(struct mmu_gather *tlb,
1532 struct vm_area_struct *vma, unsigned long start_addr,
1533 unsigned long end_addr,
1534 struct zap_details *details)
1535 {
1536 unsigned long start = max(vma->vm_start, start_addr);
1537 unsigned long end;
1538
1539 if (start >= vma->vm_end)
1540 return;
1541 end = min(vma->vm_end, end_addr);
1542 if (end <= vma->vm_start)
1543 return;
1544
1545 if (vma->vm_file)
1546 uprobe_munmap(vma, start, end);
1547
1548 if (unlikely(vma->vm_flags & VM_PFNMAP))
1549 untrack_pfn(vma, 0, 0);
1550
1551 if (start != end) {
1552 if (unlikely(is_vm_hugetlb_page(vma))) {
1553 /*
1554 * It is undesirable to test vma->vm_file as it
1555 * should be non-null for valid hugetlb area.
1556 * However, vm_file will be NULL in the error
1557 * cleanup path of mmap_region. When
1558 * hugetlbfs ->mmap method fails,
1559 * mmap_region() nullifies vma->vm_file
1560 * before calling this function to clean up.
1561 * Since no pte has actually been setup, it is
1562 * safe to do nothing in this case.
1563 */
1564 if (vma->vm_file) {
1565 i_mmap_lock_write(vma->vm_file->f_mapping);
1566 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1567 i_mmap_unlock_write(vma->vm_file->f_mapping);
1568 }
1569 } else
1570 unmap_page_range(tlb, vma, start, end, details);
1571 }
1572 }
1573
1574 /**
1575 * unmap_vmas - unmap a range of memory covered by a list of vma's
1576 * @tlb: address of the caller's struct mmu_gather
1577 * @vma: the starting vma
1578 * @start_addr: virtual address at which to start unmapping
1579 * @end_addr: virtual address at which to end unmapping
1580 *
1581 * Unmap all pages in the vma list.
1582 *
1583 * Only addresses between `start' and `end' will be unmapped.
1584 *
1585 * The VMA list must be sorted in ascending virtual address order.
1586 *
1587 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1588 * range after unmap_vmas() returns. So the only responsibility here is to
1589 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1590 * drops the lock and schedules.
1591 */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1592 void unmap_vmas(struct mmu_gather *tlb,
1593 struct vm_area_struct *vma, unsigned long start_addr,
1594 unsigned long end_addr)
1595 {
1596 struct mmu_notifier_range range;
1597
1598 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1599 start_addr, end_addr);
1600 mmu_notifier_invalidate_range_start(&range);
1601 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1602 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1603 mmu_notifier_invalidate_range_end(&range);
1604 }
1605
1606 /**
1607 * zap_page_range - remove user pages in a given range
1608 * @vma: vm_area_struct holding the applicable pages
1609 * @start: starting address of pages to zap
1610 * @size: number of bytes to zap
1611 *
1612 * Caller must protect the VMA list
1613 */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1614 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1615 unsigned long size)
1616 {
1617 struct mmu_notifier_range range;
1618 struct mmu_gather tlb;
1619
1620 lru_add_drain();
1621 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1622 start, start + size);
1623 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1624 update_hiwater_rss(vma->vm_mm);
1625 mmu_notifier_invalidate_range_start(&range);
1626 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1627 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1628 mmu_notifier_invalidate_range_end(&range);
1629 tlb_finish_mmu(&tlb, start, range.end);
1630 }
1631
1632 /**
1633 * zap_page_range_single - remove user pages in a given range
1634 * @vma: vm_area_struct holding the applicable pages
1635 * @address: starting address of pages to zap
1636 * @size: number of bytes to zap
1637 * @details: details of shared cache invalidation
1638 *
1639 * The range must fit into one VMA.
1640 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1641 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1642 unsigned long size, struct zap_details *details)
1643 {
1644 struct mmu_notifier_range range;
1645 struct mmu_gather tlb;
1646
1647 lru_add_drain();
1648 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1649 address, address + size);
1650 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1651 update_hiwater_rss(vma->vm_mm);
1652 mmu_notifier_invalidate_range_start(&range);
1653 unmap_single_vma(&tlb, vma, address, range.end, details);
1654 mmu_notifier_invalidate_range_end(&range);
1655 tlb_finish_mmu(&tlb, address, range.end);
1656 }
1657
1658 /**
1659 * zap_vma_ptes - remove ptes mapping the vma
1660 * @vma: vm_area_struct holding ptes to be zapped
1661 * @address: starting address of pages to zap
1662 * @size: number of bytes to zap
1663 *
1664 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1665 *
1666 * The entire address range must be fully contained within the vma.
1667 *
1668 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1669 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1670 unsigned long size)
1671 {
1672 if (address < vma->vm_start || address + size > vma->vm_end ||
1673 !(vma->vm_flags & VM_PFNMAP))
1674 return;
1675
1676 zap_page_range_single(vma, address, size, NULL);
1677 }
1678 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1679
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1680 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1681 {
1682 pgd_t *pgd;
1683 p4d_t *p4d;
1684 pud_t *pud;
1685 pmd_t *pmd;
1686
1687 pgd = pgd_offset(mm, addr);
1688 p4d = p4d_alloc(mm, pgd, addr);
1689 if (!p4d)
1690 return NULL;
1691 pud = pud_alloc(mm, p4d, addr);
1692 if (!pud)
1693 return NULL;
1694 pmd = pmd_alloc(mm, pud, addr);
1695 if (!pmd)
1696 return NULL;
1697
1698 VM_BUG_ON(pmd_trans_huge(*pmd));
1699 return pmd;
1700 }
1701
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1702 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1703 spinlock_t **ptl)
1704 {
1705 pmd_t *pmd = walk_to_pmd(mm, addr);
1706
1707 if (!pmd)
1708 return NULL;
1709 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1710 }
1711
validate_page_before_insert(struct page * page)1712 static int validate_page_before_insert(struct page *page)
1713 {
1714 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1715 return -EINVAL;
1716 flush_dcache_page(page);
1717 return 0;
1718 }
1719
insert_page_into_pte_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1720 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1721 unsigned long addr, struct page *page, pgprot_t prot)
1722 {
1723 if (!pte_none(*pte))
1724 return -EBUSY;
1725 /* Ok, finally just insert the thing.. */
1726 get_page(page);
1727 inc_mm_counter_fast(mm, mm_counter_file(page));
1728 page_add_file_rmap(page, false);
1729 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1730 return 0;
1731 }
1732
1733 /*
1734 * This is the old fallback for page remapping.
1735 *
1736 * For historical reasons, it only allows reserved pages. Only
1737 * old drivers should use this, and they needed to mark their
1738 * pages reserved for the old functions anyway.
1739 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1740 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1741 struct page *page, pgprot_t prot)
1742 {
1743 struct mm_struct *mm = vma->vm_mm;
1744 int retval;
1745 pte_t *pte;
1746 spinlock_t *ptl;
1747
1748 retval = validate_page_before_insert(page);
1749 if (retval)
1750 goto out;
1751 retval = -ENOMEM;
1752 pte = get_locked_pte(mm, addr, &ptl);
1753 if (!pte)
1754 goto out;
1755 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1756 pte_unmap_unlock(pte, ptl);
1757 out:
1758 return retval;
1759 }
1760
1761 #ifdef pte_index
insert_page_in_batch_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1762 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1763 unsigned long addr, struct page *page, pgprot_t prot)
1764 {
1765 int err;
1766
1767 if (!page_count(page))
1768 return -EINVAL;
1769 err = validate_page_before_insert(page);
1770 if (err)
1771 return err;
1772 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1773 }
1774
1775 /* insert_pages() amortizes the cost of spinlock operations
1776 * when inserting pages in a loop. Arch *must* define pte_index.
1777 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1778 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1779 struct page **pages, unsigned long *num, pgprot_t prot)
1780 {
1781 pmd_t *pmd = NULL;
1782 pte_t *start_pte, *pte;
1783 spinlock_t *pte_lock;
1784 struct mm_struct *const mm = vma->vm_mm;
1785 unsigned long curr_page_idx = 0;
1786 unsigned long remaining_pages_total = *num;
1787 unsigned long pages_to_write_in_pmd;
1788 int ret;
1789 more:
1790 ret = -EFAULT;
1791 pmd = walk_to_pmd(mm, addr);
1792 if (!pmd)
1793 goto out;
1794
1795 pages_to_write_in_pmd = min_t(unsigned long,
1796 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1797
1798 /* Allocate the PTE if necessary; takes PMD lock once only. */
1799 ret = -ENOMEM;
1800 if (pte_alloc(mm, pmd))
1801 goto out;
1802
1803 while (pages_to_write_in_pmd) {
1804 int pte_idx = 0;
1805 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1806
1807 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1808 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1809 int err = insert_page_in_batch_locked(mm, pte,
1810 addr, pages[curr_page_idx], prot);
1811 if (unlikely(err)) {
1812 pte_unmap_unlock(start_pte, pte_lock);
1813 ret = err;
1814 remaining_pages_total -= pte_idx;
1815 goto out;
1816 }
1817 addr += PAGE_SIZE;
1818 ++curr_page_idx;
1819 }
1820 pte_unmap_unlock(start_pte, pte_lock);
1821 pages_to_write_in_pmd -= batch_size;
1822 remaining_pages_total -= batch_size;
1823 }
1824 if (remaining_pages_total)
1825 goto more;
1826 ret = 0;
1827 out:
1828 *num = remaining_pages_total;
1829 return ret;
1830 }
1831 #endif /* ifdef pte_index */
1832
1833 /**
1834 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1835 * @vma: user vma to map to
1836 * @addr: target start user address of these pages
1837 * @pages: source kernel pages
1838 * @num: in: number of pages to map. out: number of pages that were *not*
1839 * mapped. (0 means all pages were successfully mapped).
1840 *
1841 * Preferred over vm_insert_page() when inserting multiple pages.
1842 *
1843 * In case of error, we may have mapped a subset of the provided
1844 * pages. It is the caller's responsibility to account for this case.
1845 *
1846 * The same restrictions apply as in vm_insert_page().
1847 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1848 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1849 struct page **pages, unsigned long *num)
1850 {
1851 #ifdef pte_index
1852 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1853
1854 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1855 return -EFAULT;
1856 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1857 BUG_ON(mmap_read_trylock(vma->vm_mm));
1858 BUG_ON(vma->vm_flags & VM_PFNMAP);
1859 vma->vm_flags |= VM_MIXEDMAP;
1860 }
1861 /* Defer page refcount checking till we're about to map that page. */
1862 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1863 #else
1864 unsigned long idx = 0, pgcount = *num;
1865 int err = -EINVAL;
1866
1867 for (; idx < pgcount; ++idx) {
1868 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1869 if (err)
1870 break;
1871 }
1872 *num = pgcount - idx;
1873 return err;
1874 #endif /* ifdef pte_index */
1875 }
1876 EXPORT_SYMBOL(vm_insert_pages);
1877
1878 /**
1879 * vm_insert_page - insert single page into user vma
1880 * @vma: user vma to map to
1881 * @addr: target user address of this page
1882 * @page: source kernel page
1883 *
1884 * This allows drivers to insert individual pages they've allocated
1885 * into a user vma.
1886 *
1887 * The page has to be a nice clean _individual_ kernel allocation.
1888 * If you allocate a compound page, you need to have marked it as
1889 * such (__GFP_COMP), or manually just split the page up yourself
1890 * (see split_page()).
1891 *
1892 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1893 * took an arbitrary page protection parameter. This doesn't allow
1894 * that. Your vma protection will have to be set up correctly, which
1895 * means that if you want a shared writable mapping, you'd better
1896 * ask for a shared writable mapping!
1897 *
1898 * The page does not need to be reserved.
1899 *
1900 * Usually this function is called from f_op->mmap() handler
1901 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1902 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1903 * function from other places, for example from page-fault handler.
1904 *
1905 * Return: %0 on success, negative error code otherwise.
1906 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1907 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1908 struct page *page)
1909 {
1910 if (addr < vma->vm_start || addr >= vma->vm_end)
1911 return -EFAULT;
1912 if (!page_count(page))
1913 return -EINVAL;
1914 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1915 BUG_ON(mmap_read_trylock(vma->vm_mm));
1916 BUG_ON(vma->vm_flags & VM_PFNMAP);
1917 vma->vm_flags |= VM_MIXEDMAP;
1918 }
1919 return insert_page(vma, addr, page, vma->vm_page_prot);
1920 }
1921 EXPORT_SYMBOL(vm_insert_page);
1922
1923 /*
1924 * __vm_map_pages - maps range of kernel pages into user vma
1925 * @vma: user vma to map to
1926 * @pages: pointer to array of source kernel pages
1927 * @num: number of pages in page array
1928 * @offset: user's requested vm_pgoff
1929 *
1930 * This allows drivers to map range of kernel pages into a user vma.
1931 *
1932 * Return: 0 on success and error code otherwise.
1933 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)1934 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1935 unsigned long num, unsigned long offset)
1936 {
1937 unsigned long count = vma_pages(vma);
1938 unsigned long uaddr = vma->vm_start;
1939 int ret, i;
1940
1941 /* Fail if the user requested offset is beyond the end of the object */
1942 if (offset >= num)
1943 return -ENXIO;
1944
1945 /* Fail if the user requested size exceeds available object size */
1946 if (count > num - offset)
1947 return -ENXIO;
1948
1949 for (i = 0; i < count; i++) {
1950 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1951 if (ret < 0)
1952 return ret;
1953 uaddr += PAGE_SIZE;
1954 }
1955
1956 return 0;
1957 }
1958
1959 /**
1960 * vm_map_pages - maps range of kernel pages starts with non zero offset
1961 * @vma: user vma to map to
1962 * @pages: pointer to array of source kernel pages
1963 * @num: number of pages in page array
1964 *
1965 * Maps an object consisting of @num pages, catering for the user's
1966 * requested vm_pgoff
1967 *
1968 * If we fail to insert any page into the vma, the function will return
1969 * immediately leaving any previously inserted pages present. Callers
1970 * from the mmap handler may immediately return the error as their caller
1971 * will destroy the vma, removing any successfully inserted pages. Other
1972 * callers should make their own arrangements for calling unmap_region().
1973 *
1974 * Context: Process context. Called by mmap handlers.
1975 * Return: 0 on success and error code otherwise.
1976 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1977 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1978 unsigned long num)
1979 {
1980 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1981 }
1982 EXPORT_SYMBOL(vm_map_pages);
1983
1984 /**
1985 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1986 * @vma: user vma to map to
1987 * @pages: pointer to array of source kernel pages
1988 * @num: number of pages in page array
1989 *
1990 * Similar to vm_map_pages(), except that it explicitly sets the offset
1991 * to 0. This function is intended for the drivers that did not consider
1992 * vm_pgoff.
1993 *
1994 * Context: Process context. Called by mmap handlers.
1995 * Return: 0 on success and error code otherwise.
1996 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1997 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1998 unsigned long num)
1999 {
2000 return __vm_map_pages(vma, pages, num, 0);
2001 }
2002 EXPORT_SYMBOL(vm_map_pages_zero);
2003
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2004 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2005 pfn_t pfn, pgprot_t prot, bool mkwrite)
2006 {
2007 struct mm_struct *mm = vma->vm_mm;
2008 pte_t *pte, entry;
2009 spinlock_t *ptl;
2010
2011 pte = get_locked_pte(mm, addr, &ptl);
2012 if (!pte)
2013 return VM_FAULT_OOM;
2014 if (!pte_none(*pte)) {
2015 if (mkwrite) {
2016 /*
2017 * For read faults on private mappings the PFN passed
2018 * in may not match the PFN we have mapped if the
2019 * mapped PFN is a writeable COW page. In the mkwrite
2020 * case we are creating a writable PTE for a shared
2021 * mapping and we expect the PFNs to match. If they
2022 * don't match, we are likely racing with block
2023 * allocation and mapping invalidation so just skip the
2024 * update.
2025 */
2026 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2027 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2028 goto out_unlock;
2029 }
2030 entry = pte_mkyoung(*pte);
2031 entry = maybe_mkwrite(pte_mkdirty(entry),
2032 vma->vm_flags);
2033 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2034 update_mmu_cache(vma, addr, pte);
2035 }
2036 goto out_unlock;
2037 }
2038
2039 /* Ok, finally just insert the thing.. */
2040 if (pfn_t_devmap(pfn))
2041 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2042 else
2043 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2044
2045 if (mkwrite) {
2046 entry = pte_mkyoung(entry);
2047 entry = maybe_mkwrite(pte_mkdirty(entry), vma->vm_flags);
2048 }
2049
2050 set_pte_at(mm, addr, pte, entry);
2051 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2052
2053 out_unlock:
2054 pte_unmap_unlock(pte, ptl);
2055 return VM_FAULT_NOPAGE;
2056 }
2057
2058 /**
2059 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2060 * @vma: user vma to map to
2061 * @addr: target user address of this page
2062 * @pfn: source kernel pfn
2063 * @pgprot: pgprot flags for the inserted page
2064 *
2065 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2066 * to override pgprot on a per-page basis.
2067 *
2068 * This only makes sense for IO mappings, and it makes no sense for
2069 * COW mappings. In general, using multiple vmas is preferable;
2070 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2071 * impractical.
2072 *
2073 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2074 * a value of @pgprot different from that of @vma->vm_page_prot.
2075 *
2076 * Context: Process context. May allocate using %GFP_KERNEL.
2077 * Return: vm_fault_t value.
2078 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2079 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2080 unsigned long pfn, pgprot_t pgprot)
2081 {
2082 /*
2083 * Technically, architectures with pte_special can avoid all these
2084 * restrictions (same for remap_pfn_range). However we would like
2085 * consistency in testing and feature parity among all, so we should
2086 * try to keep these invariants in place for everybody.
2087 */
2088 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2089 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2090 (VM_PFNMAP|VM_MIXEDMAP));
2091 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2092 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2093
2094 if (addr < vma->vm_start || addr >= vma->vm_end)
2095 return VM_FAULT_SIGBUS;
2096
2097 if (!pfn_modify_allowed(pfn, pgprot))
2098 return VM_FAULT_SIGBUS;
2099
2100 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2101
2102 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2103 false);
2104 }
2105 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2106
2107 /**
2108 * vmf_insert_pfn - insert single pfn into user vma
2109 * @vma: user vma to map to
2110 * @addr: target user address of this page
2111 * @pfn: source kernel pfn
2112 *
2113 * Similar to vm_insert_page, this allows drivers to insert individual pages
2114 * they've allocated into a user vma. Same comments apply.
2115 *
2116 * This function should only be called from a vm_ops->fault handler, and
2117 * in that case the handler should return the result of this function.
2118 *
2119 * vma cannot be a COW mapping.
2120 *
2121 * As this is called only for pages that do not currently exist, we
2122 * do not need to flush old virtual caches or the TLB.
2123 *
2124 * Context: Process context. May allocate using %GFP_KERNEL.
2125 * Return: vm_fault_t value.
2126 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2127 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2128 unsigned long pfn)
2129 {
2130 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2131 }
2132 EXPORT_SYMBOL(vmf_insert_pfn);
2133
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2134 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2135 {
2136 /* these checks mirror the abort conditions in vm_normal_page */
2137 if (vma->vm_flags & VM_MIXEDMAP)
2138 return true;
2139 if (pfn_t_devmap(pfn))
2140 return true;
2141 if (pfn_t_special(pfn))
2142 return true;
2143 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2144 return true;
2145 return false;
2146 }
2147
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot,bool mkwrite)2148 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2149 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2150 bool mkwrite)
2151 {
2152 int err;
2153
2154 BUG_ON(!vm_mixed_ok(vma, pfn));
2155
2156 if (addr < vma->vm_start || addr >= vma->vm_end)
2157 return VM_FAULT_SIGBUS;
2158
2159 track_pfn_insert(vma, &pgprot, pfn);
2160
2161 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2162 return VM_FAULT_SIGBUS;
2163
2164 /*
2165 * If we don't have pte special, then we have to use the pfn_valid()
2166 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2167 * refcount the page if pfn_valid is true (hence insert_page rather
2168 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2169 * without pte special, it would there be refcounted as a normal page.
2170 */
2171 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2172 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2173 struct page *page;
2174
2175 /*
2176 * At this point we are committed to insert_page()
2177 * regardless of whether the caller specified flags that
2178 * result in pfn_t_has_page() == false.
2179 */
2180 page = pfn_to_page(pfn_t_to_pfn(pfn));
2181 err = insert_page(vma, addr, page, pgprot);
2182 } else {
2183 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2184 }
2185
2186 if (err == -ENOMEM)
2187 return VM_FAULT_OOM;
2188 if (err < 0 && err != -EBUSY)
2189 return VM_FAULT_SIGBUS;
2190
2191 return VM_FAULT_NOPAGE;
2192 }
2193
2194 /**
2195 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2196 * @vma: user vma to map to
2197 * @addr: target user address of this page
2198 * @pfn: source kernel pfn
2199 * @pgprot: pgprot flags for the inserted page
2200 *
2201 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2202 * to override pgprot on a per-page basis.
2203 *
2204 * Typically this function should be used by drivers to set caching- and
2205 * encryption bits different than those of @vma->vm_page_prot, because
2206 * the caching- or encryption mode may not be known at mmap() time.
2207 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2208 * to set caching and encryption bits for those vmas (except for COW pages).
2209 * This is ensured by core vm only modifying these page table entries using
2210 * functions that don't touch caching- or encryption bits, using pte_modify()
2211 * if needed. (See for example mprotect()).
2212 * Also when new page-table entries are created, this is only done using the
2213 * fault() callback, and never using the value of vma->vm_page_prot,
2214 * except for page-table entries that point to anonymous pages as the result
2215 * of COW.
2216 *
2217 * Context: Process context. May allocate using %GFP_KERNEL.
2218 * Return: vm_fault_t value.
2219 */
vmf_insert_mixed_prot(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot)2220 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2221 pfn_t pfn, pgprot_t pgprot)
2222 {
2223 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2224 }
2225 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2226
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2227 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2228 pfn_t pfn)
2229 {
2230 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2231 }
2232 EXPORT_SYMBOL(vmf_insert_mixed);
2233
2234 /*
2235 * If the insertion of PTE failed because someone else already added a
2236 * different entry in the mean time, we treat that as success as we assume
2237 * the same entry was actually inserted.
2238 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2239 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2240 unsigned long addr, pfn_t pfn)
2241 {
2242 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2243 }
2244 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2245
2246 /*
2247 * maps a range of physical memory into the requested pages. the old
2248 * mappings are removed. any references to nonexistent pages results
2249 * in null mappings (currently treated as "copy-on-access")
2250 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2251 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2252 unsigned long addr, unsigned long end,
2253 unsigned long pfn, pgprot_t prot)
2254 {
2255 pte_t *pte, *mapped_pte;
2256 spinlock_t *ptl;
2257 int err = 0;
2258
2259 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2260 if (!pte)
2261 return -ENOMEM;
2262 arch_enter_lazy_mmu_mode();
2263 do {
2264 BUG_ON(!pte_none(*pte));
2265 if (!pfn_modify_allowed(pfn, prot)) {
2266 err = -EACCES;
2267 break;
2268 }
2269 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2270 pfn++;
2271 } while (pte++, addr += PAGE_SIZE, addr != end);
2272 arch_leave_lazy_mmu_mode();
2273 pte_unmap_unlock(mapped_pte, ptl);
2274 return err;
2275 }
2276
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2277 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2278 unsigned long addr, unsigned long end,
2279 unsigned long pfn, pgprot_t prot)
2280 {
2281 pmd_t *pmd;
2282 unsigned long next;
2283 int err;
2284
2285 pfn -= addr >> PAGE_SHIFT;
2286 pmd = pmd_alloc(mm, pud, addr);
2287 if (!pmd)
2288 return -ENOMEM;
2289 VM_BUG_ON(pmd_trans_huge(*pmd));
2290 do {
2291 next = pmd_addr_end(addr, end);
2292 err = remap_pte_range(mm, pmd, addr, next,
2293 pfn + (addr >> PAGE_SHIFT), prot);
2294 if (err)
2295 return err;
2296 } while (pmd++, addr = next, addr != end);
2297 return 0;
2298 }
2299
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2300 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2301 unsigned long addr, unsigned long end,
2302 unsigned long pfn, pgprot_t prot)
2303 {
2304 pud_t *pud;
2305 unsigned long next;
2306 int err;
2307
2308 pfn -= addr >> PAGE_SHIFT;
2309 pud = pud_alloc(mm, p4d, addr);
2310 if (!pud)
2311 return -ENOMEM;
2312 do {
2313 next = pud_addr_end(addr, end);
2314 err = remap_pmd_range(mm, pud, addr, next,
2315 pfn + (addr >> PAGE_SHIFT), prot);
2316 if (err)
2317 return err;
2318 } while (pud++, addr = next, addr != end);
2319 return 0;
2320 }
2321
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2322 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2323 unsigned long addr, unsigned long end,
2324 unsigned long pfn, pgprot_t prot)
2325 {
2326 p4d_t *p4d;
2327 unsigned long next;
2328 int err;
2329
2330 pfn -= addr >> PAGE_SHIFT;
2331 p4d = p4d_alloc(mm, pgd, addr);
2332 if (!p4d)
2333 return -ENOMEM;
2334 do {
2335 next = p4d_addr_end(addr, end);
2336 err = remap_pud_range(mm, p4d, addr, next,
2337 pfn + (addr >> PAGE_SHIFT), prot);
2338 if (err)
2339 return err;
2340 } while (p4d++, addr = next, addr != end);
2341 return 0;
2342 }
2343
2344 /**
2345 * remap_pfn_range - remap kernel memory to userspace
2346 * @vma: user vma to map to
2347 * @addr: target page aligned user address to start at
2348 * @pfn: page frame number of kernel physical memory address
2349 * @size: size of mapping area
2350 * @prot: page protection flags for this mapping
2351 *
2352 * Note: this is only safe if the mm semaphore is held when called.
2353 *
2354 * Return: %0 on success, negative error code otherwise.
2355 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2356 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2357 unsigned long pfn, unsigned long size, pgprot_t prot)
2358 {
2359 pgd_t *pgd;
2360 unsigned long next;
2361 unsigned long end = addr + PAGE_ALIGN(size);
2362 struct mm_struct *mm = vma->vm_mm;
2363 unsigned long remap_pfn = pfn;
2364 int err;
2365
2366 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2367 return -EINVAL;
2368
2369 /*
2370 * Physically remapped pages are special. Tell the
2371 * rest of the world about it:
2372 * VM_IO tells people not to look at these pages
2373 * (accesses can have side effects).
2374 * VM_PFNMAP tells the core MM that the base pages are just
2375 * raw PFN mappings, and do not have a "struct page" associated
2376 * with them.
2377 * VM_DONTEXPAND
2378 * Disable vma merging and expanding with mremap().
2379 * VM_DONTDUMP
2380 * Omit vma from core dump, even when VM_IO turned off.
2381 *
2382 * There's a horrible special case to handle copy-on-write
2383 * behaviour that some programs depend on. We mark the "original"
2384 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2385 * See vm_normal_page() for details.
2386 */
2387 if (is_cow_mapping(vma->vm_flags)) {
2388 if (addr != vma->vm_start || end != vma->vm_end)
2389 return -EINVAL;
2390 vma->vm_pgoff = pfn;
2391 }
2392
2393 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2394 if (err)
2395 return -EINVAL;
2396
2397 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2398
2399 BUG_ON(addr >= end);
2400 pfn -= addr >> PAGE_SHIFT;
2401 pgd = pgd_offset(mm, addr);
2402 flush_cache_range(vma, addr, end);
2403 do {
2404 next = pgd_addr_end(addr, end);
2405 err = remap_p4d_range(mm, pgd, addr, next,
2406 pfn + (addr >> PAGE_SHIFT), prot);
2407 if (err)
2408 break;
2409 } while (pgd++, addr = next, addr != end);
2410
2411 if (err)
2412 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2413
2414 return err;
2415 }
2416 EXPORT_SYMBOL(remap_pfn_range);
2417
2418 /**
2419 * vm_iomap_memory - remap memory to userspace
2420 * @vma: user vma to map to
2421 * @start: start of the physical memory to be mapped
2422 * @len: size of area
2423 *
2424 * This is a simplified io_remap_pfn_range() for common driver use. The
2425 * driver just needs to give us the physical memory range to be mapped,
2426 * we'll figure out the rest from the vma information.
2427 *
2428 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2429 * whatever write-combining details or similar.
2430 *
2431 * Return: %0 on success, negative error code otherwise.
2432 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2433 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2434 {
2435 unsigned long vm_len, pfn, pages;
2436
2437 /* Check that the physical memory area passed in looks valid */
2438 if (start + len < start)
2439 return -EINVAL;
2440 /*
2441 * You *really* shouldn't map things that aren't page-aligned,
2442 * but we've historically allowed it because IO memory might
2443 * just have smaller alignment.
2444 */
2445 len += start & ~PAGE_MASK;
2446 pfn = start >> PAGE_SHIFT;
2447 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2448 if (pfn + pages < pfn)
2449 return -EINVAL;
2450
2451 /* We start the mapping 'vm_pgoff' pages into the area */
2452 if (vma->vm_pgoff > pages)
2453 return -EINVAL;
2454 pfn += vma->vm_pgoff;
2455 pages -= vma->vm_pgoff;
2456
2457 /* Can we fit all of the mapping? */
2458 vm_len = vma->vm_end - vma->vm_start;
2459 if (vm_len >> PAGE_SHIFT > pages)
2460 return -EINVAL;
2461
2462 /* Ok, let it rip */
2463 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2464 }
2465 EXPORT_SYMBOL(vm_iomap_memory);
2466
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2467 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2468 unsigned long addr, unsigned long end,
2469 pte_fn_t fn, void *data, bool create,
2470 pgtbl_mod_mask *mask)
2471 {
2472 pte_t *pte;
2473 int err = 0;
2474 spinlock_t *ptl;
2475
2476 if (create) {
2477 pte = (mm == &init_mm) ?
2478 pte_alloc_kernel_track(pmd, addr, mask) :
2479 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2480 if (!pte)
2481 return -ENOMEM;
2482 } else {
2483 pte = (mm == &init_mm) ?
2484 pte_offset_kernel(pmd, addr) :
2485 pte_offset_map_lock(mm, pmd, addr, &ptl);
2486 }
2487
2488 BUG_ON(pmd_huge(*pmd));
2489
2490 arch_enter_lazy_mmu_mode();
2491
2492 if (fn) {
2493 do {
2494 if (create || !pte_none(*pte)) {
2495 err = fn(pte++, addr, data);
2496 if (err)
2497 break;
2498 }
2499 } while (addr += PAGE_SIZE, addr != end);
2500 }
2501 *mask |= PGTBL_PTE_MODIFIED;
2502
2503 arch_leave_lazy_mmu_mode();
2504
2505 if (mm != &init_mm)
2506 pte_unmap_unlock(pte-1, ptl);
2507 return err;
2508 }
2509
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2510 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2511 unsigned long addr, unsigned long end,
2512 pte_fn_t fn, void *data, bool create,
2513 pgtbl_mod_mask *mask)
2514 {
2515 pmd_t *pmd;
2516 unsigned long next;
2517 int err = 0;
2518
2519 BUG_ON(pud_huge(*pud));
2520
2521 if (create) {
2522 pmd = pmd_alloc_track(mm, pud, addr, mask);
2523 if (!pmd)
2524 return -ENOMEM;
2525 } else {
2526 pmd = pmd_offset(pud, addr);
2527 }
2528 do {
2529 next = pmd_addr_end(addr, end);
2530 if (create || !pmd_none_or_clear_bad(pmd)) {
2531 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2532 create, mask);
2533 if (err)
2534 break;
2535 }
2536 } while (pmd++, addr = next, addr != end);
2537 return err;
2538 }
2539
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2540 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2541 unsigned long addr, unsigned long end,
2542 pte_fn_t fn, void *data, bool create,
2543 pgtbl_mod_mask *mask)
2544 {
2545 pud_t *pud;
2546 unsigned long next;
2547 int err = 0;
2548
2549 if (create) {
2550 pud = pud_alloc_track(mm, p4d, addr, mask);
2551 if (!pud)
2552 return -ENOMEM;
2553 } else {
2554 pud = pud_offset(p4d, addr);
2555 }
2556 do {
2557 next = pud_addr_end(addr, end);
2558 if (create || !pud_none_or_clear_bad(pud)) {
2559 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2560 create, mask);
2561 if (err)
2562 break;
2563 }
2564 } while (pud++, addr = next, addr != end);
2565 return err;
2566 }
2567
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2568 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2569 unsigned long addr, unsigned long end,
2570 pte_fn_t fn, void *data, bool create,
2571 pgtbl_mod_mask *mask)
2572 {
2573 p4d_t *p4d;
2574 unsigned long next;
2575 int err = 0;
2576
2577 if (create) {
2578 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2579 if (!p4d)
2580 return -ENOMEM;
2581 } else {
2582 p4d = p4d_offset(pgd, addr);
2583 }
2584 do {
2585 next = p4d_addr_end(addr, end);
2586 if (create || !p4d_none_or_clear_bad(p4d)) {
2587 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2588 create, mask);
2589 if (err)
2590 break;
2591 }
2592 } while (p4d++, addr = next, addr != end);
2593 return err;
2594 }
2595
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2596 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2597 unsigned long size, pte_fn_t fn,
2598 void *data, bool create)
2599 {
2600 pgd_t *pgd;
2601 unsigned long start = addr, next;
2602 unsigned long end = addr + size;
2603 pgtbl_mod_mask mask = 0;
2604 int err = 0;
2605
2606 if (WARN_ON(addr >= end))
2607 return -EINVAL;
2608
2609 pgd = pgd_offset(mm, addr);
2610 do {
2611 next = pgd_addr_end(addr, end);
2612 if (!create && pgd_none_or_clear_bad(pgd))
2613 continue;
2614 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2615 if (err)
2616 break;
2617 } while (pgd++, addr = next, addr != end);
2618
2619 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2620 arch_sync_kernel_mappings(start, start + size);
2621
2622 return err;
2623 }
2624
2625 /*
2626 * Scan a region of virtual memory, filling in page tables as necessary
2627 * and calling a provided function on each leaf page table.
2628 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2629 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2630 unsigned long size, pte_fn_t fn, void *data)
2631 {
2632 return __apply_to_page_range(mm, addr, size, fn, data, true);
2633 }
2634 EXPORT_SYMBOL_GPL(apply_to_page_range);
2635
2636 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
pte_spinlock(struct vm_fault * vmf)2637 static bool pte_spinlock(struct vm_fault *vmf)
2638 {
2639 bool ret = false;
2640 pmd_t pmdval;
2641
2642 /* Check if vma is still valid */
2643 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE)) {
2644 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2645 spin_lock(vmf->ptl);
2646 return true;
2647 }
2648
2649 local_irq_disable();
2650 if (vma_has_changed(vmf)) {
2651 trace_spf_vma_changed(_RET_IP_, vmf->vma, vmf->address);
2652 goto out;
2653 }
2654
2655 /*
2656 * We check if the pmd value is still the same to ensure that there
2657 * is not a huge collapse operation in progress in our back.
2658 * It also ensures that pmd was not cleared by pmd_clear in
2659 * free_pte_range and ptl is still valid.
2660 */
2661 pmdval = READ_ONCE(*vmf->pmd);
2662 if (!pmd_same(pmdval, vmf->orig_pmd)) {
2663 trace_spf_pmd_changed(_RET_IP_, vmf->vma, vmf->address);
2664 goto out;
2665 }
2666
2667 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, &pmdval);
2668 if (unlikely(!spin_trylock(vmf->ptl))) {
2669 trace_spf_pte_lock(_RET_IP_, vmf->vma, vmf->address);
2670 goto out;
2671 }
2672
2673 /*
2674 * The check below will fail if pte_spinlock passed its ptl barrier
2675 * before we took the ptl lock.
2676 */
2677 if (vma_has_changed(vmf)) {
2678 spin_unlock(vmf->ptl);
2679 trace_spf_vma_changed(_RET_IP_, vmf->vma, vmf->address);
2680 goto out;
2681 }
2682
2683 ret = true;
2684 out:
2685 local_irq_enable();
2686 return ret;
2687 }
2688
__pte_map_lock_speculative(struct vm_fault * vmf,unsigned long addr)2689 static bool __pte_map_lock_speculative(struct vm_fault *vmf, unsigned long addr)
2690 {
2691 bool ret = false;
2692 pte_t *pte;
2693 spinlock_t *ptl;
2694 pmd_t pmdval;
2695
2696 /*
2697 * The first vma_has_changed() guarantees the page-tables are still
2698 * valid, having IRQs disabled ensures they stay around, hence the
2699 * second vma_has_changed() to make sure they are still valid once
2700 * we've got the lock. After that a concurrent zap_pte_range() will
2701 * block on the PTL and thus we're safe.
2702 */
2703 local_irq_disable();
2704 if (vma_has_changed(vmf)) {
2705 trace_spf_vma_changed(_RET_IP_, vmf->vma, addr);
2706 goto out;
2707 }
2708
2709 /*
2710 * We check if the pmd value is still the same to ensure that there
2711 * is not a huge collapse operation in progress in our back.
2712 */
2713 pmdval = READ_ONCE(*vmf->pmd);
2714 if (!pmd_same(pmdval, vmf->orig_pmd)) {
2715 trace_spf_pmd_changed(_RET_IP_, vmf->vma, addr);
2716 goto out;
2717 }
2718
2719 /*
2720 * Same as pte_offset_map_lock() except that we call
2721 * spin_trylock() in place of spin_lock() to avoid race with
2722 * unmap path which may have the lock and wait for this CPU
2723 * to invalidate TLB but this CPU has irq disabled.
2724 * Since we are in a speculative patch, accept it could fail
2725 */
2726 ptl = pte_lockptr(vmf->vma->vm_mm, &pmdval);
2727 pte = pte_offset_map(&pmdval, addr);
2728 if (unlikely(!spin_trylock(ptl))) {
2729 pte_unmap(pte);
2730 trace_spf_pte_lock(_RET_IP_, vmf->vma, addr);
2731 goto out;
2732 }
2733
2734 /*
2735 * The check below will fail if __pte_map_lock_speculative passed its ptl
2736 * barrier before we took the ptl lock.
2737 */
2738 if (vma_has_changed(vmf)) {
2739 pte_unmap_unlock(pte, ptl);
2740 trace_spf_vma_changed(_RET_IP_, vmf->vma, addr);
2741 goto out;
2742 }
2743
2744 vmf->pte = pte;
2745 vmf->ptl = ptl;
2746 ret = true;
2747 out:
2748 local_irq_enable();
2749 return ret;
2750 }
2751
pte_map_lock(struct vm_fault * vmf)2752 static bool pte_map_lock(struct vm_fault *vmf)
2753 {
2754 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE)) {
2755 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
2756 vmf->address, &vmf->ptl);
2757 return true;
2758 }
2759
2760 return __pte_map_lock_speculative(vmf, vmf->address);
2761 }
2762
pte_map_lock_addr(struct vm_fault * vmf,unsigned long addr)2763 bool pte_map_lock_addr(struct vm_fault *vmf, unsigned long addr)
2764 {
2765 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE)) {
2766 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
2767 addr, &vmf->ptl);
2768 return true;
2769 }
2770
2771 return __pte_map_lock_speculative(vmf, addr);
2772 }
2773
2774 static bool __read_mostly allow_file_spec_access;
allow_file_spec_access_setup(char * str)2775 static int __init allow_file_spec_access_setup(char *str)
2776 {
2777 allow_file_spec_access = true;
2778 return 1;
2779 }
2780 __setup("allow_file_spec_access", allow_file_spec_access_setup);
2781
vmf_allows_speculation(struct vm_fault * vmf)2782 static bool vmf_allows_speculation(struct vm_fault *vmf)
2783 {
2784 if (vma_is_anonymous(vmf->vma)) {
2785 /*
2786 * __anon_vma_prepare() requires the mmap_sem to be held
2787 * because vm_next and vm_prev must be safe. This can't be
2788 * guaranteed in the speculative path.
2789 */
2790 if (!vmf->vma->anon_vma) {
2791 trace_spf_vma_notsup(_RET_IP_, vmf->vma, vmf->address);
2792 return false;
2793 }
2794 return true;
2795 }
2796
2797 if (!allow_file_spec_access) {
2798 /*
2799 * Can't call vm_ops service has we don't know what they would
2800 * do with the VMA.
2801 * This include huge page from hugetlbfs.
2802 */
2803 trace_spf_vma_notsup(_RET_IP_, vmf->vma, vmf->address);
2804 return false;
2805 }
2806
2807 if (!(vmf->vma->vm_flags & VM_SHARED) &&
2808 (vmf->flags & FAULT_FLAG_WRITE) &&
2809 !vmf->vma->anon_vma) {
2810 /*
2811 * non-anonymous private COW without anon_vma.
2812 * See above.
2813 */
2814 trace_spf_vma_notsup(_RET_IP_, vmf->vma, vmf->address);
2815 return false;
2816 }
2817
2818 if (vmf->vma->vm_ops->allow_speculation &&
2819 vmf->vma->vm_ops->allow_speculation()) {
2820 return true;
2821 }
2822
2823 trace_spf_vma_notsup(_RET_IP_, vmf->vma, vmf->address);
2824 return false;
2825 }
2826
2827 #else
pte_spinlock(struct vm_fault * vmf)2828 static inline bool pte_spinlock(struct vm_fault *vmf)
2829 {
2830 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2831 spin_lock(vmf->ptl);
2832 return true;
2833 }
2834
pte_map_lock(struct vm_fault * vmf)2835 static inline bool pte_map_lock(struct vm_fault *vmf)
2836 {
2837 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
2838 vmf->address, &vmf->ptl);
2839 return true;
2840 }
2841
pte_map_lock_addr(struct vm_fault * vmf,unsigned long addr)2842 inline bool pte_map_lock_addr(struct vm_fault *vmf, unsigned long addr)
2843 {
2844 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
2845 addr, &vmf->ptl);
2846 return true;
2847 }
2848
vmf_allows_speculation(struct vm_fault * vmf)2849 static inline bool vmf_allows_speculation(struct vm_fault *vmf)
2850 {
2851 return false;
2852 }
2853 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
2854
2855 /*
2856 * Scan a region of virtual memory, calling a provided function on
2857 * each leaf page table where it exists.
2858 *
2859 * Unlike apply_to_page_range, this does _not_ fill in page tables
2860 * where they are absent.
2861 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2862 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2863 unsigned long size, pte_fn_t fn, void *data)
2864 {
2865 return __apply_to_page_range(mm, addr, size, fn, data, false);
2866 }
2867 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2868
2869 /*
2870 * handle_pte_fault chooses page fault handler according to an entry which was
2871 * read non-atomically. Before making any commitment, on those architectures
2872 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2873 * parts, do_swap_page must check under lock before unmapping the pte and
2874 * proceeding (but do_wp_page is only called after already making such a check;
2875 * and do_anonymous_page can safely check later on).
2876 *
2877 * pte_unmap_same() returns:
2878 * 0 if the PTE are the same
2879 * VM_FAULT_PTNOTSAME if the PTE are different
2880 * VM_FAULT_RETRY if the VMA has changed in our back during
2881 * a speculative page fault handling.
2882 */
pte_unmap_same(struct vm_fault * vmf)2883 static inline int pte_unmap_same(struct vm_fault *vmf)
2884 {
2885 int ret = 0;
2886
2887 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2888 if (sizeof(pte_t) > sizeof(unsigned long)) {
2889 if (pte_spinlock(vmf)) {
2890 if (!pte_same(*vmf->pte, vmf->orig_pte))
2891 ret = VM_FAULT_PTNOTSAME;
2892 spin_unlock(vmf->ptl);
2893 } else
2894 ret = VM_FAULT_RETRY;
2895 }
2896 #endif
2897 pte_unmap(vmf->pte);
2898 return ret;
2899 }
2900
cow_user_page(struct page * dst,struct page * src,struct vm_fault * vmf)2901 static inline bool cow_user_page(struct page *dst, struct page *src,
2902 struct vm_fault *vmf)
2903 {
2904 bool ret;
2905 void *kaddr;
2906 void __user *uaddr;
2907 bool locked = false;
2908 struct vm_area_struct *vma = vmf->vma;
2909 struct mm_struct *mm = vma->vm_mm;
2910 unsigned long addr = vmf->address;
2911
2912 if (likely(src)) {
2913 copy_user_highpage(dst, src, addr, vma);
2914 return true;
2915 }
2916
2917 /*
2918 * If the source page was a PFN mapping, we don't have
2919 * a "struct page" for it. We do a best-effort copy by
2920 * just copying from the original user address. If that
2921 * fails, we just zero-fill it. Live with it.
2922 */
2923 kaddr = kmap_atomic(dst);
2924 uaddr = (void __user *)(addr & PAGE_MASK);
2925
2926 /*
2927 * On architectures with software "accessed" bits, we would
2928 * take a double page fault, so mark it accessed here.
2929 */
2930 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2931 pte_t entry;
2932
2933 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2934 locked = true;
2935 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2936 /*
2937 * Other thread has already handled the fault
2938 * and update local tlb only
2939 */
2940 update_mmu_tlb(vma, addr, vmf->pte);
2941 ret = false;
2942 goto pte_unlock;
2943 }
2944
2945 entry = pte_mkyoung(vmf->orig_pte);
2946 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2947 update_mmu_cache(vma, addr, vmf->pte);
2948 }
2949
2950 /*
2951 * This really shouldn't fail, because the page is there
2952 * in the page tables. But it might just be unreadable,
2953 * in which case we just give up and fill the result with
2954 * zeroes.
2955 */
2956 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2957 if (locked)
2958 goto warn;
2959
2960 /* Re-validate under PTL if the page is still mapped */
2961 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2962 locked = true;
2963 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2964 /* The PTE changed under us, update local tlb */
2965 update_mmu_tlb(vma, addr, vmf->pte);
2966 ret = false;
2967 goto pte_unlock;
2968 }
2969
2970 /*
2971 * The same page can be mapped back since last copy attempt.
2972 * Try to copy again under PTL.
2973 */
2974 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2975 /*
2976 * Give a warn in case there can be some obscure
2977 * use-case
2978 */
2979 warn:
2980 WARN_ON_ONCE(1);
2981 clear_page(kaddr);
2982 }
2983 }
2984
2985 ret = true;
2986
2987 pte_unlock:
2988 if (locked)
2989 pte_unmap_unlock(vmf->pte, vmf->ptl);
2990 kunmap_atomic(kaddr);
2991 flush_dcache_page(dst);
2992
2993 return ret;
2994 }
2995
__get_fault_gfp_mask(struct vm_area_struct * vma)2996 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2997 {
2998 struct file *vm_file = vma->vm_file;
2999
3000 if (vm_file)
3001 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3002
3003 /*
3004 * Special mappings (e.g. VDSO) do not have any file so fake
3005 * a default GFP_KERNEL for them.
3006 */
3007 return GFP_KERNEL;
3008 }
3009
3010 /*
3011 * Notify the address space that the page is about to become writable so that
3012 * it can prohibit this or wait for the page to get into an appropriate state.
3013 *
3014 * We do this without the lock held, so that it can sleep if it needs to.
3015 */
do_page_mkwrite(struct vm_fault * vmf)3016 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
3017 {
3018 vm_fault_t ret;
3019 struct page *page = vmf->page;
3020 unsigned int old_flags = vmf->flags;
3021
3022 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3023
3024 if (vmf->vma->vm_file &&
3025 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3026 return VM_FAULT_SIGBUS;
3027
3028 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3029 /* Restore original flags so that caller is not surprised */
3030 vmf->flags = old_flags;
3031 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3032 return ret;
3033 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3034 lock_page(page);
3035 if (!page->mapping) {
3036 unlock_page(page);
3037 return 0; /* retry */
3038 }
3039 ret |= VM_FAULT_LOCKED;
3040 } else
3041 VM_BUG_ON_PAGE(!PageLocked(page), page);
3042 return ret;
3043 }
3044
3045 /*
3046 * Handle dirtying of a page in shared file mapping on a write fault.
3047 *
3048 * The function expects the page to be locked and unlocks it.
3049 */
fault_dirty_shared_page(struct vm_fault * vmf)3050 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3051 {
3052 struct vm_area_struct *vma = vmf->vma;
3053 struct address_space *mapping;
3054 struct page *page = vmf->page;
3055 bool dirtied;
3056 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3057
3058 dirtied = set_page_dirty(page);
3059 VM_BUG_ON_PAGE(PageAnon(page), page);
3060 /*
3061 * Take a local copy of the address_space - page.mapping may be zeroed
3062 * by truncate after unlock_page(). The address_space itself remains
3063 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3064 * release semantics to prevent the compiler from undoing this copying.
3065 */
3066 mapping = page_rmapping(page);
3067 unlock_page(page);
3068
3069 if (!page_mkwrite)
3070 file_update_time(vma->vm_file);
3071
3072 /*
3073 * Throttle page dirtying rate down to writeback speed.
3074 *
3075 * mapping may be NULL here because some device drivers do not
3076 * set page.mapping but still dirty their pages
3077 *
3078 * Drop the mmap_lock before waiting on IO, if we can. The file
3079 * is pinning the mapping, as per above.
3080 */
3081 if ((dirtied || page_mkwrite) && mapping) {
3082 struct file *fpin;
3083
3084 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3085 balance_dirty_pages_ratelimited(mapping);
3086 if (fpin) {
3087 fput(fpin);
3088 return VM_FAULT_RETRY;
3089 }
3090 }
3091
3092 return 0;
3093 }
3094
3095 /*
3096 * Handle write page faults for pages that can be reused in the current vma
3097 *
3098 * This can happen either due to the mapping being with the VM_SHARED flag,
3099 * or due to us being the last reference standing to the page. In either
3100 * case, all we need to do here is to mark the page as writable and update
3101 * any related book-keeping.
3102 */
wp_page_reuse(struct vm_fault * vmf)3103 static inline void wp_page_reuse(struct vm_fault *vmf)
3104 __releases(vmf->ptl)
3105 {
3106 struct vm_area_struct *vma = vmf->vma;
3107 struct page *page = vmf->page;
3108 pte_t entry;
3109 /*
3110 * Clear the pages cpupid information as the existing
3111 * information potentially belongs to a now completely
3112 * unrelated process.
3113 */
3114 if (page)
3115 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3116
3117 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3118 entry = pte_mkyoung(vmf->orig_pte);
3119 entry = maybe_mkwrite(pte_mkdirty(entry), vmf->vma_flags);
3120 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3121 update_mmu_cache(vma, vmf->address, vmf->pte);
3122 pte_unmap_unlock(vmf->pte, vmf->ptl);
3123 count_vm_event(PGREUSE);
3124 }
3125
3126 /*
3127 * Handle the case of a page which we actually need to copy to a new page.
3128 *
3129 * Called with mmap_lock locked and the old page referenced, but
3130 * without the ptl held.
3131 *
3132 * High level logic flow:
3133 *
3134 * - Allocate a page, copy the content of the old page to the new one.
3135 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3136 * - Take the PTL. If the pte changed, bail out and release the allocated page
3137 * - If the pte is still the way we remember it, update the page table and all
3138 * relevant references. This includes dropping the reference the page-table
3139 * held to the old page, as well as updating the rmap.
3140 * - In any case, unlock the PTL and drop the reference we took to the old page.
3141 */
wp_page_copy(struct vm_fault * vmf)3142 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3143 {
3144 struct vm_area_struct *vma = vmf->vma;
3145 struct mm_struct *mm = vma->vm_mm;
3146 struct page *old_page = vmf->page;
3147 struct page *new_page = NULL;
3148 pte_t entry;
3149 int page_copied = 0;
3150 struct mmu_notifier_range range;
3151 vm_fault_t ret = VM_FAULT_OOM;
3152
3153 if (unlikely(anon_vma_prepare(vma)))
3154 goto out;
3155
3156 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3157 new_page = alloc_zeroed_user_highpage_movable(vma,
3158 vmf->address);
3159 if (!new_page)
3160 goto out;
3161 } else {
3162 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3163 vmf->address);
3164 if (!new_page)
3165 goto out;
3166
3167 if (!cow_user_page(new_page, old_page, vmf)) {
3168 /*
3169 * COW failed, if the fault was solved by other,
3170 * it's fine. If not, userspace would re-fault on
3171 * the same address and we will handle the fault
3172 * from the second attempt.
3173 */
3174 put_page(new_page);
3175 if (old_page)
3176 put_page(old_page);
3177 return 0;
3178 }
3179 trace_android_vh_cow_user_page(vmf, new_page);
3180 }
3181
3182 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
3183 goto out_free_new;
3184 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3185
3186 __SetPageUptodate(new_page);
3187
3188 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3189 vmf->address & PAGE_MASK,
3190 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3191 mmu_notifier_invalidate_range_start(&range);
3192
3193 /*
3194 * Re-check the pte - we dropped the lock
3195 */
3196 if (!pte_map_lock(vmf)) {
3197 ret = VM_FAULT_RETRY;
3198 goto out_invalidate_end;
3199 }
3200 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3201 if (old_page) {
3202 if (!PageAnon(old_page)) {
3203 dec_mm_counter_fast(mm,
3204 mm_counter_file(old_page));
3205 inc_mm_counter_fast(mm, MM_ANONPAGES);
3206 }
3207 } else {
3208 inc_mm_counter_fast(mm, MM_ANONPAGES);
3209 }
3210 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3211 entry = mk_pte(new_page, vmf->vma_page_prot);
3212 entry = pte_sw_mkyoung(entry);
3213 entry = maybe_mkwrite(pte_mkdirty(entry), vmf->vma_flags);
3214 /*
3215 * Clear the pte entry and flush it first, before updating the
3216 * pte with the new entry. This will avoid a race condition
3217 * seen in the presence of one thread doing SMC and another
3218 * thread doing COW.
3219 */
3220 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3221 __page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3222 __lru_cache_add_inactive_or_unevictable(new_page, vmf->vma_flags);
3223 /*
3224 * We call the notify macro here because, when using secondary
3225 * mmu page tables (such as kvm shadow page tables), we want the
3226 * new page to be mapped directly into the secondary page table.
3227 */
3228 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3229 update_mmu_cache(vma, vmf->address, vmf->pte);
3230 if (old_page) {
3231 /*
3232 * Only after switching the pte to the new page may
3233 * we remove the mapcount here. Otherwise another
3234 * process may come and find the rmap count decremented
3235 * before the pte is switched to the new page, and
3236 * "reuse" the old page writing into it while our pte
3237 * here still points into it and can be read by other
3238 * threads.
3239 *
3240 * The critical issue is to order this
3241 * page_remove_rmap with the ptp_clear_flush above.
3242 * Those stores are ordered by (if nothing else,)
3243 * the barrier present in the atomic_add_negative
3244 * in page_remove_rmap.
3245 *
3246 * Then the TLB flush in ptep_clear_flush ensures that
3247 * no process can access the old page before the
3248 * decremented mapcount is visible. And the old page
3249 * cannot be reused until after the decremented
3250 * mapcount is visible. So transitively, TLBs to
3251 * old page will be flushed before it can be reused.
3252 */
3253 page_remove_rmap(old_page, false);
3254 }
3255
3256 /* Free the old page.. */
3257 new_page = old_page;
3258 page_copied = 1;
3259 } else {
3260 update_mmu_tlb(vma, vmf->address, vmf->pte);
3261 }
3262
3263 if (new_page)
3264 put_page(new_page);
3265
3266 pte_unmap_unlock(vmf->pte, vmf->ptl);
3267 /*
3268 * No need to double call mmu_notifier->invalidate_range() callback as
3269 * the above ptep_clear_flush_notify() did already call it.
3270 */
3271 mmu_notifier_invalidate_range_only_end(&range);
3272 if (old_page) {
3273 /*
3274 * Don't let another task, with possibly unlocked vma,
3275 * keep the mlocked page.
3276 */
3277 if (page_copied && (vmf->vma_flags & VM_LOCKED)) {
3278 lock_page(old_page); /* LRU manipulation */
3279 if (PageMlocked(old_page))
3280 munlock_vma_page(old_page);
3281 unlock_page(old_page);
3282 }
3283 put_page(old_page);
3284 }
3285 return page_copied ? VM_FAULT_WRITE : 0;
3286 out_invalidate_end:
3287 mmu_notifier_invalidate_range_only_end(&range);
3288 out_free_new:
3289 put_page(new_page);
3290 out:
3291 if (old_page)
3292 put_page(old_page);
3293 return ret;
3294 }
3295
3296 /**
3297 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3298 * writeable once the page is prepared
3299 *
3300 * @vmf: structure describing the fault
3301 *
3302 * This function handles all that is needed to finish a write page fault in a
3303 * shared mapping due to PTE being read-only once the mapped page is prepared.
3304 * It handles locking of PTE and modifying it.
3305 *
3306 * The function expects the page to be locked or other protection against
3307 * concurrent faults / writeback (such as DAX radix tree locks).
3308 *
3309 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3310 * we acquired PTE lock.
3311 */
finish_mkwrite_fault(struct vm_fault * vmf)3312 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3313 {
3314 WARN_ON_ONCE(!(vmf->vma_flags & VM_SHARED));
3315 if (!pte_map_lock(vmf))
3316 return VM_FAULT_RETRY;
3317 /*
3318 * We might have raced with another page fault while we released the
3319 * pte_offset_map_lock.
3320 */
3321 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3322 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3323 pte_unmap_unlock(vmf->pte, vmf->ptl);
3324 return VM_FAULT_NOPAGE;
3325 }
3326 wp_page_reuse(vmf);
3327 return 0;
3328 }
3329
3330 /*
3331 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3332 * mapping
3333 */
wp_pfn_shared(struct vm_fault * vmf)3334 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3335 {
3336 struct vm_area_struct *vma = vmf->vma;
3337
3338 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3339 vm_fault_t ret;
3340
3341 pte_unmap_unlock(vmf->pte, vmf->ptl);
3342 vmf->flags |= FAULT_FLAG_MKWRITE;
3343 ret = vma->vm_ops->pfn_mkwrite(vmf);
3344 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3345 return ret;
3346 return finish_mkwrite_fault(vmf);
3347 }
3348 wp_page_reuse(vmf);
3349 return VM_FAULT_WRITE;
3350 }
3351
wp_page_shared(struct vm_fault * vmf)3352 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3353 __releases(vmf->ptl)
3354 {
3355 struct vm_area_struct *vma = vmf->vma;
3356 vm_fault_t ret = VM_FAULT_WRITE;
3357
3358 get_page(vmf->page);
3359
3360 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3361 vm_fault_t tmp;
3362
3363 pte_unmap_unlock(vmf->pte, vmf->ptl);
3364 tmp = do_page_mkwrite(vmf);
3365 if (unlikely(!tmp || (tmp &
3366 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3367 put_page(vmf->page);
3368 return tmp;
3369 }
3370 tmp = finish_mkwrite_fault(vmf);
3371 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3372 unlock_page(vmf->page);
3373 put_page(vmf->page);
3374 return tmp;
3375 }
3376 } else {
3377 wp_page_reuse(vmf);
3378 lock_page(vmf->page);
3379 }
3380 ret |= fault_dirty_shared_page(vmf);
3381 put_page(vmf->page);
3382
3383 return ret;
3384 }
3385
3386 /*
3387 * This routine handles present pages, when users try to write
3388 * to a shared page. It is done by copying the page to a new address
3389 * and decrementing the shared-page counter for the old page.
3390 *
3391 * Note that this routine assumes that the protection checks have been
3392 * done by the caller (the low-level page fault routine in most cases).
3393 * Thus we can safely just mark it writable once we've done any necessary
3394 * COW.
3395 *
3396 * We also mark the page dirty at this point even though the page will
3397 * change only once the write actually happens. This avoids a few races,
3398 * and potentially makes it more efficient.
3399 *
3400 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3401 * but allow concurrent faults), with pte both mapped and locked.
3402 * We return with mmap_lock still held, but pte unmapped and unlocked.
3403 */
do_wp_page(struct vm_fault * vmf)3404 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3405 __releases(vmf->ptl)
3406 {
3407 struct vm_area_struct *vma = vmf->vma;
3408
3409 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3410 pte_unmap_unlock(vmf->pte, vmf->ptl);
3411 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
3412 return VM_FAULT_RETRY;
3413 return handle_userfault(vmf, VM_UFFD_WP);
3414 }
3415
3416 /*
3417 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3418 * is flushed in this case before copying.
3419 */
3420 if (unlikely(userfaultfd_wp(vmf->vma) &&
3421 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3422 flush_tlb_page(vmf->vma, vmf->address);
3423
3424 vmf->page = _vm_normal_page(vma, vmf->address, vmf->orig_pte,
3425 vmf->vma_flags);
3426 if (!vmf->page) {
3427 /*
3428 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3429 * VM_PFNMAP VMA.
3430 *
3431 * We should not cow pages in a shared writeable mapping.
3432 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3433 */
3434 if ((vmf->vma_flags & (VM_WRITE|VM_SHARED)) ==
3435 (VM_WRITE|VM_SHARED))
3436 return wp_pfn_shared(vmf);
3437
3438 pte_unmap_unlock(vmf->pte, vmf->ptl);
3439 return wp_page_copy(vmf);
3440 }
3441
3442 /*
3443 * Take out anonymous pages first, anonymous shared vmas are
3444 * not dirty accountable.
3445 */
3446 if (PageAnon(vmf->page)) {
3447 struct page *page = vmf->page;
3448
3449 /* PageKsm() doesn't necessarily raise the page refcount */
3450 if (PageKsm(page) || page_count(page) != 1)
3451 goto copy;
3452 if (!trylock_page(page))
3453 goto copy;
3454 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3455 unlock_page(page);
3456 goto copy;
3457 }
3458 /*
3459 * Ok, we've got the only map reference, and the only
3460 * page count reference, and the page is locked,
3461 * it's dark out, and we're wearing sunglasses. Hit it.
3462 */
3463 unlock_page(page);
3464 wp_page_reuse(vmf);
3465 return VM_FAULT_WRITE;
3466 } else if (unlikely((vmf->vma_flags & (VM_WRITE|VM_SHARED)) ==
3467 (VM_WRITE|VM_SHARED))) {
3468 return wp_page_shared(vmf);
3469 }
3470 copy:
3471 /*
3472 * Ok, we need to copy. Oh, well..
3473 */
3474 get_page(vmf->page);
3475
3476 pte_unmap_unlock(vmf->pte, vmf->ptl);
3477 return wp_page_copy(vmf);
3478 }
3479
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3480 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3481 unsigned long start_addr, unsigned long end_addr,
3482 struct zap_details *details)
3483 {
3484 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3485 }
3486
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)3487 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3488 struct zap_details *details)
3489 {
3490 struct vm_area_struct *vma;
3491 pgoff_t vba, vea, zba, zea;
3492
3493 vma_interval_tree_foreach(vma, root,
3494 details->first_index, details->last_index) {
3495
3496 vba = vma->vm_pgoff;
3497 vea = vba + vma_pages(vma) - 1;
3498 zba = details->first_index;
3499 if (zba < vba)
3500 zba = vba;
3501 zea = details->last_index;
3502 if (zea > vea)
3503 zea = vea;
3504
3505 unmap_mapping_range_vma(vma,
3506 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3507 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3508 details);
3509 }
3510 }
3511
3512 /**
3513 * unmap_mapping_page() - Unmap single page from processes.
3514 * @page: The locked page to be unmapped.
3515 *
3516 * Unmap this page from any userspace process which still has it mmaped.
3517 * Typically, for efficiency, the range of nearby pages has already been
3518 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3519 * truncation or invalidation holds the lock on a page, it may find that
3520 * the page has been remapped again: and then uses unmap_mapping_page()
3521 * to unmap it finally.
3522 */
unmap_mapping_page(struct page * page)3523 void unmap_mapping_page(struct page *page)
3524 {
3525 struct address_space *mapping = page->mapping;
3526 struct zap_details details = { };
3527
3528 VM_BUG_ON(!PageLocked(page));
3529 VM_BUG_ON(PageTail(page));
3530
3531 details.check_mapping = mapping;
3532 details.first_index = page->index;
3533 details.last_index = page->index + thp_nr_pages(page) - 1;
3534 details.single_page = page;
3535
3536 i_mmap_lock_write(mapping);
3537 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3538 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3539 i_mmap_unlock_write(mapping);
3540 }
3541
3542 /**
3543 * unmap_mapping_pages() - Unmap pages from processes.
3544 * @mapping: The address space containing pages to be unmapped.
3545 * @start: Index of first page to be unmapped.
3546 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3547 * @even_cows: Whether to unmap even private COWed pages.
3548 *
3549 * Unmap the pages in this address space from any userspace process which
3550 * has them mmaped. Generally, you want to remove COWed pages as well when
3551 * a file is being truncated, but not when invalidating pages from the page
3552 * cache.
3553 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3554 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3555 pgoff_t nr, bool even_cows)
3556 {
3557 struct zap_details details = { };
3558
3559 details.check_mapping = even_cows ? NULL : mapping;
3560 details.first_index = start;
3561 details.last_index = start + nr - 1;
3562 if (details.last_index < details.first_index)
3563 details.last_index = ULONG_MAX;
3564
3565 i_mmap_lock_write(mapping);
3566 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3567 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3568 i_mmap_unlock_write(mapping);
3569 }
3570
3571 /**
3572 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3573 * address_space corresponding to the specified byte range in the underlying
3574 * file.
3575 *
3576 * @mapping: the address space containing mmaps to be unmapped.
3577 * @holebegin: byte in first page to unmap, relative to the start of
3578 * the underlying file. This will be rounded down to a PAGE_SIZE
3579 * boundary. Note that this is different from truncate_pagecache(), which
3580 * must keep the partial page. In contrast, we must get rid of
3581 * partial pages.
3582 * @holelen: size of prospective hole in bytes. This will be rounded
3583 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3584 * end of the file.
3585 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3586 * but 0 when invalidating pagecache, don't throw away private data.
3587 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3588 void unmap_mapping_range(struct address_space *mapping,
3589 loff_t const holebegin, loff_t const holelen, int even_cows)
3590 {
3591 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3592 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3593
3594 /* Check for overflow. */
3595 if (sizeof(holelen) > sizeof(hlen)) {
3596 long long holeend =
3597 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3598 if (holeend & ~(long long)ULONG_MAX)
3599 hlen = ULONG_MAX - hba + 1;
3600 }
3601
3602 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3603 }
3604 EXPORT_SYMBOL(unmap_mapping_range);
3605
3606 /*
3607 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3608 * but allow concurrent faults), and pte mapped but not yet locked.
3609 * We return with pte unmapped and unlocked.
3610 *
3611 * We return with the mmap_lock locked or unlocked in the same cases
3612 * as does filemap_fault().
3613 */
do_swap_page(struct vm_fault * vmf)3614 vm_fault_t do_swap_page(struct vm_fault *vmf)
3615 {
3616 struct vm_area_struct *vma = vmf->vma;
3617 struct page *page = NULL, *swapcache;
3618 swp_entry_t entry;
3619 pte_t pte;
3620 int locked;
3621 int exclusive = 0;
3622 vm_fault_t ret;
3623 void *shadow = NULL;
3624
3625 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
3626 bool allow_swap_spf = false;
3627
3628 /* ksm_might_need_to_copy() needs a stable VMA, spf can't be used */
3629 #ifndef CONFIG_KSM
3630 trace_android_vh_do_swap_page_spf(&allow_swap_spf);
3631 #endif
3632 if (!allow_swap_spf) {
3633 pte_unmap(vmf->pte);
3634 return VM_FAULT_RETRY;
3635 }
3636 }
3637
3638 ret = pte_unmap_same(vmf);
3639 if (ret) {
3640 /*
3641 * If pte != orig_pte, this means another thread did the
3642 * swap operation in our back.
3643 * So nothing else to do.
3644 */
3645 if (ret == VM_FAULT_PTNOTSAME)
3646 ret = 0;
3647 goto out;
3648 }
3649
3650 entry = pte_to_swp_entry(vmf->orig_pte);
3651 if (unlikely(non_swap_entry(entry))) {
3652 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
3653 ret = VM_FAULT_RETRY;
3654 goto out;
3655 }
3656 if (is_migration_entry(entry)) {
3657 migration_entry_wait(vma->vm_mm, vmf->pmd,
3658 vmf->address);
3659 } else if (is_device_private_entry(entry)) {
3660 vmf->page = device_private_entry_to_page(entry);
3661 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3662 } else if (is_hwpoison_entry(entry)) {
3663 ret = VM_FAULT_HWPOISON;
3664 } else {
3665 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3666 ret = VM_FAULT_SIGBUS;
3667 }
3668 goto out;
3669 }
3670
3671
3672 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3673 page = lookup_swap_cache(entry, vma, vmf->address);
3674 swapcache = page;
3675
3676 if (!page) {
3677 struct swap_info_struct *si = swp_swap_info(entry);
3678 bool skip_swapcache = false;
3679
3680 trace_android_vh_skip_swapcache(entry, &skip_swapcache);
3681 if ((data_race(si->flags & SWP_SYNCHRONOUS_IO) || skip_swapcache) &&
3682 __swap_count(entry) == 1) {
3683 /* skip swapcache */
3684 gfp_t flags = GFP_HIGHUSER_MOVABLE;
3685
3686 trace_android_rvh_set_skip_swapcache_flags(&flags);
3687 page = alloc_page_vma(flags, vma, vmf->address);
3688 if (page) {
3689 int err;
3690
3691 __SetPageLocked(page);
3692 __SetPageSwapBacked(page);
3693 set_page_private(page, entry.val);
3694
3695 /* Tell memcg to use swap ownership records */
3696 SetPageSwapCache(page);
3697 err = mem_cgroup_charge(page, vma->vm_mm,
3698 GFP_KERNEL);
3699 ClearPageSwapCache(page);
3700 if (err) {
3701 ret = VM_FAULT_OOM;
3702 goto out_page;
3703 }
3704
3705 shadow = get_shadow_from_swap_cache(entry);
3706 if (shadow)
3707 workingset_refault(page, shadow);
3708
3709 lru_cache_add(page);
3710 swap_readpage(page, true);
3711 }
3712 } else if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
3713 /*
3714 * Don't try readahead during a speculative page fault
3715 * as the VMA's boundaries may change in our back.
3716 * If the page is not in the swap cache and synchronous
3717 * read is disabled, fall back to the regular page fault
3718 * mechanism.
3719 */
3720 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3721 ret = VM_FAULT_RETRY;
3722 goto out;
3723 } else {
3724 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3725 vmf);
3726 swapcache = page;
3727 }
3728
3729 if (!page) {
3730 /*
3731 * Back out if the VMA has changed in our back during
3732 * a speculative page fault or if somebody else
3733 * faulted in this pte while we released the pte lock.
3734 */
3735 if (!pte_map_lock(vmf)) {
3736 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3737 ret = VM_FAULT_RETRY;
3738 goto out;
3739 }
3740
3741 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3742 ret = VM_FAULT_OOM;
3743 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3744 goto unlock;
3745 }
3746
3747 /* Had to read the page from swap area: Major fault */
3748 ret = VM_FAULT_MAJOR;
3749 count_vm_event(PGMAJFAULT);
3750 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3751 } else if (PageHWPoison(page)) {
3752 /*
3753 * hwpoisoned dirty swapcache pages are kept for killing
3754 * owner processes (which may be unknown at hwpoison time)
3755 */
3756 ret = VM_FAULT_HWPOISON;
3757 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3758 goto out_release;
3759 }
3760
3761 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3762
3763 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3764 if (!locked) {
3765 ret |= VM_FAULT_RETRY;
3766 goto out_release;
3767 }
3768
3769 /*
3770 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3771 * release the swapcache from under us. The page pin, and pte_same
3772 * test below, are not enough to exclude that. Even if it is still
3773 * swapcache, we need to check that the page's swap has not changed.
3774 */
3775 if (unlikely((!PageSwapCache(page) ||
3776 page_private(page) != entry.val)) && swapcache)
3777 goto out_page;
3778
3779 page = ksm_might_need_to_copy(page, vma, vmf->address);
3780 if (unlikely(!page)) {
3781 ret = VM_FAULT_OOM;
3782 page = swapcache;
3783 goto out_page;
3784 }
3785
3786 cgroup_throttle_swaprate(page, GFP_KERNEL);
3787
3788 /*
3789 * Back out if the VMA has changed in our back during a speculative
3790 * page fault or if somebody else already faulted in this pte.
3791 */
3792 if (!pte_map_lock(vmf)) {
3793 ret = VM_FAULT_RETRY;
3794 goto out_page;
3795 }
3796 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3797 goto out_nomap;
3798
3799 if (unlikely(!PageUptodate(page))) {
3800 ret = VM_FAULT_SIGBUS;
3801 goto out_nomap;
3802 }
3803
3804 /*
3805 * The page isn't present yet, go ahead with the fault.
3806 *
3807 * Be careful about the sequence of operations here.
3808 * To get its accounting right, reuse_swap_page() must be called
3809 * while the page is counted on swap but not yet in mapcount i.e.
3810 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3811 * must be called after the swap_free(), or it will never succeed.
3812 */
3813
3814 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3815 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3816 pte = mk_pte(page, vmf->vma_page_prot);
3817 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3818 pte = maybe_mkwrite(pte_mkdirty(pte), vmf->vma_flags);
3819 vmf->flags &= ~FAULT_FLAG_WRITE;
3820 ret |= VM_FAULT_WRITE;
3821 exclusive = RMAP_EXCLUSIVE;
3822 }
3823 flush_icache_page(vma, page);
3824 if (pte_swp_soft_dirty(vmf->orig_pte))
3825 pte = pte_mksoft_dirty(pte);
3826 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3827 pte = pte_mkuffd_wp(pte);
3828 pte = pte_wrprotect(pte);
3829 }
3830 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3831 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3832 vmf->orig_pte = pte;
3833
3834 /* ksm created a completely new copy */
3835 if (unlikely(page != swapcache && swapcache)) {
3836 __page_add_new_anon_rmap(page, vma, vmf->address, false);
3837 __lru_cache_add_inactive_or_unevictable(page, vmf->vma_flags);
3838 } else {
3839 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3840 }
3841
3842 trace_android_vh_swapin_add_anon_rmap(vmf, page);
3843 swap_free(entry);
3844 if (mem_cgroup_swap_full(page) ||
3845 (vmf->vma_flags & VM_LOCKED) || PageMlocked(page))
3846 try_to_free_swap(page);
3847 unlock_page(page);
3848 if (page != swapcache && swapcache) {
3849 /*
3850 * Hold the lock to avoid the swap entry to be reused
3851 * until we take the PT lock for the pte_same() check
3852 * (to avoid false positives from pte_same). For
3853 * further safety release the lock after the swap_free
3854 * so that the swap count won't change under a
3855 * parallel locked swapcache.
3856 */
3857 unlock_page(swapcache);
3858 put_page(swapcache);
3859 }
3860
3861 if (vmf->flags & FAULT_FLAG_WRITE) {
3862 ret |= do_wp_page(vmf);
3863 if (ret & VM_FAULT_ERROR)
3864 ret &= VM_FAULT_ERROR;
3865 goto out;
3866 }
3867
3868 /* No need to invalidate - it was non-present before */
3869 update_mmu_cache(vma, vmf->address, vmf->pte);
3870 unlock:
3871 pte_unmap_unlock(vmf->pte, vmf->ptl);
3872 out:
3873 return ret;
3874 out_nomap:
3875 pte_unmap_unlock(vmf->pte, vmf->ptl);
3876 out_page:
3877 unlock_page(page);
3878 out_release:
3879 put_page(page);
3880 if (page != swapcache && swapcache) {
3881 unlock_page(swapcache);
3882 put_page(swapcache);
3883 }
3884 return ret;
3885 }
3886
3887 /*
3888 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3889 * but allow concurrent faults), and pte mapped but not yet locked.
3890 * We return with mmap_lock still held, but pte unmapped and unlocked.
3891 */
do_anonymous_page(struct vm_fault * vmf)3892 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3893 {
3894 struct vm_area_struct *vma = vmf->vma;
3895 struct page *page;
3896 vm_fault_t ret = 0;
3897 pte_t entry;
3898
3899 /* File mapping without ->vm_ops ? */
3900 if (vmf->vma_flags & VM_SHARED)
3901 return VM_FAULT_SIGBUS;
3902
3903 /* Do not check unstable pmd, if it's changed will retry later */
3904 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
3905 goto skip_pmd_checks;
3906
3907 /*
3908 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3909 * pte_offset_map() on pmds where a huge pmd might be created
3910 * from a different thread.
3911 *
3912 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3913 * parallel threads are excluded by other means.
3914 *
3915 * Here we only have mmap_read_lock(mm).
3916 */
3917 if (pte_alloc(vma->vm_mm, vmf->pmd))
3918 return VM_FAULT_OOM;
3919
3920 /* See comment in handle_pte_fault() */
3921 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3922 return 0;
3923
3924 skip_pmd_checks:
3925 /* Use the zero-page for reads */
3926 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3927 !mm_forbids_zeropage(vma->vm_mm)) {
3928 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3929 vmf->vma_page_prot));
3930 if (!pte_map_lock(vmf))
3931 return VM_FAULT_RETRY;
3932 if (!pte_none(*vmf->pte)) {
3933 update_mmu_tlb(vma, vmf->address, vmf->pte);
3934 goto unlock;
3935 }
3936 ret = check_stable_address_space(vma->vm_mm);
3937 if (ret)
3938 goto unlock;
3939 /*
3940 * Don't call the userfaultfd during the speculative path.
3941 * We already checked for the VMA to not be managed through
3942 * userfaultfd, but it may be set in our back once we have lock
3943 * the pte. In such a case we can ignore it this time.
3944 */
3945 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
3946 goto setpte;
3947 /* Deliver the page fault to userland, check inside PT lock */
3948 if (userfaultfd_missing(vma)) {
3949 pte_unmap_unlock(vmf->pte, vmf->ptl);
3950 return handle_userfault(vmf, VM_UFFD_MISSING);
3951 }
3952 goto setpte;
3953 }
3954
3955 /* Allocate our own private page. */
3956 if (unlikely(anon_vma_prepare(vma)))
3957 goto oom;
3958 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3959 if (!page)
3960 goto oom;
3961
3962 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3963 goto oom_free_page;
3964 cgroup_throttle_swaprate(page, GFP_KERNEL);
3965
3966 /*
3967 * The memory barrier inside __SetPageUptodate makes sure that
3968 * preceding stores to the page contents become visible before
3969 * the set_pte_at() write.
3970 */
3971 __SetPageUptodate(page);
3972
3973 entry = mk_pte(page, vmf->vma_page_prot);
3974 entry = pte_sw_mkyoung(entry);
3975 if (vmf->vma_flags & VM_WRITE)
3976 entry = pte_mkwrite(pte_mkdirty(entry));
3977
3978 if (!pte_map_lock(vmf)) {
3979 ret = VM_FAULT_RETRY;
3980 goto release;
3981 }
3982
3983 if (!pte_none(*vmf->pte)) {
3984 update_mmu_cache(vma, vmf->address, vmf->pte);
3985 goto unlock_and_release;
3986 }
3987
3988 ret = check_stable_address_space(vma->vm_mm);
3989 if (ret)
3990 goto unlock_and_release;
3991
3992 /* Deliver the page fault to userland, check inside PT lock */
3993 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE) &&
3994 userfaultfd_missing(vma)) {
3995 pte_unmap_unlock(vmf->pte, vmf->ptl);
3996 put_page(page);
3997 return handle_userfault(vmf, VM_UFFD_MISSING);
3998 }
3999
4000 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4001 __page_add_new_anon_rmap(page, vma, vmf->address, false);
4002 __lru_cache_add_inactive_or_unevictable(page, vmf->vma_flags);
4003 setpte:
4004 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4005
4006 /* No need to invalidate - it was non-present before */
4007 update_mmu_cache(vma, vmf->address, vmf->pte);
4008 unlock:
4009 pte_unmap_unlock(vmf->pte, vmf->ptl);
4010 return ret;
4011 unlock_and_release:
4012 pte_unmap_unlock(vmf->pte, vmf->ptl);
4013 release:
4014 put_page(page);
4015 return ret;
4016 oom_free_page:
4017 put_page(page);
4018 oom:
4019 return VM_FAULT_OOM;
4020 }
4021
4022 /*
4023 * The mmap_lock must have been held on entry, and may have been
4024 * released depending on flags and vma->vm_ops->fault() return value.
4025 * See filemap_fault() and __lock_page_retry().
4026 */
__do_fault(struct vm_fault * vmf)4027 static vm_fault_t __do_fault(struct vm_fault *vmf)
4028 {
4029 struct vm_area_struct *vma = vmf->vma;
4030 vm_fault_t ret;
4031
4032 /* Do not check unstable pmd, if it's changed will retry later */
4033 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
4034 goto skip_pmd_checks;
4035
4036 /*
4037 * Preallocate pte before we take page_lock because this might lead to
4038 * deadlocks for memcg reclaim which waits for pages under writeback:
4039 * lock_page(A)
4040 * SetPageWriteback(A)
4041 * unlock_page(A)
4042 * lock_page(B)
4043 * lock_page(B)
4044 * pte_alloc_one
4045 * shrink_page_list
4046 * wait_on_page_writeback(A)
4047 * SetPageWriteback(B)
4048 * unlock_page(B)
4049 * # flush A, B to clear the writeback
4050 */
4051 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4052 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4053 if (!vmf->prealloc_pte)
4054 return VM_FAULT_OOM;
4055 smp_wmb(); /* See comment in __pte_alloc() */
4056 }
4057
4058 skip_pmd_checks:
4059 ret = vma->vm_ops->fault(vmf);
4060 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4061 VM_FAULT_DONE_COW)))
4062 return ret;
4063
4064 if (unlikely(PageHWPoison(vmf->page))) {
4065 struct page *page = vmf->page;
4066 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4067 if (ret & VM_FAULT_LOCKED) {
4068 if (page_mapped(page))
4069 unmap_mapping_pages(page_mapping(page),
4070 page->index, 1, false);
4071 /* Retry if a clean page was removed from the cache. */
4072 if (invalidate_inode_page(page))
4073 poisonret = VM_FAULT_NOPAGE;
4074 unlock_page(page);
4075 }
4076 put_page(page);
4077 vmf->page = NULL;
4078 return poisonret;
4079 }
4080
4081 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4082 lock_page(vmf->page);
4083 else
4084 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4085
4086 return ret;
4087 }
4088
4089 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)4090 static void deposit_prealloc_pte(struct vm_fault *vmf)
4091 {
4092 struct vm_area_struct *vma = vmf->vma;
4093
4094 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4095 /*
4096 * We are going to consume the prealloc table,
4097 * count that as nr_ptes.
4098 */
4099 mm_inc_nr_ptes(vma->vm_mm);
4100 vmf->prealloc_pte = NULL;
4101 }
4102
do_set_pmd(struct vm_fault * vmf,struct page * page)4103 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4104 {
4105 struct vm_area_struct *vma = vmf->vma;
4106 bool write = vmf->flags & FAULT_FLAG_WRITE;
4107 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4108 pmd_t entry;
4109 int i;
4110 vm_fault_t ret = VM_FAULT_FALLBACK;
4111
4112 if (!transhuge_vma_suitable(vma, haddr))
4113 return ret;
4114
4115 page = compound_head(page);
4116 if (compound_order(page) != HPAGE_PMD_ORDER)
4117 return ret;
4118
4119 /*
4120 * Archs like ppc64 need additonal space to store information
4121 * related to pte entry. Use the preallocated table for that.
4122 */
4123 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4124 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4125 if (!vmf->prealloc_pte)
4126 return VM_FAULT_OOM;
4127 smp_wmb(); /* See comment in __pte_alloc() */
4128 }
4129
4130 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4131 if (unlikely(!pmd_none(*vmf->pmd)))
4132 goto out;
4133
4134 for (i = 0; i < HPAGE_PMD_NR; i++)
4135 flush_icache_page(vma, page + i);
4136
4137 entry = mk_huge_pmd(page, vmf->vma_page_prot);
4138 if (write)
4139 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4140
4141 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4142 page_add_file_rmap(page, true);
4143 /*
4144 * deposit and withdraw with pmd lock held
4145 */
4146 if (arch_needs_pgtable_deposit())
4147 deposit_prealloc_pte(vmf);
4148
4149 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4150
4151 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4152
4153 /* fault is handled */
4154 ret = 0;
4155 count_vm_event(THP_FILE_MAPPED);
4156 out:
4157 spin_unlock(vmf->ptl);
4158 return ret;
4159 }
4160 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)4161 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4162 {
4163 return VM_FAULT_FALLBACK;
4164 }
4165 #endif
4166
do_set_pte(struct vm_fault * vmf,struct page * page,unsigned long addr)4167 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4168 {
4169 struct vm_area_struct *vma = vmf->vma;
4170 bool write = vmf->flags & FAULT_FLAG_WRITE;
4171 bool prefault = vmf->address != addr;
4172 pte_t entry;
4173
4174 flush_icache_page(vma, page);
4175 entry = mk_pte(page, vmf->vma_page_prot);
4176
4177 if (prefault && arch_wants_old_prefaulted_pte())
4178 entry = pte_mkold(entry);
4179 else
4180 entry = pte_sw_mkyoung(entry);
4181
4182 if (write)
4183 entry = maybe_mkwrite(pte_mkdirty(entry), vmf->vma_flags);
4184 /* copy-on-write page */
4185 if (write && !(vmf->vma_flags & VM_SHARED)) {
4186 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4187 __page_add_new_anon_rmap(page, vma, addr, false);
4188 __lru_cache_add_inactive_or_unevictable(page, vmf->vma_flags);
4189 } else {
4190 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4191 page_add_file_rmap(page, false);
4192 }
4193 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4194 }
4195
4196 /**
4197 * finish_fault - finish page fault once we have prepared the page to fault
4198 *
4199 * @vmf: structure describing the fault
4200 *
4201 * This function handles all that is needed to finish a page fault once the
4202 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4203 * given page, adds reverse page mapping, handles memcg charges and LRU
4204 * addition.
4205 *
4206 * The function expects the page to be locked and on success it consumes a
4207 * reference of a page being mapped (for the PTE which maps it).
4208 *
4209 * Return: %0 on success, %VM_FAULT_ code in case of error.
4210 */
finish_fault(struct vm_fault * vmf)4211 vm_fault_t finish_fault(struct vm_fault *vmf)
4212 {
4213 struct vm_area_struct *vma = vmf->vma;
4214 struct page *page;
4215 vm_fault_t ret;
4216
4217 /* Did we COW the page? */
4218 if ((vmf->flags & FAULT_FLAG_WRITE) &&
4219 !(vmf->vma_flags & VM_SHARED))
4220 page = vmf->cow_page;
4221 else
4222 page = vmf->page;
4223
4224 /*
4225 * check even for read faults because we might have lost our CoWed
4226 * page
4227 */
4228 if (!(vma->vm_flags & VM_SHARED)) {
4229 ret = check_stable_address_space(vma->vm_mm);
4230 if (ret)
4231 return ret;
4232 }
4233
4234 /* Do not check unstable pmd, if it's changed will retry later */
4235 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
4236 goto skip_pmd_checks;
4237
4238 if (pmd_none(*vmf->pmd)) {
4239 if (PageTransCompound(page)) {
4240 ret = do_set_pmd(vmf, page);
4241 if (ret != VM_FAULT_FALLBACK)
4242 return ret;
4243 }
4244
4245 if (vmf->prealloc_pte) {
4246 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4247 if (likely(pmd_none(*vmf->pmd))) {
4248 mm_inc_nr_ptes(vma->vm_mm);
4249 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4250 vmf->prealloc_pte = NULL;
4251 }
4252 spin_unlock(vmf->ptl);
4253 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
4254 return VM_FAULT_OOM;
4255 }
4256 }
4257
4258 /*
4259 * See comment in handle_pte_fault() for how this scenario happens, we
4260 * need to return NOPAGE so that we drop this page.
4261 */
4262 if (pmd_devmap_trans_unstable(vmf->pmd))
4263 return VM_FAULT_NOPAGE;
4264
4265 skip_pmd_checks:
4266 if (!pte_map_lock(vmf))
4267 return VM_FAULT_RETRY;
4268
4269 ret = 0;
4270 /* Re-check under ptl */
4271 if (likely(pte_none(*vmf->pte)))
4272 do_set_pte(vmf, page, vmf->address);
4273 else
4274 ret = VM_FAULT_NOPAGE;
4275
4276 update_mmu_tlb(vma, vmf->address, vmf->pte);
4277 pte_unmap_unlock(vmf->pte, vmf->ptl);
4278 return ret;
4279 }
4280
4281 static unsigned long fault_around_bytes __read_mostly =
4282 rounddown_pow_of_two(65536);
4283
4284 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)4285 static int fault_around_bytes_get(void *data, u64 *val)
4286 {
4287 *val = fault_around_bytes;
4288 return 0;
4289 }
4290
4291 /*
4292 * fault_around_bytes must be rounded down to the nearest page order as it's
4293 * what do_fault_around() expects to see.
4294 */
fault_around_bytes_set(void * data,u64 val)4295 static int fault_around_bytes_set(void *data, u64 val)
4296 {
4297 if (val / PAGE_SIZE > PTRS_PER_PTE)
4298 return -EINVAL;
4299 if (val > PAGE_SIZE)
4300 fault_around_bytes = rounddown_pow_of_two(val);
4301 else
4302 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4303 return 0;
4304 }
4305 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4306 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4307
fault_around_debugfs(void)4308 static int __init fault_around_debugfs(void)
4309 {
4310 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4311 &fault_around_bytes_fops);
4312 return 0;
4313 }
4314 late_initcall(fault_around_debugfs);
4315 #endif
4316
4317 /*
4318 * do_fault_around() tries to map few pages around the fault address. The hope
4319 * is that the pages will be needed soon and this will lower the number of
4320 * faults to handle.
4321 *
4322 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4323 * not ready to be mapped: not up-to-date, locked, etc.
4324 *
4325 * This function is called with the page table lock taken. In the split ptlock
4326 * case the page table lock only protects only those entries which belong to
4327 * the page table corresponding to the fault address.
4328 *
4329 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4330 * only once.
4331 *
4332 * fault_around_bytes defines how many bytes we'll try to map.
4333 * do_fault_around() expects it to be set to a power of two less than or equal
4334 * to PTRS_PER_PTE.
4335 *
4336 * The virtual address of the area that we map is naturally aligned to
4337 * fault_around_bytes rounded down to the machine page size
4338 * (and therefore to page order). This way it's easier to guarantee
4339 * that we don't cross page table boundaries.
4340 */
do_fault_around(struct vm_fault * vmf)4341 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4342 {
4343 unsigned long address = vmf->address, nr_pages, mask;
4344 pgoff_t start_pgoff = vmf->pgoff;
4345 pgoff_t end_pgoff;
4346 int off;
4347
4348 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4349 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4350
4351 address = max(address & mask, vmf->vma->vm_start);
4352 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4353 start_pgoff -= off;
4354
4355 /*
4356 * end_pgoff is either the end of the page table, the end of
4357 * the vma or nr_pages from start_pgoff, depending what is nearest.
4358 */
4359 end_pgoff = start_pgoff -
4360 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4361 PTRS_PER_PTE - 1;
4362 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4363 start_pgoff + nr_pages - 1);
4364
4365 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE) &&
4366 pmd_none(*vmf->pmd)) {
4367 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4368 if (!vmf->prealloc_pte)
4369 return VM_FAULT_OOM;
4370 smp_wmb(); /* See comment in __pte_alloc() */
4371 }
4372
4373 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4374 }
4375
do_read_fault(struct vm_fault * vmf)4376 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4377 {
4378 struct vm_area_struct *vma = vmf->vma;
4379 vm_fault_t ret = 0;
4380
4381 /*
4382 * Let's call ->map_pages() first and use ->fault() as fallback
4383 * if page by the offset is not ready to be mapped (cold cache or
4384 * something).
4385 */
4386 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4387 if (likely(!userfaultfd_minor(vmf->vma))) {
4388 ret = do_fault_around(vmf);
4389 if (ret)
4390 return ret;
4391 }
4392 }
4393
4394 ret = __do_fault(vmf);
4395 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4396 return ret;
4397
4398 ret |= finish_fault(vmf);
4399 unlock_page(vmf->page);
4400 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4401 put_page(vmf->page);
4402 return ret;
4403 }
4404
do_cow_fault(struct vm_fault * vmf)4405 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4406 {
4407 struct vm_area_struct *vma = vmf->vma;
4408 vm_fault_t ret;
4409
4410 if (unlikely(anon_vma_prepare(vma)))
4411 return VM_FAULT_OOM;
4412
4413 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4414 if (!vmf->cow_page)
4415 return VM_FAULT_OOM;
4416
4417 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4418 put_page(vmf->cow_page);
4419 return VM_FAULT_OOM;
4420 }
4421 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4422
4423 ret = __do_fault(vmf);
4424 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4425 goto uncharge_out;
4426 if (ret & VM_FAULT_DONE_COW)
4427 return ret;
4428
4429 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4430 __SetPageUptodate(vmf->cow_page);
4431
4432 ret |= finish_fault(vmf);
4433 unlock_page(vmf->page);
4434 put_page(vmf->page);
4435 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4436 goto uncharge_out;
4437 return ret;
4438 uncharge_out:
4439 put_page(vmf->cow_page);
4440 return ret;
4441 }
4442
do_shared_fault(struct vm_fault * vmf)4443 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4444 {
4445 struct vm_area_struct *vma = vmf->vma;
4446 vm_fault_t ret, tmp;
4447
4448 ret = __do_fault(vmf);
4449 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4450 return ret;
4451
4452 /*
4453 * Check if the backing address space wants to know that the page is
4454 * about to become writable
4455 */
4456 if (vma->vm_ops->page_mkwrite) {
4457 unlock_page(vmf->page);
4458 tmp = do_page_mkwrite(vmf);
4459 if (unlikely(!tmp ||
4460 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4461 put_page(vmf->page);
4462 return tmp;
4463 }
4464 }
4465
4466 ret |= finish_fault(vmf);
4467 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4468 VM_FAULT_RETRY))) {
4469 unlock_page(vmf->page);
4470 put_page(vmf->page);
4471 return ret;
4472 }
4473
4474 ret |= fault_dirty_shared_page(vmf);
4475 return ret;
4476 }
4477
4478 /*
4479 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4480 * but allow concurrent faults).
4481 * The mmap_lock may have been released depending on flags and our
4482 * return value. See filemap_fault() and __lock_page_or_retry().
4483 * If mmap_lock is released, vma may become invalid (for example
4484 * by other thread calling munmap()).
4485 */
do_fault(struct vm_fault * vmf)4486 static vm_fault_t do_fault(struct vm_fault *vmf)
4487 {
4488 struct vm_area_struct *vma = vmf->vma;
4489 struct mm_struct *vm_mm = vma->vm_mm;
4490 vm_fault_t ret;
4491
4492 /*
4493 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4494 */
4495 if (!vma->vm_ops->fault) {
4496 /*
4497 * If we find a migration pmd entry or a none pmd entry, which
4498 * should never happen, return SIGBUS
4499 */
4500 if (unlikely(!pmd_present(*vmf->pmd)))
4501 ret = VM_FAULT_SIGBUS;
4502 else {
4503 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4504 vmf->pmd,
4505 vmf->address,
4506 &vmf->ptl);
4507 /*
4508 * Make sure this is not a temporary clearing of pte
4509 * by holding ptl and checking again. A R/M/W update
4510 * of pte involves: take ptl, clearing the pte so that
4511 * we don't have concurrent modification by hardware
4512 * followed by an update.
4513 */
4514 if (unlikely(pte_none(*vmf->pte)))
4515 ret = VM_FAULT_SIGBUS;
4516 else
4517 ret = VM_FAULT_NOPAGE;
4518
4519 pte_unmap_unlock(vmf->pte, vmf->ptl);
4520 }
4521 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4522 ret = do_read_fault(vmf);
4523 else if (!(vmf->vma_flags & VM_SHARED))
4524 ret = do_cow_fault(vmf);
4525 else
4526 ret = do_shared_fault(vmf);
4527
4528 /* preallocated pagetable is unused: free it */
4529 if (vmf->prealloc_pte) {
4530 pte_free(vm_mm, vmf->prealloc_pte);
4531 vmf->prealloc_pte = NULL;
4532 }
4533 return ret;
4534 }
4535
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4536 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4537 unsigned long addr, int page_nid,
4538 int *flags)
4539 {
4540 get_page(page);
4541
4542 count_vm_numa_event(NUMA_HINT_FAULTS);
4543 if (page_nid == numa_node_id()) {
4544 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4545 *flags |= TNF_FAULT_LOCAL;
4546 }
4547
4548 return mpol_misplaced(page, vma, addr);
4549 }
4550
do_numa_page(struct vm_fault * vmf)4551 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4552 {
4553 struct vm_area_struct *vma = vmf->vma;
4554 struct page *page = NULL;
4555 int page_nid = NUMA_NO_NODE;
4556 int last_cpupid;
4557 int target_nid;
4558 bool migrated = false;
4559 pte_t pte, old_pte;
4560 bool was_writable = pte_savedwrite(vmf->orig_pte);
4561 int flags = 0;
4562
4563 /*
4564 * The "pte" at this point cannot be used safely without
4565 * validation through pte_unmap_same(). It's of NUMA type but
4566 * the pfn may be screwed if the read is non atomic.
4567 */
4568 if (!pte_spinlock(vmf))
4569 return VM_FAULT_RETRY;
4570 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4571 pte_unmap_unlock(vmf->pte, vmf->ptl);
4572 goto out;
4573 }
4574
4575 /*
4576 * Make it present again, Depending on how arch implementes non
4577 * accessible ptes, some can allow access by kernel mode.
4578 */
4579 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4580 pte = pte_modify(old_pte, vmf->vma_page_prot);
4581 pte = pte_mkyoung(pte);
4582 if (was_writable)
4583 pte = pte_mkwrite(pte);
4584 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4585 update_mmu_cache(vma, vmf->address, vmf->pte);
4586
4587 page = _vm_normal_page(vma, vmf->address, pte, vmf->vma_flags);
4588 if (!page) {
4589 pte_unmap_unlock(vmf->pte, vmf->ptl);
4590 return 0;
4591 }
4592
4593 /* TODO: handle PTE-mapped THP */
4594 if (PageCompound(page)) {
4595 pte_unmap_unlock(vmf->pte, vmf->ptl);
4596 return 0;
4597 }
4598
4599 /*
4600 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4601 * much anyway since they can be in shared cache state. This misses
4602 * the case where a mapping is writable but the process never writes
4603 * to it but pte_write gets cleared during protection updates and
4604 * pte_dirty has unpredictable behaviour between PTE scan updates,
4605 * background writeback, dirty balancing and application behaviour.
4606 */
4607 if (!pte_write(pte))
4608 flags |= TNF_NO_GROUP;
4609
4610 /*
4611 * Flag if the page is shared between multiple address spaces. This
4612 * is later used when determining whether to group tasks together
4613 */
4614 if (page_mapcount(page) > 1 && (vmf->vma_flags & VM_SHARED))
4615 flags |= TNF_SHARED;
4616
4617 last_cpupid = page_cpupid_last(page);
4618 page_nid = page_to_nid(page);
4619 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4620 &flags);
4621 pte_unmap_unlock(vmf->pte, vmf->ptl);
4622 if (target_nid == NUMA_NO_NODE) {
4623 put_page(page);
4624 goto out;
4625 }
4626
4627 /* Migrate to the requested node */
4628 migrated = migrate_misplaced_page(page, vmf, target_nid);
4629 if (migrated) {
4630 page_nid = target_nid;
4631 flags |= TNF_MIGRATED;
4632 } else
4633 flags |= TNF_MIGRATE_FAIL;
4634
4635 out:
4636 if (page_nid != NUMA_NO_NODE)
4637 task_numa_fault(last_cpupid, page_nid, 1, flags);
4638 return 0;
4639 }
4640
create_huge_pmd(struct vm_fault * vmf)4641 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4642 {
4643 if (vma_is_anonymous(vmf->vma))
4644 return do_huge_pmd_anonymous_page(vmf);
4645 if (vmf->vma->vm_ops->huge_fault)
4646 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4647 return VM_FAULT_FALLBACK;
4648 }
4649
4650 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf,pmd_t orig_pmd)4651 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4652 {
4653 if (vma_is_anonymous(vmf->vma)) {
4654 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4655 return handle_userfault(vmf, VM_UFFD_WP);
4656 return do_huge_pmd_wp_page(vmf, orig_pmd);
4657 }
4658 if (vmf->vma->vm_ops->huge_fault) {
4659 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4660
4661 if (!(ret & VM_FAULT_FALLBACK))
4662 return ret;
4663 }
4664
4665 /* COW or write-notify handled on pte level: split pmd. */
4666 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4667
4668 return VM_FAULT_FALLBACK;
4669 }
4670
create_huge_pud(struct vm_fault * vmf)4671 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4672 {
4673 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4674 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4675 /* No support for anonymous transparent PUD pages yet */
4676 if (vma_is_anonymous(vmf->vma))
4677 return VM_FAULT_FALLBACK;
4678 if (vmf->vma->vm_ops->huge_fault)
4679 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4680 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4681 return VM_FAULT_FALLBACK;
4682 }
4683
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4684 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4685 {
4686 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4687 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4688 /* No support for anonymous transparent PUD pages yet */
4689 if (vma_is_anonymous(vmf->vma))
4690 goto split;
4691 if (vmf->vma->vm_ops->huge_fault) {
4692 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4693
4694 if (!(ret & VM_FAULT_FALLBACK))
4695 return ret;
4696 }
4697 split:
4698 /* COW or write-notify not handled on PUD level: split pud.*/
4699 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4700 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4701 return VM_FAULT_FALLBACK;
4702 }
4703
4704 /*
4705 * These routines also need to handle stuff like marking pages dirty
4706 * and/or accessed for architectures that don't do it in hardware (most
4707 * RISC architectures). The early dirtying is also good on the i386.
4708 *
4709 * There is also a hook called "update_mmu_cache()" that architectures
4710 * with external mmu caches can use to update those (ie the Sparc or
4711 * PowerPC hashed page tables that act as extended TLBs).
4712 *
4713 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4714 * concurrent faults).
4715 *
4716 * The mmap_lock may have been released depending on flags and our return value.
4717 * See filemap_fault() and __lock_page_or_retry().
4718 */
handle_pte_fault(struct vm_fault * vmf)4719 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4720 {
4721 pte_t entry;
4722 vm_fault_t ret = 0;
4723
4724 /* Do not check unstable pmd, if it's changed will retry later */
4725 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
4726 goto skip_pmd_checks;
4727
4728 if (unlikely(pmd_none(*vmf->pmd))) {
4729 /*
4730 * Leave __pte_alloc() until later: because vm_ops->fault may
4731 * want to allocate huge page, and if we expose page table
4732 * for an instant, it will be difficult to retract from
4733 * concurrent faults and from rmap lookups.
4734 */
4735 vmf->pte = NULL;
4736 } else {
4737 /*
4738 * If a huge pmd materialized under us just retry later. Use
4739 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4740 * of pmd_trans_huge() to ensure the pmd didn't become
4741 * pmd_trans_huge under us and then back to pmd_none, as a
4742 * result of MADV_DONTNEED running immediately after a huge pmd
4743 * fault in a different thread of this mm, in turn leading to a
4744 * misleading pmd_trans_huge() retval. All we have to ensure is
4745 * that it is a regular pmd that we can walk with
4746 * pte_offset_map() and we can do that through an atomic read
4747 * in C, which is what pmd_trans_unstable() provides.
4748 */
4749 if (pmd_devmap_trans_unstable(vmf->pmd))
4750 return 0;
4751 /*
4752 * A regular pmd is established and it can't morph into a huge
4753 * pmd from under us anymore at this point because we hold the
4754 * mmap_lock read mode and khugepaged takes it in write mode.
4755 * So now it's safe to run pte_offset_map().
4756 * This is not applicable to the speculative page fault handler
4757 * but in that case, the pte is fetched earlier in
4758 * handle_speculative_fault().
4759 */
4760 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4761 vmf->orig_pte = *vmf->pte;
4762
4763 /*
4764 * some architectures can have larger ptes than wordsize,
4765 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4766 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4767 * accesses. The code below just needs a consistent view
4768 * for the ifs and we later double check anyway with the
4769 * ptl lock held. So here a barrier will do.
4770 */
4771 barrier();
4772 if (pte_none(vmf->orig_pte)) {
4773 pte_unmap(vmf->pte);
4774 vmf->pte = NULL;
4775 }
4776 }
4777
4778 skip_pmd_checks:
4779 if (!vmf->pte) {
4780 if (vma_is_anonymous(vmf->vma))
4781 return do_anonymous_page(vmf);
4782 else if ((vmf->flags & FAULT_FLAG_SPECULATIVE) &&
4783 !vmf_allows_speculation(vmf))
4784 return VM_FAULT_RETRY;
4785 else
4786 return do_fault(vmf);
4787 }
4788
4789 if (!pte_present(vmf->orig_pte))
4790 return do_swap_page(vmf);
4791
4792 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4793 return do_numa_page(vmf);
4794
4795 if (!pte_spinlock(vmf))
4796 return VM_FAULT_RETRY;
4797 entry = vmf->orig_pte;
4798 if (unlikely(!pte_same(*vmf->pte, entry))) {
4799 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4800 goto unlock;
4801 }
4802 if (vmf->flags & FAULT_FLAG_WRITE) {
4803 if (!pte_write(entry)) {
4804 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE))
4805 return do_wp_page(vmf);
4806
4807 if (!mmu_notifier_trylock(vmf->vma->vm_mm)) {
4808 ret = VM_FAULT_RETRY;
4809 goto unlock;
4810 }
4811
4812 ret = do_wp_page(vmf);
4813 mmu_notifier_unlock(vmf->vma->vm_mm);
4814 return ret;
4815 }
4816 entry = pte_mkdirty(entry);
4817 }
4818 entry = pte_mkyoung(entry);
4819 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4820 vmf->flags & FAULT_FLAG_WRITE)) {
4821 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4822 } else {
4823 /* Skip spurious TLB flush for retried page fault */
4824 if (vmf->flags & FAULT_FLAG_TRIED)
4825 goto unlock;
4826 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
4827 ret = VM_FAULT_RETRY;
4828 /*
4829 * This is needed only for protection faults but the arch code
4830 * is not yet telling us if this is a protection fault or not.
4831 * This still avoids useless tlb flushes for .text page faults
4832 * with threads.
4833 */
4834 if (vmf->flags & FAULT_FLAG_WRITE)
4835 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4836 }
4837 trace_android_rvh_handle_pte_fault_end(vmf, highest_memmap_pfn);
4838 trace_android_vh_handle_pte_fault_end(vmf, highest_memmap_pfn);
4839 unlock:
4840 pte_unmap_unlock(vmf->pte, vmf->ptl);
4841 return ret;
4842 }
4843
4844 /*
4845 * By the time we get here, we already hold the mm semaphore
4846 *
4847 * The mmap_lock may have been released depending on flags and our
4848 * return value. See filemap_fault() and __lock_page_or_retry().
4849 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4850 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4851 unsigned long address, unsigned int flags)
4852 {
4853 struct vm_fault vmf = {
4854 .vma = vma,
4855 .address = address & PAGE_MASK,
4856 .flags = flags,
4857 .pgoff = linear_page_index(vma, address),
4858 .gfp_mask = __get_fault_gfp_mask(vma),
4859 .vma_flags = vma->vm_flags,
4860 .vma_page_prot = vma->vm_page_prot,
4861 };
4862 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4863 struct mm_struct *mm = vma->vm_mm;
4864 pgd_t *pgd;
4865 p4d_t *p4d;
4866 vm_fault_t ret;
4867
4868 pgd = pgd_offset(mm, address);
4869 p4d = p4d_alloc(mm, pgd, address);
4870 if (!p4d)
4871 return VM_FAULT_OOM;
4872
4873 vmf.pud = pud_alloc(mm, p4d, address);
4874 if (!vmf.pud)
4875 return VM_FAULT_OOM;
4876 retry_pud:
4877 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4878 ret = create_huge_pud(&vmf);
4879 if (!(ret & VM_FAULT_FALLBACK))
4880 return ret;
4881 } else {
4882 pud_t orig_pud = *vmf.pud;
4883
4884 barrier();
4885 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4886
4887 /* NUMA case for anonymous PUDs would go here */
4888
4889 if (dirty && !pud_write(orig_pud)) {
4890 ret = wp_huge_pud(&vmf, orig_pud);
4891 if (!(ret & VM_FAULT_FALLBACK))
4892 return ret;
4893 } else {
4894 huge_pud_set_accessed(&vmf, orig_pud);
4895 return 0;
4896 }
4897 }
4898 }
4899
4900 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4901 if (!vmf.pmd)
4902 return VM_FAULT_OOM;
4903
4904 /* Huge pud page fault raced with pmd_alloc? */
4905 if (pud_trans_unstable(vmf.pud))
4906 goto retry_pud;
4907
4908 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
4909 vmf.sequence = raw_read_seqcount(&vma->vm_sequence);
4910 #endif
4911 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4912 ret = create_huge_pmd(&vmf);
4913 if (!(ret & VM_FAULT_FALLBACK))
4914 return ret;
4915 } else {
4916 pmd_t orig_pmd = *vmf.pmd;
4917
4918 barrier();
4919 if (unlikely(is_swap_pmd(orig_pmd))) {
4920 VM_BUG_ON(thp_migration_supported() &&
4921 !is_pmd_migration_entry(orig_pmd));
4922 if (is_pmd_migration_entry(orig_pmd))
4923 pmd_migration_entry_wait(mm, vmf.pmd);
4924 return 0;
4925 }
4926 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4927 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4928 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4929
4930 if (dirty && !pmd_write(orig_pmd)) {
4931 ret = wp_huge_pmd(&vmf, orig_pmd);
4932 if (!(ret & VM_FAULT_FALLBACK))
4933 return ret;
4934 } else {
4935 huge_pmd_set_accessed(&vmf, orig_pmd);
4936 return 0;
4937 }
4938 }
4939 }
4940
4941 return handle_pte_fault(&vmf);
4942 }
4943
4944 /**
4945 * mm_account_fault - Do page fault accountings
4946 *
4947 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4948 * of perf event counters, but we'll still do the per-task accounting to
4949 * the task who triggered this page fault.
4950 * @address: the faulted address.
4951 * @flags: the fault flags.
4952 * @ret: the fault retcode.
4953 *
4954 * This will take care of most of the page fault accountings. Meanwhile, it
4955 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4956 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4957 * still be in per-arch page fault handlers at the entry of page fault.
4958 */
mm_account_fault(struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)4959 static inline void mm_account_fault(struct pt_regs *regs,
4960 unsigned long address, unsigned int flags,
4961 vm_fault_t ret)
4962 {
4963 bool major;
4964
4965 /*
4966 * We don't do accounting for some specific faults:
4967 *
4968 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4969 * includes arch_vma_access_permitted() failing before reaching here.
4970 * So this is not a "this many hardware page faults" counter. We
4971 * should use the hw profiling for that.
4972 *
4973 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4974 * once they're completed.
4975 */
4976 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4977 return;
4978
4979 /*
4980 * We define the fault as a major fault when the final successful fault
4981 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4982 * handle it immediately previously).
4983 */
4984 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4985
4986 if (major)
4987 current->maj_flt++;
4988 else
4989 current->min_flt++;
4990
4991 /*
4992 * If the fault is done for GUP, regs will be NULL. We only do the
4993 * accounting for the per thread fault counters who triggered the
4994 * fault, and we skip the perf event updates.
4995 */
4996 if (!regs)
4997 return;
4998
4999 if (major)
5000 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5001 else
5002 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5003 }
5004 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
5005
5006 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
5007 /* This is required by vm_normal_page() */
5008 #error "Speculative page fault handler requires CONFIG_ARCH_HAS_PTE_SPECIAL"
5009 #endif
5010 /*
5011 * vm_normal_page() adds some processing which should be done while
5012 * hodling the mmap_sem.
5013 */
5014
5015 /*
5016 * Tries to handle the page fault in a speculative way, without grabbing the
5017 * mmap_sem.
5018 * When VM_FAULT_RETRY is returned, the vma pointer is valid and this vma must
5019 * be checked later when the mmap_sem has been grabbed by calling
5020 * can_reuse_spf_vma().
5021 * This is needed as the returned vma is kept in memory until the call to
5022 * can_reuse_spf_vma() is made.
5023 */
___handle_speculative_fault(struct mm_struct * mm,unsigned long address,unsigned int flags,struct vm_area_struct * vma)5024 static vm_fault_t ___handle_speculative_fault(struct mm_struct *mm,
5025 unsigned long address, unsigned int flags,
5026 struct vm_area_struct *vma)
5027 {
5028 struct vm_fault vmf = {
5029 .address = address,
5030 .pgoff = linear_page_index(vma, address),
5031 .vma = vma,
5032 .gfp_mask = __get_fault_gfp_mask(vma),
5033 .flags = flags,
5034 };
5035 #ifdef CONFIG_NUMA
5036 struct mempolicy *pol;
5037 #endif
5038 pgd_t *pgd, pgdval;
5039 p4d_t *p4d, p4dval;
5040 pud_t pudval;
5041 int seq;
5042 vm_fault_t ret;
5043 bool uffd_missing_sigbus = false;
5044
5045 /* Clear flags that may lead to release the mmap_sem to retry */
5046 flags &= ~(FAULT_FLAG_ALLOW_RETRY|FAULT_FLAG_KILLABLE);
5047 flags |= FAULT_FLAG_SPECULATIVE;
5048
5049 /* rmb <-> seqlock,vma_rb_erase() */
5050 seq = raw_read_seqcount(&vmf.vma->vm_sequence);
5051 if (seq & 1) {
5052 trace_spf_vma_changed(_RET_IP_, vmf.vma, address);
5053 return VM_FAULT_RETRY;
5054 }
5055
5056 vmf.vma_flags = READ_ONCE(vmf.vma->vm_flags);
5057 vmf.vma_page_prot = READ_ONCE(vmf.vma->vm_page_prot);
5058
5059 #ifdef CONFIG_USERFAULTFD
5060 /*
5061 * Only support SPF for SIGBUS+MISSING userfaults in private anonymous
5062 * VMAs. Rest all should be retried with mmap_lock.
5063 */
5064 if (unlikely(vmf.vma_flags & __VM_UFFD_FLAGS)) {
5065 uffd_missing_sigbus = vma_is_anonymous(vmf.vma) &&
5066 (vmf.vma_flags & VM_UFFD_MISSING) &&
5067 userfaultfd_using_sigbus(vmf.vma);
5068 if (!uffd_missing_sigbus) {
5069 trace_spf_vma_notsup(_RET_IP_, vmf.vma, address);
5070 return VM_FAULT_RETRY;
5071 }
5072 /* Not having anon_vma implies that the PTE is missing */
5073 if (!vmf.vma->anon_vma)
5074 return VM_FAULT_SIGBUS;
5075 }
5076 #endif
5077
5078 if (!vmf_allows_speculation(&vmf))
5079 return VM_FAULT_RETRY;
5080
5081 if (vmf.vma_flags & VM_GROWSDOWN || vmf.vma_flags & VM_GROWSUP) {
5082 /*
5083 * This could be detected by the check address against VMA's
5084 * boundaries but we want to trace it as not supported instead
5085 * of changed.
5086 */
5087 trace_spf_vma_notsup(_RET_IP_, vmf.vma, address);
5088 return VM_FAULT_RETRY;
5089 }
5090
5091 if (address < READ_ONCE(vmf.vma->vm_start)
5092 || READ_ONCE(vmf.vma->vm_end) <= address) {
5093 trace_spf_vma_changed(_RET_IP_, vmf.vma, address);
5094 return VM_FAULT_RETRY;
5095 }
5096
5097 if (!arch_vma_access_permitted(vmf.vma, flags & FAULT_FLAG_WRITE,
5098 flags & FAULT_FLAG_INSTRUCTION,
5099 flags & FAULT_FLAG_REMOTE))
5100 goto out_segv;
5101
5102 /* This is one is required to check that the VMA has write access set */
5103 if (flags & FAULT_FLAG_WRITE) {
5104 if (unlikely(!(vmf.vma_flags & VM_WRITE)))
5105 goto out_segv;
5106 } else if (unlikely(!(vmf.vma_flags & (VM_READ|VM_EXEC|VM_WRITE))))
5107 goto out_segv;
5108
5109 #ifdef CONFIG_NUMA
5110 /*
5111 * MPOL_INTERLEAVE implies additional checks in
5112 * mpol_misplaced() which are not compatible with the
5113 *speculative page fault processing.
5114 */
5115 pol = __get_vma_policy(vmf.vma, address);
5116 if (!pol)
5117 pol = get_task_policy(current);
5118 if (pol && pol->mode == MPOL_INTERLEAVE) {
5119 trace_spf_vma_notsup(_RET_IP_, vmf.vma, address);
5120 return VM_FAULT_RETRY;
5121 }
5122 #endif
5123
5124 /*
5125 * Do a speculative lookup of the PTE entry.
5126 */
5127 local_irq_disable();
5128 pgd = pgd_offset(mm, address);
5129 pgdval = READ_ONCE(*pgd);
5130 if (pgd_none(pgdval) || unlikely(pgd_bad(pgdval)))
5131 goto out_walk;
5132
5133 p4d = p4d_offset(pgd, address);
5134 if (pgd_val(READ_ONCE(*pgd)) != pgd_val(pgdval))
5135 goto out_walk;
5136 p4dval = READ_ONCE(*p4d);
5137 if (p4d_none(p4dval) || unlikely(p4d_bad(p4dval)))
5138 goto out_walk;
5139
5140 vmf.pud = pud_offset(p4d, address);
5141 if (p4d_val(READ_ONCE(*p4d)) != p4d_val(p4dval))
5142 goto out_walk;
5143 pudval = READ_ONCE(*vmf.pud);
5144 if (pud_none(pudval) || unlikely(pud_bad(pudval)))
5145 goto out_walk;
5146
5147 /* Huge pages at PUD level are not supported. */
5148 if (unlikely(pud_trans_huge(pudval)))
5149 goto out_walk;
5150
5151 vmf.pmd = pmd_offset(vmf.pud, address);
5152 if (pud_val(READ_ONCE(*vmf.pud)) != pud_val(pudval))
5153 goto out_walk;
5154 vmf.orig_pmd = READ_ONCE(*vmf.pmd);
5155 /*
5156 * pmd_none could mean that a hugepage collapse is in progress
5157 * in our back as collapse_huge_page() mark it before
5158 * invalidating the pte (which is done once the IPI is catched
5159 * by all CPU and we have interrupt disabled).
5160 * For this reason we cannot handle THP in a speculative way since we
5161 * can't safely indentify an in progress collapse operation done in our
5162 * back on that PMD.
5163 * Regarding the order of the following checks, see comment in
5164 * pmd_devmap_trans_unstable()
5165 */
5166 if (unlikely(pmd_devmap(vmf.orig_pmd) ||
5167 pmd_none(vmf.orig_pmd) || pmd_trans_huge(vmf.orig_pmd) ||
5168 is_swap_pmd(vmf.orig_pmd)))
5169 goto out_walk;
5170
5171 /*
5172 * The above does not allocate/instantiate page-tables because doing so
5173 * would lead to the possibility of instantiating page-tables after
5174 * free_pgtables() -- and consequently leaking them.
5175 *
5176 * The result is that we take at least one !speculative fault per PMD
5177 * in order to instantiate it.
5178 */
5179
5180 vmf.pte = pte_offset_map(vmf.pmd, address);
5181 if (pmd_val(READ_ONCE(*vmf.pmd)) != pmd_val(vmf.orig_pmd)) {
5182 pte_unmap(vmf.pte);
5183 vmf.pte = NULL;
5184 goto out_walk;
5185 }
5186 vmf.orig_pte = READ_ONCE(*vmf.pte);
5187 barrier(); /* See comment in handle_pte_fault() */
5188 if (pte_none(vmf.orig_pte)) {
5189 pte_unmap(vmf.pte);
5190 vmf.pte = NULL;
5191 }
5192
5193 vmf.sequence = seq;
5194 vmf.flags = flags;
5195
5196 local_irq_enable();
5197
5198 if (!vmf.pte && uffd_missing_sigbus)
5199 return VM_FAULT_SIGBUS;
5200
5201 /*
5202 * We need to re-validate the VMA after checking the bounds, otherwise
5203 * we might have a false positive on the bounds.
5204 */
5205 if (read_seqcount_retry(&vmf.vma->vm_sequence, seq)) {
5206 trace_spf_vma_changed(_RET_IP_, vmf.vma, address);
5207 return VM_FAULT_RETRY;
5208 }
5209
5210 mem_cgroup_enter_user_fault();
5211 ret = handle_pte_fault(&vmf);
5212 mem_cgroup_exit_user_fault();
5213
5214 if (ret != VM_FAULT_RETRY) {
5215 if (vma_is_anonymous(vmf.vma))
5216 count_vm_event(SPECULATIVE_PGFAULT_ANON);
5217 else
5218 count_vm_event(SPECULATIVE_PGFAULT_FILE);
5219 }
5220
5221 /*
5222 * The task may have entered a memcg OOM situation but
5223 * if the allocation error was handled gracefully (no
5224 * VM_FAULT_OOM), there is no need to kill anything.
5225 * Just clean up the OOM state peacefully.
5226 */
5227 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5228 mem_cgroup_oom_synchronize(false);
5229 return ret;
5230
5231 out_walk:
5232 trace_spf_vma_notsup(_RET_IP_, vmf.vma, address);
5233 local_irq_enable();
5234 /*
5235 * Failing page-table walk is similar to page-missing so give an
5236 * opportunity to SIGBUS+MISSING userfault to handle it before retrying
5237 * with mmap_lock
5238 */
5239 return uffd_missing_sigbus ? VM_FAULT_SIGBUS : VM_FAULT_RETRY;
5240
5241 out_segv:
5242 trace_spf_vma_access(_RET_IP_, vmf.vma, address);
5243 return VM_FAULT_SIGSEGV;
5244 }
5245
__handle_speculative_fault(struct mm_struct * mm,unsigned long address,unsigned int flags,struct vm_area_struct ** vma,struct pt_regs * regs)5246 vm_fault_t __handle_speculative_fault(struct mm_struct *mm,
5247 unsigned long address, unsigned int flags,
5248 struct vm_area_struct **vma,
5249 struct pt_regs *regs)
5250 {
5251 vm_fault_t ret;
5252
5253 check_sync_rss_stat(current);
5254
5255 *vma = get_vma(mm, address);
5256 if (!*vma)
5257 return VM_FAULT_RETRY;
5258
5259 ret = ___handle_speculative_fault(mm, address, flags, *vma);
5260
5261 /*
5262 * If there is no need to retry, don't return the vma to the caller.
5263 */
5264 if (ret != VM_FAULT_RETRY) {
5265 put_vma(*vma);
5266 *vma = NULL;
5267 mm_account_fault(regs, address, flags, ret);
5268 }
5269
5270 return ret;
5271 }
5272
5273 /*
5274 * This is used to know if the vma fetch in the speculative page fault handler
5275 * is still valid when trying the regular fault path while holding the
5276 * mmap_sem.
5277 * The call to put_vma(vma) must be made after checking the vma's fields, as
5278 * the vma may be freed by put_vma(). In such a case it is expected that false
5279 * is returned.
5280 */
can_reuse_spf_vma(struct vm_area_struct * vma,unsigned long address)5281 bool can_reuse_spf_vma(struct vm_area_struct *vma, unsigned long address)
5282 {
5283 bool ret;
5284
5285 ret = !RB_EMPTY_NODE(&vma->vm_rb) &&
5286 vma->vm_start <= address && address < vma->vm_end;
5287 put_vma(vma);
5288 return ret;
5289 }
5290 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
5291
5292 /*
5293 * By the time we get here, we already hold the mm semaphore
5294 *
5295 * The mmap_lock may have been released depending on flags and our
5296 * return value. See filemap_fault() and __lock_page_or_retry().
5297 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)5298 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5299 unsigned int flags, struct pt_regs *regs)
5300 {
5301 vm_fault_t ret;
5302
5303 __set_current_state(TASK_RUNNING);
5304
5305 count_vm_event(PGFAULT);
5306 count_memcg_event_mm(vma->vm_mm, PGFAULT);
5307
5308 /* do counter updates before entering really critical section. */
5309 check_sync_rss_stat(current);
5310
5311 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5312 flags & FAULT_FLAG_INSTRUCTION,
5313 flags & FAULT_FLAG_REMOTE))
5314 return VM_FAULT_SIGSEGV;
5315
5316 /*
5317 * Enable the memcg OOM handling for faults triggered in user
5318 * space. Kernel faults are handled more gracefully.
5319 */
5320 if (flags & FAULT_FLAG_USER)
5321 mem_cgroup_enter_user_fault();
5322
5323 if (unlikely(is_vm_hugetlb_page(vma)))
5324 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5325 else
5326 ret = __handle_mm_fault(vma, address, flags);
5327
5328 if (flags & FAULT_FLAG_USER) {
5329 mem_cgroup_exit_user_fault();
5330 /*
5331 * The task may have entered a memcg OOM situation but
5332 * if the allocation error was handled gracefully (no
5333 * VM_FAULT_OOM), there is no need to kill anything.
5334 * Just clean up the OOM state peacefully.
5335 */
5336 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5337 mem_cgroup_oom_synchronize(false);
5338 }
5339
5340 mm_account_fault(regs, address, flags, ret);
5341
5342 return ret;
5343 }
5344 EXPORT_SYMBOL_GPL(handle_mm_fault);
5345
5346 #ifndef __PAGETABLE_P4D_FOLDED
5347 /*
5348 * Allocate p4d page table.
5349 * We've already handled the fast-path in-line.
5350 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)5351 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5352 {
5353 p4d_t *new = p4d_alloc_one(mm, address);
5354 if (!new)
5355 return -ENOMEM;
5356
5357 smp_wmb(); /* See comment in __pte_alloc */
5358
5359 spin_lock(&mm->page_table_lock);
5360 if (pgd_present(*pgd)) /* Another has populated it */
5361 p4d_free(mm, new);
5362 else
5363 pgd_populate(mm, pgd, new);
5364 spin_unlock(&mm->page_table_lock);
5365 return 0;
5366 }
5367 #endif /* __PAGETABLE_P4D_FOLDED */
5368
5369 #ifndef __PAGETABLE_PUD_FOLDED
5370 /*
5371 * Allocate page upper directory.
5372 * We've already handled the fast-path in-line.
5373 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)5374 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5375 {
5376 pud_t *new = pud_alloc_one(mm, address);
5377 if (!new)
5378 return -ENOMEM;
5379
5380 smp_wmb(); /* See comment in __pte_alloc */
5381
5382 spin_lock(&mm->page_table_lock);
5383 if (!p4d_present(*p4d)) {
5384 mm_inc_nr_puds(mm);
5385 p4d_populate(mm, p4d, new);
5386 } else /* Another has populated it */
5387 pud_free(mm, new);
5388 spin_unlock(&mm->page_table_lock);
5389 return 0;
5390 }
5391 #endif /* __PAGETABLE_PUD_FOLDED */
5392
5393 #ifndef __PAGETABLE_PMD_FOLDED
5394 /*
5395 * Allocate page middle directory.
5396 * We've already handled the fast-path in-line.
5397 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)5398 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5399 {
5400 spinlock_t *ptl;
5401 pmd_t *new = pmd_alloc_one(mm, address);
5402 if (!new)
5403 return -ENOMEM;
5404
5405 smp_wmb(); /* See comment in __pte_alloc */
5406
5407 ptl = pud_lock(mm, pud);
5408 if (!pud_present(*pud)) {
5409 mm_inc_nr_pmds(mm);
5410 pud_populate(mm, pud, new);
5411 } else /* Another has populated it */
5412 pmd_free(mm, new);
5413 spin_unlock(ptl);
5414 return 0;
5415 }
5416 #endif /* __PAGETABLE_PMD_FOLDED */
5417
follow_invalidate_pte(struct mm_struct * mm,unsigned long address,struct mmu_notifier_range * range,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)5418 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
5419 struct mmu_notifier_range *range, pte_t **ptepp,
5420 pmd_t **pmdpp, spinlock_t **ptlp)
5421 {
5422 pgd_t *pgd;
5423 p4d_t *p4d;
5424 pud_t *pud;
5425 pmd_t *pmd;
5426 pte_t *ptep;
5427
5428 pgd = pgd_offset(mm, address);
5429 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5430 goto out;
5431
5432 p4d = p4d_offset(pgd, address);
5433 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5434 goto out;
5435
5436 pud = pud_offset(p4d, address);
5437 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5438 goto out;
5439
5440 pmd = pmd_offset(pud, address);
5441 VM_BUG_ON(pmd_trans_huge(*pmd));
5442
5443 if (pmd_huge(*pmd)) {
5444 if (!pmdpp)
5445 goto out;
5446
5447 if (range) {
5448 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
5449 NULL, mm, address & PMD_MASK,
5450 (address & PMD_MASK) + PMD_SIZE);
5451 mmu_notifier_invalidate_range_start(range);
5452 }
5453 *ptlp = pmd_lock(mm, pmd);
5454 if (pmd_huge(*pmd)) {
5455 *pmdpp = pmd;
5456 return 0;
5457 }
5458 spin_unlock(*ptlp);
5459 if (range)
5460 mmu_notifier_invalidate_range_end(range);
5461 }
5462
5463 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5464 goto out;
5465
5466 if (range) {
5467 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
5468 address & PAGE_MASK,
5469 (address & PAGE_MASK) + PAGE_SIZE);
5470 mmu_notifier_invalidate_range_start(range);
5471 }
5472 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5473 if (!pte_present(*ptep))
5474 goto unlock;
5475 *ptepp = ptep;
5476 return 0;
5477 unlock:
5478 pte_unmap_unlock(ptep, *ptlp);
5479 if (range)
5480 mmu_notifier_invalidate_range_end(range);
5481 out:
5482 return -EINVAL;
5483 }
5484
5485 /**
5486 * follow_pte - look up PTE at a user virtual address
5487 * @mm: the mm_struct of the target address space
5488 * @address: user virtual address
5489 * @ptepp: location to store found PTE
5490 * @ptlp: location to store the lock for the PTE
5491 *
5492 * On a successful return, the pointer to the PTE is stored in @ptepp;
5493 * the corresponding lock is taken and its location is stored in @ptlp.
5494 * The contents of the PTE are only stable until @ptlp is released;
5495 * any further use, if any, must be protected against invalidation
5496 * with MMU notifiers.
5497 *
5498 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5499 * should be taken for read.
5500 *
5501 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5502 * it is not a good general-purpose API.
5503 *
5504 * Return: zero on success, -ve otherwise.
5505 */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)5506 int follow_pte(struct mm_struct *mm, unsigned long address,
5507 pte_t **ptepp, spinlock_t **ptlp)
5508 {
5509 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
5510 }
5511 EXPORT_SYMBOL_GPL(follow_pte);
5512
5513 /**
5514 * follow_pfn - look up PFN at a user virtual address
5515 * @vma: memory mapping
5516 * @address: user virtual address
5517 * @pfn: location to store found PFN
5518 *
5519 * Only IO mappings and raw PFN mappings are allowed.
5520 *
5521 * This function does not allow the caller to read the permissions
5522 * of the PTE. Do not use it.
5523 *
5524 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5525 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)5526 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5527 unsigned long *pfn)
5528 {
5529 int ret = -EINVAL;
5530 spinlock_t *ptl;
5531 pte_t *ptep;
5532
5533 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5534 return ret;
5535
5536 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5537 if (ret)
5538 return ret;
5539 *pfn = pte_pfn(*ptep);
5540 pte_unmap_unlock(ptep, ptl);
5541 return 0;
5542 }
5543 EXPORT_SYMBOL(follow_pfn);
5544
5545 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)5546 int follow_phys(struct vm_area_struct *vma,
5547 unsigned long address, unsigned int flags,
5548 unsigned long *prot, resource_size_t *phys)
5549 {
5550 int ret = -EINVAL;
5551 pte_t *ptep, pte;
5552 spinlock_t *ptl;
5553
5554 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5555 goto out;
5556
5557 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5558 goto out;
5559 pte = *ptep;
5560
5561 if ((flags & FOLL_WRITE) && !pte_write(pte))
5562 goto unlock;
5563
5564 *prot = pgprot_val(pte_pgprot(pte));
5565 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5566
5567 ret = 0;
5568 unlock:
5569 pte_unmap_unlock(ptep, ptl);
5570 out:
5571 return ret;
5572 }
5573
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)5574 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5575 void *buf, int len, int write)
5576 {
5577 resource_size_t phys_addr;
5578 unsigned long prot = 0;
5579 void __iomem *maddr;
5580 int offset = addr & (PAGE_SIZE-1);
5581
5582 if (follow_phys(vma, addr, write, &prot, &phys_addr))
5583 return -EINVAL;
5584
5585 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5586 if (!maddr)
5587 return -ENOMEM;
5588
5589 if (write)
5590 memcpy_toio(maddr + offset, buf, len);
5591 else
5592 memcpy_fromio(buf, maddr + offset, len);
5593 iounmap(maddr);
5594
5595 return len;
5596 }
5597 EXPORT_SYMBOL_GPL(generic_access_phys);
5598 #endif
5599
5600 /*
5601 * Access another process' address space as given in mm. If non-NULL, use the
5602 * given task for page fault accounting.
5603 */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5604 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
5605 unsigned long addr, void *buf, int len, unsigned int gup_flags)
5606 {
5607 struct vm_area_struct *vma;
5608 void *old_buf = buf;
5609 int write = gup_flags & FOLL_WRITE;
5610
5611 if (mmap_read_lock_killable(mm))
5612 return 0;
5613
5614 /* ignore errors, just check how much was successfully transferred */
5615 while (len) {
5616 int bytes, ret, offset;
5617 void *maddr;
5618 struct page *page = NULL;
5619
5620 ret = get_user_pages_remote(mm, addr, 1,
5621 gup_flags, &page, &vma, NULL);
5622 if (ret <= 0) {
5623 #ifndef CONFIG_HAVE_IOREMAP_PROT
5624 break;
5625 #else
5626 /*
5627 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5628 * we can access using slightly different code.
5629 */
5630 vma = find_vma(mm, addr);
5631 if (!vma || vma->vm_start > addr)
5632 break;
5633 if (vma->vm_ops && vma->vm_ops->access)
5634 ret = vma->vm_ops->access(vma, addr, buf,
5635 len, write);
5636 if (ret <= 0)
5637 break;
5638 bytes = ret;
5639 #endif
5640 } else {
5641 bytes = len;
5642 offset = addr & (PAGE_SIZE-1);
5643 if (bytes > PAGE_SIZE-offset)
5644 bytes = PAGE_SIZE-offset;
5645
5646 maddr = kmap(page);
5647 if (write) {
5648 copy_to_user_page(vma, page, addr,
5649 maddr + offset, buf, bytes);
5650 set_page_dirty_lock(page);
5651 } else {
5652 copy_from_user_page(vma, page, addr,
5653 buf, maddr + offset, bytes);
5654 }
5655 kunmap(page);
5656 put_user_page(page);
5657 }
5658 len -= bytes;
5659 buf += bytes;
5660 addr += bytes;
5661 }
5662 mmap_read_unlock(mm);
5663
5664 return buf - old_buf;
5665 }
5666
5667 /**
5668 * access_remote_vm - access another process' address space
5669 * @mm: the mm_struct of the target address space
5670 * @addr: start address to access
5671 * @buf: source or destination buffer
5672 * @len: number of bytes to transfer
5673 * @gup_flags: flags modifying lookup behaviour
5674 *
5675 * The caller must hold a reference on @mm.
5676 *
5677 * Return: number of bytes copied from source to destination.
5678 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5679 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5680 void *buf, int len, unsigned int gup_flags)
5681 {
5682 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5683 }
5684
5685 /*
5686 * Access another process' address space.
5687 * Source/target buffer must be kernel space,
5688 * Do not walk the page table directly, use get_user_pages
5689 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5690 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5691 void *buf, int len, unsigned int gup_flags)
5692 {
5693 struct mm_struct *mm;
5694 int ret;
5695
5696 mm = get_task_mm(tsk);
5697 if (!mm)
5698 return 0;
5699
5700 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
5701
5702 mmput(mm);
5703
5704 return ret;
5705 }
5706 EXPORT_SYMBOL_GPL(access_process_vm);
5707
5708 /*
5709 * Print the name of a VMA.
5710 */
print_vma_addr(char * prefix,unsigned long ip)5711 void print_vma_addr(char *prefix, unsigned long ip)
5712 {
5713 struct mm_struct *mm = current->mm;
5714 struct vm_area_struct *vma;
5715
5716 /*
5717 * we might be running from an atomic context so we cannot sleep
5718 */
5719 if (!mmap_read_trylock(mm))
5720 return;
5721
5722 vma = find_vma(mm, ip);
5723 if (vma && vma->vm_file) {
5724 struct file *f = vma->vm_file;
5725 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5726 if (buf) {
5727 char *p;
5728
5729 p = file_path(f, buf, PAGE_SIZE);
5730 if (IS_ERR(p))
5731 p = "?";
5732 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5733 vma->vm_start,
5734 vma->vm_end - vma->vm_start);
5735 free_page((unsigned long)buf);
5736 }
5737 }
5738 mmap_read_unlock(mm);
5739 }
5740
5741 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5742 void __might_fault(const char *file, int line)
5743 {
5744 /*
5745 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5746 * holding the mmap_lock, this is safe because kernel memory doesn't
5747 * get paged out, therefore we'll never actually fault, and the
5748 * below annotations will generate false positives.
5749 */
5750 if (uaccess_kernel())
5751 return;
5752 if (pagefault_disabled())
5753 return;
5754 __might_sleep(file, line, 0);
5755 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5756 if (current->mm)
5757 might_lock_read(¤t->mm->mmap_lock);
5758 #endif
5759 }
5760 EXPORT_SYMBOL(__might_fault);
5761 #endif
5762
5763 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5764 /*
5765 * Process all subpages of the specified huge page with the specified
5766 * operation. The target subpage will be processed last to keep its
5767 * cache lines hot.
5768 */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5769 static inline void process_huge_page(
5770 unsigned long addr_hint, unsigned int pages_per_huge_page,
5771 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5772 void *arg)
5773 {
5774 int i, n, base, l;
5775 unsigned long addr = addr_hint &
5776 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5777
5778 /* Process target subpage last to keep its cache lines hot */
5779 might_sleep();
5780 n = (addr_hint - addr) / PAGE_SIZE;
5781 if (2 * n <= pages_per_huge_page) {
5782 /* If target subpage in first half of huge page */
5783 base = 0;
5784 l = n;
5785 /* Process subpages at the end of huge page */
5786 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5787 cond_resched();
5788 process_subpage(addr + i * PAGE_SIZE, i, arg);
5789 }
5790 } else {
5791 /* If target subpage in second half of huge page */
5792 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5793 l = pages_per_huge_page - n;
5794 /* Process subpages at the begin of huge page */
5795 for (i = 0; i < base; i++) {
5796 cond_resched();
5797 process_subpage(addr + i * PAGE_SIZE, i, arg);
5798 }
5799 }
5800 /*
5801 * Process remaining subpages in left-right-left-right pattern
5802 * towards the target subpage
5803 */
5804 for (i = 0; i < l; i++) {
5805 int left_idx = base + i;
5806 int right_idx = base + 2 * l - 1 - i;
5807
5808 cond_resched();
5809 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5810 cond_resched();
5811 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5812 }
5813 }
5814
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)5815 static void clear_gigantic_page(struct page *page,
5816 unsigned long addr,
5817 unsigned int pages_per_huge_page)
5818 {
5819 int i;
5820 struct page *p = page;
5821
5822 might_sleep();
5823 for (i = 0; i < pages_per_huge_page;
5824 i++, p = mem_map_next(p, page, i)) {
5825 cond_resched();
5826 clear_user_highpage(p, addr + i * PAGE_SIZE);
5827 }
5828 }
5829
clear_subpage(unsigned long addr,int idx,void * arg)5830 static void clear_subpage(unsigned long addr, int idx, void *arg)
5831 {
5832 struct page *page = arg;
5833
5834 clear_user_highpage(page + idx, addr);
5835 }
5836
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)5837 void clear_huge_page(struct page *page,
5838 unsigned long addr_hint, unsigned int pages_per_huge_page)
5839 {
5840 unsigned long addr = addr_hint &
5841 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5842
5843 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5844 clear_gigantic_page(page, addr, pages_per_huge_page);
5845 return;
5846 }
5847
5848 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5849 }
5850
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5851 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5852 unsigned long addr,
5853 struct vm_area_struct *vma,
5854 unsigned int pages_per_huge_page)
5855 {
5856 int i;
5857 struct page *dst_base = dst;
5858 struct page *src_base = src;
5859
5860 for (i = 0; i < pages_per_huge_page; ) {
5861 cond_resched();
5862 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5863
5864 i++;
5865 dst = mem_map_next(dst, dst_base, i);
5866 src = mem_map_next(src, src_base, i);
5867 }
5868 }
5869
5870 struct copy_subpage_arg {
5871 struct page *dst;
5872 struct page *src;
5873 struct vm_area_struct *vma;
5874 };
5875
copy_subpage(unsigned long addr,int idx,void * arg)5876 static void copy_subpage(unsigned long addr, int idx, void *arg)
5877 {
5878 struct copy_subpage_arg *copy_arg = arg;
5879
5880 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5881 addr, copy_arg->vma);
5882 }
5883
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5884 void copy_user_huge_page(struct page *dst, struct page *src,
5885 unsigned long addr_hint, struct vm_area_struct *vma,
5886 unsigned int pages_per_huge_page)
5887 {
5888 unsigned long addr = addr_hint &
5889 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5890 struct copy_subpage_arg arg = {
5891 .dst = dst,
5892 .src = src,
5893 .vma = vma,
5894 };
5895
5896 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5897 copy_user_gigantic_page(dst, src, addr, vma,
5898 pages_per_huge_page);
5899 return;
5900 }
5901
5902 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5903 }
5904
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)5905 long copy_huge_page_from_user(struct page *dst_page,
5906 const void __user *usr_src,
5907 unsigned int pages_per_huge_page,
5908 bool allow_pagefault)
5909 {
5910 void *src = (void *)usr_src;
5911 void *page_kaddr;
5912 unsigned long i, rc = 0;
5913 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5914 struct page *subpage = dst_page;
5915
5916 for (i = 0; i < pages_per_huge_page;
5917 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5918 if (allow_pagefault)
5919 page_kaddr = kmap(subpage);
5920 else
5921 page_kaddr = kmap_atomic(subpage);
5922 rc = copy_from_user(page_kaddr,
5923 (const void __user *)(src + i * PAGE_SIZE),
5924 PAGE_SIZE);
5925 if (allow_pagefault)
5926 kunmap(subpage);
5927 else
5928 kunmap_atomic(page_kaddr);
5929
5930 ret_val -= (PAGE_SIZE - rc);
5931 if (rc)
5932 break;
5933
5934 flush_dcache_page(subpage);
5935
5936 cond_resched();
5937 }
5938 return ret_val;
5939 }
5940 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5941
5942 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5943
5944 static struct kmem_cache *page_ptl_cachep;
5945
ptlock_cache_init(void)5946 void __init ptlock_cache_init(void)
5947 {
5948 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5949 SLAB_PANIC, NULL);
5950 }
5951
ptlock_alloc(struct page * page)5952 bool ptlock_alloc(struct page *page)
5953 {
5954 spinlock_t *ptl;
5955
5956 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5957 if (!ptl)
5958 return false;
5959 page->ptl = ptl;
5960 return true;
5961 }
5962
ptlock_free(struct page * page)5963 void ptlock_free(struct page *page)
5964 {
5965 kmem_cache_free(page_ptl_cachep, page->ptl);
5966 }
5967 #endif
5968