• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4 
5 #include <linux/idr.h>
6 #include <linux/blk-mq.h>
7 #include <linux/part_stat.h>
8 #include <linux/blk-crypto.h>
9 #include <xen/xen.h>
10 #include "blk-crypto-internal.h"
11 #include "blk-mq.h"
12 #include "blk-mq-sched.h"
13 
14 /* Max future timer expiry for timeouts */
15 #define BLK_MAX_TIMEOUT		(5 * HZ)
16 
17 extern struct dentry *blk_debugfs_root;
18 
19 struct blk_flush_queue {
20 	unsigned int		flush_pending_idx:1;
21 	unsigned int		flush_running_idx:1;
22 	blk_status_t 		rq_status;
23 	unsigned long		flush_pending_since;
24 	struct list_head	flush_queue[2];
25 	struct list_head	flush_data_in_flight;
26 	struct request		*flush_rq;
27 
28 	struct lock_class_key	key;
29 	spinlock_t		mq_flush_lock;
30 };
31 
32 extern struct kmem_cache *blk_requestq_cachep;
33 extern struct kobj_type blk_queue_ktype;
34 extern struct ida blk_queue_ida;
35 
36 static inline struct blk_flush_queue *
blk_get_flush_queue(struct request_queue * q,struct blk_mq_ctx * ctx)37 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
38 {
39 	return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
40 }
41 
__blk_get_queue(struct request_queue * q)42 static inline void __blk_get_queue(struct request_queue *q)
43 {
44 	kobject_get(&q->kobj);
45 }
46 
47 bool is_flush_rq(struct request *req);
48 
49 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
50 					      gfp_t flags);
51 void blk_free_flush_queue(struct blk_flush_queue *q);
52 
53 void blk_freeze_queue(struct request_queue *q);
54 
biovec_phys_mergeable(struct request_queue * q,struct bio_vec * vec1,struct bio_vec * vec2)55 static inline bool biovec_phys_mergeable(struct request_queue *q,
56 		struct bio_vec *vec1, struct bio_vec *vec2)
57 {
58 	unsigned long mask = queue_segment_boundary(q);
59 	phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
60 	phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
61 
62 	if (addr1 + vec1->bv_len != addr2)
63 		return false;
64 	if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
65 		return false;
66 	if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
67 		return false;
68 	return true;
69 }
70 
__bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)71 static inline bool __bvec_gap_to_prev(struct request_queue *q,
72 		struct bio_vec *bprv, unsigned int offset)
73 {
74 	return (offset & queue_virt_boundary(q)) ||
75 		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
76 }
77 
78 /*
79  * Check if adding a bio_vec after bprv with offset would create a gap in
80  * the SG list. Most drivers don't care about this, but some do.
81  */
bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)82 static inline bool bvec_gap_to_prev(struct request_queue *q,
83 		struct bio_vec *bprv, unsigned int offset)
84 {
85 	if (!queue_virt_boundary(q))
86 		return false;
87 	return __bvec_gap_to_prev(q, bprv, offset);
88 }
89 
blk_rq_bio_prep(struct request * rq,struct bio * bio,unsigned int nr_segs)90 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
91 		unsigned int nr_segs)
92 {
93 	rq->nr_phys_segments = nr_segs;
94 	rq->__data_len = bio->bi_iter.bi_size;
95 	rq->bio = rq->biotail = bio;
96 	rq->ioprio = bio_prio(bio);
97 
98 	if (bio->bi_disk)
99 		rq->rq_disk = bio->bi_disk;
100 }
101 
102 #ifdef CONFIG_BLK_DEV_INTEGRITY
103 void blk_flush_integrity(void);
104 bool __bio_integrity_endio(struct bio *);
105 void bio_integrity_free(struct bio *bio);
bio_integrity_endio(struct bio * bio)106 static inline bool bio_integrity_endio(struct bio *bio)
107 {
108 	if (bio_integrity(bio))
109 		return __bio_integrity_endio(bio);
110 	return true;
111 }
112 
113 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
114 		struct request *);
115 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
116 		struct bio *);
117 
integrity_req_gap_back_merge(struct request * req,struct bio * next)118 static inline bool integrity_req_gap_back_merge(struct request *req,
119 		struct bio *next)
120 {
121 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
122 	struct bio_integrity_payload *bip_next = bio_integrity(next);
123 
124 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
125 				bip_next->bip_vec[0].bv_offset);
126 }
127 
integrity_req_gap_front_merge(struct request * req,struct bio * bio)128 static inline bool integrity_req_gap_front_merge(struct request *req,
129 		struct bio *bio)
130 {
131 	struct bio_integrity_payload *bip = bio_integrity(bio);
132 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
133 
134 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
135 				bip_next->bip_vec[0].bv_offset);
136 }
137 
138 void blk_integrity_add(struct gendisk *);
139 void blk_integrity_del(struct gendisk *);
140 #else /* CONFIG_BLK_DEV_INTEGRITY */
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)141 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
142 		struct request *r1, struct request *r2)
143 {
144 	return true;
145 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)146 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
147 		struct request *r, struct bio *b)
148 {
149 	return true;
150 }
integrity_req_gap_back_merge(struct request * req,struct bio * next)151 static inline bool integrity_req_gap_back_merge(struct request *req,
152 		struct bio *next)
153 {
154 	return false;
155 }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)156 static inline bool integrity_req_gap_front_merge(struct request *req,
157 		struct bio *bio)
158 {
159 	return false;
160 }
161 
blk_flush_integrity(void)162 static inline void blk_flush_integrity(void)
163 {
164 }
bio_integrity_endio(struct bio * bio)165 static inline bool bio_integrity_endio(struct bio *bio)
166 {
167 	return true;
168 }
bio_integrity_free(struct bio * bio)169 static inline void bio_integrity_free(struct bio *bio)
170 {
171 }
blk_integrity_add(struct gendisk * disk)172 static inline void blk_integrity_add(struct gendisk *disk)
173 {
174 }
blk_integrity_del(struct gendisk * disk)175 static inline void blk_integrity_del(struct gendisk *disk)
176 {
177 }
178 #endif /* CONFIG_BLK_DEV_INTEGRITY */
179 
180 unsigned long blk_rq_timeout(unsigned long timeout);
181 void blk_add_timer(struct request *req);
182 
183 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
184 		unsigned int nr_segs, struct request **same_queue_rq);
185 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
186 			struct bio *bio, unsigned int nr_segs);
187 
188 void blk_account_io_start(struct request *req);
189 void blk_account_io_done(struct request *req, u64 now);
190 
191 /*
192  * Plug flush limits
193  */
194 #define BLK_MAX_REQUEST_COUNT	32
195 #define BLK_PLUG_FLUSH_SIZE	(128 * 1024)
196 
197 /*
198  * Internal elevator interface
199  */
200 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
201 
202 void blk_insert_flush(struct request *rq);
203 
204 void elevator_init_mq(struct request_queue *q);
205 int elevator_switch_mq(struct request_queue *q,
206 			      struct elevator_type *new_e);
207 void __elevator_exit(struct request_queue *, struct elevator_queue *);
208 int elv_register_queue(struct request_queue *q, bool uevent);
209 void elv_unregister_queue(struct request_queue *q);
210 
elevator_exit(struct request_queue * q,struct elevator_queue * e)211 static inline void elevator_exit(struct request_queue *q,
212 		struct elevator_queue *e)
213 {
214 	lockdep_assert_held(&q->sysfs_lock);
215 
216 	blk_mq_sched_free_requests(q);
217 	__elevator_exit(q, e);
218 }
219 
220 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno);
221 
222 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
223 		char *buf);
224 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
225 		char *buf);
226 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
227 		char *buf);
228 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
229 		char *buf);
230 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
231 		const char *buf, size_t count);
232 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
233 ssize_t part_timeout_store(struct device *, struct device_attribute *,
234 				const char *, size_t);
235 
236 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs);
237 int ll_back_merge_fn(struct request *req, struct bio *bio,
238 		unsigned int nr_segs);
239 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
240 				struct request *next);
241 unsigned int blk_recalc_rq_segments(struct request *rq);
242 void blk_rq_set_mixed_merge(struct request *rq);
243 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
244 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
245 
246 int blk_dev_init(void);
247 
248 /*
249  * Contribute to IO statistics IFF:
250  *
251  *	a) it's attached to a gendisk, and
252  *	b) the queue had IO stats enabled when this request was started
253  */
blk_do_io_stat(struct request * rq)254 static inline bool blk_do_io_stat(struct request *rq)
255 {
256 	return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT);
257 }
258 
req_set_nomerge(struct request_queue * q,struct request * req)259 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
260 {
261 	req->cmd_flags |= REQ_NOMERGE;
262 	if (req == q->last_merge)
263 		q->last_merge = NULL;
264 }
265 
266 /*
267  * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
268  * is defined as 'unsigned int', meantime it has to aligned to with logical
269  * block size which is the minimum accepted unit by hardware.
270  */
bio_allowed_max_sectors(struct request_queue * q)271 static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
272 {
273 	return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
274 }
275 
276 /*
277  * The max bio size which is aligned to q->limits.discard_granularity. This
278  * is a hint to split large discard bio in generic block layer, then if device
279  * driver needs to split the discard bio into smaller ones, their bi_size can
280  * be very probably and easily aligned to discard_granularity of the device's
281  * queue.
282  */
bio_aligned_discard_max_sectors(struct request_queue * q)283 static inline unsigned int bio_aligned_discard_max_sectors(
284 					struct request_queue *q)
285 {
286 	return round_down(UINT_MAX, q->limits.discard_granularity) >>
287 			SECTOR_SHIFT;
288 }
289 
290 /*
291  * Internal io_context interface
292  */
293 void get_io_context(struct io_context *ioc);
294 struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
295 struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
296 			     gfp_t gfp_mask);
297 void ioc_clear_queue(struct request_queue *q);
298 
299 int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
300 
301 /*
302  * Internal throttling interface
303  */
304 #ifdef CONFIG_BLK_DEV_THROTTLING
305 extern int blk_throtl_init(struct request_queue *q);
306 extern void blk_throtl_exit(struct request_queue *q);
307 extern void blk_throtl_register_queue(struct request_queue *q);
308 extern void blk_throtl_charge_bio_split(struct bio *bio);
309 bool blk_throtl_bio(struct bio *bio);
310 #else /* CONFIG_BLK_DEV_THROTTLING */
blk_throtl_init(struct request_queue * q)311 static inline int blk_throtl_init(struct request_queue *q) { return 0; }
blk_throtl_exit(struct request_queue * q)312 static inline void blk_throtl_exit(struct request_queue *q) { }
blk_throtl_register_queue(struct request_queue * q)313 static inline void blk_throtl_register_queue(struct request_queue *q) { }
blk_throtl_charge_bio_split(struct bio * bio)314 static inline void blk_throtl_charge_bio_split(struct bio *bio) { }
blk_throtl_bio(struct bio * bio)315 static inline bool blk_throtl_bio(struct bio *bio) { return false; }
316 #endif /* CONFIG_BLK_DEV_THROTTLING */
317 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
318 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
319 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
320 	const char *page, size_t count);
321 extern void blk_throtl_bio_endio(struct bio *bio);
322 extern void blk_throtl_stat_add(struct request *rq, u64 time);
323 #else
blk_throtl_bio_endio(struct bio * bio)324 static inline void blk_throtl_bio_endio(struct bio *bio) { }
blk_throtl_stat_add(struct request * rq,u64 time)325 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
326 #endif
327 
328 #ifdef CONFIG_BOUNCE
329 extern int init_emergency_isa_pool(void);
330 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio);
331 #else
init_emergency_isa_pool(void)332 static inline int init_emergency_isa_pool(void)
333 {
334 	return 0;
335 }
blk_queue_bounce(struct request_queue * q,struct bio ** bio)336 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
337 {
338 }
339 #endif /* CONFIG_BOUNCE */
340 
341 #ifdef CONFIG_BLK_CGROUP_IOLATENCY
342 extern int blk_iolatency_init(struct request_queue *q);
343 #else
blk_iolatency_init(struct request_queue * q)344 static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
345 #endif
346 
347 struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);
348 
349 #ifdef CONFIG_BLK_DEV_ZONED
350 void blk_queue_free_zone_bitmaps(struct request_queue *q);
351 #else
blk_queue_free_zone_bitmaps(struct request_queue * q)352 static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
353 #endif
354 
355 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector);
356 
357 int blk_alloc_devt(struct hd_struct *part, dev_t *devt);
358 void blk_free_devt(dev_t devt);
359 void blk_invalidate_devt(dev_t devt);
360 char *disk_name(struct gendisk *hd, int partno, char *buf);
361 #define ADDPART_FLAG_NONE	0
362 #define ADDPART_FLAG_RAID	1
363 #define ADDPART_FLAG_WHOLEDISK	2
364 void delete_partition(struct hd_struct *part);
365 int bdev_add_partition(struct block_device *bdev, int partno,
366 		sector_t start, sector_t length);
367 int bdev_del_partition(struct block_device *bdev, int partno);
368 int bdev_resize_partition(struct block_device *bdev, int partno,
369 		sector_t start, sector_t length);
370 int disk_expand_part_tbl(struct gendisk *disk, int target);
371 int hd_ref_init(struct hd_struct *part);
372 
373 /* no need to get/put refcount of part0 */
hd_struct_try_get(struct hd_struct * part)374 static inline int hd_struct_try_get(struct hd_struct *part)
375 {
376 	if (part->partno)
377 		return percpu_ref_tryget_live(&part->ref);
378 	return 1;
379 }
380 
hd_struct_put(struct hd_struct * part)381 static inline void hd_struct_put(struct hd_struct *part)
382 {
383 	if (part->partno)
384 		percpu_ref_put(&part->ref);
385 }
386 
hd_free_part(struct hd_struct * part)387 static inline void hd_free_part(struct hd_struct *part)
388 {
389 	free_percpu(part->dkstats);
390 	kfree(part->info);
391 	percpu_ref_exit(&part->ref);
392 }
393 
394 /*
395  * Any access of part->nr_sects which is not protected by partition
396  * bd_mutex or gendisk bdev bd_mutex, should be done using this
397  * accessor function.
398  *
399  * Code written along the lines of i_size_read() and i_size_write().
400  * CONFIG_PREEMPTION case optimizes the case of UP kernel with preemption
401  * on.
402  */
part_nr_sects_read(struct hd_struct * part)403 static inline sector_t part_nr_sects_read(struct hd_struct *part)
404 {
405 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
406 	sector_t nr_sects;
407 	unsigned seq;
408 	do {
409 		seq = read_seqcount_begin(&part->nr_sects_seq);
410 		nr_sects = part->nr_sects;
411 	} while (read_seqcount_retry(&part->nr_sects_seq, seq));
412 	return nr_sects;
413 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
414 	sector_t nr_sects;
415 
416 	preempt_disable();
417 	nr_sects = part->nr_sects;
418 	preempt_enable();
419 	return nr_sects;
420 #else
421 	return part->nr_sects;
422 #endif
423 }
424 
425 /*
426  * Should be called with mutex lock held (typically bd_mutex) of partition
427  * to provide mutual exlusion among writers otherwise seqcount might be
428  * left in wrong state leaving the readers spinning infinitely.
429  */
part_nr_sects_write(struct hd_struct * part,sector_t size)430 static inline void part_nr_sects_write(struct hd_struct *part, sector_t size)
431 {
432 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
433 	preempt_disable();
434 	write_seqcount_begin(&part->nr_sects_seq);
435 	part->nr_sects = size;
436 	write_seqcount_end(&part->nr_sects_seq);
437 	preempt_enable();
438 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
439 	preempt_disable();
440 	part->nr_sects = size;
441 	preempt_enable();
442 #else
443 	part->nr_sects = size;
444 #endif
445 }
446 
447 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
448 		struct page *page, unsigned int len, unsigned int offset,
449 		unsigned int max_sectors, bool *same_page);
450 
451 #endif /* BLK_INTERNAL_H */
452