1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Message Signaled Interrupt (MSI)
4 *
5 * Copyright (C) 2003-2004 Intel
6 * Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
7 * Copyright (C) 2016 Christoph Hellwig.
8 */
9
10 #include <linux/err.h>
11 #include <linux/mm.h>
12 #include <linux/irq.h>
13 #include <linux/interrupt.h>
14 #include <linux/export.h>
15 #include <linux/ioport.h>
16 #include <linux/pci.h>
17 #include <linux/proc_fs.h>
18 #include <linux/msi.h>
19 #include <linux/smp.h>
20 #include <linux/errno.h>
21 #include <linux/io.h>
22 #include <linux/acpi_iort.h>
23 #include <linux/slab.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of_irq.h>
26
27 #include "pci.h"
28
29 static int pci_msi_enable = 1;
30 int pci_msi_ignore_mask;
31
32 #define msix_table_size(flags) ((flags & PCI_MSIX_FLAGS_QSIZE) + 1)
33
34 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
pci_msi_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)35 static int pci_msi_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
36 {
37 struct irq_domain *domain;
38
39 domain = dev_get_msi_domain(&dev->dev);
40 if (domain && irq_domain_is_hierarchy(domain))
41 return msi_domain_alloc_irqs(domain, &dev->dev, nvec);
42
43 return arch_setup_msi_irqs(dev, nvec, type);
44 }
45
pci_msi_teardown_msi_irqs(struct pci_dev * dev)46 static void pci_msi_teardown_msi_irqs(struct pci_dev *dev)
47 {
48 struct irq_domain *domain;
49
50 domain = dev_get_msi_domain(&dev->dev);
51 if (domain && irq_domain_is_hierarchy(domain))
52 msi_domain_free_irqs(domain, &dev->dev);
53 else
54 arch_teardown_msi_irqs(dev);
55 }
56 #else
57 #define pci_msi_setup_msi_irqs arch_setup_msi_irqs
58 #define pci_msi_teardown_msi_irqs arch_teardown_msi_irqs
59 #endif
60
61 #ifdef CONFIG_PCI_MSI_ARCH_FALLBACKS
62 /* Arch hooks */
arch_setup_msi_irq(struct pci_dev * dev,struct msi_desc * desc)63 int __weak arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
64 {
65 struct msi_controller *chip = dev->bus->msi;
66 int err;
67
68 if (!chip || !chip->setup_irq)
69 return -EINVAL;
70
71 err = chip->setup_irq(chip, dev, desc);
72 if (err < 0)
73 return err;
74
75 irq_set_chip_data(desc->irq, chip);
76
77 return 0;
78 }
79
arch_teardown_msi_irq(unsigned int irq)80 void __weak arch_teardown_msi_irq(unsigned int irq)
81 {
82 struct msi_controller *chip = irq_get_chip_data(irq);
83
84 if (!chip || !chip->teardown_irq)
85 return;
86
87 chip->teardown_irq(chip, irq);
88 }
89
arch_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)90 int __weak arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
91 {
92 struct msi_controller *chip = dev->bus->msi;
93 struct msi_desc *entry;
94 int ret;
95
96 if (chip && chip->setup_irqs)
97 return chip->setup_irqs(chip, dev, nvec, type);
98 /*
99 * If an architecture wants to support multiple MSI, it needs to
100 * override arch_setup_msi_irqs()
101 */
102 if (type == PCI_CAP_ID_MSI && nvec > 1)
103 return 1;
104
105 for_each_pci_msi_entry(entry, dev) {
106 ret = arch_setup_msi_irq(dev, entry);
107 if (ret < 0)
108 return ret;
109 if (ret > 0)
110 return -ENOSPC;
111 }
112
113 return 0;
114 }
115
116 /*
117 * We have a default implementation available as a separate non-weak
118 * function, as it is used by the Xen x86 PCI code
119 */
default_teardown_msi_irqs(struct pci_dev * dev)120 void default_teardown_msi_irqs(struct pci_dev *dev)
121 {
122 int i;
123 struct msi_desc *entry;
124
125 for_each_pci_msi_entry(entry, dev)
126 if (entry->irq)
127 for (i = 0; i < entry->nvec_used; i++)
128 arch_teardown_msi_irq(entry->irq + i);
129 }
130
arch_teardown_msi_irqs(struct pci_dev * dev)131 void __weak arch_teardown_msi_irqs(struct pci_dev *dev)
132 {
133 return default_teardown_msi_irqs(dev);
134 }
135 #endif /* CONFIG_PCI_MSI_ARCH_FALLBACKS */
136
default_restore_msi_irq(struct pci_dev * dev,int irq)137 static void default_restore_msi_irq(struct pci_dev *dev, int irq)
138 {
139 struct msi_desc *entry;
140
141 entry = NULL;
142 if (dev->msix_enabled) {
143 for_each_pci_msi_entry(entry, dev) {
144 if (irq == entry->irq)
145 break;
146 }
147 } else if (dev->msi_enabled) {
148 entry = irq_get_msi_desc(irq);
149 }
150
151 if (entry)
152 __pci_write_msi_msg(entry, &entry->msg);
153 }
154
arch_restore_msi_irqs(struct pci_dev * dev)155 void __weak arch_restore_msi_irqs(struct pci_dev *dev)
156 {
157 return default_restore_msi_irqs(dev);
158 }
159
msi_mask(unsigned x)160 static inline __attribute_const__ u32 msi_mask(unsigned x)
161 {
162 /* Don't shift by >= width of type */
163 if (x >= 5)
164 return 0xffffffff;
165 return (1 << (1 << x)) - 1;
166 }
167
168 /*
169 * PCI 2.3 does not specify mask bits for each MSI interrupt. Attempting to
170 * mask all MSI interrupts by clearing the MSI enable bit does not work
171 * reliably as devices without an INTx disable bit will then generate a
172 * level IRQ which will never be cleared.
173 */
__pci_msi_desc_mask_irq(struct msi_desc * desc,u32 mask,u32 flag)174 u32 __pci_msi_desc_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
175 {
176 u32 mask_bits = desc->masked;
177
178 if (pci_msi_ignore_mask || !desc->msi_attrib.maskbit)
179 return 0;
180
181 mask_bits &= ~mask;
182 mask_bits |= flag;
183 pci_write_config_dword(msi_desc_to_pci_dev(desc), desc->mask_pos,
184 mask_bits);
185
186 return mask_bits;
187 }
188
msi_mask_irq(struct msi_desc * desc,u32 mask,u32 flag)189 static void msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
190 {
191 desc->masked = __pci_msi_desc_mask_irq(desc, mask, flag);
192 }
193
pci_msix_desc_addr(struct msi_desc * desc)194 static void __iomem *pci_msix_desc_addr(struct msi_desc *desc)
195 {
196 if (desc->msi_attrib.is_virtual)
197 return NULL;
198
199 return desc->mask_base +
200 desc->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
201 }
202
203 /*
204 * This internal function does not flush PCI writes to the device.
205 * All users must ensure that they read from the device before either
206 * assuming that the device state is up to date, or returning out of this
207 * file. This saves a few milliseconds when initialising devices with lots
208 * of MSI-X interrupts.
209 */
__pci_msix_desc_mask_irq(struct msi_desc * desc,u32 flag)210 u32 __pci_msix_desc_mask_irq(struct msi_desc *desc, u32 flag)
211 {
212 u32 mask_bits = desc->masked;
213 void __iomem *desc_addr;
214
215 if (pci_msi_ignore_mask)
216 return 0;
217
218 desc_addr = pci_msix_desc_addr(desc);
219 if (!desc_addr)
220 return 0;
221
222 mask_bits &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT;
223 if (flag & PCI_MSIX_ENTRY_CTRL_MASKBIT)
224 mask_bits |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
225
226 writel(mask_bits, desc_addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
227
228 return mask_bits;
229 }
230
msix_mask_irq(struct msi_desc * desc,u32 flag)231 static void msix_mask_irq(struct msi_desc *desc, u32 flag)
232 {
233 desc->masked = __pci_msix_desc_mask_irq(desc, flag);
234 }
235
msi_set_mask_bit(struct irq_data * data,u32 flag)236 static void msi_set_mask_bit(struct irq_data *data, u32 flag)
237 {
238 struct msi_desc *desc = irq_data_get_msi_desc(data);
239
240 if (desc->msi_attrib.is_msix) {
241 msix_mask_irq(desc, flag);
242 readl(desc->mask_base); /* Flush write to device */
243 } else {
244 unsigned offset = data->irq - desc->irq;
245 msi_mask_irq(desc, 1 << offset, flag << offset);
246 }
247 }
248
249 /**
250 * pci_msi_mask_irq - Generic IRQ chip callback to mask PCI/MSI interrupts
251 * @data: pointer to irqdata associated to that interrupt
252 */
pci_msi_mask_irq(struct irq_data * data)253 void pci_msi_mask_irq(struct irq_data *data)
254 {
255 msi_set_mask_bit(data, 1);
256 }
257 EXPORT_SYMBOL_GPL(pci_msi_mask_irq);
258
259 /**
260 * pci_msi_unmask_irq - Generic IRQ chip callback to unmask PCI/MSI interrupts
261 * @data: pointer to irqdata associated to that interrupt
262 */
pci_msi_unmask_irq(struct irq_data * data)263 void pci_msi_unmask_irq(struct irq_data *data)
264 {
265 msi_set_mask_bit(data, 0);
266 }
267 EXPORT_SYMBOL_GPL(pci_msi_unmask_irq);
268
default_restore_msi_irqs(struct pci_dev * dev)269 void default_restore_msi_irqs(struct pci_dev *dev)
270 {
271 struct msi_desc *entry;
272
273 for_each_pci_msi_entry(entry, dev)
274 default_restore_msi_irq(dev, entry->irq);
275 }
276
__pci_read_msi_msg(struct msi_desc * entry,struct msi_msg * msg)277 void __pci_read_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
278 {
279 struct pci_dev *dev = msi_desc_to_pci_dev(entry);
280
281 BUG_ON(dev->current_state != PCI_D0);
282
283 if (entry->msi_attrib.is_msix) {
284 void __iomem *base = pci_msix_desc_addr(entry);
285
286 if (!base) {
287 WARN_ON(1);
288 return;
289 }
290
291 msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR);
292 msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR);
293 msg->data = readl(base + PCI_MSIX_ENTRY_DATA);
294 } else {
295 int pos = dev->msi_cap;
296 u16 data;
297
298 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
299 &msg->address_lo);
300 if (entry->msi_attrib.is_64) {
301 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
302 &msg->address_hi);
303 pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data);
304 } else {
305 msg->address_hi = 0;
306 pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data);
307 }
308 msg->data = data;
309 }
310 }
311
__pci_write_msi_msg(struct msi_desc * entry,struct msi_msg * msg)312 void __pci_write_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
313 {
314 struct pci_dev *dev = msi_desc_to_pci_dev(entry);
315
316 if (dev->current_state != PCI_D0 || pci_dev_is_disconnected(dev)) {
317 /* Don't touch the hardware now */
318 } else if (entry->msi_attrib.is_msix) {
319 void __iomem *base = pci_msix_desc_addr(entry);
320 bool unmasked = !(entry->masked & PCI_MSIX_ENTRY_CTRL_MASKBIT);
321
322 if (!base)
323 goto skip;
324
325 /*
326 * The specification mandates that the entry is masked
327 * when the message is modified:
328 *
329 * "If software changes the Address or Data value of an
330 * entry while the entry is unmasked, the result is
331 * undefined."
332 */
333 if (unmasked)
334 __pci_msix_desc_mask_irq(entry, PCI_MSIX_ENTRY_CTRL_MASKBIT);
335
336 writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR);
337 writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR);
338 writel(msg->data, base + PCI_MSIX_ENTRY_DATA);
339
340 if (unmasked)
341 __pci_msix_desc_mask_irq(entry, 0);
342
343 /* Ensure that the writes are visible in the device */
344 readl(base + PCI_MSIX_ENTRY_DATA);
345 } else {
346 int pos = dev->msi_cap;
347 u16 msgctl;
348
349 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
350 msgctl &= ~PCI_MSI_FLAGS_QSIZE;
351 msgctl |= entry->msi_attrib.multiple << 4;
352 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl);
353
354 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
355 msg->address_lo);
356 if (entry->msi_attrib.is_64) {
357 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
358 msg->address_hi);
359 pci_write_config_word(dev, pos + PCI_MSI_DATA_64,
360 msg->data);
361 } else {
362 pci_write_config_word(dev, pos + PCI_MSI_DATA_32,
363 msg->data);
364 }
365 /* Ensure that the writes are visible in the device */
366 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
367 }
368
369 skip:
370 entry->msg = *msg;
371
372 if (entry->write_msi_msg)
373 entry->write_msi_msg(entry, entry->write_msi_msg_data);
374
375 }
376
pci_write_msi_msg(unsigned int irq,struct msi_msg * msg)377 void pci_write_msi_msg(unsigned int irq, struct msi_msg *msg)
378 {
379 struct msi_desc *entry = irq_get_msi_desc(irq);
380
381 __pci_write_msi_msg(entry, msg);
382 }
383 EXPORT_SYMBOL_GPL(pci_write_msi_msg);
384
free_msi_irqs(struct pci_dev * dev)385 static void free_msi_irqs(struct pci_dev *dev)
386 {
387 struct list_head *msi_list = dev_to_msi_list(&dev->dev);
388 struct msi_desc *entry, *tmp;
389 struct attribute **msi_attrs;
390 struct device_attribute *dev_attr;
391 int i, count = 0;
392
393 for_each_pci_msi_entry(entry, dev)
394 if (entry->irq)
395 for (i = 0; i < entry->nvec_used; i++)
396 BUG_ON(irq_has_action(entry->irq + i));
397
398 if (dev->msi_irq_groups) {
399 sysfs_remove_groups(&dev->dev.kobj, dev->msi_irq_groups);
400 msi_attrs = dev->msi_irq_groups[0]->attrs;
401 while (msi_attrs[count]) {
402 dev_attr = container_of(msi_attrs[count],
403 struct device_attribute, attr);
404 kfree(dev_attr->attr.name);
405 kfree(dev_attr);
406 ++count;
407 }
408 kfree(msi_attrs);
409 kfree(dev->msi_irq_groups[0]);
410 kfree(dev->msi_irq_groups);
411 dev->msi_irq_groups = NULL;
412 }
413
414 pci_msi_teardown_msi_irqs(dev);
415
416 list_for_each_entry_safe(entry, tmp, msi_list, list) {
417 if (entry->msi_attrib.is_msix) {
418 if (list_is_last(&entry->list, msi_list))
419 iounmap(entry->mask_base);
420 }
421
422 list_del(&entry->list);
423 free_msi_entry(entry);
424 }
425 }
426
pci_intx_for_msi(struct pci_dev * dev,int enable)427 static void pci_intx_for_msi(struct pci_dev *dev, int enable)
428 {
429 if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG))
430 pci_intx(dev, enable);
431 }
432
__pci_restore_msi_state(struct pci_dev * dev)433 static void __pci_restore_msi_state(struct pci_dev *dev)
434 {
435 u16 control;
436 struct msi_desc *entry;
437
438 if (!dev->msi_enabled)
439 return;
440
441 entry = irq_get_msi_desc(dev->irq);
442
443 pci_intx_for_msi(dev, 0);
444 pci_msi_set_enable(dev, 0);
445 arch_restore_msi_irqs(dev);
446
447 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
448 msi_mask_irq(entry, msi_mask(entry->msi_attrib.multi_cap),
449 entry->masked);
450 control &= ~PCI_MSI_FLAGS_QSIZE;
451 control |= (entry->msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE;
452 pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
453 }
454
__pci_restore_msix_state(struct pci_dev * dev)455 static void __pci_restore_msix_state(struct pci_dev *dev)
456 {
457 struct msi_desc *entry;
458
459 if (!dev->msix_enabled)
460 return;
461 BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
462
463 /* route the table */
464 pci_intx_for_msi(dev, 0);
465 pci_msix_clear_and_set_ctrl(dev, 0,
466 PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL);
467
468 arch_restore_msi_irqs(dev);
469 for_each_pci_msi_entry(entry, dev)
470 msix_mask_irq(entry, entry->masked);
471
472 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
473 }
474
pci_restore_msi_state(struct pci_dev * dev)475 void pci_restore_msi_state(struct pci_dev *dev)
476 {
477 __pci_restore_msi_state(dev);
478 __pci_restore_msix_state(dev);
479 }
480 EXPORT_SYMBOL_GPL(pci_restore_msi_state);
481
msi_mode_show(struct device * dev,struct device_attribute * attr,char * buf)482 static ssize_t msi_mode_show(struct device *dev, struct device_attribute *attr,
483 char *buf)
484 {
485 struct msi_desc *entry;
486 unsigned long irq;
487 int retval;
488
489 retval = kstrtoul(attr->attr.name, 10, &irq);
490 if (retval)
491 return retval;
492
493 entry = irq_get_msi_desc(irq);
494 if (entry)
495 return sprintf(buf, "%s\n",
496 entry->msi_attrib.is_msix ? "msix" : "msi");
497
498 return -ENODEV;
499 }
500
populate_msi_sysfs(struct pci_dev * pdev)501 static int populate_msi_sysfs(struct pci_dev *pdev)
502 {
503 struct attribute **msi_attrs;
504 struct attribute *msi_attr;
505 struct device_attribute *msi_dev_attr;
506 struct attribute_group *msi_irq_group;
507 const struct attribute_group **msi_irq_groups;
508 struct msi_desc *entry;
509 int ret = -ENOMEM;
510 int num_msi = 0;
511 int count = 0;
512 int i;
513
514 /* Determine how many msi entries we have */
515 for_each_pci_msi_entry(entry, pdev)
516 num_msi += entry->nvec_used;
517 if (!num_msi)
518 return 0;
519
520 /* Dynamically create the MSI attributes for the PCI device */
521 msi_attrs = kcalloc(num_msi + 1, sizeof(void *), GFP_KERNEL);
522 if (!msi_attrs)
523 return -ENOMEM;
524 for_each_pci_msi_entry(entry, pdev) {
525 for (i = 0; i < entry->nvec_used; i++) {
526 msi_dev_attr = kzalloc(sizeof(*msi_dev_attr), GFP_KERNEL);
527 if (!msi_dev_attr)
528 goto error_attrs;
529 msi_attrs[count] = &msi_dev_attr->attr;
530
531 sysfs_attr_init(&msi_dev_attr->attr);
532 msi_dev_attr->attr.name = kasprintf(GFP_KERNEL, "%d",
533 entry->irq + i);
534 if (!msi_dev_attr->attr.name)
535 goto error_attrs;
536 msi_dev_attr->attr.mode = S_IRUGO;
537 msi_dev_attr->show = msi_mode_show;
538 ++count;
539 }
540 }
541
542 msi_irq_group = kzalloc(sizeof(*msi_irq_group), GFP_KERNEL);
543 if (!msi_irq_group)
544 goto error_attrs;
545 msi_irq_group->name = "msi_irqs";
546 msi_irq_group->attrs = msi_attrs;
547
548 msi_irq_groups = kcalloc(2, sizeof(void *), GFP_KERNEL);
549 if (!msi_irq_groups)
550 goto error_irq_group;
551 msi_irq_groups[0] = msi_irq_group;
552
553 ret = sysfs_create_groups(&pdev->dev.kobj, msi_irq_groups);
554 if (ret)
555 goto error_irq_groups;
556 pdev->msi_irq_groups = msi_irq_groups;
557
558 return 0;
559
560 error_irq_groups:
561 kfree(msi_irq_groups);
562 error_irq_group:
563 kfree(msi_irq_group);
564 error_attrs:
565 count = 0;
566 msi_attr = msi_attrs[count];
567 while (msi_attr) {
568 msi_dev_attr = container_of(msi_attr, struct device_attribute, attr);
569 kfree(msi_attr->name);
570 kfree(msi_dev_attr);
571 ++count;
572 msi_attr = msi_attrs[count];
573 }
574 kfree(msi_attrs);
575 return ret;
576 }
577
578 static struct msi_desc *
msi_setup_entry(struct pci_dev * dev,int nvec,struct irq_affinity * affd)579 msi_setup_entry(struct pci_dev *dev, int nvec, struct irq_affinity *affd)
580 {
581 struct irq_affinity_desc *masks = NULL;
582 struct msi_desc *entry;
583 u16 control;
584
585 if (affd)
586 masks = irq_create_affinity_masks(nvec, affd);
587
588 /* MSI Entry Initialization */
589 entry = alloc_msi_entry(&dev->dev, nvec, masks);
590 if (!entry)
591 goto out;
592
593 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
594 /* Lies, damned lies, and MSIs */
595 if (dev->dev_flags & PCI_DEV_FLAGS_HAS_MSI_MASKING)
596 control |= PCI_MSI_FLAGS_MASKBIT;
597
598 entry->msi_attrib.is_msix = 0;
599 entry->msi_attrib.is_64 = !!(control & PCI_MSI_FLAGS_64BIT);
600 entry->msi_attrib.is_virtual = 0;
601 entry->msi_attrib.entry_nr = 0;
602 entry->msi_attrib.maskbit = !!(control & PCI_MSI_FLAGS_MASKBIT);
603 entry->msi_attrib.default_irq = dev->irq; /* Save IOAPIC IRQ */
604 entry->msi_attrib.multi_cap = (control & PCI_MSI_FLAGS_QMASK) >> 1;
605 entry->msi_attrib.multiple = ilog2(__roundup_pow_of_two(nvec));
606
607 if (control & PCI_MSI_FLAGS_64BIT)
608 entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_64;
609 else
610 entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_32;
611
612 /* Save the initial mask status */
613 if (entry->msi_attrib.maskbit)
614 pci_read_config_dword(dev, entry->mask_pos, &entry->masked);
615
616 out:
617 kfree(masks);
618 return entry;
619 }
620
msi_verify_entries(struct pci_dev * dev)621 static int msi_verify_entries(struct pci_dev *dev)
622 {
623 struct msi_desc *entry;
624
625 for_each_pci_msi_entry(entry, dev) {
626 if (!dev->no_64bit_msi || !entry->msg.address_hi)
627 continue;
628 pci_err(dev, "Device has broken 64-bit MSI but arch"
629 " tried to assign one above 4G\n");
630 return -EIO;
631 }
632 return 0;
633 }
634
635 /**
636 * msi_capability_init - configure device's MSI capability structure
637 * @dev: pointer to the pci_dev data structure of MSI device function
638 * @nvec: number of interrupts to allocate
639 * @affd: description of automatic IRQ affinity assignments (may be %NULL)
640 *
641 * Setup the MSI capability structure of the device with the requested
642 * number of interrupts. A return value of zero indicates the successful
643 * setup of an entry with the new MSI IRQ. A negative return value indicates
644 * an error, and a positive return value indicates the number of interrupts
645 * which could have been allocated.
646 */
msi_capability_init(struct pci_dev * dev,int nvec,struct irq_affinity * affd)647 static int msi_capability_init(struct pci_dev *dev, int nvec,
648 struct irq_affinity *affd)
649 {
650 struct msi_desc *entry;
651 int ret;
652 unsigned mask;
653
654 pci_msi_set_enable(dev, 0); /* Disable MSI during set up */
655
656 entry = msi_setup_entry(dev, nvec, affd);
657 if (!entry)
658 return -ENOMEM;
659
660 /* All MSIs are unmasked by default; mask them all */
661 mask = msi_mask(entry->msi_attrib.multi_cap);
662 msi_mask_irq(entry, mask, mask);
663
664 list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
665
666 /* Configure MSI capability structure */
667 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
668 if (ret) {
669 msi_mask_irq(entry, mask, 0);
670 free_msi_irqs(dev);
671 return ret;
672 }
673
674 ret = msi_verify_entries(dev);
675 if (ret) {
676 msi_mask_irq(entry, mask, 0);
677 free_msi_irqs(dev);
678 return ret;
679 }
680
681 ret = populate_msi_sysfs(dev);
682 if (ret) {
683 msi_mask_irq(entry, mask, 0);
684 free_msi_irqs(dev);
685 return ret;
686 }
687
688 /* Set MSI enabled bits */
689 pci_intx_for_msi(dev, 0);
690 pci_msi_set_enable(dev, 1);
691 dev->msi_enabled = 1;
692
693 pcibios_free_irq(dev);
694 dev->irq = entry->irq;
695 return 0;
696 }
697
msix_map_region(struct pci_dev * dev,unsigned nr_entries)698 static void __iomem *msix_map_region(struct pci_dev *dev, unsigned nr_entries)
699 {
700 resource_size_t phys_addr;
701 u32 table_offset;
702 unsigned long flags;
703 u8 bir;
704
705 pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE,
706 &table_offset);
707 bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR);
708 flags = pci_resource_flags(dev, bir);
709 if (!flags || (flags & IORESOURCE_UNSET))
710 return NULL;
711
712 table_offset &= PCI_MSIX_TABLE_OFFSET;
713 phys_addr = pci_resource_start(dev, bir) + table_offset;
714
715 return ioremap(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
716 }
717
msix_setup_entries(struct pci_dev * dev,void __iomem * base,struct msix_entry * entries,int nvec,struct irq_affinity * affd)718 static int msix_setup_entries(struct pci_dev *dev, void __iomem *base,
719 struct msix_entry *entries, int nvec,
720 struct irq_affinity *affd)
721 {
722 struct irq_affinity_desc *curmsk, *masks = NULL;
723 struct msi_desc *entry;
724 void __iomem *addr;
725 int ret, i;
726 int vec_count = pci_msix_vec_count(dev);
727
728 if (affd)
729 masks = irq_create_affinity_masks(nvec, affd);
730
731 for (i = 0, curmsk = masks; i < nvec; i++) {
732 entry = alloc_msi_entry(&dev->dev, 1, curmsk);
733 if (!entry) {
734 if (!i)
735 iounmap(base);
736 else
737 free_msi_irqs(dev);
738 /* No enough memory. Don't try again */
739 ret = -ENOMEM;
740 goto out;
741 }
742
743 entry->msi_attrib.is_msix = 1;
744 entry->msi_attrib.is_64 = 1;
745
746 if (entries)
747 entry->msi_attrib.entry_nr = entries[i].entry;
748 else
749 entry->msi_attrib.entry_nr = i;
750
751 entry->msi_attrib.is_virtual =
752 entry->msi_attrib.entry_nr >= vec_count;
753
754 entry->msi_attrib.default_irq = dev->irq;
755 entry->mask_base = base;
756
757 addr = pci_msix_desc_addr(entry);
758 if (addr)
759 entry->masked = readl(addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
760
761 list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
762 if (masks)
763 curmsk++;
764 }
765 ret = 0;
766 out:
767 kfree(masks);
768 return ret;
769 }
770
msix_update_entries(struct pci_dev * dev,struct msix_entry * entries)771 static void msix_update_entries(struct pci_dev *dev, struct msix_entry *entries)
772 {
773 struct msi_desc *entry;
774
775 for_each_pci_msi_entry(entry, dev) {
776 if (entries) {
777 entries->vector = entry->irq;
778 entries++;
779 }
780 }
781 }
782
msix_mask_all(void __iomem * base,int tsize)783 static void msix_mask_all(void __iomem *base, int tsize)
784 {
785 u32 ctrl = PCI_MSIX_ENTRY_CTRL_MASKBIT;
786 int i;
787
788 if (pci_msi_ignore_mask)
789 return;
790
791 for (i = 0; i < tsize; i++, base += PCI_MSIX_ENTRY_SIZE)
792 writel(ctrl, base + PCI_MSIX_ENTRY_VECTOR_CTRL);
793 }
794
795 /**
796 * msix_capability_init - configure device's MSI-X capability
797 * @dev: pointer to the pci_dev data structure of MSI-X device function
798 * @entries: pointer to an array of struct msix_entry entries
799 * @nvec: number of @entries
800 * @affd: Optional pointer to enable automatic affinity assignment
801 *
802 * Setup the MSI-X capability structure of device function with a
803 * single MSI-X IRQ. A return of zero indicates the successful setup of
804 * requested MSI-X entries with allocated IRQs or non-zero for otherwise.
805 **/
msix_capability_init(struct pci_dev * dev,struct msix_entry * entries,int nvec,struct irq_affinity * affd)806 static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries,
807 int nvec, struct irq_affinity *affd)
808 {
809 void __iomem *base;
810 int ret, tsize;
811 u16 control;
812
813 /*
814 * Some devices require MSI-X to be enabled before the MSI-X
815 * registers can be accessed. Mask all the vectors to prevent
816 * interrupts coming in before they're fully set up.
817 */
818 pci_msix_clear_and_set_ctrl(dev, 0, PCI_MSIX_FLAGS_MASKALL |
819 PCI_MSIX_FLAGS_ENABLE);
820
821 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
822 /* Request & Map MSI-X table region */
823 tsize = msix_table_size(control);
824 base = msix_map_region(dev, tsize);
825 if (!base) {
826 ret = -ENOMEM;
827 goto out_disable;
828 }
829
830 ret = msix_setup_entries(dev, base, entries, nvec, affd);
831 if (ret)
832 goto out_disable;
833
834 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX);
835 if (ret)
836 goto out_avail;
837
838 /* Check if all MSI entries honor device restrictions */
839 ret = msi_verify_entries(dev);
840 if (ret)
841 goto out_free;
842
843 msix_update_entries(dev, entries);
844
845 ret = populate_msi_sysfs(dev);
846 if (ret)
847 goto out_free;
848
849 /* Set MSI-X enabled bits and unmask the function */
850 pci_intx_for_msi(dev, 0);
851 dev->msix_enabled = 1;
852
853 /*
854 * Ensure that all table entries are masked to prevent
855 * stale entries from firing in a crash kernel.
856 *
857 * Done late to deal with a broken Marvell NVME device
858 * which takes the MSI-X mask bits into account even
859 * when MSI-X is disabled, which prevents MSI delivery.
860 */
861 msix_mask_all(base, tsize);
862 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
863
864 pcibios_free_irq(dev);
865 return 0;
866
867 out_avail:
868 if (ret < 0) {
869 /*
870 * If we had some success, report the number of IRQs
871 * we succeeded in setting up.
872 */
873 struct msi_desc *entry;
874 int avail = 0;
875
876 for_each_pci_msi_entry(entry, dev) {
877 if (entry->irq != 0)
878 avail++;
879 }
880 if (avail != 0)
881 ret = avail;
882 }
883
884 out_free:
885 free_msi_irqs(dev);
886
887 out_disable:
888 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE, 0);
889
890 return ret;
891 }
892
893 /**
894 * pci_msi_supported - check whether MSI may be enabled on a device
895 * @dev: pointer to the pci_dev data structure of MSI device function
896 * @nvec: how many MSIs have been requested?
897 *
898 * Look at global flags, the device itself, and its parent buses
899 * to determine if MSI/-X are supported for the device. If MSI/-X is
900 * supported return 1, else return 0.
901 **/
pci_msi_supported(struct pci_dev * dev,int nvec)902 static int pci_msi_supported(struct pci_dev *dev, int nvec)
903 {
904 struct pci_bus *bus;
905
906 /* MSI must be globally enabled and supported by the device */
907 if (!pci_msi_enable)
908 return 0;
909
910 if (!dev || dev->no_msi)
911 return 0;
912
913 /*
914 * You can't ask to have 0 or less MSIs configured.
915 * a) it's stupid ..
916 * b) the list manipulation code assumes nvec >= 1.
917 */
918 if (nvec < 1)
919 return 0;
920
921 /*
922 * Any bridge which does NOT route MSI transactions from its
923 * secondary bus to its primary bus must set NO_MSI flag on
924 * the secondary pci_bus.
925 * We expect only arch-specific PCI host bus controller driver
926 * or quirks for specific PCI bridges to be setting NO_MSI.
927 */
928 for (bus = dev->bus; bus; bus = bus->parent)
929 if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
930 return 0;
931
932 return 1;
933 }
934
935 /**
936 * pci_msi_vec_count - Return the number of MSI vectors a device can send
937 * @dev: device to report about
938 *
939 * This function returns the number of MSI vectors a device requested via
940 * Multiple Message Capable register. It returns a negative errno if the
941 * device is not capable sending MSI interrupts. Otherwise, the call succeeds
942 * and returns a power of two, up to a maximum of 2^5 (32), according to the
943 * MSI specification.
944 **/
pci_msi_vec_count(struct pci_dev * dev)945 int pci_msi_vec_count(struct pci_dev *dev)
946 {
947 int ret;
948 u16 msgctl;
949
950 if (!dev->msi_cap)
951 return -EINVAL;
952
953 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl);
954 ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1);
955
956 return ret;
957 }
958 EXPORT_SYMBOL(pci_msi_vec_count);
959
pci_msi_shutdown(struct pci_dev * dev)960 static void pci_msi_shutdown(struct pci_dev *dev)
961 {
962 struct msi_desc *desc;
963 u32 mask;
964
965 if (!pci_msi_enable || !dev || !dev->msi_enabled)
966 return;
967
968 BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
969 desc = first_pci_msi_entry(dev);
970
971 pci_msi_set_enable(dev, 0);
972 pci_intx_for_msi(dev, 1);
973 dev->msi_enabled = 0;
974
975 /* Return the device with MSI unmasked as initial states */
976 mask = msi_mask(desc->msi_attrib.multi_cap);
977 msi_mask_irq(desc, mask, 0);
978
979 /* Restore dev->irq to its default pin-assertion IRQ */
980 dev->irq = desc->msi_attrib.default_irq;
981 pcibios_alloc_irq(dev);
982 }
983
pci_disable_msi(struct pci_dev * dev)984 void pci_disable_msi(struct pci_dev *dev)
985 {
986 if (!pci_msi_enable || !dev || !dev->msi_enabled)
987 return;
988
989 pci_msi_shutdown(dev);
990 free_msi_irqs(dev);
991 }
992 EXPORT_SYMBOL(pci_disable_msi);
993
994 /**
995 * pci_msix_vec_count - return the number of device's MSI-X table entries
996 * @dev: pointer to the pci_dev data structure of MSI-X device function
997 * This function returns the number of device's MSI-X table entries and
998 * therefore the number of MSI-X vectors device is capable of sending.
999 * It returns a negative errno if the device is not capable of sending MSI-X
1000 * interrupts.
1001 **/
pci_msix_vec_count(struct pci_dev * dev)1002 int pci_msix_vec_count(struct pci_dev *dev)
1003 {
1004 u16 control;
1005
1006 if (!dev->msix_cap)
1007 return -EINVAL;
1008
1009 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
1010 return msix_table_size(control);
1011 }
1012 EXPORT_SYMBOL(pci_msix_vec_count);
1013
__pci_enable_msix(struct pci_dev * dev,struct msix_entry * entries,int nvec,struct irq_affinity * affd,int flags)1014 static int __pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries,
1015 int nvec, struct irq_affinity *affd, int flags)
1016 {
1017 int nr_entries;
1018 int i, j;
1019
1020 if (!pci_msi_supported(dev, nvec) || dev->current_state != PCI_D0)
1021 return -EINVAL;
1022
1023 nr_entries = pci_msix_vec_count(dev);
1024 if (nr_entries < 0)
1025 return nr_entries;
1026 if (nvec > nr_entries && !(flags & PCI_IRQ_VIRTUAL))
1027 return nr_entries;
1028
1029 if (entries) {
1030 /* Check for any invalid entries */
1031 for (i = 0; i < nvec; i++) {
1032 if (entries[i].entry >= nr_entries)
1033 return -EINVAL; /* invalid entry */
1034 for (j = i + 1; j < nvec; j++) {
1035 if (entries[i].entry == entries[j].entry)
1036 return -EINVAL; /* duplicate entry */
1037 }
1038 }
1039 }
1040
1041 /* Check whether driver already requested for MSI IRQ */
1042 if (dev->msi_enabled) {
1043 pci_info(dev, "can't enable MSI-X (MSI IRQ already assigned)\n");
1044 return -EINVAL;
1045 }
1046 return msix_capability_init(dev, entries, nvec, affd);
1047 }
1048
pci_msix_shutdown(struct pci_dev * dev)1049 static void pci_msix_shutdown(struct pci_dev *dev)
1050 {
1051 struct msi_desc *entry;
1052
1053 if (!pci_msi_enable || !dev || !dev->msix_enabled)
1054 return;
1055
1056 if (pci_dev_is_disconnected(dev)) {
1057 dev->msix_enabled = 0;
1058 return;
1059 }
1060
1061 /* Return the device with MSI-X masked as initial states */
1062 for_each_pci_msi_entry(entry, dev)
1063 __pci_msix_desc_mask_irq(entry, 1);
1064
1065 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
1066 pci_intx_for_msi(dev, 1);
1067 dev->msix_enabled = 0;
1068 pcibios_alloc_irq(dev);
1069 }
1070
pci_disable_msix(struct pci_dev * dev)1071 void pci_disable_msix(struct pci_dev *dev)
1072 {
1073 if (!pci_msi_enable || !dev || !dev->msix_enabled)
1074 return;
1075
1076 pci_msix_shutdown(dev);
1077 free_msi_irqs(dev);
1078 }
1079 EXPORT_SYMBOL(pci_disable_msix);
1080
pci_no_msi(void)1081 void pci_no_msi(void)
1082 {
1083 pci_msi_enable = 0;
1084 }
1085
1086 /**
1087 * pci_msi_enabled - is MSI enabled?
1088 *
1089 * Returns true if MSI has not been disabled by the command-line option
1090 * pci=nomsi.
1091 **/
pci_msi_enabled(void)1092 int pci_msi_enabled(void)
1093 {
1094 return pci_msi_enable;
1095 }
1096 EXPORT_SYMBOL(pci_msi_enabled);
1097
__pci_enable_msi_range(struct pci_dev * dev,int minvec,int maxvec,struct irq_affinity * affd)1098 static int __pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec,
1099 struct irq_affinity *affd)
1100 {
1101 int nvec;
1102 int rc;
1103
1104 if (!pci_msi_supported(dev, minvec) || dev->current_state != PCI_D0)
1105 return -EINVAL;
1106
1107 /* Check whether driver already requested MSI-X IRQs */
1108 if (dev->msix_enabled) {
1109 pci_info(dev, "can't enable MSI (MSI-X already enabled)\n");
1110 return -EINVAL;
1111 }
1112
1113 if (maxvec < minvec)
1114 return -ERANGE;
1115
1116 if (WARN_ON_ONCE(dev->msi_enabled))
1117 return -EINVAL;
1118
1119 nvec = pci_msi_vec_count(dev);
1120 if (nvec < 0)
1121 return nvec;
1122 if (nvec < minvec)
1123 return -ENOSPC;
1124
1125 if (nvec > maxvec)
1126 nvec = maxvec;
1127
1128 for (;;) {
1129 if (affd) {
1130 nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
1131 if (nvec < minvec)
1132 return -ENOSPC;
1133 }
1134
1135 rc = msi_capability_init(dev, nvec, affd);
1136 if (rc == 0)
1137 return nvec;
1138
1139 if (rc < 0)
1140 return rc;
1141 if (rc < minvec)
1142 return -ENOSPC;
1143
1144 nvec = rc;
1145 }
1146 }
1147
1148 /* deprecated, don't use */
pci_enable_msi(struct pci_dev * dev)1149 int pci_enable_msi(struct pci_dev *dev)
1150 {
1151 int rc = __pci_enable_msi_range(dev, 1, 1, NULL);
1152 if (rc < 0)
1153 return rc;
1154 return 0;
1155 }
1156 EXPORT_SYMBOL(pci_enable_msi);
1157
__pci_enable_msix_range(struct pci_dev * dev,struct msix_entry * entries,int minvec,int maxvec,struct irq_affinity * affd,int flags)1158 static int __pci_enable_msix_range(struct pci_dev *dev,
1159 struct msix_entry *entries, int minvec,
1160 int maxvec, struct irq_affinity *affd,
1161 int flags)
1162 {
1163 int rc, nvec = maxvec;
1164
1165 if (maxvec < minvec)
1166 return -ERANGE;
1167
1168 if (WARN_ON_ONCE(dev->msix_enabled))
1169 return -EINVAL;
1170
1171 for (;;) {
1172 if (affd) {
1173 nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
1174 if (nvec < minvec)
1175 return -ENOSPC;
1176 }
1177
1178 rc = __pci_enable_msix(dev, entries, nvec, affd, flags);
1179 if (rc == 0)
1180 return nvec;
1181
1182 if (rc < 0)
1183 return rc;
1184 if (rc < minvec)
1185 return -ENOSPC;
1186
1187 nvec = rc;
1188 }
1189 }
1190
1191 /**
1192 * pci_enable_msix_range - configure device's MSI-X capability structure
1193 * @dev: pointer to the pci_dev data structure of MSI-X device function
1194 * @entries: pointer to an array of MSI-X entries
1195 * @minvec: minimum number of MSI-X IRQs requested
1196 * @maxvec: maximum number of MSI-X IRQs requested
1197 *
1198 * Setup the MSI-X capability structure of device function with a maximum
1199 * possible number of interrupts in the range between @minvec and @maxvec
1200 * upon its software driver call to request for MSI-X mode enabled on its
1201 * hardware device function. It returns a negative errno if an error occurs.
1202 * If it succeeds, it returns the actual number of interrupts allocated and
1203 * indicates the successful configuration of MSI-X capability structure
1204 * with new allocated MSI-X interrupts.
1205 **/
pci_enable_msix_range(struct pci_dev * dev,struct msix_entry * entries,int minvec,int maxvec)1206 int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
1207 int minvec, int maxvec)
1208 {
1209 return __pci_enable_msix_range(dev, entries, minvec, maxvec, NULL, 0);
1210 }
1211 EXPORT_SYMBOL(pci_enable_msix_range);
1212
1213 /**
1214 * pci_alloc_irq_vectors_affinity - allocate multiple IRQs for a device
1215 * @dev: PCI device to operate on
1216 * @min_vecs: minimum number of vectors required (must be >= 1)
1217 * @max_vecs: maximum (desired) number of vectors
1218 * @flags: flags or quirks for the allocation
1219 * @affd: optional description of the affinity requirements
1220 *
1221 * Allocate up to @max_vecs interrupt vectors for @dev, using MSI-X or MSI
1222 * vectors if available, and fall back to a single legacy vector
1223 * if neither is available. Return the number of vectors allocated,
1224 * (which might be smaller than @max_vecs) if successful, or a negative
1225 * error code on error. If less than @min_vecs interrupt vectors are
1226 * available for @dev the function will fail with -ENOSPC.
1227 *
1228 * To get the Linux IRQ number used for a vector that can be passed to
1229 * request_irq() use the pci_irq_vector() helper.
1230 */
pci_alloc_irq_vectors_affinity(struct pci_dev * dev,unsigned int min_vecs,unsigned int max_vecs,unsigned int flags,struct irq_affinity * affd)1231 int pci_alloc_irq_vectors_affinity(struct pci_dev *dev, unsigned int min_vecs,
1232 unsigned int max_vecs, unsigned int flags,
1233 struct irq_affinity *affd)
1234 {
1235 struct irq_affinity msi_default_affd = {0};
1236 int nvecs = -ENOSPC;
1237
1238 if (flags & PCI_IRQ_AFFINITY) {
1239 if (!affd)
1240 affd = &msi_default_affd;
1241 } else {
1242 if (WARN_ON(affd))
1243 affd = NULL;
1244 }
1245
1246 if (flags & PCI_IRQ_MSIX) {
1247 nvecs = __pci_enable_msix_range(dev, NULL, min_vecs, max_vecs,
1248 affd, flags);
1249 if (nvecs > 0)
1250 return nvecs;
1251 }
1252
1253 if (flags & PCI_IRQ_MSI) {
1254 nvecs = __pci_enable_msi_range(dev, min_vecs, max_vecs, affd);
1255 if (nvecs > 0)
1256 return nvecs;
1257 }
1258
1259 /* use legacy IRQ if allowed */
1260 if (flags & PCI_IRQ_LEGACY) {
1261 if (min_vecs == 1 && dev->irq) {
1262 /*
1263 * Invoke the affinity spreading logic to ensure that
1264 * the device driver can adjust queue configuration
1265 * for the single interrupt case.
1266 */
1267 if (affd)
1268 irq_create_affinity_masks(1, affd);
1269 pci_intx(dev, 1);
1270 return 1;
1271 }
1272 }
1273
1274 return nvecs;
1275 }
1276 EXPORT_SYMBOL(pci_alloc_irq_vectors_affinity);
1277
1278 /**
1279 * pci_free_irq_vectors - free previously allocated IRQs for a device
1280 * @dev: PCI device to operate on
1281 *
1282 * Undoes the allocations and enabling in pci_alloc_irq_vectors().
1283 */
pci_free_irq_vectors(struct pci_dev * dev)1284 void pci_free_irq_vectors(struct pci_dev *dev)
1285 {
1286 pci_disable_msix(dev);
1287 pci_disable_msi(dev);
1288 }
1289 EXPORT_SYMBOL(pci_free_irq_vectors);
1290
1291 /**
1292 * pci_irq_vector - return Linux IRQ number of a device vector
1293 * @dev: PCI device to operate on
1294 * @nr: Interrupt vector index (0-based)
1295 *
1296 * @nr has the following meanings depending on the interrupt mode:
1297 * MSI-X: The index in the MSI-X vector table
1298 * MSI: The index of the enabled MSI vectors
1299 * INTx: Must be 0
1300 *
1301 * Return: The Linux interrupt number or -EINVAl if @nr is out of range.
1302 */
pci_irq_vector(struct pci_dev * dev,unsigned int nr)1303 int pci_irq_vector(struct pci_dev *dev, unsigned int nr)
1304 {
1305 if (dev->msix_enabled) {
1306 struct msi_desc *entry;
1307
1308 for_each_pci_msi_entry(entry, dev) {
1309 if (entry->msi_attrib.entry_nr == nr)
1310 return entry->irq;
1311 }
1312 WARN_ON_ONCE(1);
1313 return -EINVAL;
1314 }
1315
1316 if (dev->msi_enabled) {
1317 struct msi_desc *entry = first_pci_msi_entry(dev);
1318
1319 if (WARN_ON_ONCE(nr >= entry->nvec_used))
1320 return -EINVAL;
1321 } else {
1322 if (WARN_ON_ONCE(nr > 0))
1323 return -EINVAL;
1324 }
1325
1326 return dev->irq + nr;
1327 }
1328 EXPORT_SYMBOL(pci_irq_vector);
1329
1330 /**
1331 * pci_irq_get_affinity - return the affinity of a particular MSI vector
1332 * @dev: PCI device to operate on
1333 * @nr: device-relative interrupt vector index (0-based).
1334 *
1335 * @nr has the following meanings depending on the interrupt mode:
1336 * MSI-X: The index in the MSI-X vector table
1337 * MSI: The index of the enabled MSI vectors
1338 * INTx: Must be 0
1339 *
1340 * Return: A cpumask pointer or NULL if @nr is out of range
1341 */
pci_irq_get_affinity(struct pci_dev * dev,int nr)1342 const struct cpumask *pci_irq_get_affinity(struct pci_dev *dev, int nr)
1343 {
1344 if (dev->msix_enabled) {
1345 struct msi_desc *entry;
1346
1347 for_each_pci_msi_entry(entry, dev) {
1348 if (entry->msi_attrib.entry_nr == nr)
1349 return &entry->affinity->mask;
1350 }
1351 WARN_ON_ONCE(1);
1352 return NULL;
1353 } else if (dev->msi_enabled) {
1354 struct msi_desc *entry = first_pci_msi_entry(dev);
1355
1356 if (WARN_ON_ONCE(!entry || !entry->affinity ||
1357 nr >= entry->nvec_used))
1358 return NULL;
1359
1360 return &entry->affinity[nr].mask;
1361 } else {
1362 return cpu_possible_mask;
1363 }
1364 }
1365 EXPORT_SYMBOL(pci_irq_get_affinity);
1366
msi_desc_to_pci_dev(struct msi_desc * desc)1367 struct pci_dev *msi_desc_to_pci_dev(struct msi_desc *desc)
1368 {
1369 return to_pci_dev(desc->dev);
1370 }
1371 EXPORT_SYMBOL(msi_desc_to_pci_dev);
1372
msi_desc_to_pci_sysdata(struct msi_desc * desc)1373 void *msi_desc_to_pci_sysdata(struct msi_desc *desc)
1374 {
1375 struct pci_dev *dev = msi_desc_to_pci_dev(desc);
1376
1377 return dev->bus->sysdata;
1378 }
1379 EXPORT_SYMBOL_GPL(msi_desc_to_pci_sysdata);
1380
1381 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
1382 /**
1383 * pci_msi_domain_write_msg - Helper to write MSI message to PCI config space
1384 * @irq_data: Pointer to interrupt data of the MSI interrupt
1385 * @msg: Pointer to the message
1386 */
pci_msi_domain_write_msg(struct irq_data * irq_data,struct msi_msg * msg)1387 void pci_msi_domain_write_msg(struct irq_data *irq_data, struct msi_msg *msg)
1388 {
1389 struct msi_desc *desc = irq_data_get_msi_desc(irq_data);
1390
1391 /*
1392 * For MSI-X desc->irq is always equal to irq_data->irq. For
1393 * MSI only the first interrupt of MULTI MSI passes the test.
1394 */
1395 if (desc->irq == irq_data->irq)
1396 __pci_write_msi_msg(desc, msg);
1397 }
1398
1399 /**
1400 * pci_msi_domain_calc_hwirq - Generate a unique ID for an MSI source
1401 * @desc: Pointer to the MSI descriptor
1402 *
1403 * The ID number is only used within the irqdomain.
1404 */
pci_msi_domain_calc_hwirq(struct msi_desc * desc)1405 static irq_hw_number_t pci_msi_domain_calc_hwirq(struct msi_desc *desc)
1406 {
1407 struct pci_dev *dev = msi_desc_to_pci_dev(desc);
1408
1409 return (irq_hw_number_t)desc->msi_attrib.entry_nr |
1410 pci_dev_id(dev) << 11 |
1411 ((irq_hw_number_t)(pci_domain_nr(dev->bus) & 0xFFFFFFFF)) << 27;
1412 }
1413
pci_msi_desc_is_multi_msi(struct msi_desc * desc)1414 static inline bool pci_msi_desc_is_multi_msi(struct msi_desc *desc)
1415 {
1416 return !desc->msi_attrib.is_msix && desc->nvec_used > 1;
1417 }
1418
1419 /**
1420 * pci_msi_domain_check_cap - Verify that @domain supports the capabilities
1421 * for @dev
1422 * @domain: The interrupt domain to check
1423 * @info: The domain info for verification
1424 * @dev: The device to check
1425 *
1426 * Returns:
1427 * 0 if the functionality is supported
1428 * 1 if Multi MSI is requested, but the domain does not support it
1429 * -ENOTSUPP otherwise
1430 */
pci_msi_domain_check_cap(struct irq_domain * domain,struct msi_domain_info * info,struct device * dev)1431 int pci_msi_domain_check_cap(struct irq_domain *domain,
1432 struct msi_domain_info *info, struct device *dev)
1433 {
1434 struct msi_desc *desc = first_pci_msi_entry(to_pci_dev(dev));
1435
1436 /* Special handling to support __pci_enable_msi_range() */
1437 if (pci_msi_desc_is_multi_msi(desc) &&
1438 !(info->flags & MSI_FLAG_MULTI_PCI_MSI))
1439 return 1;
1440 else if (desc->msi_attrib.is_msix && !(info->flags & MSI_FLAG_PCI_MSIX))
1441 return -ENOTSUPP;
1442
1443 return 0;
1444 }
1445
pci_msi_domain_handle_error(struct irq_domain * domain,struct msi_desc * desc,int error)1446 static int pci_msi_domain_handle_error(struct irq_domain *domain,
1447 struct msi_desc *desc, int error)
1448 {
1449 /* Special handling to support __pci_enable_msi_range() */
1450 if (pci_msi_desc_is_multi_msi(desc) && error == -ENOSPC)
1451 return 1;
1452
1453 return error;
1454 }
1455
pci_msi_domain_set_desc(msi_alloc_info_t * arg,struct msi_desc * desc)1456 static void pci_msi_domain_set_desc(msi_alloc_info_t *arg,
1457 struct msi_desc *desc)
1458 {
1459 arg->desc = desc;
1460 arg->hwirq = pci_msi_domain_calc_hwirq(desc);
1461 }
1462
1463 static struct msi_domain_ops pci_msi_domain_ops_default = {
1464 .set_desc = pci_msi_domain_set_desc,
1465 .msi_check = pci_msi_domain_check_cap,
1466 .handle_error = pci_msi_domain_handle_error,
1467 };
1468
pci_msi_domain_update_dom_ops(struct msi_domain_info * info)1469 static void pci_msi_domain_update_dom_ops(struct msi_domain_info *info)
1470 {
1471 struct msi_domain_ops *ops = info->ops;
1472
1473 if (ops == NULL) {
1474 info->ops = &pci_msi_domain_ops_default;
1475 } else {
1476 if (ops->set_desc == NULL)
1477 ops->set_desc = pci_msi_domain_set_desc;
1478 if (ops->msi_check == NULL)
1479 ops->msi_check = pci_msi_domain_check_cap;
1480 if (ops->handle_error == NULL)
1481 ops->handle_error = pci_msi_domain_handle_error;
1482 }
1483 }
1484
pci_msi_domain_update_chip_ops(struct msi_domain_info * info)1485 static void pci_msi_domain_update_chip_ops(struct msi_domain_info *info)
1486 {
1487 struct irq_chip *chip = info->chip;
1488
1489 BUG_ON(!chip);
1490 if (!chip->irq_write_msi_msg)
1491 chip->irq_write_msi_msg = pci_msi_domain_write_msg;
1492 if (!chip->irq_mask)
1493 chip->irq_mask = pci_msi_mask_irq;
1494 if (!chip->irq_unmask)
1495 chip->irq_unmask = pci_msi_unmask_irq;
1496 }
1497
1498 /**
1499 * pci_msi_create_irq_domain - Create a MSI interrupt domain
1500 * @fwnode: Optional fwnode of the interrupt controller
1501 * @info: MSI domain info
1502 * @parent: Parent irq domain
1503 *
1504 * Updates the domain and chip ops and creates a MSI interrupt domain.
1505 *
1506 * Returns:
1507 * A domain pointer or NULL in case of failure.
1508 */
pci_msi_create_irq_domain(struct fwnode_handle * fwnode,struct msi_domain_info * info,struct irq_domain * parent)1509 struct irq_domain *pci_msi_create_irq_domain(struct fwnode_handle *fwnode,
1510 struct msi_domain_info *info,
1511 struct irq_domain *parent)
1512 {
1513 struct irq_domain *domain;
1514
1515 if (WARN_ON(info->flags & MSI_FLAG_LEVEL_CAPABLE))
1516 info->flags &= ~MSI_FLAG_LEVEL_CAPABLE;
1517
1518 if (info->flags & MSI_FLAG_USE_DEF_DOM_OPS)
1519 pci_msi_domain_update_dom_ops(info);
1520 if (info->flags & MSI_FLAG_USE_DEF_CHIP_OPS)
1521 pci_msi_domain_update_chip_ops(info);
1522
1523 info->flags |= MSI_FLAG_ACTIVATE_EARLY;
1524 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
1525 info->flags |= MSI_FLAG_MUST_REACTIVATE;
1526
1527 /* PCI-MSI is oneshot-safe */
1528 info->chip->flags |= IRQCHIP_ONESHOT_SAFE;
1529
1530 domain = msi_create_irq_domain(fwnode, info, parent);
1531 if (!domain)
1532 return NULL;
1533
1534 irq_domain_update_bus_token(domain, DOMAIN_BUS_PCI_MSI);
1535 return domain;
1536 }
1537 EXPORT_SYMBOL_GPL(pci_msi_create_irq_domain);
1538
1539 /*
1540 * Users of the generic MSI infrastructure expect a device to have a single ID,
1541 * so with DMA aliases we have to pick the least-worst compromise. Devices with
1542 * DMA phantom functions tend to still emit MSIs from the real function number,
1543 * so we ignore those and only consider topological aliases where either the
1544 * alias device or RID appears on a different bus number. We also make the
1545 * reasonable assumption that bridges are walked in an upstream direction (so
1546 * the last one seen wins), and the much braver assumption that the most likely
1547 * case is that of PCI->PCIe so we should always use the alias RID. This echoes
1548 * the logic from intel_irq_remapping's set_msi_sid(), which presumably works
1549 * well enough in practice; in the face of the horrible PCIe<->PCI-X conditions
1550 * for taking ownership all we can really do is close our eyes and hope...
1551 */
get_msi_id_cb(struct pci_dev * pdev,u16 alias,void * data)1552 static int get_msi_id_cb(struct pci_dev *pdev, u16 alias, void *data)
1553 {
1554 u32 *pa = data;
1555 u8 bus = PCI_BUS_NUM(*pa);
1556
1557 if (pdev->bus->number != bus || PCI_BUS_NUM(alias) != bus)
1558 *pa = alias;
1559
1560 return 0;
1561 }
1562
1563 /**
1564 * pci_msi_domain_get_msi_rid - Get the MSI requester id (RID)
1565 * @domain: The interrupt domain
1566 * @pdev: The PCI device.
1567 *
1568 * The RID for a device is formed from the alias, with a firmware
1569 * supplied mapping applied
1570 *
1571 * Returns: The RID.
1572 */
pci_msi_domain_get_msi_rid(struct irq_domain * domain,struct pci_dev * pdev)1573 u32 pci_msi_domain_get_msi_rid(struct irq_domain *domain, struct pci_dev *pdev)
1574 {
1575 struct device_node *of_node;
1576 u32 rid = pci_dev_id(pdev);
1577
1578 pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1579
1580 of_node = irq_domain_get_of_node(domain);
1581 rid = of_node ? of_msi_map_id(&pdev->dev, of_node, rid) :
1582 iort_msi_map_id(&pdev->dev, rid);
1583
1584 return rid;
1585 }
1586
1587 /**
1588 * pci_msi_get_device_domain - Get the MSI domain for a given PCI device
1589 * @pdev: The PCI device
1590 *
1591 * Use the firmware data to find a device-specific MSI domain
1592 * (i.e. not one that is set as a default).
1593 *
1594 * Returns: The corresponding MSI domain or NULL if none has been found.
1595 */
pci_msi_get_device_domain(struct pci_dev * pdev)1596 struct irq_domain *pci_msi_get_device_domain(struct pci_dev *pdev)
1597 {
1598 struct irq_domain *dom;
1599 u32 rid = pci_dev_id(pdev);
1600
1601 pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1602 dom = of_msi_map_get_device_domain(&pdev->dev, rid, DOMAIN_BUS_PCI_MSI);
1603 if (!dom)
1604 dom = iort_get_device_domain(&pdev->dev, rid,
1605 DOMAIN_BUS_PCI_MSI);
1606 return dom;
1607 }
1608
1609 /**
1610 * pci_dev_has_special_msi_domain - Check whether the device is handled by
1611 * a non-standard PCI-MSI domain
1612 * @pdev: The PCI device to check.
1613 *
1614 * Returns: True if the device irqdomain or the bus irqdomain is
1615 * non-standard PCI/MSI.
1616 */
pci_dev_has_special_msi_domain(struct pci_dev * pdev)1617 bool pci_dev_has_special_msi_domain(struct pci_dev *pdev)
1618 {
1619 struct irq_domain *dom = dev_get_msi_domain(&pdev->dev);
1620
1621 if (!dom)
1622 dom = dev_get_msi_domain(&pdev->bus->dev);
1623
1624 if (!dom)
1625 return true;
1626
1627 return dom->bus_token != DOMAIN_BUS_PCI_MSI;
1628 }
1629
1630 #endif /* CONFIG_PCI_MSI_IRQ_DOMAIN */
1631