1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #ifndef __GENKSYMS__
35 #include <trace/hooks/pci.h>
36 #endif
37 #include "pci.h"
38
39 DEFINE_MUTEX(pci_slot_mutex);
40
41 const char *pci_power_names[] = {
42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43 };
44 EXPORT_SYMBOL_GPL(pci_power_names);
45
46 int isa_dma_bridge_buggy;
47 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51
52 unsigned int pci_pm_d3hot_delay;
53
54 static void pci_pme_list_scan(struct work_struct *work);
55
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60 struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63 };
64
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66
pci_dev_d3_sleep(struct pci_dev * dev)67 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 {
69 unsigned int delay = dev->d3hot_delay;
70 int err = -EOPNOTSUPP;
71
72 if (delay < pci_pm_d3hot_delay)
73 delay = pci_pm_d3hot_delay;
74
75 if (delay) {
76 trace_android_rvh_pci_d3_sleep(dev, delay, &err);
77 if (err == -EOPNOTSUPP)
78 msleep(delay);
79 }
80 }
81
82 #ifdef CONFIG_PCI_DOMAINS
83 int pci_domains_supported = 1;
84 #endif
85
86 #define DEFAULT_CARDBUS_IO_SIZE (256)
87 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
88 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
89 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
90 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
91
92 #define DEFAULT_HOTPLUG_IO_SIZE (256)
93 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
94 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
95 /* hpiosize=nn can override this */
96 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
97 /*
98 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
99 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
100 * pci=hpmemsize=nnM overrides both
101 */
102 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
103 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
104
105 #define DEFAULT_HOTPLUG_BUS_SIZE 1
106 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
107
108
109 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
110 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
111 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
112 #elif defined CONFIG_PCIE_BUS_SAFE
113 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
114 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
115 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
116 #elif defined CONFIG_PCIE_BUS_PEER2PEER
117 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
118 #else
119 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
120 #endif
121
122 /*
123 * The default CLS is used if arch didn't set CLS explicitly and not
124 * all pci devices agree on the same value. Arch can override either
125 * the dfl or actual value as it sees fit. Don't forget this is
126 * measured in 32-bit words, not bytes.
127 */
128 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
129 u8 pci_cache_line_size;
130
131 /*
132 * If we set up a device for bus mastering, we need to check the latency
133 * timer as certain BIOSes forget to set it properly.
134 */
135 unsigned int pcibios_max_latency = 255;
136
137 /* If set, the PCIe ARI capability will not be used. */
138 static bool pcie_ari_disabled;
139
140 /* If set, the PCIe ATS capability will not be used. */
141 static bool pcie_ats_disabled;
142
143 /* If set, the PCI config space of each device is printed during boot. */
144 bool pci_early_dump;
145
pci_ats_disabled(void)146 bool pci_ats_disabled(void)
147 {
148 return pcie_ats_disabled;
149 }
150 EXPORT_SYMBOL_GPL(pci_ats_disabled);
151
152 /* Disable bridge_d3 for all PCIe ports */
153 static bool pci_bridge_d3_disable;
154 /* Force bridge_d3 for all PCIe ports */
155 static bool pci_bridge_d3_force;
156
pcie_port_pm_setup(char * str)157 static int __init pcie_port_pm_setup(char *str)
158 {
159 if (!strcmp(str, "off"))
160 pci_bridge_d3_disable = true;
161 else if (!strcmp(str, "force"))
162 pci_bridge_d3_force = true;
163 return 1;
164 }
165 __setup("pcie_port_pm=", pcie_port_pm_setup);
166
167 /**
168 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
169 * @bus: pointer to PCI bus structure to search
170 *
171 * Given a PCI bus, returns the highest PCI bus number present in the set
172 * including the given PCI bus and its list of child PCI buses.
173 */
pci_bus_max_busnr(struct pci_bus * bus)174 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
175 {
176 struct pci_bus *tmp;
177 unsigned char max, n;
178
179 max = bus->busn_res.end;
180 list_for_each_entry(tmp, &bus->children, node) {
181 n = pci_bus_max_busnr(tmp);
182 if (n > max)
183 max = n;
184 }
185 return max;
186 }
187 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
188
189 /**
190 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
191 * @pdev: the PCI device
192 *
193 * Returns error bits set in PCI_STATUS and clears them.
194 */
pci_status_get_and_clear_errors(struct pci_dev * pdev)195 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
196 {
197 u16 status;
198 int ret;
199
200 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
201 if (ret != PCIBIOS_SUCCESSFUL)
202 return -EIO;
203
204 status &= PCI_STATUS_ERROR_BITS;
205 if (status)
206 pci_write_config_word(pdev, PCI_STATUS, status);
207
208 return status;
209 }
210 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
211
212 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)213 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
214 {
215 struct resource *res = &pdev->resource[bar];
216
217 /*
218 * Make sure the BAR is actually a memory resource, not an IO resource
219 */
220 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
221 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
222 return NULL;
223 }
224 return ioremap(res->start, resource_size(res));
225 }
226 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
227
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)228 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
229 {
230 /*
231 * Make sure the BAR is actually a memory resource, not an IO resource
232 */
233 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
234 WARN_ON(1);
235 return NULL;
236 }
237 return ioremap_wc(pci_resource_start(pdev, bar),
238 pci_resource_len(pdev, bar));
239 }
240 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
241 #endif
242
243 /**
244 * pci_dev_str_match_path - test if a path string matches a device
245 * @dev: the PCI device to test
246 * @path: string to match the device against
247 * @endptr: pointer to the string after the match
248 *
249 * Test if a string (typically from a kernel parameter) formatted as a
250 * path of device/function addresses matches a PCI device. The string must
251 * be of the form:
252 *
253 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
254 *
255 * A path for a device can be obtained using 'lspci -t'. Using a path
256 * is more robust against bus renumbering than using only a single bus,
257 * device and function address.
258 *
259 * Returns 1 if the string matches the device, 0 if it does not and
260 * a negative error code if it fails to parse the string.
261 */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)262 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
263 const char **endptr)
264 {
265 int ret;
266 int seg, bus, slot, func;
267 char *wpath, *p;
268 char end;
269
270 *endptr = strchrnul(path, ';');
271
272 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
273 if (!wpath)
274 return -ENOMEM;
275
276 while (1) {
277 p = strrchr(wpath, '/');
278 if (!p)
279 break;
280 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
281 if (ret != 2) {
282 ret = -EINVAL;
283 goto free_and_exit;
284 }
285
286 if (dev->devfn != PCI_DEVFN(slot, func)) {
287 ret = 0;
288 goto free_and_exit;
289 }
290
291 /*
292 * Note: we don't need to get a reference to the upstream
293 * bridge because we hold a reference to the top level
294 * device which should hold a reference to the bridge,
295 * and so on.
296 */
297 dev = pci_upstream_bridge(dev);
298 if (!dev) {
299 ret = 0;
300 goto free_and_exit;
301 }
302
303 *p = 0;
304 }
305
306 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
307 &func, &end);
308 if (ret != 4) {
309 seg = 0;
310 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
311 if (ret != 3) {
312 ret = -EINVAL;
313 goto free_and_exit;
314 }
315 }
316
317 ret = (seg == pci_domain_nr(dev->bus) &&
318 bus == dev->bus->number &&
319 dev->devfn == PCI_DEVFN(slot, func));
320
321 free_and_exit:
322 kfree(wpath);
323 return ret;
324 }
325
326 /**
327 * pci_dev_str_match - test if a string matches a device
328 * @dev: the PCI device to test
329 * @p: string to match the device against
330 * @endptr: pointer to the string after the match
331 *
332 * Test if a string (typically from a kernel parameter) matches a specified
333 * PCI device. The string may be of one of the following formats:
334 *
335 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
336 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
337 *
338 * The first format specifies a PCI bus/device/function address which
339 * may change if new hardware is inserted, if motherboard firmware changes,
340 * or due to changes caused in kernel parameters. If the domain is
341 * left unspecified, it is taken to be 0. In order to be robust against
342 * bus renumbering issues, a path of PCI device/function numbers may be used
343 * to address the specific device. The path for a device can be determined
344 * through the use of 'lspci -t'.
345 *
346 * The second format matches devices using IDs in the configuration
347 * space which may match multiple devices in the system. A value of 0
348 * for any field will match all devices. (Note: this differs from
349 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
350 * legacy reasons and convenience so users don't have to specify
351 * FFFFFFFFs on the command line.)
352 *
353 * Returns 1 if the string matches the device, 0 if it does not and
354 * a negative error code if the string cannot be parsed.
355 */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)356 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
357 const char **endptr)
358 {
359 int ret;
360 int count;
361 unsigned short vendor, device, subsystem_vendor, subsystem_device;
362
363 if (strncmp(p, "pci:", 4) == 0) {
364 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
365 p += 4;
366 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
367 &subsystem_vendor, &subsystem_device, &count);
368 if (ret != 4) {
369 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
370 if (ret != 2)
371 return -EINVAL;
372
373 subsystem_vendor = 0;
374 subsystem_device = 0;
375 }
376
377 p += count;
378
379 if ((!vendor || vendor == dev->vendor) &&
380 (!device || device == dev->device) &&
381 (!subsystem_vendor ||
382 subsystem_vendor == dev->subsystem_vendor) &&
383 (!subsystem_device ||
384 subsystem_device == dev->subsystem_device))
385 goto found;
386 } else {
387 /*
388 * PCI Bus, Device, Function IDs are specified
389 * (optionally, may include a path of devfns following it)
390 */
391 ret = pci_dev_str_match_path(dev, p, &p);
392 if (ret < 0)
393 return ret;
394 else if (ret)
395 goto found;
396 }
397
398 *endptr = p;
399 return 0;
400
401 found:
402 *endptr = p;
403 return 1;
404 }
405
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)406 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
407 u8 pos, int cap, int *ttl)
408 {
409 u8 id;
410 u16 ent;
411
412 pci_bus_read_config_byte(bus, devfn, pos, &pos);
413
414 while ((*ttl)--) {
415 if (pos < 0x40)
416 break;
417 pos &= ~3;
418 pci_bus_read_config_word(bus, devfn, pos, &ent);
419
420 id = ent & 0xff;
421 if (id == 0xff)
422 break;
423 if (id == cap)
424 return pos;
425 pos = (ent >> 8);
426 }
427 return 0;
428 }
429
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)430 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
431 u8 pos, int cap)
432 {
433 int ttl = PCI_FIND_CAP_TTL;
434
435 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
436 }
437
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)438 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
439 {
440 return __pci_find_next_cap(dev->bus, dev->devfn,
441 pos + PCI_CAP_LIST_NEXT, cap);
442 }
443 EXPORT_SYMBOL_GPL(pci_find_next_capability);
444
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)445 static int __pci_bus_find_cap_start(struct pci_bus *bus,
446 unsigned int devfn, u8 hdr_type)
447 {
448 u16 status;
449
450 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
451 if (!(status & PCI_STATUS_CAP_LIST))
452 return 0;
453
454 switch (hdr_type) {
455 case PCI_HEADER_TYPE_NORMAL:
456 case PCI_HEADER_TYPE_BRIDGE:
457 return PCI_CAPABILITY_LIST;
458 case PCI_HEADER_TYPE_CARDBUS:
459 return PCI_CB_CAPABILITY_LIST;
460 }
461
462 return 0;
463 }
464
465 /**
466 * pci_find_capability - query for devices' capabilities
467 * @dev: PCI device to query
468 * @cap: capability code
469 *
470 * Tell if a device supports a given PCI capability.
471 * Returns the address of the requested capability structure within the
472 * device's PCI configuration space or 0 in case the device does not
473 * support it. Possible values for @cap include:
474 *
475 * %PCI_CAP_ID_PM Power Management
476 * %PCI_CAP_ID_AGP Accelerated Graphics Port
477 * %PCI_CAP_ID_VPD Vital Product Data
478 * %PCI_CAP_ID_SLOTID Slot Identification
479 * %PCI_CAP_ID_MSI Message Signalled Interrupts
480 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
481 * %PCI_CAP_ID_PCIX PCI-X
482 * %PCI_CAP_ID_EXP PCI Express
483 */
pci_find_capability(struct pci_dev * dev,int cap)484 int pci_find_capability(struct pci_dev *dev, int cap)
485 {
486 int pos;
487
488 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
489 if (pos)
490 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
491
492 return pos;
493 }
494 EXPORT_SYMBOL(pci_find_capability);
495
496 /**
497 * pci_bus_find_capability - query for devices' capabilities
498 * @bus: the PCI bus to query
499 * @devfn: PCI device to query
500 * @cap: capability code
501 *
502 * Like pci_find_capability() but works for PCI devices that do not have a
503 * pci_dev structure set up yet.
504 *
505 * Returns the address of the requested capability structure within the
506 * device's PCI configuration space or 0 in case the device does not
507 * support it.
508 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)509 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
510 {
511 int pos;
512 u8 hdr_type;
513
514 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
515
516 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
517 if (pos)
518 pos = __pci_find_next_cap(bus, devfn, pos, cap);
519
520 return pos;
521 }
522 EXPORT_SYMBOL(pci_bus_find_capability);
523
524 /**
525 * pci_find_next_ext_capability - Find an extended capability
526 * @dev: PCI device to query
527 * @start: address at which to start looking (0 to start at beginning of list)
528 * @cap: capability code
529 *
530 * Returns the address of the next matching extended capability structure
531 * within the device's PCI configuration space or 0 if the device does
532 * not support it. Some capabilities can occur several times, e.g., the
533 * vendor-specific capability, and this provides a way to find them all.
534 */
pci_find_next_ext_capability(struct pci_dev * dev,int start,int cap)535 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
536 {
537 u32 header;
538 int ttl;
539 int pos = PCI_CFG_SPACE_SIZE;
540
541 /* minimum 8 bytes per capability */
542 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
543
544 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
545 return 0;
546
547 if (start)
548 pos = start;
549
550 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
551 return 0;
552
553 /*
554 * If we have no capabilities, this is indicated by cap ID,
555 * cap version and next pointer all being 0.
556 */
557 if (header == 0)
558 return 0;
559
560 while (ttl-- > 0) {
561 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
562 return pos;
563
564 pos = PCI_EXT_CAP_NEXT(header);
565 if (pos < PCI_CFG_SPACE_SIZE)
566 break;
567
568 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
569 break;
570 }
571
572 return 0;
573 }
574 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
575
576 /**
577 * pci_find_ext_capability - Find an extended capability
578 * @dev: PCI device to query
579 * @cap: capability code
580 *
581 * Returns the address of the requested extended capability structure
582 * within the device's PCI configuration space or 0 if the device does
583 * not support it. Possible values for @cap include:
584 *
585 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
586 * %PCI_EXT_CAP_ID_VC Virtual Channel
587 * %PCI_EXT_CAP_ID_DSN Device Serial Number
588 * %PCI_EXT_CAP_ID_PWR Power Budgeting
589 */
pci_find_ext_capability(struct pci_dev * dev,int cap)590 int pci_find_ext_capability(struct pci_dev *dev, int cap)
591 {
592 return pci_find_next_ext_capability(dev, 0, cap);
593 }
594 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
595
596 /**
597 * pci_get_dsn - Read and return the 8-byte Device Serial Number
598 * @dev: PCI device to query
599 *
600 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
601 * Number.
602 *
603 * Returns the DSN, or zero if the capability does not exist.
604 */
pci_get_dsn(struct pci_dev * dev)605 u64 pci_get_dsn(struct pci_dev *dev)
606 {
607 u32 dword;
608 u64 dsn;
609 int pos;
610
611 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
612 if (!pos)
613 return 0;
614
615 /*
616 * The Device Serial Number is two dwords offset 4 bytes from the
617 * capability position. The specification says that the first dword is
618 * the lower half, and the second dword is the upper half.
619 */
620 pos += 4;
621 pci_read_config_dword(dev, pos, &dword);
622 dsn = (u64)dword;
623 pci_read_config_dword(dev, pos + 4, &dword);
624 dsn |= ((u64)dword) << 32;
625
626 return dsn;
627 }
628 EXPORT_SYMBOL_GPL(pci_get_dsn);
629
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)630 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
631 {
632 int rc, ttl = PCI_FIND_CAP_TTL;
633 u8 cap, mask;
634
635 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
636 mask = HT_3BIT_CAP_MASK;
637 else
638 mask = HT_5BIT_CAP_MASK;
639
640 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
641 PCI_CAP_ID_HT, &ttl);
642 while (pos) {
643 rc = pci_read_config_byte(dev, pos + 3, &cap);
644 if (rc != PCIBIOS_SUCCESSFUL)
645 return 0;
646
647 if ((cap & mask) == ht_cap)
648 return pos;
649
650 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
651 pos + PCI_CAP_LIST_NEXT,
652 PCI_CAP_ID_HT, &ttl);
653 }
654
655 return 0;
656 }
657 /**
658 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
659 * @dev: PCI device to query
660 * @pos: Position from which to continue searching
661 * @ht_cap: Hypertransport capability code
662 *
663 * To be used in conjunction with pci_find_ht_capability() to search for
664 * all capabilities matching @ht_cap. @pos should always be a value returned
665 * from pci_find_ht_capability().
666 *
667 * NB. To be 100% safe against broken PCI devices, the caller should take
668 * steps to avoid an infinite loop.
669 */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)670 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
671 {
672 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
673 }
674 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
675
676 /**
677 * pci_find_ht_capability - query a device's Hypertransport capabilities
678 * @dev: PCI device to query
679 * @ht_cap: Hypertransport capability code
680 *
681 * Tell if a device supports a given Hypertransport capability.
682 * Returns an address within the device's PCI configuration space
683 * or 0 in case the device does not support the request capability.
684 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
685 * which has a Hypertransport capability matching @ht_cap.
686 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)687 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
688 {
689 int pos;
690
691 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
692 if (pos)
693 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
694
695 return pos;
696 }
697 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
698
699 /**
700 * pci_find_parent_resource - return resource region of parent bus of given
701 * region
702 * @dev: PCI device structure contains resources to be searched
703 * @res: child resource record for which parent is sought
704 *
705 * For given resource region of given device, return the resource region of
706 * parent bus the given region is contained in.
707 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)708 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
709 struct resource *res)
710 {
711 const struct pci_bus *bus = dev->bus;
712 struct resource *r;
713 int i;
714
715 pci_bus_for_each_resource(bus, r, i) {
716 if (!r)
717 continue;
718 if (resource_contains(r, res)) {
719
720 /*
721 * If the window is prefetchable but the BAR is
722 * not, the allocator made a mistake.
723 */
724 if (r->flags & IORESOURCE_PREFETCH &&
725 !(res->flags & IORESOURCE_PREFETCH))
726 return NULL;
727
728 /*
729 * If we're below a transparent bridge, there may
730 * be both a positively-decoded aperture and a
731 * subtractively-decoded region that contain the BAR.
732 * We want the positively-decoded one, so this depends
733 * on pci_bus_for_each_resource() giving us those
734 * first.
735 */
736 return r;
737 }
738 }
739 return NULL;
740 }
741 EXPORT_SYMBOL(pci_find_parent_resource);
742
743 /**
744 * pci_find_resource - Return matching PCI device resource
745 * @dev: PCI device to query
746 * @res: Resource to look for
747 *
748 * Goes over standard PCI resources (BARs) and checks if the given resource
749 * is partially or fully contained in any of them. In that case the
750 * matching resource is returned, %NULL otherwise.
751 */
pci_find_resource(struct pci_dev * dev,struct resource * res)752 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
753 {
754 int i;
755
756 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
757 struct resource *r = &dev->resource[i];
758
759 if (r->start && resource_contains(r, res))
760 return r;
761 }
762
763 return NULL;
764 }
765 EXPORT_SYMBOL(pci_find_resource);
766
767 /**
768 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
769 * @dev: the PCI device to operate on
770 * @pos: config space offset of status word
771 * @mask: mask of bit(s) to care about in status word
772 *
773 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
774 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)775 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
776 {
777 int i;
778
779 /* Wait for Transaction Pending bit clean */
780 for (i = 0; i < 4; i++) {
781 u16 status;
782 if (i)
783 msleep((1 << (i - 1)) * 100);
784
785 pci_read_config_word(dev, pos, &status);
786 if (!(status & mask))
787 return 1;
788 }
789
790 return 0;
791 }
792
793 static int pci_acs_enable;
794
795 /**
796 * pci_request_acs - ask for ACS to be enabled if supported
797 */
pci_request_acs(void)798 void pci_request_acs(void)
799 {
800 pci_acs_enable = 1;
801 }
802
803 static const char *disable_acs_redir_param;
804
805 /**
806 * pci_disable_acs_redir - disable ACS redirect capabilities
807 * @dev: the PCI device
808 *
809 * For only devices specified in the disable_acs_redir parameter.
810 */
pci_disable_acs_redir(struct pci_dev * dev)811 static void pci_disable_acs_redir(struct pci_dev *dev)
812 {
813 int ret = 0;
814 const char *p;
815 int pos;
816 u16 ctrl;
817
818 if (!disable_acs_redir_param)
819 return;
820
821 p = disable_acs_redir_param;
822 while (*p) {
823 ret = pci_dev_str_match(dev, p, &p);
824 if (ret < 0) {
825 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
826 disable_acs_redir_param);
827
828 break;
829 } else if (ret == 1) {
830 /* Found a match */
831 break;
832 }
833
834 if (*p != ';' && *p != ',') {
835 /* End of param or invalid format */
836 break;
837 }
838 p++;
839 }
840
841 if (ret != 1)
842 return;
843
844 if (!pci_dev_specific_disable_acs_redir(dev))
845 return;
846
847 pos = dev->acs_cap;
848 if (!pos) {
849 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
850 return;
851 }
852
853 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
854
855 /* P2P Request & Completion Redirect */
856 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
857
858 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
859
860 pci_info(dev, "disabled ACS redirect\n");
861 }
862
863 /**
864 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
865 * @dev: the PCI device
866 */
pci_std_enable_acs(struct pci_dev * dev)867 static void pci_std_enable_acs(struct pci_dev *dev)
868 {
869 int pos;
870 u16 cap;
871 u16 ctrl;
872
873 pos = dev->acs_cap;
874 if (!pos)
875 return;
876
877 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
878 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
879
880 /* Source Validation */
881 ctrl |= (cap & PCI_ACS_SV);
882
883 /* P2P Request Redirect */
884 ctrl |= (cap & PCI_ACS_RR);
885
886 /* P2P Completion Redirect */
887 ctrl |= (cap & PCI_ACS_CR);
888
889 /* Upstream Forwarding */
890 ctrl |= (cap & PCI_ACS_UF);
891
892 /* Enable Translation Blocking for external devices */
893 if (dev->external_facing || dev->untrusted)
894 ctrl |= (cap & PCI_ACS_TB);
895
896 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
897 }
898
899 /**
900 * pci_enable_acs - enable ACS if hardware support it
901 * @dev: the PCI device
902 */
pci_enable_acs(struct pci_dev * dev)903 static void pci_enable_acs(struct pci_dev *dev)
904 {
905 if (!pci_acs_enable)
906 goto disable_acs_redir;
907
908 if (!pci_dev_specific_enable_acs(dev))
909 goto disable_acs_redir;
910
911 pci_std_enable_acs(dev);
912
913 disable_acs_redir:
914 /*
915 * Note: pci_disable_acs_redir() must be called even if ACS was not
916 * enabled by the kernel because it may have been enabled by
917 * platform firmware. So if we are told to disable it, we should
918 * always disable it after setting the kernel's default
919 * preferences.
920 */
921 pci_disable_acs_redir(dev);
922 }
923
924 /**
925 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
926 * @dev: PCI device to have its BARs restored
927 *
928 * Restore the BAR values for a given device, so as to make it
929 * accessible by its driver.
930 */
pci_restore_bars(struct pci_dev * dev)931 static void pci_restore_bars(struct pci_dev *dev)
932 {
933 int i;
934
935 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
936 pci_update_resource(dev, i);
937 }
938
939 static const struct pci_platform_pm_ops *pci_platform_pm;
940
pci_set_platform_pm(const struct pci_platform_pm_ops * ops)941 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
942 {
943 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
944 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
945 return -EINVAL;
946 pci_platform_pm = ops;
947 return 0;
948 }
949
platform_pci_power_manageable(struct pci_dev * dev)950 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
951 {
952 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
953 }
954
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)955 static inline int platform_pci_set_power_state(struct pci_dev *dev,
956 pci_power_t t)
957 {
958 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
959 }
960
platform_pci_get_power_state(struct pci_dev * dev)961 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
962 {
963 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
964 }
965
platform_pci_refresh_power_state(struct pci_dev * dev)966 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
967 {
968 if (pci_platform_pm && pci_platform_pm->refresh_state)
969 pci_platform_pm->refresh_state(dev);
970 }
971
platform_pci_choose_state(struct pci_dev * dev)972 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
973 {
974 return pci_platform_pm ?
975 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
976 }
977
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)978 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
979 {
980 return pci_platform_pm ?
981 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
982 }
983
platform_pci_need_resume(struct pci_dev * dev)984 static inline bool platform_pci_need_resume(struct pci_dev *dev)
985 {
986 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
987 }
988
platform_pci_bridge_d3(struct pci_dev * dev)989 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
990 {
991 if (pci_platform_pm && pci_platform_pm->bridge_d3)
992 return pci_platform_pm->bridge_d3(dev);
993 return false;
994 }
995
996 /**
997 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
998 * given PCI device
999 * @dev: PCI device to handle.
1000 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1001 *
1002 * RETURN VALUE:
1003 * -EINVAL if the requested state is invalid.
1004 * -EIO if device does not support PCI PM or its PM capabilities register has a
1005 * wrong version, or device doesn't support the requested state.
1006 * 0 if device already is in the requested state.
1007 * 0 if device's power state has been successfully changed.
1008 */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)1009 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1010 {
1011 u16 pmcsr;
1012 bool need_restore = false;
1013
1014 /* Check if we're already there */
1015 if (dev->current_state == state)
1016 return 0;
1017
1018 if (!dev->pm_cap)
1019 return -EIO;
1020
1021 if (state < PCI_D0 || state > PCI_D3hot)
1022 return -EINVAL;
1023
1024 /*
1025 * Validate transition: We can enter D0 from any state, but if
1026 * we're already in a low-power state, we can only go deeper. E.g.,
1027 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1028 * we'd have to go from D3 to D0, then to D1.
1029 */
1030 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1031 && dev->current_state > state) {
1032 pci_err(dev, "invalid power transition (from %s to %s)\n",
1033 pci_power_name(dev->current_state),
1034 pci_power_name(state));
1035 return -EINVAL;
1036 }
1037
1038 /* Check if this device supports the desired state */
1039 if ((state == PCI_D1 && !dev->d1_support)
1040 || (state == PCI_D2 && !dev->d2_support))
1041 return -EIO;
1042
1043 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1044 if (pmcsr == (u16) ~0) {
1045 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1046 pci_power_name(dev->current_state),
1047 pci_power_name(state));
1048 return -EIO;
1049 }
1050
1051 /*
1052 * If we're (effectively) in D3, force entire word to 0.
1053 * This doesn't affect PME_Status, disables PME_En, and
1054 * sets PowerState to 0.
1055 */
1056 switch (dev->current_state) {
1057 case PCI_D0:
1058 case PCI_D1:
1059 case PCI_D2:
1060 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1061 pmcsr |= state;
1062 break;
1063 case PCI_D3hot:
1064 case PCI_D3cold:
1065 case PCI_UNKNOWN: /* Boot-up */
1066 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1067 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1068 need_restore = true;
1069 fallthrough; /* force to D0 */
1070 default:
1071 pmcsr = 0;
1072 break;
1073 }
1074
1075 /* Enter specified state */
1076 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1077
1078 /*
1079 * Mandatory power management transition delays; see PCI PM 1.1
1080 * 5.6.1 table 18
1081 */
1082 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1083 pci_dev_d3_sleep(dev);
1084 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1085 udelay(PCI_PM_D2_DELAY);
1086
1087 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1088 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1089 if (dev->current_state != state)
1090 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1091 pci_power_name(dev->current_state),
1092 pci_power_name(state));
1093
1094 /*
1095 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1096 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1097 * from D3hot to D0 _may_ perform an internal reset, thereby
1098 * going to "D0 Uninitialized" rather than "D0 Initialized".
1099 * For example, at least some versions of the 3c905B and the
1100 * 3c556B exhibit this behaviour.
1101 *
1102 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1103 * devices in a D3hot state at boot. Consequently, we need to
1104 * restore at least the BARs so that the device will be
1105 * accessible to its driver.
1106 */
1107 if (need_restore)
1108 pci_restore_bars(dev);
1109
1110 if (dev->bus->self)
1111 pcie_aspm_pm_state_change(dev->bus->self);
1112
1113 return 0;
1114 }
1115
1116 /**
1117 * pci_update_current_state - Read power state of given device and cache it
1118 * @dev: PCI device to handle.
1119 * @state: State to cache in case the device doesn't have the PM capability
1120 *
1121 * The power state is read from the PMCSR register, which however is
1122 * inaccessible in D3cold. The platform firmware is therefore queried first
1123 * to detect accessibility of the register. In case the platform firmware
1124 * reports an incorrect state or the device isn't power manageable by the
1125 * platform at all, we try to detect D3cold by testing accessibility of the
1126 * vendor ID in config space.
1127 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1128 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1129 {
1130 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1131 !pci_device_is_present(dev)) {
1132 dev->current_state = PCI_D3cold;
1133 } else if (dev->pm_cap) {
1134 u16 pmcsr;
1135
1136 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1137 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1138 } else {
1139 dev->current_state = state;
1140 }
1141 }
1142
1143 /**
1144 * pci_refresh_power_state - Refresh the given device's power state data
1145 * @dev: Target PCI device.
1146 *
1147 * Ask the platform to refresh the devices power state information and invoke
1148 * pci_update_current_state() to update its current PCI power state.
1149 */
pci_refresh_power_state(struct pci_dev * dev)1150 void pci_refresh_power_state(struct pci_dev *dev)
1151 {
1152 if (platform_pci_power_manageable(dev))
1153 platform_pci_refresh_power_state(dev);
1154
1155 pci_update_current_state(dev, dev->current_state);
1156 }
1157
1158 /**
1159 * pci_platform_power_transition - Use platform to change device power state
1160 * @dev: PCI device to handle.
1161 * @state: State to put the device into.
1162 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1163 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1164 {
1165 int error;
1166
1167 if (platform_pci_power_manageable(dev)) {
1168 error = platform_pci_set_power_state(dev, state);
1169 if (!error)
1170 pci_update_current_state(dev, state);
1171 } else
1172 error = -ENODEV;
1173
1174 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1175 dev->current_state = PCI_D0;
1176
1177 return error;
1178 }
1179 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1180
1181 /**
1182 * pci_wakeup - Wake up a PCI device
1183 * @pci_dev: Device to handle.
1184 * @ign: ignored parameter
1185 */
pci_wakeup(struct pci_dev * pci_dev,void * ign)1186 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1187 {
1188 pci_wakeup_event(pci_dev);
1189 pm_request_resume(&pci_dev->dev);
1190 return 0;
1191 }
1192
1193 /**
1194 * pci_wakeup_bus - Walk given bus and wake up devices on it
1195 * @bus: Top bus of the subtree to walk.
1196 */
pci_wakeup_bus(struct pci_bus * bus)1197 void pci_wakeup_bus(struct pci_bus *bus)
1198 {
1199 if (bus)
1200 pci_walk_bus(bus, pci_wakeup, NULL);
1201 }
1202
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1203 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1204 {
1205 int delay = 1;
1206 u32 id;
1207
1208 /*
1209 * After reset, the device should not silently discard config
1210 * requests, but it may still indicate that it needs more time by
1211 * responding to them with CRS completions. The Root Port will
1212 * generally synthesize ~0 data to complete the read (except when
1213 * CRS SV is enabled and the read was for the Vendor ID; in that
1214 * case it synthesizes 0x0001 data).
1215 *
1216 * Wait for the device to return a non-CRS completion. Read the
1217 * Command register instead of Vendor ID so we don't have to
1218 * contend with the CRS SV value.
1219 */
1220 pci_read_config_dword(dev, PCI_COMMAND, &id);
1221 while (id == ~0) {
1222 if (delay > timeout) {
1223 pci_warn(dev, "not ready %dms after %s; giving up\n",
1224 delay - 1, reset_type);
1225 return -ENOTTY;
1226 }
1227
1228 if (delay > PCI_RESET_WAIT)
1229 pci_info(dev, "not ready %dms after %s; waiting\n",
1230 delay - 1, reset_type);
1231
1232 msleep(delay);
1233 delay *= 2;
1234 pci_read_config_dword(dev, PCI_COMMAND, &id);
1235 }
1236
1237 if (delay > PCI_RESET_WAIT)
1238 pci_info(dev, "ready %dms after %s\n", delay - 1,
1239 reset_type);
1240
1241 return 0;
1242 }
1243
1244 /**
1245 * pci_power_up - Put the given device into D0
1246 * @dev: PCI device to power up
1247 */
pci_power_up(struct pci_dev * dev)1248 int pci_power_up(struct pci_dev *dev)
1249 {
1250 pci_platform_power_transition(dev, PCI_D0);
1251
1252 /*
1253 * Mandatory power management transition delays are handled in
1254 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1255 * corresponding bridge.
1256 */
1257 if (dev->runtime_d3cold) {
1258 /*
1259 * When powering on a bridge from D3cold, the whole hierarchy
1260 * may be powered on into D0uninitialized state, resume them to
1261 * give them a chance to suspend again
1262 */
1263 pci_wakeup_bus(dev->subordinate);
1264 }
1265
1266 return pci_raw_set_power_state(dev, PCI_D0);
1267 }
1268
1269 /**
1270 * __pci_dev_set_current_state - Set current state of a PCI device
1271 * @dev: Device to handle
1272 * @data: pointer to state to be set
1273 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1274 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1275 {
1276 pci_power_t state = *(pci_power_t *)data;
1277
1278 dev->current_state = state;
1279 return 0;
1280 }
1281
1282 /**
1283 * pci_bus_set_current_state - Walk given bus and set current state of devices
1284 * @bus: Top bus of the subtree to walk.
1285 * @state: state to be set
1286 */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1287 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1288 {
1289 if (bus)
1290 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1291 }
1292
1293 /**
1294 * pci_set_power_state - Set the power state of a PCI device
1295 * @dev: PCI device to handle.
1296 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1297 *
1298 * Transition a device to a new power state, using the platform firmware and/or
1299 * the device's PCI PM registers.
1300 *
1301 * RETURN VALUE:
1302 * -EINVAL if the requested state is invalid.
1303 * -EIO if device does not support PCI PM or its PM capabilities register has a
1304 * wrong version, or device doesn't support the requested state.
1305 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1306 * 0 if device already is in the requested state.
1307 * 0 if the transition is to D3 but D3 is not supported.
1308 * 0 if device's power state has been successfully changed.
1309 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1310 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1311 {
1312 int error;
1313
1314 /* Bound the state we're entering */
1315 if (state > PCI_D3cold)
1316 state = PCI_D3cold;
1317 else if (state < PCI_D0)
1318 state = PCI_D0;
1319 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1320
1321 /*
1322 * If the device or the parent bridge do not support PCI
1323 * PM, ignore the request if we're doing anything other
1324 * than putting it into D0 (which would only happen on
1325 * boot).
1326 */
1327 return 0;
1328
1329 /* Check if we're already there */
1330 if (dev->current_state == state)
1331 return 0;
1332
1333 if (state == PCI_D0)
1334 return pci_power_up(dev);
1335
1336 /*
1337 * This device is quirked not to be put into D3, so don't put it in
1338 * D3
1339 */
1340 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1341 return 0;
1342
1343 /*
1344 * To put device in D3cold, we put device into D3hot in native
1345 * way, then put device into D3cold with platform ops
1346 */
1347 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1348 PCI_D3hot : state);
1349
1350 if (pci_platform_power_transition(dev, state))
1351 return error;
1352
1353 /* Powering off a bridge may power off the whole hierarchy */
1354 if (state == PCI_D3cold)
1355 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1356
1357 return 0;
1358 }
1359 EXPORT_SYMBOL(pci_set_power_state);
1360
1361 /**
1362 * pci_choose_state - Choose the power state of a PCI device
1363 * @dev: PCI device to be suspended
1364 * @state: target sleep state for the whole system. This is the value
1365 * that is passed to suspend() function.
1366 *
1367 * Returns PCI power state suitable for given device and given system
1368 * message.
1369 */
pci_choose_state(struct pci_dev * dev,pm_message_t state)1370 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1371 {
1372 pci_power_t ret;
1373
1374 if (!dev->pm_cap)
1375 return PCI_D0;
1376
1377 ret = platform_pci_choose_state(dev);
1378 if (ret != PCI_POWER_ERROR)
1379 return ret;
1380
1381 switch (state.event) {
1382 case PM_EVENT_ON:
1383 return PCI_D0;
1384 case PM_EVENT_FREEZE:
1385 case PM_EVENT_PRETHAW:
1386 /* REVISIT both freeze and pre-thaw "should" use D0 */
1387 case PM_EVENT_SUSPEND:
1388 case PM_EVENT_HIBERNATE:
1389 return PCI_D3hot;
1390 default:
1391 pci_info(dev, "unrecognized suspend event %d\n",
1392 state.event);
1393 BUG();
1394 }
1395 return PCI_D0;
1396 }
1397 EXPORT_SYMBOL(pci_choose_state);
1398
1399 #define PCI_EXP_SAVE_REGS 7
1400
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1401 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1402 u16 cap, bool extended)
1403 {
1404 struct pci_cap_saved_state *tmp;
1405
1406 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1407 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1408 return tmp;
1409 }
1410 return NULL;
1411 }
1412
pci_find_saved_cap(struct pci_dev * dev,char cap)1413 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1414 {
1415 return _pci_find_saved_cap(dev, cap, false);
1416 }
1417
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1418 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1419 {
1420 return _pci_find_saved_cap(dev, cap, true);
1421 }
1422
pci_save_pcie_state(struct pci_dev * dev)1423 static int pci_save_pcie_state(struct pci_dev *dev)
1424 {
1425 int i = 0;
1426 struct pci_cap_saved_state *save_state;
1427 u16 *cap;
1428
1429 if (!pci_is_pcie(dev))
1430 return 0;
1431
1432 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1433 if (!save_state) {
1434 pci_err(dev, "buffer not found in %s\n", __func__);
1435 return -ENOMEM;
1436 }
1437
1438 cap = (u16 *)&save_state->cap.data[0];
1439 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1440 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1441 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1442 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1443 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1444 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1445 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1446
1447 return 0;
1448 }
1449
pci_restore_pcie_state(struct pci_dev * dev)1450 static void pci_restore_pcie_state(struct pci_dev *dev)
1451 {
1452 int i = 0;
1453 struct pci_cap_saved_state *save_state;
1454 u16 *cap;
1455
1456 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1457 if (!save_state)
1458 return;
1459
1460 cap = (u16 *)&save_state->cap.data[0];
1461 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1462 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1463 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1464 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1465 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1466 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1467 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1468 }
1469
pci_save_pcix_state(struct pci_dev * dev)1470 static int pci_save_pcix_state(struct pci_dev *dev)
1471 {
1472 int pos;
1473 struct pci_cap_saved_state *save_state;
1474
1475 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1476 if (!pos)
1477 return 0;
1478
1479 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1480 if (!save_state) {
1481 pci_err(dev, "buffer not found in %s\n", __func__);
1482 return -ENOMEM;
1483 }
1484
1485 pci_read_config_word(dev, pos + PCI_X_CMD,
1486 (u16 *)save_state->cap.data);
1487
1488 return 0;
1489 }
1490
pci_restore_pcix_state(struct pci_dev * dev)1491 static void pci_restore_pcix_state(struct pci_dev *dev)
1492 {
1493 int i = 0, pos;
1494 struct pci_cap_saved_state *save_state;
1495 u16 *cap;
1496
1497 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1498 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1499 if (!save_state || !pos)
1500 return;
1501 cap = (u16 *)&save_state->cap.data[0];
1502
1503 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1504 }
1505
pci_save_ltr_state(struct pci_dev * dev)1506 static void pci_save_ltr_state(struct pci_dev *dev)
1507 {
1508 int ltr;
1509 struct pci_cap_saved_state *save_state;
1510 u16 *cap;
1511
1512 if (!pci_is_pcie(dev))
1513 return;
1514
1515 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1516 if (!ltr)
1517 return;
1518
1519 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1520 if (!save_state) {
1521 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1522 return;
1523 }
1524
1525 cap = (u16 *)&save_state->cap.data[0];
1526 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1527 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1528 }
1529
pci_restore_ltr_state(struct pci_dev * dev)1530 static void pci_restore_ltr_state(struct pci_dev *dev)
1531 {
1532 struct pci_cap_saved_state *save_state;
1533 int ltr;
1534 u16 *cap;
1535
1536 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1537 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1538 if (!save_state || !ltr)
1539 return;
1540
1541 cap = (u16 *)&save_state->cap.data[0];
1542 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1543 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1544 }
1545
1546 /**
1547 * pci_save_state - save the PCI configuration space of a device before
1548 * suspending
1549 * @dev: PCI device that we're dealing with
1550 */
pci_save_state(struct pci_dev * dev)1551 int pci_save_state(struct pci_dev *dev)
1552 {
1553 int i;
1554 /* XXX: 100% dword access ok here? */
1555 for (i = 0; i < 16; i++) {
1556 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1557 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1558 i * 4, dev->saved_config_space[i]);
1559 }
1560 dev->state_saved = true;
1561
1562 i = pci_save_pcie_state(dev);
1563 if (i != 0)
1564 return i;
1565
1566 i = pci_save_pcix_state(dev);
1567 if (i != 0)
1568 return i;
1569
1570 pci_save_ltr_state(dev);
1571 pci_save_dpc_state(dev);
1572 pci_save_aer_state(dev);
1573 return pci_save_vc_state(dev);
1574 }
1575 EXPORT_SYMBOL(pci_save_state);
1576
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1577 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1578 u32 saved_val, int retry, bool force)
1579 {
1580 u32 val;
1581
1582 pci_read_config_dword(pdev, offset, &val);
1583 if (!force && val == saved_val)
1584 return;
1585
1586 for (;;) {
1587 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1588 offset, val, saved_val);
1589 pci_write_config_dword(pdev, offset, saved_val);
1590 if (retry-- <= 0)
1591 return;
1592
1593 pci_read_config_dword(pdev, offset, &val);
1594 if (val == saved_val)
1595 return;
1596
1597 mdelay(1);
1598 }
1599 }
1600
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1601 static void pci_restore_config_space_range(struct pci_dev *pdev,
1602 int start, int end, int retry,
1603 bool force)
1604 {
1605 int index;
1606
1607 for (index = end; index >= start; index--)
1608 pci_restore_config_dword(pdev, 4 * index,
1609 pdev->saved_config_space[index],
1610 retry, force);
1611 }
1612
pci_restore_config_space(struct pci_dev * pdev)1613 static void pci_restore_config_space(struct pci_dev *pdev)
1614 {
1615 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1616 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1617 /* Restore BARs before the command register. */
1618 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1619 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1620 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1621 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1622
1623 /*
1624 * Force rewriting of prefetch registers to avoid S3 resume
1625 * issues on Intel PCI bridges that occur when these
1626 * registers are not explicitly written.
1627 */
1628 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1629 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1630 } else {
1631 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1632 }
1633 }
1634
pci_restore_rebar_state(struct pci_dev * pdev)1635 static void pci_restore_rebar_state(struct pci_dev *pdev)
1636 {
1637 unsigned int pos, nbars, i;
1638 u32 ctrl;
1639
1640 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1641 if (!pos)
1642 return;
1643
1644 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1645 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1646 PCI_REBAR_CTRL_NBAR_SHIFT;
1647
1648 for (i = 0; i < nbars; i++, pos += 8) {
1649 struct resource *res;
1650 int bar_idx, size;
1651
1652 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1653 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1654 res = pdev->resource + bar_idx;
1655 size = ilog2(resource_size(res)) - 20;
1656 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1657 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1658 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1659 }
1660 }
1661
1662 /**
1663 * pci_restore_state - Restore the saved state of a PCI device
1664 * @dev: PCI device that we're dealing with
1665 */
pci_restore_state(struct pci_dev * dev)1666 void pci_restore_state(struct pci_dev *dev)
1667 {
1668 if (!dev->state_saved)
1669 return;
1670
1671 /*
1672 * Restore max latencies (in the LTR capability) before enabling
1673 * LTR itself (in the PCIe capability).
1674 */
1675 pci_restore_ltr_state(dev);
1676
1677 pci_restore_pcie_state(dev);
1678 pci_restore_pasid_state(dev);
1679 pci_restore_pri_state(dev);
1680 pci_restore_ats_state(dev);
1681 pci_restore_vc_state(dev);
1682 pci_restore_rebar_state(dev);
1683 pci_restore_dpc_state(dev);
1684
1685 pci_aer_clear_status(dev);
1686 pci_restore_aer_state(dev);
1687
1688 pci_restore_config_space(dev);
1689
1690 pci_restore_pcix_state(dev);
1691 pci_restore_msi_state(dev);
1692
1693 /* Restore ACS and IOV configuration state */
1694 pci_enable_acs(dev);
1695 pci_restore_iov_state(dev);
1696
1697 dev->state_saved = false;
1698 }
1699 EXPORT_SYMBOL(pci_restore_state);
1700
1701 struct pci_saved_state {
1702 u32 config_space[16];
1703 struct pci_cap_saved_data cap[];
1704 };
1705
1706 /**
1707 * pci_store_saved_state - Allocate and return an opaque struct containing
1708 * the device saved state.
1709 * @dev: PCI device that we're dealing with
1710 *
1711 * Return NULL if no state or error.
1712 */
pci_store_saved_state(struct pci_dev * dev)1713 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1714 {
1715 struct pci_saved_state *state;
1716 struct pci_cap_saved_state *tmp;
1717 struct pci_cap_saved_data *cap;
1718 size_t size;
1719
1720 if (!dev->state_saved)
1721 return NULL;
1722
1723 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1724
1725 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1726 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1727
1728 state = kzalloc(size, GFP_KERNEL);
1729 if (!state)
1730 return NULL;
1731
1732 memcpy(state->config_space, dev->saved_config_space,
1733 sizeof(state->config_space));
1734
1735 cap = state->cap;
1736 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1737 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1738 memcpy(cap, &tmp->cap, len);
1739 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1740 }
1741 /* Empty cap_save terminates list */
1742
1743 return state;
1744 }
1745 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1746
1747 /**
1748 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1749 * @dev: PCI device that we're dealing with
1750 * @state: Saved state returned from pci_store_saved_state()
1751 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1752 int pci_load_saved_state(struct pci_dev *dev,
1753 struct pci_saved_state *state)
1754 {
1755 struct pci_cap_saved_data *cap;
1756
1757 dev->state_saved = false;
1758
1759 if (!state)
1760 return 0;
1761
1762 memcpy(dev->saved_config_space, state->config_space,
1763 sizeof(state->config_space));
1764
1765 cap = state->cap;
1766 while (cap->size) {
1767 struct pci_cap_saved_state *tmp;
1768
1769 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1770 if (!tmp || tmp->cap.size != cap->size)
1771 return -EINVAL;
1772
1773 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1774 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1775 sizeof(struct pci_cap_saved_data) + cap->size);
1776 }
1777
1778 dev->state_saved = true;
1779 return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1782
1783 /**
1784 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1785 * and free the memory allocated for it.
1786 * @dev: PCI device that we're dealing with
1787 * @state: Pointer to saved state returned from pci_store_saved_state()
1788 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1789 int pci_load_and_free_saved_state(struct pci_dev *dev,
1790 struct pci_saved_state **state)
1791 {
1792 int ret = pci_load_saved_state(dev, *state);
1793 kfree(*state);
1794 *state = NULL;
1795 return ret;
1796 }
1797 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1798
pcibios_enable_device(struct pci_dev * dev,int bars)1799 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1800 {
1801 return pci_enable_resources(dev, bars);
1802 }
1803
do_pci_enable_device(struct pci_dev * dev,int bars)1804 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1805 {
1806 int err;
1807 struct pci_dev *bridge;
1808 u16 cmd;
1809 u8 pin;
1810
1811 err = pci_set_power_state(dev, PCI_D0);
1812 if (err < 0 && err != -EIO)
1813 return err;
1814
1815 bridge = pci_upstream_bridge(dev);
1816 if (bridge)
1817 pcie_aspm_powersave_config_link(bridge);
1818
1819 err = pcibios_enable_device(dev, bars);
1820 if (err < 0)
1821 return err;
1822 pci_fixup_device(pci_fixup_enable, dev);
1823
1824 if (dev->msi_enabled || dev->msix_enabled)
1825 return 0;
1826
1827 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1828 if (pin) {
1829 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1830 if (cmd & PCI_COMMAND_INTX_DISABLE)
1831 pci_write_config_word(dev, PCI_COMMAND,
1832 cmd & ~PCI_COMMAND_INTX_DISABLE);
1833 }
1834
1835 return 0;
1836 }
1837
1838 /**
1839 * pci_reenable_device - Resume abandoned device
1840 * @dev: PCI device to be resumed
1841 *
1842 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1843 * to be called by normal code, write proper resume handler and use it instead.
1844 */
pci_reenable_device(struct pci_dev * dev)1845 int pci_reenable_device(struct pci_dev *dev)
1846 {
1847 if (pci_is_enabled(dev))
1848 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1849 return 0;
1850 }
1851 EXPORT_SYMBOL(pci_reenable_device);
1852
pci_enable_bridge(struct pci_dev * dev)1853 static void pci_enable_bridge(struct pci_dev *dev)
1854 {
1855 struct pci_dev *bridge;
1856 int retval;
1857
1858 bridge = pci_upstream_bridge(dev);
1859 if (bridge)
1860 pci_enable_bridge(bridge);
1861
1862 if (pci_is_enabled(dev)) {
1863 if (!dev->is_busmaster)
1864 pci_set_master(dev);
1865 return;
1866 }
1867
1868 retval = pci_enable_device(dev);
1869 if (retval)
1870 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1871 retval);
1872 pci_set_master(dev);
1873 }
1874
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1875 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1876 {
1877 struct pci_dev *bridge;
1878 int err;
1879 int i, bars = 0;
1880
1881 /*
1882 * Power state could be unknown at this point, either due to a fresh
1883 * boot or a device removal call. So get the current power state
1884 * so that things like MSI message writing will behave as expected
1885 * (e.g. if the device really is in D0 at enable time).
1886 */
1887 pci_update_current_state(dev, dev->current_state);
1888
1889 if (atomic_inc_return(&dev->enable_cnt) > 1)
1890 return 0; /* already enabled */
1891
1892 bridge = pci_upstream_bridge(dev);
1893 if (bridge)
1894 pci_enable_bridge(bridge);
1895
1896 /* only skip sriov related */
1897 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1898 if (dev->resource[i].flags & flags)
1899 bars |= (1 << i);
1900 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1901 if (dev->resource[i].flags & flags)
1902 bars |= (1 << i);
1903
1904 err = do_pci_enable_device(dev, bars);
1905 if (err < 0)
1906 atomic_dec(&dev->enable_cnt);
1907 return err;
1908 }
1909
1910 /**
1911 * pci_enable_device_io - Initialize a device for use with IO space
1912 * @dev: PCI device to be initialized
1913 *
1914 * Initialize device before it's used by a driver. Ask low-level code
1915 * to enable I/O resources. Wake up the device if it was suspended.
1916 * Beware, this function can fail.
1917 */
pci_enable_device_io(struct pci_dev * dev)1918 int pci_enable_device_io(struct pci_dev *dev)
1919 {
1920 return pci_enable_device_flags(dev, IORESOURCE_IO);
1921 }
1922 EXPORT_SYMBOL(pci_enable_device_io);
1923
1924 /**
1925 * pci_enable_device_mem - Initialize a device for use with Memory space
1926 * @dev: PCI device to be initialized
1927 *
1928 * Initialize device before it's used by a driver. Ask low-level code
1929 * to enable Memory resources. Wake up the device if it was suspended.
1930 * Beware, this function can fail.
1931 */
pci_enable_device_mem(struct pci_dev * dev)1932 int pci_enable_device_mem(struct pci_dev *dev)
1933 {
1934 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1935 }
1936 EXPORT_SYMBOL(pci_enable_device_mem);
1937
1938 /**
1939 * pci_enable_device - Initialize device before it's used by a driver.
1940 * @dev: PCI device to be initialized
1941 *
1942 * Initialize device before it's used by a driver. Ask low-level code
1943 * to enable I/O and memory. Wake up the device if it was suspended.
1944 * Beware, this function can fail.
1945 *
1946 * Note we don't actually enable the device many times if we call
1947 * this function repeatedly (we just increment the count).
1948 */
pci_enable_device(struct pci_dev * dev)1949 int pci_enable_device(struct pci_dev *dev)
1950 {
1951 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1952 }
1953 EXPORT_SYMBOL(pci_enable_device);
1954
1955 /*
1956 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1957 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1958 * there's no need to track it separately. pci_devres is initialized
1959 * when a device is enabled using managed PCI device enable interface.
1960 */
1961 struct pci_devres {
1962 unsigned int enabled:1;
1963 unsigned int pinned:1;
1964 unsigned int orig_intx:1;
1965 unsigned int restore_intx:1;
1966 unsigned int mwi:1;
1967 u32 region_mask;
1968 };
1969
pcim_release(struct device * gendev,void * res)1970 static void pcim_release(struct device *gendev, void *res)
1971 {
1972 struct pci_dev *dev = to_pci_dev(gendev);
1973 struct pci_devres *this = res;
1974 int i;
1975
1976 if (dev->msi_enabled)
1977 pci_disable_msi(dev);
1978 if (dev->msix_enabled)
1979 pci_disable_msix(dev);
1980
1981 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1982 if (this->region_mask & (1 << i))
1983 pci_release_region(dev, i);
1984
1985 if (this->mwi)
1986 pci_clear_mwi(dev);
1987
1988 if (this->restore_intx)
1989 pci_intx(dev, this->orig_intx);
1990
1991 if (this->enabled && !this->pinned)
1992 pci_disable_device(dev);
1993 }
1994
get_pci_dr(struct pci_dev * pdev)1995 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1996 {
1997 struct pci_devres *dr, *new_dr;
1998
1999 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2000 if (dr)
2001 return dr;
2002
2003 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2004 if (!new_dr)
2005 return NULL;
2006 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2007 }
2008
find_pci_dr(struct pci_dev * pdev)2009 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2010 {
2011 if (pci_is_managed(pdev))
2012 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2013 return NULL;
2014 }
2015
2016 /**
2017 * pcim_enable_device - Managed pci_enable_device()
2018 * @pdev: PCI device to be initialized
2019 *
2020 * Managed pci_enable_device().
2021 */
pcim_enable_device(struct pci_dev * pdev)2022 int pcim_enable_device(struct pci_dev *pdev)
2023 {
2024 struct pci_devres *dr;
2025 int rc;
2026
2027 dr = get_pci_dr(pdev);
2028 if (unlikely(!dr))
2029 return -ENOMEM;
2030 if (dr->enabled)
2031 return 0;
2032
2033 rc = pci_enable_device(pdev);
2034 if (!rc) {
2035 pdev->is_managed = 1;
2036 dr->enabled = 1;
2037 }
2038 return rc;
2039 }
2040 EXPORT_SYMBOL(pcim_enable_device);
2041
2042 /**
2043 * pcim_pin_device - Pin managed PCI device
2044 * @pdev: PCI device to pin
2045 *
2046 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2047 * driver detach. @pdev must have been enabled with
2048 * pcim_enable_device().
2049 */
pcim_pin_device(struct pci_dev * pdev)2050 void pcim_pin_device(struct pci_dev *pdev)
2051 {
2052 struct pci_devres *dr;
2053
2054 dr = find_pci_dr(pdev);
2055 WARN_ON(!dr || !dr->enabled);
2056 if (dr)
2057 dr->pinned = 1;
2058 }
2059 EXPORT_SYMBOL(pcim_pin_device);
2060
2061 /*
2062 * pcibios_add_device - provide arch specific hooks when adding device dev
2063 * @dev: the PCI device being added
2064 *
2065 * Permits the platform to provide architecture specific functionality when
2066 * devices are added. This is the default implementation. Architecture
2067 * implementations can override this.
2068 */
pcibios_add_device(struct pci_dev * dev)2069 int __weak pcibios_add_device(struct pci_dev *dev)
2070 {
2071 return 0;
2072 }
2073
2074 /**
2075 * pcibios_release_device - provide arch specific hooks when releasing
2076 * device dev
2077 * @dev: the PCI device being released
2078 *
2079 * Permits the platform to provide architecture specific functionality when
2080 * devices are released. This is the default implementation. Architecture
2081 * implementations can override this.
2082 */
pcibios_release_device(struct pci_dev * dev)2083 void __weak pcibios_release_device(struct pci_dev *dev) {}
2084
2085 /**
2086 * pcibios_disable_device - disable arch specific PCI resources for device dev
2087 * @dev: the PCI device to disable
2088 *
2089 * Disables architecture specific PCI resources for the device. This
2090 * is the default implementation. Architecture implementations can
2091 * override this.
2092 */
pcibios_disable_device(struct pci_dev * dev)2093 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2094
2095 /**
2096 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2097 * @irq: ISA IRQ to penalize
2098 * @active: IRQ active or not
2099 *
2100 * Permits the platform to provide architecture-specific functionality when
2101 * penalizing ISA IRQs. This is the default implementation. Architecture
2102 * implementations can override this.
2103 */
pcibios_penalize_isa_irq(int irq,int active)2104 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2105
do_pci_disable_device(struct pci_dev * dev)2106 static void do_pci_disable_device(struct pci_dev *dev)
2107 {
2108 u16 pci_command;
2109
2110 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2111 if (pci_command & PCI_COMMAND_MASTER) {
2112 pci_command &= ~PCI_COMMAND_MASTER;
2113 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2114 }
2115
2116 pcibios_disable_device(dev);
2117 }
2118
2119 /**
2120 * pci_disable_enabled_device - Disable device without updating enable_cnt
2121 * @dev: PCI device to disable
2122 *
2123 * NOTE: This function is a backend of PCI power management routines and is
2124 * not supposed to be called drivers.
2125 */
pci_disable_enabled_device(struct pci_dev * dev)2126 void pci_disable_enabled_device(struct pci_dev *dev)
2127 {
2128 if (pci_is_enabled(dev))
2129 do_pci_disable_device(dev);
2130 }
2131
2132 /**
2133 * pci_disable_device - Disable PCI device after use
2134 * @dev: PCI device to be disabled
2135 *
2136 * Signal to the system that the PCI device is not in use by the system
2137 * anymore. This only involves disabling PCI bus-mastering, if active.
2138 *
2139 * Note we don't actually disable the device until all callers of
2140 * pci_enable_device() have called pci_disable_device().
2141 */
pci_disable_device(struct pci_dev * dev)2142 void pci_disable_device(struct pci_dev *dev)
2143 {
2144 struct pci_devres *dr;
2145
2146 dr = find_pci_dr(dev);
2147 if (dr)
2148 dr->enabled = 0;
2149
2150 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2151 "disabling already-disabled device");
2152
2153 if (atomic_dec_return(&dev->enable_cnt) != 0)
2154 return;
2155
2156 do_pci_disable_device(dev);
2157
2158 dev->is_busmaster = 0;
2159 }
2160 EXPORT_SYMBOL(pci_disable_device);
2161
2162 /**
2163 * pcibios_set_pcie_reset_state - set reset state for device dev
2164 * @dev: the PCIe device reset
2165 * @state: Reset state to enter into
2166 *
2167 * Set the PCIe reset state for the device. This is the default
2168 * implementation. Architecture implementations can override this.
2169 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2170 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2171 enum pcie_reset_state state)
2172 {
2173 return -EINVAL;
2174 }
2175
2176 /**
2177 * pci_set_pcie_reset_state - set reset state for device dev
2178 * @dev: the PCIe device reset
2179 * @state: Reset state to enter into
2180 *
2181 * Sets the PCI reset state for the device.
2182 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2183 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2184 {
2185 return pcibios_set_pcie_reset_state(dev, state);
2186 }
2187 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2188
pcie_clear_device_status(struct pci_dev * dev)2189 void pcie_clear_device_status(struct pci_dev *dev)
2190 {
2191 u16 sta;
2192
2193 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2194 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2195 }
2196
2197 /**
2198 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2199 * @dev: PCIe root port or event collector.
2200 */
pcie_clear_root_pme_status(struct pci_dev * dev)2201 void pcie_clear_root_pme_status(struct pci_dev *dev)
2202 {
2203 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2204 }
2205
2206 /**
2207 * pci_check_pme_status - Check if given device has generated PME.
2208 * @dev: Device to check.
2209 *
2210 * Check the PME status of the device and if set, clear it and clear PME enable
2211 * (if set). Return 'true' if PME status and PME enable were both set or
2212 * 'false' otherwise.
2213 */
pci_check_pme_status(struct pci_dev * dev)2214 bool pci_check_pme_status(struct pci_dev *dev)
2215 {
2216 int pmcsr_pos;
2217 u16 pmcsr;
2218 bool ret = false;
2219
2220 if (!dev->pm_cap)
2221 return false;
2222
2223 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2224 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2225 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2226 return false;
2227
2228 /* Clear PME status. */
2229 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2230 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2231 /* Disable PME to avoid interrupt flood. */
2232 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2233 ret = true;
2234 }
2235
2236 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2237
2238 return ret;
2239 }
2240
2241 /**
2242 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2243 * @dev: Device to handle.
2244 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2245 *
2246 * Check if @dev has generated PME and queue a resume request for it in that
2247 * case.
2248 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2249 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2250 {
2251 if (pme_poll_reset && dev->pme_poll)
2252 dev->pme_poll = false;
2253
2254 if (pci_check_pme_status(dev)) {
2255 pci_wakeup_event(dev);
2256 pm_request_resume(&dev->dev);
2257 }
2258 return 0;
2259 }
2260
2261 /**
2262 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2263 * @bus: Top bus of the subtree to walk.
2264 */
pci_pme_wakeup_bus(struct pci_bus * bus)2265 void pci_pme_wakeup_bus(struct pci_bus *bus)
2266 {
2267 if (bus)
2268 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2269 }
2270
2271
2272 /**
2273 * pci_pme_capable - check the capability of PCI device to generate PME#
2274 * @dev: PCI device to handle.
2275 * @state: PCI state from which device will issue PME#.
2276 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2277 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2278 {
2279 if (!dev->pm_cap)
2280 return false;
2281
2282 return !!(dev->pme_support & (1 << state));
2283 }
2284 EXPORT_SYMBOL(pci_pme_capable);
2285
pci_pme_list_scan(struct work_struct * work)2286 static void pci_pme_list_scan(struct work_struct *work)
2287 {
2288 struct pci_pme_device *pme_dev, *n;
2289
2290 mutex_lock(&pci_pme_list_mutex);
2291 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2292 if (pme_dev->dev->pme_poll) {
2293 struct pci_dev *bridge;
2294
2295 bridge = pme_dev->dev->bus->self;
2296 /*
2297 * If bridge is in low power state, the
2298 * configuration space of subordinate devices
2299 * may be not accessible
2300 */
2301 if (bridge && bridge->current_state != PCI_D0)
2302 continue;
2303 /*
2304 * If the device is in D3cold it should not be
2305 * polled either.
2306 */
2307 if (pme_dev->dev->current_state == PCI_D3cold)
2308 continue;
2309
2310 pci_pme_wakeup(pme_dev->dev, NULL);
2311 } else {
2312 list_del(&pme_dev->list);
2313 kfree(pme_dev);
2314 }
2315 }
2316 if (!list_empty(&pci_pme_list))
2317 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2318 msecs_to_jiffies(PME_TIMEOUT));
2319 mutex_unlock(&pci_pme_list_mutex);
2320 }
2321
__pci_pme_active(struct pci_dev * dev,bool enable)2322 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2323 {
2324 u16 pmcsr;
2325
2326 if (!dev->pme_support)
2327 return;
2328
2329 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2330 /* Clear PME_Status by writing 1 to it and enable PME# */
2331 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2332 if (!enable)
2333 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2334
2335 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2336 }
2337
2338 /**
2339 * pci_pme_restore - Restore PME configuration after config space restore.
2340 * @dev: PCI device to update.
2341 */
pci_pme_restore(struct pci_dev * dev)2342 void pci_pme_restore(struct pci_dev *dev)
2343 {
2344 u16 pmcsr;
2345
2346 if (!dev->pme_support)
2347 return;
2348
2349 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2350 if (dev->wakeup_prepared) {
2351 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2352 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2353 } else {
2354 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2355 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2356 }
2357 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2358 }
2359
2360 /**
2361 * pci_pme_active - enable or disable PCI device's PME# function
2362 * @dev: PCI device to handle.
2363 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2364 *
2365 * The caller must verify that the device is capable of generating PME# before
2366 * calling this function with @enable equal to 'true'.
2367 */
pci_pme_active(struct pci_dev * dev,bool enable)2368 void pci_pme_active(struct pci_dev *dev, bool enable)
2369 {
2370 __pci_pme_active(dev, enable);
2371
2372 /*
2373 * PCI (as opposed to PCIe) PME requires that the device have
2374 * its PME# line hooked up correctly. Not all hardware vendors
2375 * do this, so the PME never gets delivered and the device
2376 * remains asleep. The easiest way around this is to
2377 * periodically walk the list of suspended devices and check
2378 * whether any have their PME flag set. The assumption is that
2379 * we'll wake up often enough anyway that this won't be a huge
2380 * hit, and the power savings from the devices will still be a
2381 * win.
2382 *
2383 * Although PCIe uses in-band PME message instead of PME# line
2384 * to report PME, PME does not work for some PCIe devices in
2385 * reality. For example, there are devices that set their PME
2386 * status bits, but don't really bother to send a PME message;
2387 * there are PCI Express Root Ports that don't bother to
2388 * trigger interrupts when they receive PME messages from the
2389 * devices below. So PME poll is used for PCIe devices too.
2390 */
2391
2392 if (dev->pme_poll) {
2393 struct pci_pme_device *pme_dev;
2394 if (enable) {
2395 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2396 GFP_KERNEL);
2397 if (!pme_dev) {
2398 pci_warn(dev, "can't enable PME#\n");
2399 return;
2400 }
2401 pme_dev->dev = dev;
2402 mutex_lock(&pci_pme_list_mutex);
2403 list_add(&pme_dev->list, &pci_pme_list);
2404 if (list_is_singular(&pci_pme_list))
2405 queue_delayed_work(system_freezable_wq,
2406 &pci_pme_work,
2407 msecs_to_jiffies(PME_TIMEOUT));
2408 mutex_unlock(&pci_pme_list_mutex);
2409 } else {
2410 mutex_lock(&pci_pme_list_mutex);
2411 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2412 if (pme_dev->dev == dev) {
2413 list_del(&pme_dev->list);
2414 kfree(pme_dev);
2415 break;
2416 }
2417 }
2418 mutex_unlock(&pci_pme_list_mutex);
2419 }
2420 }
2421
2422 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2423 }
2424 EXPORT_SYMBOL(pci_pme_active);
2425
2426 /**
2427 * __pci_enable_wake - enable PCI device as wakeup event source
2428 * @dev: PCI device affected
2429 * @state: PCI state from which device will issue wakeup events
2430 * @enable: True to enable event generation; false to disable
2431 *
2432 * This enables the device as a wakeup event source, or disables it.
2433 * When such events involves platform-specific hooks, those hooks are
2434 * called automatically by this routine.
2435 *
2436 * Devices with legacy power management (no standard PCI PM capabilities)
2437 * always require such platform hooks.
2438 *
2439 * RETURN VALUE:
2440 * 0 is returned on success
2441 * -EINVAL is returned if device is not supposed to wake up the system
2442 * Error code depending on the platform is returned if both the platform and
2443 * the native mechanism fail to enable the generation of wake-up events
2444 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2445 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2446 {
2447 int ret = 0;
2448
2449 /*
2450 * Bridges that are not power-manageable directly only signal
2451 * wakeup on behalf of subordinate devices which is set up
2452 * elsewhere, so skip them. However, bridges that are
2453 * power-manageable may signal wakeup for themselves (for example,
2454 * on a hotplug event) and they need to be covered here.
2455 */
2456 if (!pci_power_manageable(dev))
2457 return 0;
2458
2459 /* Don't do the same thing twice in a row for one device. */
2460 if (!!enable == !!dev->wakeup_prepared)
2461 return 0;
2462
2463 /*
2464 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2465 * Anderson we should be doing PME# wake enable followed by ACPI wake
2466 * enable. To disable wake-up we call the platform first, for symmetry.
2467 */
2468
2469 if (enable) {
2470 int error;
2471
2472 /*
2473 * Enable PME signaling if the device can signal PME from
2474 * D3cold regardless of whether or not it can signal PME from
2475 * the current target state, because that will allow it to
2476 * signal PME when the hierarchy above it goes into D3cold and
2477 * the device itself ends up in D3cold as a result of that.
2478 */
2479 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2480 pci_pme_active(dev, true);
2481 else
2482 ret = 1;
2483 error = platform_pci_set_wakeup(dev, true);
2484 if (ret)
2485 ret = error;
2486 if (!ret)
2487 dev->wakeup_prepared = true;
2488 } else {
2489 platform_pci_set_wakeup(dev, false);
2490 pci_pme_active(dev, false);
2491 dev->wakeup_prepared = false;
2492 }
2493
2494 return ret;
2495 }
2496
2497 /**
2498 * pci_enable_wake - change wakeup settings for a PCI device
2499 * @pci_dev: Target device
2500 * @state: PCI state from which device will issue wakeup events
2501 * @enable: Whether or not to enable event generation
2502 *
2503 * If @enable is set, check device_may_wakeup() for the device before calling
2504 * __pci_enable_wake() for it.
2505 */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2506 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2507 {
2508 if (enable && !device_may_wakeup(&pci_dev->dev))
2509 return -EINVAL;
2510
2511 return __pci_enable_wake(pci_dev, state, enable);
2512 }
2513 EXPORT_SYMBOL(pci_enable_wake);
2514
2515 /**
2516 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2517 * @dev: PCI device to prepare
2518 * @enable: True to enable wake-up event generation; false to disable
2519 *
2520 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2521 * and this function allows them to set that up cleanly - pci_enable_wake()
2522 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2523 * ordering constraints.
2524 *
2525 * This function only returns error code if the device is not allowed to wake
2526 * up the system from sleep or it is not capable of generating PME# from both
2527 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2528 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2529 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2530 {
2531 return pci_pme_capable(dev, PCI_D3cold) ?
2532 pci_enable_wake(dev, PCI_D3cold, enable) :
2533 pci_enable_wake(dev, PCI_D3hot, enable);
2534 }
2535 EXPORT_SYMBOL(pci_wake_from_d3);
2536
2537 /**
2538 * pci_target_state - find an appropriate low power state for a given PCI dev
2539 * @dev: PCI device
2540 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2541 *
2542 * Use underlying platform code to find a supported low power state for @dev.
2543 * If the platform can't manage @dev, return the deepest state from which it
2544 * can generate wake events, based on any available PME info.
2545 */
pci_target_state(struct pci_dev * dev,bool wakeup)2546 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2547 {
2548 pci_power_t target_state = PCI_D3hot;
2549
2550 if (platform_pci_power_manageable(dev)) {
2551 /*
2552 * Call the platform to find the target state for the device.
2553 */
2554 pci_power_t state = platform_pci_choose_state(dev);
2555
2556 switch (state) {
2557 case PCI_POWER_ERROR:
2558 case PCI_UNKNOWN:
2559 break;
2560 case PCI_D1:
2561 case PCI_D2:
2562 if (pci_no_d1d2(dev))
2563 break;
2564 fallthrough;
2565 default:
2566 target_state = state;
2567 }
2568
2569 return target_state;
2570 }
2571
2572 if (!dev->pm_cap)
2573 target_state = PCI_D0;
2574
2575 /*
2576 * If the device is in D3cold even though it's not power-manageable by
2577 * the platform, it may have been powered down by non-standard means.
2578 * Best to let it slumber.
2579 */
2580 if (dev->current_state == PCI_D3cold)
2581 target_state = PCI_D3cold;
2582
2583 if (wakeup && dev->pme_support) {
2584 pci_power_t state = target_state;
2585
2586 /*
2587 * Find the deepest state from which the device can generate
2588 * PME#.
2589 */
2590 while (state && !(dev->pme_support & (1 << state)))
2591 state--;
2592
2593 if (state)
2594 return state;
2595 else if (dev->pme_support & 1)
2596 return PCI_D0;
2597 }
2598
2599 return target_state;
2600 }
2601
2602 /**
2603 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2604 * into a sleep state
2605 * @dev: Device to handle.
2606 *
2607 * Choose the power state appropriate for the device depending on whether
2608 * it can wake up the system and/or is power manageable by the platform
2609 * (PCI_D3hot is the default) and put the device into that state.
2610 */
pci_prepare_to_sleep(struct pci_dev * dev)2611 int pci_prepare_to_sleep(struct pci_dev *dev)
2612 {
2613 bool wakeup = device_may_wakeup(&dev->dev);
2614 pci_power_t target_state = pci_target_state(dev, wakeup);
2615 int error;
2616
2617 if (target_state == PCI_POWER_ERROR)
2618 return -EIO;
2619
2620 pci_enable_wake(dev, target_state, wakeup);
2621
2622 error = pci_set_power_state(dev, target_state);
2623
2624 if (error)
2625 pci_enable_wake(dev, target_state, false);
2626
2627 return error;
2628 }
2629 EXPORT_SYMBOL(pci_prepare_to_sleep);
2630
2631 /**
2632 * pci_back_from_sleep - turn PCI device on during system-wide transition
2633 * into working state
2634 * @dev: Device to handle.
2635 *
2636 * Disable device's system wake-up capability and put it into D0.
2637 */
pci_back_from_sleep(struct pci_dev * dev)2638 int pci_back_from_sleep(struct pci_dev *dev)
2639 {
2640 pci_enable_wake(dev, PCI_D0, false);
2641 return pci_set_power_state(dev, PCI_D0);
2642 }
2643 EXPORT_SYMBOL(pci_back_from_sleep);
2644
2645 /**
2646 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2647 * @dev: PCI device being suspended.
2648 *
2649 * Prepare @dev to generate wake-up events at run time and put it into a low
2650 * power state.
2651 */
pci_finish_runtime_suspend(struct pci_dev * dev)2652 int pci_finish_runtime_suspend(struct pci_dev *dev)
2653 {
2654 pci_power_t target_state;
2655 int error;
2656
2657 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2658 if (target_state == PCI_POWER_ERROR)
2659 return -EIO;
2660
2661 dev->runtime_d3cold = target_state == PCI_D3cold;
2662
2663 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2664
2665 error = pci_set_power_state(dev, target_state);
2666
2667 if (error) {
2668 pci_enable_wake(dev, target_state, false);
2669 dev->runtime_d3cold = false;
2670 }
2671
2672 return error;
2673 }
2674
2675 /**
2676 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2677 * @dev: Device to check.
2678 *
2679 * Return true if the device itself is capable of generating wake-up events
2680 * (through the platform or using the native PCIe PME) or if the device supports
2681 * PME and one of its upstream bridges can generate wake-up events.
2682 */
pci_dev_run_wake(struct pci_dev * dev)2683 bool pci_dev_run_wake(struct pci_dev *dev)
2684 {
2685 struct pci_bus *bus = dev->bus;
2686
2687 if (!dev->pme_support)
2688 return false;
2689
2690 /* PME-capable in principle, but not from the target power state */
2691 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2692 return false;
2693
2694 if (device_can_wakeup(&dev->dev))
2695 return true;
2696
2697 while (bus->parent) {
2698 struct pci_dev *bridge = bus->self;
2699
2700 if (device_can_wakeup(&bridge->dev))
2701 return true;
2702
2703 bus = bus->parent;
2704 }
2705
2706 /* We have reached the root bus. */
2707 if (bus->bridge)
2708 return device_can_wakeup(bus->bridge);
2709
2710 return false;
2711 }
2712 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2713
2714 /**
2715 * pci_dev_need_resume - Check if it is necessary to resume the device.
2716 * @pci_dev: Device to check.
2717 *
2718 * Return 'true' if the device is not runtime-suspended or it has to be
2719 * reconfigured due to wakeup settings difference between system and runtime
2720 * suspend, or the current power state of it is not suitable for the upcoming
2721 * (system-wide) transition.
2722 */
pci_dev_need_resume(struct pci_dev * pci_dev)2723 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2724 {
2725 struct device *dev = &pci_dev->dev;
2726 pci_power_t target_state;
2727
2728 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2729 return true;
2730
2731 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2732
2733 /*
2734 * If the earlier platform check has not triggered, D3cold is just power
2735 * removal on top of D3hot, so no need to resume the device in that
2736 * case.
2737 */
2738 return target_state != pci_dev->current_state &&
2739 target_state != PCI_D3cold &&
2740 pci_dev->current_state != PCI_D3hot;
2741 }
2742
2743 /**
2744 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2745 * @pci_dev: Device to check.
2746 *
2747 * If the device is suspended and it is not configured for system wakeup,
2748 * disable PME for it to prevent it from waking up the system unnecessarily.
2749 *
2750 * Note that if the device's power state is D3cold and the platform check in
2751 * pci_dev_need_resume() has not triggered, the device's configuration need not
2752 * be changed.
2753 */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2754 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2755 {
2756 struct device *dev = &pci_dev->dev;
2757
2758 spin_lock_irq(&dev->power.lock);
2759
2760 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2761 pci_dev->current_state < PCI_D3cold)
2762 __pci_pme_active(pci_dev, false);
2763
2764 spin_unlock_irq(&dev->power.lock);
2765 }
2766
2767 /**
2768 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2769 * @pci_dev: Device to handle.
2770 *
2771 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2772 * it might have been disabled during the prepare phase of system suspend if
2773 * the device was not configured for system wakeup.
2774 */
pci_dev_complete_resume(struct pci_dev * pci_dev)2775 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2776 {
2777 struct device *dev = &pci_dev->dev;
2778
2779 if (!pci_dev_run_wake(pci_dev))
2780 return;
2781
2782 spin_lock_irq(&dev->power.lock);
2783
2784 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2785 __pci_pme_active(pci_dev, true);
2786
2787 spin_unlock_irq(&dev->power.lock);
2788 }
2789
pci_config_pm_runtime_get(struct pci_dev * pdev)2790 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2791 {
2792 struct device *dev = &pdev->dev;
2793 struct device *parent = dev->parent;
2794
2795 if (parent)
2796 pm_runtime_get_sync(parent);
2797 pm_runtime_get_noresume(dev);
2798 /*
2799 * pdev->current_state is set to PCI_D3cold during suspending,
2800 * so wait until suspending completes
2801 */
2802 pm_runtime_barrier(dev);
2803 /*
2804 * Only need to resume devices in D3cold, because config
2805 * registers are still accessible for devices suspended but
2806 * not in D3cold.
2807 */
2808 if (pdev->current_state == PCI_D3cold)
2809 pm_runtime_resume(dev);
2810 }
2811
pci_config_pm_runtime_put(struct pci_dev * pdev)2812 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2813 {
2814 struct device *dev = &pdev->dev;
2815 struct device *parent = dev->parent;
2816
2817 pm_runtime_put(dev);
2818 if (parent)
2819 pm_runtime_put_sync(parent);
2820 }
2821
2822 static const struct dmi_system_id bridge_d3_blacklist[] = {
2823 #ifdef CONFIG_X86
2824 {
2825 /*
2826 * Gigabyte X299 root port is not marked as hotplug capable
2827 * which allows Linux to power manage it. However, this
2828 * confuses the BIOS SMI handler so don't power manage root
2829 * ports on that system.
2830 */
2831 .ident = "X299 DESIGNARE EX-CF",
2832 .matches = {
2833 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2834 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2835 },
2836 },
2837 {
2838 /*
2839 * Downstream device is not accessible after putting a root port
2840 * into D3cold and back into D0 on Elo Continental Z2 board
2841 */
2842 .ident = "Elo Continental Z2",
2843 .matches = {
2844 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2845 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2846 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2847 },
2848 },
2849 #endif
2850 { }
2851 };
2852
2853 /**
2854 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2855 * @bridge: Bridge to check
2856 *
2857 * This function checks if it is possible to move the bridge to D3.
2858 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2859 */
pci_bridge_d3_possible(struct pci_dev * bridge)2860 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2861 {
2862 if (!pci_is_pcie(bridge))
2863 return false;
2864
2865 switch (pci_pcie_type(bridge)) {
2866 case PCI_EXP_TYPE_ROOT_PORT:
2867 case PCI_EXP_TYPE_UPSTREAM:
2868 case PCI_EXP_TYPE_DOWNSTREAM:
2869 if (pci_bridge_d3_disable)
2870 return false;
2871
2872 /*
2873 * Hotplug ports handled by firmware in System Management Mode
2874 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2875 */
2876 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2877 return false;
2878
2879 if (pci_bridge_d3_force)
2880 return true;
2881
2882 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2883 if (bridge->is_thunderbolt)
2884 return true;
2885
2886 /* Platform might know better if the bridge supports D3 */
2887 if (platform_pci_bridge_d3(bridge))
2888 return true;
2889
2890 /*
2891 * Hotplug ports handled natively by the OS were not validated
2892 * by vendors for runtime D3 at least until 2018 because there
2893 * was no OS support.
2894 */
2895 if (bridge->is_hotplug_bridge)
2896 return false;
2897
2898 if (dmi_check_system(bridge_d3_blacklist))
2899 return false;
2900
2901 /*
2902 * It should be safe to put PCIe ports from 2015 or newer
2903 * to D3.
2904 */
2905 if (dmi_get_bios_year() >= 2015)
2906 return true;
2907 break;
2908 }
2909
2910 return false;
2911 }
2912
pci_dev_check_d3cold(struct pci_dev * dev,void * data)2913 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2914 {
2915 bool *d3cold_ok = data;
2916
2917 if (/* The device needs to be allowed to go D3cold ... */
2918 dev->no_d3cold || !dev->d3cold_allowed ||
2919
2920 /* ... and if it is wakeup capable to do so from D3cold. */
2921 (device_may_wakeup(&dev->dev) &&
2922 !pci_pme_capable(dev, PCI_D3cold)) ||
2923
2924 /* If it is a bridge it must be allowed to go to D3. */
2925 !pci_power_manageable(dev))
2926
2927 *d3cold_ok = false;
2928
2929 return !*d3cold_ok;
2930 }
2931
2932 /*
2933 * pci_bridge_d3_update - Update bridge D3 capabilities
2934 * @dev: PCI device which is changed
2935 *
2936 * Update upstream bridge PM capabilities accordingly depending on if the
2937 * device PM configuration was changed or the device is being removed. The
2938 * change is also propagated upstream.
2939 */
pci_bridge_d3_update(struct pci_dev * dev)2940 void pci_bridge_d3_update(struct pci_dev *dev)
2941 {
2942 bool remove = !device_is_registered(&dev->dev);
2943 struct pci_dev *bridge;
2944 bool d3cold_ok = true;
2945
2946 bridge = pci_upstream_bridge(dev);
2947 if (!bridge || !pci_bridge_d3_possible(bridge))
2948 return;
2949
2950 /*
2951 * If D3 is currently allowed for the bridge, removing one of its
2952 * children won't change that.
2953 */
2954 if (remove && bridge->bridge_d3)
2955 return;
2956
2957 /*
2958 * If D3 is currently allowed for the bridge and a child is added or
2959 * changed, disallowance of D3 can only be caused by that child, so
2960 * we only need to check that single device, not any of its siblings.
2961 *
2962 * If D3 is currently not allowed for the bridge, checking the device
2963 * first may allow us to skip checking its siblings.
2964 */
2965 if (!remove)
2966 pci_dev_check_d3cold(dev, &d3cold_ok);
2967
2968 /*
2969 * If D3 is currently not allowed for the bridge, this may be caused
2970 * either by the device being changed/removed or any of its siblings,
2971 * so we need to go through all children to find out if one of them
2972 * continues to block D3.
2973 */
2974 if (d3cold_ok && !bridge->bridge_d3)
2975 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2976 &d3cold_ok);
2977
2978 if (bridge->bridge_d3 != d3cold_ok) {
2979 bridge->bridge_d3 = d3cold_ok;
2980 /* Propagate change to upstream bridges */
2981 pci_bridge_d3_update(bridge);
2982 }
2983 }
2984
2985 /**
2986 * pci_d3cold_enable - Enable D3cold for device
2987 * @dev: PCI device to handle
2988 *
2989 * This function can be used in drivers to enable D3cold from the device
2990 * they handle. It also updates upstream PCI bridge PM capabilities
2991 * accordingly.
2992 */
pci_d3cold_enable(struct pci_dev * dev)2993 void pci_d3cold_enable(struct pci_dev *dev)
2994 {
2995 if (dev->no_d3cold) {
2996 dev->no_d3cold = false;
2997 pci_bridge_d3_update(dev);
2998 }
2999 }
3000 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3001
3002 /**
3003 * pci_d3cold_disable - Disable D3cold for device
3004 * @dev: PCI device to handle
3005 *
3006 * This function can be used in drivers to disable D3cold from the device
3007 * they handle. It also updates upstream PCI bridge PM capabilities
3008 * accordingly.
3009 */
pci_d3cold_disable(struct pci_dev * dev)3010 void pci_d3cold_disable(struct pci_dev *dev)
3011 {
3012 if (!dev->no_d3cold) {
3013 dev->no_d3cold = true;
3014 pci_bridge_d3_update(dev);
3015 }
3016 }
3017 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3018
3019 /**
3020 * pci_pm_init - Initialize PM functions of given PCI device
3021 * @dev: PCI device to handle.
3022 */
pci_pm_init(struct pci_dev * dev)3023 void pci_pm_init(struct pci_dev *dev)
3024 {
3025 int pm;
3026 u16 status;
3027 u16 pmc;
3028
3029 pm_runtime_forbid(&dev->dev);
3030 pm_runtime_set_active(&dev->dev);
3031 pm_runtime_enable(&dev->dev);
3032 device_enable_async_suspend(&dev->dev);
3033 dev->wakeup_prepared = false;
3034
3035 dev->pm_cap = 0;
3036 dev->pme_support = 0;
3037
3038 /* find PCI PM capability in list */
3039 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3040 if (!pm)
3041 return;
3042 /* Check device's ability to generate PME# */
3043 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3044
3045 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3046 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3047 pmc & PCI_PM_CAP_VER_MASK);
3048 return;
3049 }
3050
3051 dev->pm_cap = pm;
3052 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3053 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3054 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3055 dev->d3cold_allowed = true;
3056
3057 dev->d1_support = false;
3058 dev->d2_support = false;
3059 if (!pci_no_d1d2(dev)) {
3060 if (pmc & PCI_PM_CAP_D1)
3061 dev->d1_support = true;
3062 if (pmc & PCI_PM_CAP_D2)
3063 dev->d2_support = true;
3064
3065 if (dev->d1_support || dev->d2_support)
3066 pci_info(dev, "supports%s%s\n",
3067 dev->d1_support ? " D1" : "",
3068 dev->d2_support ? " D2" : "");
3069 }
3070
3071 pmc &= PCI_PM_CAP_PME_MASK;
3072 if (pmc) {
3073 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3074 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3075 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3076 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3077 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3078 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3079 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3080 dev->pme_poll = true;
3081 /*
3082 * Make device's PM flags reflect the wake-up capability, but
3083 * let the user space enable it to wake up the system as needed.
3084 */
3085 device_set_wakeup_capable(&dev->dev, true);
3086 /* Disable the PME# generation functionality */
3087 pci_pme_active(dev, false);
3088 }
3089
3090 pci_read_config_word(dev, PCI_STATUS, &status);
3091 if (status & PCI_STATUS_IMM_READY)
3092 dev->imm_ready = 1;
3093 }
3094
pci_ea_flags(struct pci_dev * dev,u8 prop)3095 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3096 {
3097 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3098
3099 switch (prop) {
3100 case PCI_EA_P_MEM:
3101 case PCI_EA_P_VF_MEM:
3102 flags |= IORESOURCE_MEM;
3103 break;
3104 case PCI_EA_P_MEM_PREFETCH:
3105 case PCI_EA_P_VF_MEM_PREFETCH:
3106 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3107 break;
3108 case PCI_EA_P_IO:
3109 flags |= IORESOURCE_IO;
3110 break;
3111 default:
3112 return 0;
3113 }
3114
3115 return flags;
3116 }
3117
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3118 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3119 u8 prop)
3120 {
3121 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3122 return &dev->resource[bei];
3123 #ifdef CONFIG_PCI_IOV
3124 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3125 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3126 return &dev->resource[PCI_IOV_RESOURCES +
3127 bei - PCI_EA_BEI_VF_BAR0];
3128 #endif
3129 else if (bei == PCI_EA_BEI_ROM)
3130 return &dev->resource[PCI_ROM_RESOURCE];
3131 else
3132 return NULL;
3133 }
3134
3135 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3136 static int pci_ea_read(struct pci_dev *dev, int offset)
3137 {
3138 struct resource *res;
3139 int ent_size, ent_offset = offset;
3140 resource_size_t start, end;
3141 unsigned long flags;
3142 u32 dw0, bei, base, max_offset;
3143 u8 prop;
3144 bool support_64 = (sizeof(resource_size_t) >= 8);
3145
3146 pci_read_config_dword(dev, ent_offset, &dw0);
3147 ent_offset += 4;
3148
3149 /* Entry size field indicates DWORDs after 1st */
3150 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3151
3152 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3153 goto out;
3154
3155 bei = (dw0 & PCI_EA_BEI) >> 4;
3156 prop = (dw0 & PCI_EA_PP) >> 8;
3157
3158 /*
3159 * If the Property is in the reserved range, try the Secondary
3160 * Property instead.
3161 */
3162 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3163 prop = (dw0 & PCI_EA_SP) >> 16;
3164 if (prop > PCI_EA_P_BRIDGE_IO)
3165 goto out;
3166
3167 res = pci_ea_get_resource(dev, bei, prop);
3168 if (!res) {
3169 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3170 goto out;
3171 }
3172
3173 flags = pci_ea_flags(dev, prop);
3174 if (!flags) {
3175 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3176 goto out;
3177 }
3178
3179 /* Read Base */
3180 pci_read_config_dword(dev, ent_offset, &base);
3181 start = (base & PCI_EA_FIELD_MASK);
3182 ent_offset += 4;
3183
3184 /* Read MaxOffset */
3185 pci_read_config_dword(dev, ent_offset, &max_offset);
3186 ent_offset += 4;
3187
3188 /* Read Base MSBs (if 64-bit entry) */
3189 if (base & PCI_EA_IS_64) {
3190 u32 base_upper;
3191
3192 pci_read_config_dword(dev, ent_offset, &base_upper);
3193 ent_offset += 4;
3194
3195 flags |= IORESOURCE_MEM_64;
3196
3197 /* entry starts above 32-bit boundary, can't use */
3198 if (!support_64 && base_upper)
3199 goto out;
3200
3201 if (support_64)
3202 start |= ((u64)base_upper << 32);
3203 }
3204
3205 end = start + (max_offset | 0x03);
3206
3207 /* Read MaxOffset MSBs (if 64-bit entry) */
3208 if (max_offset & PCI_EA_IS_64) {
3209 u32 max_offset_upper;
3210
3211 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3212 ent_offset += 4;
3213
3214 flags |= IORESOURCE_MEM_64;
3215
3216 /* entry too big, can't use */
3217 if (!support_64 && max_offset_upper)
3218 goto out;
3219
3220 if (support_64)
3221 end += ((u64)max_offset_upper << 32);
3222 }
3223
3224 if (end < start) {
3225 pci_err(dev, "EA Entry crosses address boundary\n");
3226 goto out;
3227 }
3228
3229 if (ent_size != ent_offset - offset) {
3230 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3231 ent_size, ent_offset - offset);
3232 goto out;
3233 }
3234
3235 res->name = pci_name(dev);
3236 res->start = start;
3237 res->end = end;
3238 res->flags = flags;
3239
3240 if (bei <= PCI_EA_BEI_BAR5)
3241 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3242 bei, res, prop);
3243 else if (bei == PCI_EA_BEI_ROM)
3244 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3245 res, prop);
3246 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3247 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3248 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3249 else
3250 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3251 bei, res, prop);
3252
3253 out:
3254 return offset + ent_size;
3255 }
3256
3257 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3258 void pci_ea_init(struct pci_dev *dev)
3259 {
3260 int ea;
3261 u8 num_ent;
3262 int offset;
3263 int i;
3264
3265 /* find PCI EA capability in list */
3266 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3267 if (!ea)
3268 return;
3269
3270 /* determine the number of entries */
3271 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3272 &num_ent);
3273 num_ent &= PCI_EA_NUM_ENT_MASK;
3274
3275 offset = ea + PCI_EA_FIRST_ENT;
3276
3277 /* Skip DWORD 2 for type 1 functions */
3278 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3279 offset += 4;
3280
3281 /* parse each EA entry */
3282 for (i = 0; i < num_ent; ++i)
3283 offset = pci_ea_read(dev, offset);
3284 }
3285
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3286 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3287 struct pci_cap_saved_state *new_cap)
3288 {
3289 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3290 }
3291
3292 /**
3293 * _pci_add_cap_save_buffer - allocate buffer for saving given
3294 * capability registers
3295 * @dev: the PCI device
3296 * @cap: the capability to allocate the buffer for
3297 * @extended: Standard or Extended capability ID
3298 * @size: requested size of the buffer
3299 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3300 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3301 bool extended, unsigned int size)
3302 {
3303 int pos;
3304 struct pci_cap_saved_state *save_state;
3305
3306 if (extended)
3307 pos = pci_find_ext_capability(dev, cap);
3308 else
3309 pos = pci_find_capability(dev, cap);
3310
3311 if (!pos)
3312 return 0;
3313
3314 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3315 if (!save_state)
3316 return -ENOMEM;
3317
3318 save_state->cap.cap_nr = cap;
3319 save_state->cap.cap_extended = extended;
3320 save_state->cap.size = size;
3321 pci_add_saved_cap(dev, save_state);
3322
3323 return 0;
3324 }
3325
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3326 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3327 {
3328 return _pci_add_cap_save_buffer(dev, cap, false, size);
3329 }
3330
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3331 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3332 {
3333 return _pci_add_cap_save_buffer(dev, cap, true, size);
3334 }
3335
3336 /**
3337 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3338 * @dev: the PCI device
3339 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3340 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3341 {
3342 int error;
3343
3344 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3345 PCI_EXP_SAVE_REGS * sizeof(u16));
3346 if (error)
3347 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3348
3349 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3350 if (error)
3351 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3352
3353 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3354 2 * sizeof(u16));
3355 if (error)
3356 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3357
3358 pci_allocate_vc_save_buffers(dev);
3359 }
3360
pci_free_cap_save_buffers(struct pci_dev * dev)3361 void pci_free_cap_save_buffers(struct pci_dev *dev)
3362 {
3363 struct pci_cap_saved_state *tmp;
3364 struct hlist_node *n;
3365
3366 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3367 kfree(tmp);
3368 }
3369
3370 /**
3371 * pci_configure_ari - enable or disable ARI forwarding
3372 * @dev: the PCI device
3373 *
3374 * If @dev and its upstream bridge both support ARI, enable ARI in the
3375 * bridge. Otherwise, disable ARI in the bridge.
3376 */
pci_configure_ari(struct pci_dev * dev)3377 void pci_configure_ari(struct pci_dev *dev)
3378 {
3379 u32 cap;
3380 struct pci_dev *bridge;
3381
3382 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3383 return;
3384
3385 bridge = dev->bus->self;
3386 if (!bridge)
3387 return;
3388
3389 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3390 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3391 return;
3392
3393 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3394 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3395 PCI_EXP_DEVCTL2_ARI);
3396 bridge->ari_enabled = 1;
3397 } else {
3398 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3399 PCI_EXP_DEVCTL2_ARI);
3400 bridge->ari_enabled = 0;
3401 }
3402 }
3403
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3404 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3405 {
3406 int pos;
3407 u16 cap, ctrl;
3408
3409 pos = pdev->acs_cap;
3410 if (!pos)
3411 return false;
3412
3413 /*
3414 * Except for egress control, capabilities are either required
3415 * or only required if controllable. Features missing from the
3416 * capability field can therefore be assumed as hard-wired enabled.
3417 */
3418 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3419 acs_flags &= (cap | PCI_ACS_EC);
3420
3421 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3422 return (ctrl & acs_flags) == acs_flags;
3423 }
3424
3425 /**
3426 * pci_acs_enabled - test ACS against required flags for a given device
3427 * @pdev: device to test
3428 * @acs_flags: required PCI ACS flags
3429 *
3430 * Return true if the device supports the provided flags. Automatically
3431 * filters out flags that are not implemented on multifunction devices.
3432 *
3433 * Note that this interface checks the effective ACS capabilities of the
3434 * device rather than the actual capabilities. For instance, most single
3435 * function endpoints are not required to support ACS because they have no
3436 * opportunity for peer-to-peer access. We therefore return 'true'
3437 * regardless of whether the device exposes an ACS capability. This makes
3438 * it much easier for callers of this function to ignore the actual type
3439 * or topology of the device when testing ACS support.
3440 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3441 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3442 {
3443 int ret;
3444
3445 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3446 if (ret >= 0)
3447 return ret > 0;
3448
3449 /*
3450 * Conventional PCI and PCI-X devices never support ACS, either
3451 * effectively or actually. The shared bus topology implies that
3452 * any device on the bus can receive or snoop DMA.
3453 */
3454 if (!pci_is_pcie(pdev))
3455 return false;
3456
3457 switch (pci_pcie_type(pdev)) {
3458 /*
3459 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3460 * but since their primary interface is PCI/X, we conservatively
3461 * handle them as we would a non-PCIe device.
3462 */
3463 case PCI_EXP_TYPE_PCIE_BRIDGE:
3464 /*
3465 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3466 * applicable... must never implement an ACS Extended Capability...".
3467 * This seems arbitrary, but we take a conservative interpretation
3468 * of this statement.
3469 */
3470 case PCI_EXP_TYPE_PCI_BRIDGE:
3471 case PCI_EXP_TYPE_RC_EC:
3472 return false;
3473 /*
3474 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3475 * implement ACS in order to indicate their peer-to-peer capabilities,
3476 * regardless of whether they are single- or multi-function devices.
3477 */
3478 case PCI_EXP_TYPE_DOWNSTREAM:
3479 case PCI_EXP_TYPE_ROOT_PORT:
3480 return pci_acs_flags_enabled(pdev, acs_flags);
3481 /*
3482 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3483 * implemented by the remaining PCIe types to indicate peer-to-peer
3484 * capabilities, but only when they are part of a multifunction
3485 * device. The footnote for section 6.12 indicates the specific
3486 * PCIe types included here.
3487 */
3488 case PCI_EXP_TYPE_ENDPOINT:
3489 case PCI_EXP_TYPE_UPSTREAM:
3490 case PCI_EXP_TYPE_LEG_END:
3491 case PCI_EXP_TYPE_RC_END:
3492 if (!pdev->multifunction)
3493 break;
3494
3495 return pci_acs_flags_enabled(pdev, acs_flags);
3496 }
3497
3498 /*
3499 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3500 * to single function devices with the exception of downstream ports.
3501 */
3502 return true;
3503 }
3504
3505 /**
3506 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3507 * @start: starting downstream device
3508 * @end: ending upstream device or NULL to search to the root bus
3509 * @acs_flags: required flags
3510 *
3511 * Walk up a device tree from start to end testing PCI ACS support. If
3512 * any step along the way does not support the required flags, return false.
3513 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3514 bool pci_acs_path_enabled(struct pci_dev *start,
3515 struct pci_dev *end, u16 acs_flags)
3516 {
3517 struct pci_dev *pdev, *parent = start;
3518
3519 do {
3520 pdev = parent;
3521
3522 if (!pci_acs_enabled(pdev, acs_flags))
3523 return false;
3524
3525 if (pci_is_root_bus(pdev->bus))
3526 return (end == NULL);
3527
3528 parent = pdev->bus->self;
3529 } while (pdev != end);
3530
3531 return true;
3532 }
3533
3534 /**
3535 * pci_acs_init - Initialize ACS if hardware supports it
3536 * @dev: the PCI device
3537 */
pci_acs_init(struct pci_dev * dev)3538 void pci_acs_init(struct pci_dev *dev)
3539 {
3540 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3541
3542 /*
3543 * Attempt to enable ACS regardless of capability because some Root
3544 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3545 * the standard ACS capability but still support ACS via those
3546 * quirks.
3547 */
3548 pci_enable_acs(dev);
3549 }
3550
3551 /**
3552 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3553 * @pdev: PCI device
3554 * @bar: BAR to find
3555 *
3556 * Helper to find the position of the ctrl register for a BAR.
3557 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3558 * Returns -ENOENT if no ctrl register for the BAR could be found.
3559 */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3560 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3561 {
3562 unsigned int pos, nbars, i;
3563 u32 ctrl;
3564
3565 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3566 if (!pos)
3567 return -ENOTSUPP;
3568
3569 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3570 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3571 PCI_REBAR_CTRL_NBAR_SHIFT;
3572
3573 for (i = 0; i < nbars; i++, pos += 8) {
3574 int bar_idx;
3575
3576 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3577 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3578 if (bar_idx == bar)
3579 return pos;
3580 }
3581
3582 return -ENOENT;
3583 }
3584
3585 /**
3586 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3587 * @pdev: PCI device
3588 * @bar: BAR to query
3589 *
3590 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3591 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3592 */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3593 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3594 {
3595 int pos;
3596 u32 cap;
3597
3598 pos = pci_rebar_find_pos(pdev, bar);
3599 if (pos < 0)
3600 return 0;
3601
3602 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3603 cap &= PCI_REBAR_CAP_SIZES;
3604
3605 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3606 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3607 bar == 0 && cap == 0x7000)
3608 cap = 0x3f000;
3609
3610 return cap >> 4;
3611 }
3612
3613 /**
3614 * pci_rebar_get_current_size - get the current size of a BAR
3615 * @pdev: PCI device
3616 * @bar: BAR to set size to
3617 *
3618 * Read the size of a BAR from the resizable BAR config.
3619 * Returns size if found or negative error code.
3620 */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3621 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3622 {
3623 int pos;
3624 u32 ctrl;
3625
3626 pos = pci_rebar_find_pos(pdev, bar);
3627 if (pos < 0)
3628 return pos;
3629
3630 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3631 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3632 }
3633
3634 /**
3635 * pci_rebar_set_size - set a new size for a BAR
3636 * @pdev: PCI device
3637 * @bar: BAR to set size to
3638 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3639 *
3640 * Set the new size of a BAR as defined in the spec.
3641 * Returns zero if resizing was successful, error code otherwise.
3642 */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3643 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3644 {
3645 int pos;
3646 u32 ctrl;
3647
3648 pos = pci_rebar_find_pos(pdev, bar);
3649 if (pos < 0)
3650 return pos;
3651
3652 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3653 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3654 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3655 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3656 return 0;
3657 }
3658
3659 /**
3660 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3661 * @dev: the PCI device
3662 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3663 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3664 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3665 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3666 *
3667 * Return 0 if all upstream bridges support AtomicOp routing, egress
3668 * blocking is disabled on all upstream ports, and the root port supports
3669 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3670 * AtomicOp completion), or negative otherwise.
3671 */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3672 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3673 {
3674 struct pci_bus *bus = dev->bus;
3675 struct pci_dev *bridge;
3676 u32 cap, ctl2;
3677
3678 if (!pci_is_pcie(dev))
3679 return -EINVAL;
3680
3681 /*
3682 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3683 * AtomicOp requesters. For now, we only support endpoints as
3684 * requesters and root ports as completers. No endpoints as
3685 * completers, and no peer-to-peer.
3686 */
3687
3688 switch (pci_pcie_type(dev)) {
3689 case PCI_EXP_TYPE_ENDPOINT:
3690 case PCI_EXP_TYPE_LEG_END:
3691 case PCI_EXP_TYPE_RC_END:
3692 break;
3693 default:
3694 return -EINVAL;
3695 }
3696
3697 while (bus->parent) {
3698 bridge = bus->self;
3699
3700 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3701
3702 switch (pci_pcie_type(bridge)) {
3703 /* Ensure switch ports support AtomicOp routing */
3704 case PCI_EXP_TYPE_UPSTREAM:
3705 case PCI_EXP_TYPE_DOWNSTREAM:
3706 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3707 return -EINVAL;
3708 break;
3709
3710 /* Ensure root port supports all the sizes we care about */
3711 case PCI_EXP_TYPE_ROOT_PORT:
3712 if ((cap & cap_mask) != cap_mask)
3713 return -EINVAL;
3714 break;
3715 }
3716
3717 /* Ensure upstream ports don't block AtomicOps on egress */
3718 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3719 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3720 &ctl2);
3721 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3722 return -EINVAL;
3723 }
3724
3725 bus = bus->parent;
3726 }
3727
3728 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3729 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3730 return 0;
3731 }
3732 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3733
3734 /**
3735 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3736 * @dev: the PCI device
3737 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3738 *
3739 * Perform INTx swizzling for a device behind one level of bridge. This is
3740 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3741 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3742 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3743 * the PCI Express Base Specification, Revision 2.1)
3744 */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3745 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3746 {
3747 int slot;
3748
3749 if (pci_ari_enabled(dev->bus))
3750 slot = 0;
3751 else
3752 slot = PCI_SLOT(dev->devfn);
3753
3754 return (((pin - 1) + slot) % 4) + 1;
3755 }
3756
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3757 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3758 {
3759 u8 pin;
3760
3761 pin = dev->pin;
3762 if (!pin)
3763 return -1;
3764
3765 while (!pci_is_root_bus(dev->bus)) {
3766 pin = pci_swizzle_interrupt_pin(dev, pin);
3767 dev = dev->bus->self;
3768 }
3769 *bridge = dev;
3770 return pin;
3771 }
3772
3773 /**
3774 * pci_common_swizzle - swizzle INTx all the way to root bridge
3775 * @dev: the PCI device
3776 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3777 *
3778 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3779 * bridges all the way up to a PCI root bus.
3780 */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3781 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3782 {
3783 u8 pin = *pinp;
3784
3785 while (!pci_is_root_bus(dev->bus)) {
3786 pin = pci_swizzle_interrupt_pin(dev, pin);
3787 dev = dev->bus->self;
3788 }
3789 *pinp = pin;
3790 return PCI_SLOT(dev->devfn);
3791 }
3792 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3793
3794 /**
3795 * pci_release_region - Release a PCI bar
3796 * @pdev: PCI device whose resources were previously reserved by
3797 * pci_request_region()
3798 * @bar: BAR to release
3799 *
3800 * Releases the PCI I/O and memory resources previously reserved by a
3801 * successful call to pci_request_region(). Call this function only
3802 * after all use of the PCI regions has ceased.
3803 */
pci_release_region(struct pci_dev * pdev,int bar)3804 void pci_release_region(struct pci_dev *pdev, int bar)
3805 {
3806 struct pci_devres *dr;
3807
3808 if (pci_resource_len(pdev, bar) == 0)
3809 return;
3810 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3811 release_region(pci_resource_start(pdev, bar),
3812 pci_resource_len(pdev, bar));
3813 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3814 release_mem_region(pci_resource_start(pdev, bar),
3815 pci_resource_len(pdev, bar));
3816
3817 dr = find_pci_dr(pdev);
3818 if (dr)
3819 dr->region_mask &= ~(1 << bar);
3820 }
3821 EXPORT_SYMBOL(pci_release_region);
3822
3823 /**
3824 * __pci_request_region - Reserved PCI I/O and memory resource
3825 * @pdev: PCI device whose resources are to be reserved
3826 * @bar: BAR to be reserved
3827 * @res_name: Name to be associated with resource.
3828 * @exclusive: whether the region access is exclusive or not
3829 *
3830 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3831 * being reserved by owner @res_name. Do not access any
3832 * address inside the PCI regions unless this call returns
3833 * successfully.
3834 *
3835 * If @exclusive is set, then the region is marked so that userspace
3836 * is explicitly not allowed to map the resource via /dev/mem or
3837 * sysfs MMIO access.
3838 *
3839 * Returns 0 on success, or %EBUSY on error. A warning
3840 * message is also printed on failure.
3841 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3842 static int __pci_request_region(struct pci_dev *pdev, int bar,
3843 const char *res_name, int exclusive)
3844 {
3845 struct pci_devres *dr;
3846
3847 if (pci_resource_len(pdev, bar) == 0)
3848 return 0;
3849
3850 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3851 if (!request_region(pci_resource_start(pdev, bar),
3852 pci_resource_len(pdev, bar), res_name))
3853 goto err_out;
3854 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3855 if (!__request_mem_region(pci_resource_start(pdev, bar),
3856 pci_resource_len(pdev, bar), res_name,
3857 exclusive))
3858 goto err_out;
3859 }
3860
3861 dr = find_pci_dr(pdev);
3862 if (dr)
3863 dr->region_mask |= 1 << bar;
3864
3865 return 0;
3866
3867 err_out:
3868 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3869 &pdev->resource[bar]);
3870 return -EBUSY;
3871 }
3872
3873 /**
3874 * pci_request_region - Reserve PCI I/O and memory resource
3875 * @pdev: PCI device whose resources are to be reserved
3876 * @bar: BAR to be reserved
3877 * @res_name: Name to be associated with resource
3878 *
3879 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3880 * being reserved by owner @res_name. Do not access any
3881 * address inside the PCI regions unless this call returns
3882 * successfully.
3883 *
3884 * Returns 0 on success, or %EBUSY on error. A warning
3885 * message is also printed on failure.
3886 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)3887 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3888 {
3889 return __pci_request_region(pdev, bar, res_name, 0);
3890 }
3891 EXPORT_SYMBOL(pci_request_region);
3892
3893 /**
3894 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3895 * @pdev: PCI device whose resources were previously reserved
3896 * @bars: Bitmask of BARs to be released
3897 *
3898 * Release selected PCI I/O and memory resources previously reserved.
3899 * Call this function only after all use of the PCI regions has ceased.
3900 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3901 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3902 {
3903 int i;
3904
3905 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3906 if (bars & (1 << i))
3907 pci_release_region(pdev, i);
3908 }
3909 EXPORT_SYMBOL(pci_release_selected_regions);
3910
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)3911 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3912 const char *res_name, int excl)
3913 {
3914 int i;
3915
3916 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3917 if (bars & (1 << i))
3918 if (__pci_request_region(pdev, i, res_name, excl))
3919 goto err_out;
3920 return 0;
3921
3922 err_out:
3923 while (--i >= 0)
3924 if (bars & (1 << i))
3925 pci_release_region(pdev, i);
3926
3927 return -EBUSY;
3928 }
3929
3930
3931 /**
3932 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3933 * @pdev: PCI device whose resources are to be reserved
3934 * @bars: Bitmask of BARs to be requested
3935 * @res_name: Name to be associated with resource
3936 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)3937 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3938 const char *res_name)
3939 {
3940 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3941 }
3942 EXPORT_SYMBOL(pci_request_selected_regions);
3943
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)3944 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3945 const char *res_name)
3946 {
3947 return __pci_request_selected_regions(pdev, bars, res_name,
3948 IORESOURCE_EXCLUSIVE);
3949 }
3950 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3951
3952 /**
3953 * pci_release_regions - Release reserved PCI I/O and memory resources
3954 * @pdev: PCI device whose resources were previously reserved by
3955 * pci_request_regions()
3956 *
3957 * Releases all PCI I/O and memory resources previously reserved by a
3958 * successful call to pci_request_regions(). Call this function only
3959 * after all use of the PCI regions has ceased.
3960 */
3961
pci_release_regions(struct pci_dev * pdev)3962 void pci_release_regions(struct pci_dev *pdev)
3963 {
3964 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3965 }
3966 EXPORT_SYMBOL(pci_release_regions);
3967
3968 /**
3969 * pci_request_regions - Reserve PCI I/O and memory resources
3970 * @pdev: PCI device whose resources are to be reserved
3971 * @res_name: Name to be associated with resource.
3972 *
3973 * Mark all PCI regions associated with PCI device @pdev as
3974 * being reserved by owner @res_name. Do not access any
3975 * address inside the PCI regions unless this call returns
3976 * successfully.
3977 *
3978 * Returns 0 on success, or %EBUSY on error. A warning
3979 * message is also printed on failure.
3980 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)3981 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3982 {
3983 return pci_request_selected_regions(pdev,
3984 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3985 }
3986 EXPORT_SYMBOL(pci_request_regions);
3987
3988 /**
3989 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3990 * @pdev: PCI device whose resources are to be reserved
3991 * @res_name: Name to be associated with resource.
3992 *
3993 * Mark all PCI regions associated with PCI device @pdev as being reserved
3994 * by owner @res_name. Do not access any address inside the PCI regions
3995 * unless this call returns successfully.
3996 *
3997 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3998 * and the sysfs MMIO access will not be allowed.
3999 *
4000 * Returns 0 on success, or %EBUSY on error. A warning message is also
4001 * printed on failure.
4002 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4003 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4004 {
4005 return pci_request_selected_regions_exclusive(pdev,
4006 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4007 }
4008 EXPORT_SYMBOL(pci_request_regions_exclusive);
4009
4010 /*
4011 * Record the PCI IO range (expressed as CPU physical address + size).
4012 * Return a negative value if an error has occurred, zero otherwise
4013 */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4014 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4015 resource_size_t size)
4016 {
4017 int ret = 0;
4018 #ifdef PCI_IOBASE
4019 struct logic_pio_hwaddr *range;
4020
4021 if (!size || addr + size < addr)
4022 return -EINVAL;
4023
4024 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4025 if (!range)
4026 return -ENOMEM;
4027
4028 range->fwnode = fwnode;
4029 range->size = size;
4030 range->hw_start = addr;
4031 range->flags = LOGIC_PIO_CPU_MMIO;
4032
4033 ret = logic_pio_register_range(range);
4034 if (ret)
4035 kfree(range);
4036
4037 /* Ignore duplicates due to deferred probing */
4038 if (ret == -EEXIST)
4039 ret = 0;
4040 #endif
4041
4042 return ret;
4043 }
4044
pci_pio_to_address(unsigned long pio)4045 phys_addr_t pci_pio_to_address(unsigned long pio)
4046 {
4047 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4048
4049 #ifdef PCI_IOBASE
4050 if (pio >= MMIO_UPPER_LIMIT)
4051 return address;
4052
4053 address = logic_pio_to_hwaddr(pio);
4054 #endif
4055
4056 return address;
4057 }
4058 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4059
pci_address_to_pio(phys_addr_t address)4060 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4061 {
4062 #ifdef PCI_IOBASE
4063 return logic_pio_trans_cpuaddr(address);
4064 #else
4065 if (address > IO_SPACE_LIMIT)
4066 return (unsigned long)-1;
4067
4068 return (unsigned long) address;
4069 #endif
4070 }
4071
4072 /**
4073 * pci_remap_iospace - Remap the memory mapped I/O space
4074 * @res: Resource describing the I/O space
4075 * @phys_addr: physical address of range to be mapped
4076 *
4077 * Remap the memory mapped I/O space described by the @res and the CPU
4078 * physical address @phys_addr into virtual address space. Only
4079 * architectures that have memory mapped IO functions defined (and the
4080 * PCI_IOBASE value defined) should call this function.
4081 */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4082 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4083 {
4084 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4085 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4086
4087 if (!(res->flags & IORESOURCE_IO))
4088 return -EINVAL;
4089
4090 if (res->end > IO_SPACE_LIMIT)
4091 return -EINVAL;
4092
4093 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4094 pgprot_device(PAGE_KERNEL));
4095 #else
4096 /*
4097 * This architecture does not have memory mapped I/O space,
4098 * so this function should never be called
4099 */
4100 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4101 return -ENODEV;
4102 #endif
4103 }
4104 EXPORT_SYMBOL(pci_remap_iospace);
4105
4106 /**
4107 * pci_unmap_iospace - Unmap the memory mapped I/O space
4108 * @res: resource to be unmapped
4109 *
4110 * Unmap the CPU virtual address @res from virtual address space. Only
4111 * architectures that have memory mapped IO functions defined (and the
4112 * PCI_IOBASE value defined) should call this function.
4113 */
pci_unmap_iospace(struct resource * res)4114 void pci_unmap_iospace(struct resource *res)
4115 {
4116 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4117 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4118
4119 unmap_kernel_range(vaddr, resource_size(res));
4120 #endif
4121 }
4122 EXPORT_SYMBOL(pci_unmap_iospace);
4123
devm_pci_unmap_iospace(struct device * dev,void * ptr)4124 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4125 {
4126 struct resource **res = ptr;
4127
4128 pci_unmap_iospace(*res);
4129 }
4130
4131 /**
4132 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4133 * @dev: Generic device to remap IO address for
4134 * @res: Resource describing the I/O space
4135 * @phys_addr: physical address of range to be mapped
4136 *
4137 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4138 * detach.
4139 */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)4140 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4141 phys_addr_t phys_addr)
4142 {
4143 const struct resource **ptr;
4144 int error;
4145
4146 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4147 if (!ptr)
4148 return -ENOMEM;
4149
4150 error = pci_remap_iospace(res, phys_addr);
4151 if (error) {
4152 devres_free(ptr);
4153 } else {
4154 *ptr = res;
4155 devres_add(dev, ptr);
4156 }
4157
4158 return error;
4159 }
4160 EXPORT_SYMBOL(devm_pci_remap_iospace);
4161
4162 /**
4163 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4164 * @dev: Generic device to remap IO address for
4165 * @offset: Resource address to map
4166 * @size: Size of map
4167 *
4168 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4169 * detach.
4170 */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)4171 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4172 resource_size_t offset,
4173 resource_size_t size)
4174 {
4175 void __iomem **ptr, *addr;
4176
4177 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4178 if (!ptr)
4179 return NULL;
4180
4181 addr = pci_remap_cfgspace(offset, size);
4182 if (addr) {
4183 *ptr = addr;
4184 devres_add(dev, ptr);
4185 } else
4186 devres_free(ptr);
4187
4188 return addr;
4189 }
4190 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4191
4192 /**
4193 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4194 * @dev: generic device to handle the resource for
4195 * @res: configuration space resource to be handled
4196 *
4197 * Checks that a resource is a valid memory region, requests the memory
4198 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4199 * proper PCI configuration space memory attributes are guaranteed.
4200 *
4201 * All operations are managed and will be undone on driver detach.
4202 *
4203 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4204 * on failure. Usage example::
4205 *
4206 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4207 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4208 * if (IS_ERR(base))
4209 * return PTR_ERR(base);
4210 */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)4211 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4212 struct resource *res)
4213 {
4214 resource_size_t size;
4215 const char *name;
4216 void __iomem *dest_ptr;
4217
4218 BUG_ON(!dev);
4219
4220 if (!res || resource_type(res) != IORESOURCE_MEM) {
4221 dev_err(dev, "invalid resource\n");
4222 return IOMEM_ERR_PTR(-EINVAL);
4223 }
4224
4225 size = resource_size(res);
4226 name = res->name ?: dev_name(dev);
4227
4228 if (!devm_request_mem_region(dev, res->start, size, name)) {
4229 dev_err(dev, "can't request region for resource %pR\n", res);
4230 return IOMEM_ERR_PTR(-EBUSY);
4231 }
4232
4233 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4234 if (!dest_ptr) {
4235 dev_err(dev, "ioremap failed for resource %pR\n", res);
4236 devm_release_mem_region(dev, res->start, size);
4237 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4238 }
4239
4240 return dest_ptr;
4241 }
4242 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4243
__pci_set_master(struct pci_dev * dev,bool enable)4244 static void __pci_set_master(struct pci_dev *dev, bool enable)
4245 {
4246 u16 old_cmd, cmd;
4247
4248 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4249 if (enable)
4250 cmd = old_cmd | PCI_COMMAND_MASTER;
4251 else
4252 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4253 if (cmd != old_cmd) {
4254 pci_dbg(dev, "%s bus mastering\n",
4255 enable ? "enabling" : "disabling");
4256 pci_write_config_word(dev, PCI_COMMAND, cmd);
4257 }
4258 dev->is_busmaster = enable;
4259 }
4260
4261 /**
4262 * pcibios_setup - process "pci=" kernel boot arguments
4263 * @str: string used to pass in "pci=" kernel boot arguments
4264 *
4265 * Process kernel boot arguments. This is the default implementation.
4266 * Architecture specific implementations can override this as necessary.
4267 */
pcibios_setup(char * str)4268 char * __weak __init pcibios_setup(char *str)
4269 {
4270 return str;
4271 }
4272
4273 /**
4274 * pcibios_set_master - enable PCI bus-mastering for device dev
4275 * @dev: the PCI device to enable
4276 *
4277 * Enables PCI bus-mastering for the device. This is the default
4278 * implementation. Architecture specific implementations can override
4279 * this if necessary.
4280 */
pcibios_set_master(struct pci_dev * dev)4281 void __weak pcibios_set_master(struct pci_dev *dev)
4282 {
4283 u8 lat;
4284
4285 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4286 if (pci_is_pcie(dev))
4287 return;
4288
4289 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4290 if (lat < 16)
4291 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4292 else if (lat > pcibios_max_latency)
4293 lat = pcibios_max_latency;
4294 else
4295 return;
4296
4297 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4298 }
4299
4300 /**
4301 * pci_set_master - enables bus-mastering for device dev
4302 * @dev: the PCI device to enable
4303 *
4304 * Enables bus-mastering on the device and calls pcibios_set_master()
4305 * to do the needed arch specific settings.
4306 */
pci_set_master(struct pci_dev * dev)4307 void pci_set_master(struct pci_dev *dev)
4308 {
4309 __pci_set_master(dev, true);
4310 pcibios_set_master(dev);
4311 }
4312 EXPORT_SYMBOL(pci_set_master);
4313
4314 /**
4315 * pci_clear_master - disables bus-mastering for device dev
4316 * @dev: the PCI device to disable
4317 */
pci_clear_master(struct pci_dev * dev)4318 void pci_clear_master(struct pci_dev *dev)
4319 {
4320 __pci_set_master(dev, false);
4321 }
4322 EXPORT_SYMBOL(pci_clear_master);
4323
4324 /**
4325 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4326 * @dev: the PCI device for which MWI is to be enabled
4327 *
4328 * Helper function for pci_set_mwi.
4329 * Originally copied from drivers/net/acenic.c.
4330 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4331 *
4332 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4333 */
pci_set_cacheline_size(struct pci_dev * dev)4334 int pci_set_cacheline_size(struct pci_dev *dev)
4335 {
4336 u8 cacheline_size;
4337
4338 if (!pci_cache_line_size)
4339 return -EINVAL;
4340
4341 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4342 equal to or multiple of the right value. */
4343 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4344 if (cacheline_size >= pci_cache_line_size &&
4345 (cacheline_size % pci_cache_line_size) == 0)
4346 return 0;
4347
4348 /* Write the correct value. */
4349 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4350 /* Read it back. */
4351 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4352 if (cacheline_size == pci_cache_line_size)
4353 return 0;
4354
4355 pci_info(dev, "cache line size of %d is not supported\n",
4356 pci_cache_line_size << 2);
4357
4358 return -EINVAL;
4359 }
4360 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4361
4362 /**
4363 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4364 * @dev: the PCI device for which MWI is enabled
4365 *
4366 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4367 *
4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369 */
pci_set_mwi(struct pci_dev * dev)4370 int pci_set_mwi(struct pci_dev *dev)
4371 {
4372 #ifdef PCI_DISABLE_MWI
4373 return 0;
4374 #else
4375 int rc;
4376 u16 cmd;
4377
4378 rc = pci_set_cacheline_size(dev);
4379 if (rc)
4380 return rc;
4381
4382 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4383 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4384 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4385 cmd |= PCI_COMMAND_INVALIDATE;
4386 pci_write_config_word(dev, PCI_COMMAND, cmd);
4387 }
4388 return 0;
4389 #endif
4390 }
4391 EXPORT_SYMBOL(pci_set_mwi);
4392
4393 /**
4394 * pcim_set_mwi - a device-managed pci_set_mwi()
4395 * @dev: the PCI device for which MWI is enabled
4396 *
4397 * Managed pci_set_mwi().
4398 *
4399 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4400 */
pcim_set_mwi(struct pci_dev * dev)4401 int pcim_set_mwi(struct pci_dev *dev)
4402 {
4403 struct pci_devres *dr;
4404
4405 dr = find_pci_dr(dev);
4406 if (!dr)
4407 return -ENOMEM;
4408
4409 dr->mwi = 1;
4410 return pci_set_mwi(dev);
4411 }
4412 EXPORT_SYMBOL(pcim_set_mwi);
4413
4414 /**
4415 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4416 * @dev: the PCI device for which MWI is enabled
4417 *
4418 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4419 * Callers are not required to check the return value.
4420 *
4421 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4422 */
pci_try_set_mwi(struct pci_dev * dev)4423 int pci_try_set_mwi(struct pci_dev *dev)
4424 {
4425 #ifdef PCI_DISABLE_MWI
4426 return 0;
4427 #else
4428 return pci_set_mwi(dev);
4429 #endif
4430 }
4431 EXPORT_SYMBOL(pci_try_set_mwi);
4432
4433 /**
4434 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4435 * @dev: the PCI device to disable
4436 *
4437 * Disables PCI Memory-Write-Invalidate transaction on the device
4438 */
pci_clear_mwi(struct pci_dev * dev)4439 void pci_clear_mwi(struct pci_dev *dev)
4440 {
4441 #ifndef PCI_DISABLE_MWI
4442 u16 cmd;
4443
4444 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4445 if (cmd & PCI_COMMAND_INVALIDATE) {
4446 cmd &= ~PCI_COMMAND_INVALIDATE;
4447 pci_write_config_word(dev, PCI_COMMAND, cmd);
4448 }
4449 #endif
4450 }
4451 EXPORT_SYMBOL(pci_clear_mwi);
4452
4453 /**
4454 * pci_intx - enables/disables PCI INTx for device dev
4455 * @pdev: the PCI device to operate on
4456 * @enable: boolean: whether to enable or disable PCI INTx
4457 *
4458 * Enables/disables PCI INTx for device @pdev
4459 */
pci_intx(struct pci_dev * pdev,int enable)4460 void pci_intx(struct pci_dev *pdev, int enable)
4461 {
4462 u16 pci_command, new;
4463
4464 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4465
4466 if (enable)
4467 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4468 else
4469 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4470
4471 if (new != pci_command) {
4472 struct pci_devres *dr;
4473
4474 pci_write_config_word(pdev, PCI_COMMAND, new);
4475
4476 dr = find_pci_dr(pdev);
4477 if (dr && !dr->restore_intx) {
4478 dr->restore_intx = 1;
4479 dr->orig_intx = !enable;
4480 }
4481 }
4482 }
4483 EXPORT_SYMBOL_GPL(pci_intx);
4484
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4485 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4486 {
4487 struct pci_bus *bus = dev->bus;
4488 bool mask_updated = true;
4489 u32 cmd_status_dword;
4490 u16 origcmd, newcmd;
4491 unsigned long flags;
4492 bool irq_pending;
4493
4494 /*
4495 * We do a single dword read to retrieve both command and status.
4496 * Document assumptions that make this possible.
4497 */
4498 BUILD_BUG_ON(PCI_COMMAND % 4);
4499 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4500
4501 raw_spin_lock_irqsave(&pci_lock, flags);
4502
4503 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4504
4505 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4506
4507 /*
4508 * Check interrupt status register to see whether our device
4509 * triggered the interrupt (when masking) or the next IRQ is
4510 * already pending (when unmasking).
4511 */
4512 if (mask != irq_pending) {
4513 mask_updated = false;
4514 goto done;
4515 }
4516
4517 origcmd = cmd_status_dword;
4518 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4519 if (mask)
4520 newcmd |= PCI_COMMAND_INTX_DISABLE;
4521 if (newcmd != origcmd)
4522 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4523
4524 done:
4525 raw_spin_unlock_irqrestore(&pci_lock, flags);
4526
4527 return mask_updated;
4528 }
4529
4530 /**
4531 * pci_check_and_mask_intx - mask INTx on pending interrupt
4532 * @dev: the PCI device to operate on
4533 *
4534 * Check if the device dev has its INTx line asserted, mask it and return
4535 * true in that case. False is returned if no interrupt was pending.
4536 */
pci_check_and_mask_intx(struct pci_dev * dev)4537 bool pci_check_and_mask_intx(struct pci_dev *dev)
4538 {
4539 return pci_check_and_set_intx_mask(dev, true);
4540 }
4541 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4542
4543 /**
4544 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4545 * @dev: the PCI device to operate on
4546 *
4547 * Check if the device dev has its INTx line asserted, unmask it if not and
4548 * return true. False is returned and the mask remains active if there was
4549 * still an interrupt pending.
4550 */
pci_check_and_unmask_intx(struct pci_dev * dev)4551 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4552 {
4553 return pci_check_and_set_intx_mask(dev, false);
4554 }
4555 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4556
4557 /**
4558 * pci_wait_for_pending_transaction - wait for pending transaction
4559 * @dev: the PCI device to operate on
4560 *
4561 * Return 0 if transaction is pending 1 otherwise.
4562 */
pci_wait_for_pending_transaction(struct pci_dev * dev)4563 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4564 {
4565 if (!pci_is_pcie(dev))
4566 return 1;
4567
4568 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4569 PCI_EXP_DEVSTA_TRPND);
4570 }
4571 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4572
4573 /**
4574 * pcie_has_flr - check if a device supports function level resets
4575 * @dev: device to check
4576 *
4577 * Returns true if the device advertises support for PCIe function level
4578 * resets.
4579 */
pcie_has_flr(struct pci_dev * dev)4580 bool pcie_has_flr(struct pci_dev *dev)
4581 {
4582 u32 cap;
4583
4584 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4585 return false;
4586
4587 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4588 return cap & PCI_EXP_DEVCAP_FLR;
4589 }
4590 EXPORT_SYMBOL_GPL(pcie_has_flr);
4591
4592 /**
4593 * pcie_flr - initiate a PCIe function level reset
4594 * @dev: device to reset
4595 *
4596 * Initiate a function level reset on @dev. The caller should ensure the
4597 * device supports FLR before calling this function, e.g. by using the
4598 * pcie_has_flr() helper.
4599 */
pcie_flr(struct pci_dev * dev)4600 int pcie_flr(struct pci_dev *dev)
4601 {
4602 if (!pci_wait_for_pending_transaction(dev))
4603 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4604
4605 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4606
4607 if (dev->imm_ready)
4608 return 0;
4609
4610 /*
4611 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4612 * 100ms, but may silently discard requests while the FLR is in
4613 * progress. Wait 100ms before trying to access the device.
4614 */
4615 msleep(100);
4616
4617 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4618 }
4619 EXPORT_SYMBOL_GPL(pcie_flr);
4620
pci_af_flr(struct pci_dev * dev,int probe)4621 static int pci_af_flr(struct pci_dev *dev, int probe)
4622 {
4623 int pos;
4624 u8 cap;
4625
4626 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4627 if (!pos)
4628 return -ENOTTY;
4629
4630 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4631 return -ENOTTY;
4632
4633 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4634 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4635 return -ENOTTY;
4636
4637 if (probe)
4638 return 0;
4639
4640 /*
4641 * Wait for Transaction Pending bit to clear. A word-aligned test
4642 * is used, so we use the control offset rather than status and shift
4643 * the test bit to match.
4644 */
4645 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4646 PCI_AF_STATUS_TP << 8))
4647 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4648
4649 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4650
4651 if (dev->imm_ready)
4652 return 0;
4653
4654 /*
4655 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4656 * updated 27 July 2006; a device must complete an FLR within
4657 * 100ms, but may silently discard requests while the FLR is in
4658 * progress. Wait 100ms before trying to access the device.
4659 */
4660 msleep(100);
4661
4662 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4663 }
4664
4665 /**
4666 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4667 * @dev: Device to reset.
4668 * @probe: If set, only check if the device can be reset this way.
4669 *
4670 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4671 * unset, it will be reinitialized internally when going from PCI_D3hot to
4672 * PCI_D0. If that's the case and the device is not in a low-power state
4673 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4674 *
4675 * NOTE: This causes the caller to sleep for twice the device power transition
4676 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4677 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4678 * Moreover, only devices in D0 can be reset by this function.
4679 */
pci_pm_reset(struct pci_dev * dev,int probe)4680 static int pci_pm_reset(struct pci_dev *dev, int probe)
4681 {
4682 u16 csr;
4683
4684 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4685 return -ENOTTY;
4686
4687 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4688 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4689 return -ENOTTY;
4690
4691 if (probe)
4692 return 0;
4693
4694 if (dev->current_state != PCI_D0)
4695 return -EINVAL;
4696
4697 csr &= ~PCI_PM_CTRL_STATE_MASK;
4698 csr |= PCI_D3hot;
4699 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4700 pci_dev_d3_sleep(dev);
4701
4702 csr &= ~PCI_PM_CTRL_STATE_MASK;
4703 csr |= PCI_D0;
4704 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4705 pci_dev_d3_sleep(dev);
4706
4707 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4708 }
4709
4710 /**
4711 * pcie_wait_for_link_delay - Wait until link is active or inactive
4712 * @pdev: Bridge device
4713 * @active: waiting for active or inactive?
4714 * @delay: Delay to wait after link has become active (in ms)
4715 *
4716 * Use this to wait till link becomes active or inactive.
4717 */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4718 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4719 int delay)
4720 {
4721 int timeout = 1000;
4722 bool ret;
4723 u16 lnk_status;
4724
4725 /*
4726 * Some controllers might not implement link active reporting. In this
4727 * case, we wait for 1000 ms + any delay requested by the caller.
4728 */
4729 if (!pdev->link_active_reporting) {
4730 msleep(timeout + delay);
4731 return true;
4732 }
4733
4734 /*
4735 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4736 * after which we should expect an link active if the reset was
4737 * successful. If so, software must wait a minimum 100ms before sending
4738 * configuration requests to devices downstream this port.
4739 *
4740 * If the link fails to activate, either the device was physically
4741 * removed or the link is permanently failed.
4742 */
4743 if (active)
4744 msleep(20);
4745 for (;;) {
4746 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4747 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4748 if (ret == active)
4749 break;
4750 if (timeout <= 0)
4751 break;
4752 msleep(10);
4753 timeout -= 10;
4754 }
4755 if (active && ret)
4756 msleep(delay);
4757
4758 return ret == active;
4759 }
4760
4761 /**
4762 * pcie_wait_for_link - Wait until link is active or inactive
4763 * @pdev: Bridge device
4764 * @active: waiting for active or inactive?
4765 *
4766 * Use this to wait till link becomes active or inactive.
4767 */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4768 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4769 {
4770 return pcie_wait_for_link_delay(pdev, active, 100);
4771 }
4772
4773 /*
4774 * Find maximum D3cold delay required by all the devices on the bus. The
4775 * spec says 100 ms, but firmware can lower it and we allow drivers to
4776 * increase it as well.
4777 *
4778 * Called with @pci_bus_sem locked for reading.
4779 */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4780 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4781 {
4782 const struct pci_dev *pdev;
4783 int min_delay = 100;
4784 int max_delay = 0;
4785
4786 list_for_each_entry(pdev, &bus->devices, bus_list) {
4787 if (pdev->d3cold_delay < min_delay)
4788 min_delay = pdev->d3cold_delay;
4789 if (pdev->d3cold_delay > max_delay)
4790 max_delay = pdev->d3cold_delay;
4791 }
4792
4793 return max(min_delay, max_delay);
4794 }
4795
4796 /**
4797 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4798 * @dev: PCI bridge
4799 * @reset_type: reset type in human-readable form
4800 * @timeout: maximum time to wait for devices on secondary bus (milliseconds)
4801 *
4802 * Handle necessary delays before access to the devices on the secondary
4803 * side of the bridge are permitted after D3cold to D0 transition
4804 * or Conventional Reset.
4805 *
4806 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4807 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4808 * 4.3.2.
4809 *
4810 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4811 * failed to become accessible.
4812 */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type,int timeout)4813 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type,
4814 int timeout)
4815 {
4816 struct pci_dev *child;
4817 int delay;
4818
4819 if (pci_dev_is_disconnected(dev))
4820 return 0;
4821
4822 if (!pci_is_bridge(dev))
4823 return 0;
4824
4825 down_read(&pci_bus_sem);
4826
4827 /*
4828 * We only deal with devices that are present currently on the bus.
4829 * For any hot-added devices the access delay is handled in pciehp
4830 * board_added(). In case of ACPI hotplug the firmware is expected
4831 * to configure the devices before OS is notified.
4832 */
4833 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4834 up_read(&pci_bus_sem);
4835 return 0;
4836 }
4837
4838 /* Take d3cold_delay requirements into account */
4839 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4840 if (!delay) {
4841 up_read(&pci_bus_sem);
4842 return 0;
4843 }
4844
4845 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4846 bus_list);
4847 up_read(&pci_bus_sem);
4848
4849 /*
4850 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4851 * accessing the device after reset (that is 1000 ms + 100 ms).
4852 */
4853 if (!pci_is_pcie(dev)) {
4854 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4855 msleep(1000 + delay);
4856 return 0;
4857 }
4858
4859 /*
4860 * For PCIe downstream and root ports that do not support speeds
4861 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4862 * speeds (gen3) we need to wait first for the data link layer to
4863 * become active.
4864 *
4865 * However, 100 ms is the minimum and the PCIe spec says the
4866 * software must allow at least 1s before it can determine that the
4867 * device that did not respond is a broken device. There is
4868 * evidence that 100 ms is not always enough, for example certain
4869 * Titan Ridge xHCI controller does not always respond to
4870 * configuration requests if we only wait for 100 ms (see
4871 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4872 *
4873 * Therefore we wait for 100 ms and check for the device presence
4874 * until the timeout expires.
4875 */
4876 if (!pcie_downstream_port(dev))
4877 return 0;
4878
4879 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4880 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4881 msleep(delay);
4882 } else {
4883 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4884 delay);
4885 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4886 /* Did not train, no need to wait any further */
4887 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4888 return -ENOTTY;
4889 }
4890 }
4891
4892 return pci_dev_wait(child, reset_type, timeout - delay);
4893 }
4894
pci_reset_secondary_bus(struct pci_dev * dev)4895 void pci_reset_secondary_bus(struct pci_dev *dev)
4896 {
4897 u16 ctrl;
4898
4899 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4900 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4901 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4902
4903 /*
4904 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4905 * this to 2ms to ensure that we meet the minimum requirement.
4906 */
4907 msleep(2);
4908
4909 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4910 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4911 }
4912
pcibios_reset_secondary_bus(struct pci_dev * dev)4913 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4914 {
4915 pci_reset_secondary_bus(dev);
4916 }
4917
4918 /**
4919 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4920 * @dev: Bridge device
4921 *
4922 * Use the bridge control register to assert reset on the secondary bus.
4923 * Devices on the secondary bus are left in power-on state.
4924 */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4925 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4926 {
4927 pcibios_reset_secondary_bus(dev);
4928
4929 return pci_bridge_wait_for_secondary_bus(dev, "bus reset",
4930 PCIE_RESET_READY_POLL_MS);
4931 }
4932 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4933
pci_parent_bus_reset(struct pci_dev * dev,int probe)4934 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4935 {
4936 struct pci_dev *pdev;
4937
4938 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4939 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4940 return -ENOTTY;
4941
4942 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4943 if (pdev != dev)
4944 return -ENOTTY;
4945
4946 if (probe)
4947 return 0;
4948
4949 return pci_bridge_secondary_bus_reset(dev->bus->self);
4950 }
4951
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,int probe)4952 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4953 {
4954 int rc = -ENOTTY;
4955
4956 if (!hotplug || !try_module_get(hotplug->owner))
4957 return rc;
4958
4959 if (hotplug->ops->reset_slot)
4960 rc = hotplug->ops->reset_slot(hotplug, probe);
4961
4962 module_put(hotplug->owner);
4963
4964 return rc;
4965 }
4966
pci_dev_reset_slot_function(struct pci_dev * dev,int probe)4967 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4968 {
4969 if (dev->multifunction || dev->subordinate || !dev->slot ||
4970 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4971 return -ENOTTY;
4972
4973 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4974 }
4975
pci_dev_lock(struct pci_dev * dev)4976 static void pci_dev_lock(struct pci_dev *dev)
4977 {
4978 /* block PM suspend, driver probe, etc. */
4979 device_lock(&dev->dev);
4980 pci_cfg_access_lock(dev);
4981 }
4982
4983 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)4984 static int pci_dev_trylock(struct pci_dev *dev)
4985 {
4986 if (device_trylock(&dev->dev)) {
4987 if (pci_cfg_access_trylock(dev))
4988 return 1;
4989 device_unlock(&dev->dev);
4990 }
4991
4992 return 0;
4993 }
4994
pci_dev_unlock(struct pci_dev * dev)4995 static void pci_dev_unlock(struct pci_dev *dev)
4996 {
4997 pci_cfg_access_unlock(dev);
4998 device_unlock(&dev->dev);
4999 }
5000
pci_dev_save_and_disable(struct pci_dev * dev)5001 static void pci_dev_save_and_disable(struct pci_dev *dev)
5002 {
5003 const struct pci_error_handlers *err_handler =
5004 dev->driver ? dev->driver->err_handler : NULL;
5005
5006 /*
5007 * dev->driver->err_handler->reset_prepare() is protected against
5008 * races with ->remove() by the device lock, which must be held by
5009 * the caller.
5010 */
5011 if (err_handler && err_handler->reset_prepare)
5012 err_handler->reset_prepare(dev);
5013
5014 /*
5015 * Wake-up device prior to save. PM registers default to D0 after
5016 * reset and a simple register restore doesn't reliably return
5017 * to a non-D0 state anyway.
5018 */
5019 pci_set_power_state(dev, PCI_D0);
5020
5021 pci_save_state(dev);
5022 /*
5023 * Disable the device by clearing the Command register, except for
5024 * INTx-disable which is set. This not only disables MMIO and I/O port
5025 * BARs, but also prevents the device from being Bus Master, preventing
5026 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5027 * compliant devices, INTx-disable prevents legacy interrupts.
5028 */
5029 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5030 }
5031
pci_dev_restore(struct pci_dev * dev)5032 static void pci_dev_restore(struct pci_dev *dev)
5033 {
5034 const struct pci_error_handlers *err_handler =
5035 dev->driver ? dev->driver->err_handler : NULL;
5036
5037 pci_restore_state(dev);
5038
5039 /*
5040 * dev->driver->err_handler->reset_done() is protected against
5041 * races with ->remove() by the device lock, which must be held by
5042 * the caller.
5043 */
5044 if (err_handler && err_handler->reset_done)
5045 err_handler->reset_done(dev);
5046 }
5047
5048 /**
5049 * __pci_reset_function_locked - reset a PCI device function while holding
5050 * the @dev mutex lock.
5051 * @dev: PCI device to reset
5052 *
5053 * Some devices allow an individual function to be reset without affecting
5054 * other functions in the same device. The PCI device must be responsive
5055 * to PCI config space in order to use this function.
5056 *
5057 * The device function is presumed to be unused and the caller is holding
5058 * the device mutex lock when this function is called.
5059 *
5060 * Resetting the device will make the contents of PCI configuration space
5061 * random, so any caller of this must be prepared to reinitialise the
5062 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5063 * etc.
5064 *
5065 * Returns 0 if the device function was successfully reset or negative if the
5066 * device doesn't support resetting a single function.
5067 */
__pci_reset_function_locked(struct pci_dev * dev)5068 int __pci_reset_function_locked(struct pci_dev *dev)
5069 {
5070 int rc;
5071
5072 might_sleep();
5073
5074 /*
5075 * A reset method returns -ENOTTY if it doesn't support this device
5076 * and we should try the next method.
5077 *
5078 * If it returns 0 (success), we're finished. If it returns any
5079 * other error, we're also finished: this indicates that further
5080 * reset mechanisms might be broken on the device.
5081 */
5082 rc = pci_dev_specific_reset(dev, 0);
5083 if (rc != -ENOTTY)
5084 return rc;
5085 if (pcie_has_flr(dev)) {
5086 rc = pcie_flr(dev);
5087 if (rc != -ENOTTY)
5088 return rc;
5089 }
5090 rc = pci_af_flr(dev, 0);
5091 if (rc != -ENOTTY)
5092 return rc;
5093 rc = pci_pm_reset(dev, 0);
5094 if (rc != -ENOTTY)
5095 return rc;
5096 rc = pci_dev_reset_slot_function(dev, 0);
5097 if (rc != -ENOTTY)
5098 return rc;
5099 return pci_parent_bus_reset(dev, 0);
5100 }
5101 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5102
5103 /**
5104 * pci_probe_reset_function - check whether the device can be safely reset
5105 * @dev: PCI device to reset
5106 *
5107 * Some devices allow an individual function to be reset without affecting
5108 * other functions in the same device. The PCI device must be responsive
5109 * to PCI config space in order to use this function.
5110 *
5111 * Returns 0 if the device function can be reset or negative if the
5112 * device doesn't support resetting a single function.
5113 */
pci_probe_reset_function(struct pci_dev * dev)5114 int pci_probe_reset_function(struct pci_dev *dev)
5115 {
5116 int rc;
5117
5118 might_sleep();
5119
5120 rc = pci_dev_specific_reset(dev, 1);
5121 if (rc != -ENOTTY)
5122 return rc;
5123 if (pcie_has_flr(dev))
5124 return 0;
5125 rc = pci_af_flr(dev, 1);
5126 if (rc != -ENOTTY)
5127 return rc;
5128 rc = pci_pm_reset(dev, 1);
5129 if (rc != -ENOTTY)
5130 return rc;
5131 rc = pci_dev_reset_slot_function(dev, 1);
5132 if (rc != -ENOTTY)
5133 return rc;
5134
5135 return pci_parent_bus_reset(dev, 1);
5136 }
5137
5138 /**
5139 * pci_reset_function - quiesce and reset a PCI device function
5140 * @dev: PCI device to reset
5141 *
5142 * Some devices allow an individual function to be reset without affecting
5143 * other functions in the same device. The PCI device must be responsive
5144 * to PCI config space in order to use this function.
5145 *
5146 * This function does not just reset the PCI portion of a device, but
5147 * clears all the state associated with the device. This function differs
5148 * from __pci_reset_function_locked() in that it saves and restores device state
5149 * over the reset and takes the PCI device lock.
5150 *
5151 * Returns 0 if the device function was successfully reset or negative if the
5152 * device doesn't support resetting a single function.
5153 */
pci_reset_function(struct pci_dev * dev)5154 int pci_reset_function(struct pci_dev *dev)
5155 {
5156 int rc;
5157
5158 if (!dev->reset_fn)
5159 return -ENOTTY;
5160
5161 pci_dev_lock(dev);
5162 pci_dev_save_and_disable(dev);
5163
5164 rc = __pci_reset_function_locked(dev);
5165
5166 pci_dev_restore(dev);
5167 pci_dev_unlock(dev);
5168
5169 return rc;
5170 }
5171 EXPORT_SYMBOL_GPL(pci_reset_function);
5172
5173 /**
5174 * pci_reset_function_locked - quiesce and reset a PCI device function
5175 * @dev: PCI device to reset
5176 *
5177 * Some devices allow an individual function to be reset without affecting
5178 * other functions in the same device. The PCI device must be responsive
5179 * to PCI config space in order to use this function.
5180 *
5181 * This function does not just reset the PCI portion of a device, but
5182 * clears all the state associated with the device. This function differs
5183 * from __pci_reset_function_locked() in that it saves and restores device state
5184 * over the reset. It also differs from pci_reset_function() in that it
5185 * requires the PCI device lock to be held.
5186 *
5187 * Returns 0 if the device function was successfully reset or negative if the
5188 * device doesn't support resetting a single function.
5189 */
pci_reset_function_locked(struct pci_dev * dev)5190 int pci_reset_function_locked(struct pci_dev *dev)
5191 {
5192 int rc;
5193
5194 if (!dev->reset_fn)
5195 return -ENOTTY;
5196
5197 pci_dev_save_and_disable(dev);
5198
5199 rc = __pci_reset_function_locked(dev);
5200
5201 pci_dev_restore(dev);
5202
5203 return rc;
5204 }
5205 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5206
5207 /**
5208 * pci_try_reset_function - quiesce and reset a PCI device function
5209 * @dev: PCI device to reset
5210 *
5211 * Same as above, except return -EAGAIN if unable to lock device.
5212 */
pci_try_reset_function(struct pci_dev * dev)5213 int pci_try_reset_function(struct pci_dev *dev)
5214 {
5215 int rc;
5216
5217 if (!dev->reset_fn)
5218 return -ENOTTY;
5219
5220 if (!pci_dev_trylock(dev))
5221 return -EAGAIN;
5222
5223 pci_dev_save_and_disable(dev);
5224 rc = __pci_reset_function_locked(dev);
5225 pci_dev_restore(dev);
5226 pci_dev_unlock(dev);
5227
5228 return rc;
5229 }
5230 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5231
5232 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)5233 static bool pci_bus_resetable(struct pci_bus *bus)
5234 {
5235 struct pci_dev *dev;
5236
5237
5238 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5239 return false;
5240
5241 list_for_each_entry(dev, &bus->devices, bus_list) {
5242 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5243 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5244 return false;
5245 }
5246
5247 return true;
5248 }
5249
5250 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5251 static void pci_bus_lock(struct pci_bus *bus)
5252 {
5253 struct pci_dev *dev;
5254
5255 list_for_each_entry(dev, &bus->devices, bus_list) {
5256 pci_dev_lock(dev);
5257 if (dev->subordinate)
5258 pci_bus_lock(dev->subordinate);
5259 }
5260 }
5261
5262 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5263 static void pci_bus_unlock(struct pci_bus *bus)
5264 {
5265 struct pci_dev *dev;
5266
5267 list_for_each_entry(dev, &bus->devices, bus_list) {
5268 if (dev->subordinate)
5269 pci_bus_unlock(dev->subordinate);
5270 pci_dev_unlock(dev);
5271 }
5272 }
5273
5274 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5275 static int pci_bus_trylock(struct pci_bus *bus)
5276 {
5277 struct pci_dev *dev;
5278
5279 list_for_each_entry(dev, &bus->devices, bus_list) {
5280 if (!pci_dev_trylock(dev))
5281 goto unlock;
5282 if (dev->subordinate) {
5283 if (!pci_bus_trylock(dev->subordinate)) {
5284 pci_dev_unlock(dev);
5285 goto unlock;
5286 }
5287 }
5288 }
5289 return 1;
5290
5291 unlock:
5292 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5293 if (dev->subordinate)
5294 pci_bus_unlock(dev->subordinate);
5295 pci_dev_unlock(dev);
5296 }
5297 return 0;
5298 }
5299
5300 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)5301 static bool pci_slot_resetable(struct pci_slot *slot)
5302 {
5303 struct pci_dev *dev;
5304
5305 if (slot->bus->self &&
5306 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5307 return false;
5308
5309 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5310 if (!dev->slot || dev->slot != slot)
5311 continue;
5312 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5313 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5314 return false;
5315 }
5316
5317 return true;
5318 }
5319
5320 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5321 static void pci_slot_lock(struct pci_slot *slot)
5322 {
5323 struct pci_dev *dev;
5324
5325 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5326 if (!dev->slot || dev->slot != slot)
5327 continue;
5328 pci_dev_lock(dev);
5329 if (dev->subordinate)
5330 pci_bus_lock(dev->subordinate);
5331 }
5332 }
5333
5334 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5335 static void pci_slot_unlock(struct pci_slot *slot)
5336 {
5337 struct pci_dev *dev;
5338
5339 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5340 if (!dev->slot || dev->slot != slot)
5341 continue;
5342 if (dev->subordinate)
5343 pci_bus_unlock(dev->subordinate);
5344 pci_dev_unlock(dev);
5345 }
5346 }
5347
5348 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5349 static int pci_slot_trylock(struct pci_slot *slot)
5350 {
5351 struct pci_dev *dev;
5352
5353 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5354 if (!dev->slot || dev->slot != slot)
5355 continue;
5356 if (!pci_dev_trylock(dev))
5357 goto unlock;
5358 if (dev->subordinate) {
5359 if (!pci_bus_trylock(dev->subordinate)) {
5360 pci_dev_unlock(dev);
5361 goto unlock;
5362 }
5363 }
5364 }
5365 return 1;
5366
5367 unlock:
5368 list_for_each_entry_continue_reverse(dev,
5369 &slot->bus->devices, bus_list) {
5370 if (!dev->slot || dev->slot != slot)
5371 continue;
5372 if (dev->subordinate)
5373 pci_bus_unlock(dev->subordinate);
5374 pci_dev_unlock(dev);
5375 }
5376 return 0;
5377 }
5378
5379 /*
5380 * Save and disable devices from the top of the tree down while holding
5381 * the @dev mutex lock for the entire tree.
5382 */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5383 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5384 {
5385 struct pci_dev *dev;
5386
5387 list_for_each_entry(dev, &bus->devices, bus_list) {
5388 pci_dev_save_and_disable(dev);
5389 if (dev->subordinate)
5390 pci_bus_save_and_disable_locked(dev->subordinate);
5391 }
5392 }
5393
5394 /*
5395 * Restore devices from top of the tree down while holding @dev mutex lock
5396 * for the entire tree. Parent bridges need to be restored before we can
5397 * get to subordinate devices.
5398 */
pci_bus_restore_locked(struct pci_bus * bus)5399 static void pci_bus_restore_locked(struct pci_bus *bus)
5400 {
5401 struct pci_dev *dev;
5402
5403 list_for_each_entry(dev, &bus->devices, bus_list) {
5404 pci_dev_restore(dev);
5405 if (dev->subordinate)
5406 pci_bus_restore_locked(dev->subordinate);
5407 }
5408 }
5409
5410 /*
5411 * Save and disable devices from the top of the tree down while holding
5412 * the @dev mutex lock for the entire tree.
5413 */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5414 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5415 {
5416 struct pci_dev *dev;
5417
5418 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5419 if (!dev->slot || dev->slot != slot)
5420 continue;
5421 pci_dev_save_and_disable(dev);
5422 if (dev->subordinate)
5423 pci_bus_save_and_disable_locked(dev->subordinate);
5424 }
5425 }
5426
5427 /*
5428 * Restore devices from top of the tree down while holding @dev mutex lock
5429 * for the entire tree. Parent bridges need to be restored before we can
5430 * get to subordinate devices.
5431 */
pci_slot_restore_locked(struct pci_slot * slot)5432 static void pci_slot_restore_locked(struct pci_slot *slot)
5433 {
5434 struct pci_dev *dev;
5435
5436 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5437 if (!dev->slot || dev->slot != slot)
5438 continue;
5439 pci_dev_restore(dev);
5440 if (dev->subordinate)
5441 pci_bus_restore_locked(dev->subordinate);
5442 }
5443 }
5444
pci_slot_reset(struct pci_slot * slot,int probe)5445 static int pci_slot_reset(struct pci_slot *slot, int probe)
5446 {
5447 int rc;
5448
5449 if (!slot || !pci_slot_resetable(slot))
5450 return -ENOTTY;
5451
5452 if (!probe)
5453 pci_slot_lock(slot);
5454
5455 might_sleep();
5456
5457 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5458
5459 if (!probe)
5460 pci_slot_unlock(slot);
5461
5462 return rc;
5463 }
5464
5465 /**
5466 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5467 * @slot: PCI slot to probe
5468 *
5469 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5470 */
pci_probe_reset_slot(struct pci_slot * slot)5471 int pci_probe_reset_slot(struct pci_slot *slot)
5472 {
5473 return pci_slot_reset(slot, 1);
5474 }
5475 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5476
5477 /**
5478 * __pci_reset_slot - Try to reset a PCI slot
5479 * @slot: PCI slot to reset
5480 *
5481 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5482 * independent of other slots. For instance, some slots may support slot power
5483 * control. In the case of a 1:1 bus to slot architecture, this function may
5484 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5485 * Generally a slot reset should be attempted before a bus reset. All of the
5486 * function of the slot and any subordinate buses behind the slot are reset
5487 * through this function. PCI config space of all devices in the slot and
5488 * behind the slot is saved before and restored after reset.
5489 *
5490 * Same as above except return -EAGAIN if the slot cannot be locked
5491 */
__pci_reset_slot(struct pci_slot * slot)5492 static int __pci_reset_slot(struct pci_slot *slot)
5493 {
5494 int rc;
5495
5496 rc = pci_slot_reset(slot, 1);
5497 if (rc)
5498 return rc;
5499
5500 if (pci_slot_trylock(slot)) {
5501 pci_slot_save_and_disable_locked(slot);
5502 might_sleep();
5503 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5504 pci_slot_restore_locked(slot);
5505 pci_slot_unlock(slot);
5506 } else
5507 rc = -EAGAIN;
5508
5509 return rc;
5510 }
5511
pci_bus_reset(struct pci_bus * bus,int probe)5512 static int pci_bus_reset(struct pci_bus *bus, int probe)
5513 {
5514 int ret;
5515
5516 if (!bus->self || !pci_bus_resetable(bus))
5517 return -ENOTTY;
5518
5519 if (probe)
5520 return 0;
5521
5522 pci_bus_lock(bus);
5523
5524 might_sleep();
5525
5526 ret = pci_bridge_secondary_bus_reset(bus->self);
5527
5528 pci_bus_unlock(bus);
5529
5530 return ret;
5531 }
5532
5533 /**
5534 * pci_bus_error_reset - reset the bridge's subordinate bus
5535 * @bridge: The parent device that connects to the bus to reset
5536 *
5537 * This function will first try to reset the slots on this bus if the method is
5538 * available. If slot reset fails or is not available, this will fall back to a
5539 * secondary bus reset.
5540 */
pci_bus_error_reset(struct pci_dev * bridge)5541 int pci_bus_error_reset(struct pci_dev *bridge)
5542 {
5543 struct pci_bus *bus = bridge->subordinate;
5544 struct pci_slot *slot;
5545
5546 if (!bus)
5547 return -ENOTTY;
5548
5549 mutex_lock(&pci_slot_mutex);
5550 if (list_empty(&bus->slots))
5551 goto bus_reset;
5552
5553 list_for_each_entry(slot, &bus->slots, list)
5554 if (pci_probe_reset_slot(slot))
5555 goto bus_reset;
5556
5557 list_for_each_entry(slot, &bus->slots, list)
5558 if (pci_slot_reset(slot, 0))
5559 goto bus_reset;
5560
5561 mutex_unlock(&pci_slot_mutex);
5562 return 0;
5563 bus_reset:
5564 mutex_unlock(&pci_slot_mutex);
5565 return pci_bus_reset(bridge->subordinate, 0);
5566 }
5567
5568 /**
5569 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5570 * @bus: PCI bus to probe
5571 *
5572 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5573 */
pci_probe_reset_bus(struct pci_bus * bus)5574 int pci_probe_reset_bus(struct pci_bus *bus)
5575 {
5576 return pci_bus_reset(bus, 1);
5577 }
5578 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5579
5580 /**
5581 * __pci_reset_bus - Try to reset a PCI bus
5582 * @bus: top level PCI bus to reset
5583 *
5584 * Same as above except return -EAGAIN if the bus cannot be locked
5585 */
__pci_reset_bus(struct pci_bus * bus)5586 static int __pci_reset_bus(struct pci_bus *bus)
5587 {
5588 int rc;
5589
5590 rc = pci_bus_reset(bus, 1);
5591 if (rc)
5592 return rc;
5593
5594 if (pci_bus_trylock(bus)) {
5595 pci_bus_save_and_disable_locked(bus);
5596 might_sleep();
5597 rc = pci_bridge_secondary_bus_reset(bus->self);
5598 pci_bus_restore_locked(bus);
5599 pci_bus_unlock(bus);
5600 } else
5601 rc = -EAGAIN;
5602
5603 return rc;
5604 }
5605
5606 /**
5607 * pci_reset_bus - Try to reset a PCI bus
5608 * @pdev: top level PCI device to reset via slot/bus
5609 *
5610 * Same as above except return -EAGAIN if the bus cannot be locked
5611 */
pci_reset_bus(struct pci_dev * pdev)5612 int pci_reset_bus(struct pci_dev *pdev)
5613 {
5614 return (!pci_probe_reset_slot(pdev->slot)) ?
5615 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5616 }
5617 EXPORT_SYMBOL_GPL(pci_reset_bus);
5618
5619 /**
5620 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5621 * @dev: PCI device to query
5622 *
5623 * Returns mmrbc: maximum designed memory read count in bytes or
5624 * appropriate error value.
5625 */
pcix_get_max_mmrbc(struct pci_dev * dev)5626 int pcix_get_max_mmrbc(struct pci_dev *dev)
5627 {
5628 int cap;
5629 u32 stat;
5630
5631 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5632 if (!cap)
5633 return -EINVAL;
5634
5635 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5636 return -EINVAL;
5637
5638 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5639 }
5640 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5641
5642 /**
5643 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5644 * @dev: PCI device to query
5645 *
5646 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5647 * value.
5648 */
pcix_get_mmrbc(struct pci_dev * dev)5649 int pcix_get_mmrbc(struct pci_dev *dev)
5650 {
5651 int cap;
5652 u16 cmd;
5653
5654 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5655 if (!cap)
5656 return -EINVAL;
5657
5658 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5659 return -EINVAL;
5660
5661 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5662 }
5663 EXPORT_SYMBOL(pcix_get_mmrbc);
5664
5665 /**
5666 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5667 * @dev: PCI device to query
5668 * @mmrbc: maximum memory read count in bytes
5669 * valid values are 512, 1024, 2048, 4096
5670 *
5671 * If possible sets maximum memory read byte count, some bridges have errata
5672 * that prevent this.
5673 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5674 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5675 {
5676 int cap;
5677 u32 stat, v, o;
5678 u16 cmd;
5679
5680 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5681 return -EINVAL;
5682
5683 v = ffs(mmrbc) - 10;
5684
5685 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5686 if (!cap)
5687 return -EINVAL;
5688
5689 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5690 return -EINVAL;
5691
5692 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5693 return -E2BIG;
5694
5695 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5696 return -EINVAL;
5697
5698 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5699 if (o != v) {
5700 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5701 return -EIO;
5702
5703 cmd &= ~PCI_X_CMD_MAX_READ;
5704 cmd |= v << 2;
5705 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5706 return -EIO;
5707 }
5708 return 0;
5709 }
5710 EXPORT_SYMBOL(pcix_set_mmrbc);
5711
5712 /**
5713 * pcie_get_readrq - get PCI Express read request size
5714 * @dev: PCI device to query
5715 *
5716 * Returns maximum memory read request in bytes or appropriate error value.
5717 */
pcie_get_readrq(struct pci_dev * dev)5718 int pcie_get_readrq(struct pci_dev *dev)
5719 {
5720 u16 ctl;
5721
5722 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5723
5724 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5725 }
5726 EXPORT_SYMBOL(pcie_get_readrq);
5727
5728 /**
5729 * pcie_set_readrq - set PCI Express maximum memory read request
5730 * @dev: PCI device to query
5731 * @rq: maximum memory read count in bytes
5732 * valid values are 128, 256, 512, 1024, 2048, 4096
5733 *
5734 * If possible sets maximum memory read request in bytes
5735 */
pcie_set_readrq(struct pci_dev * dev,int rq)5736 int pcie_set_readrq(struct pci_dev *dev, int rq)
5737 {
5738 u16 v;
5739 int ret;
5740
5741 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5742 return -EINVAL;
5743
5744 /*
5745 * If using the "performance" PCIe config, we clamp the read rq
5746 * size to the max packet size to keep the host bridge from
5747 * generating requests larger than we can cope with.
5748 */
5749 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5750 int mps = pcie_get_mps(dev);
5751
5752 if (mps < rq)
5753 rq = mps;
5754 }
5755
5756 v = (ffs(rq) - 8) << 12;
5757
5758 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5759 PCI_EXP_DEVCTL_READRQ, v);
5760
5761 return pcibios_err_to_errno(ret);
5762 }
5763 EXPORT_SYMBOL(pcie_set_readrq);
5764
5765 /**
5766 * pcie_get_mps - get PCI Express maximum payload size
5767 * @dev: PCI device to query
5768 *
5769 * Returns maximum payload size in bytes
5770 */
pcie_get_mps(struct pci_dev * dev)5771 int pcie_get_mps(struct pci_dev *dev)
5772 {
5773 u16 ctl;
5774
5775 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5776
5777 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5778 }
5779 EXPORT_SYMBOL(pcie_get_mps);
5780
5781 /**
5782 * pcie_set_mps - set PCI Express maximum payload size
5783 * @dev: PCI device to query
5784 * @mps: maximum payload size in bytes
5785 * valid values are 128, 256, 512, 1024, 2048, 4096
5786 *
5787 * If possible sets maximum payload size
5788 */
pcie_set_mps(struct pci_dev * dev,int mps)5789 int pcie_set_mps(struct pci_dev *dev, int mps)
5790 {
5791 u16 v;
5792 int ret;
5793
5794 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5795 return -EINVAL;
5796
5797 v = ffs(mps) - 8;
5798 if (v > dev->pcie_mpss)
5799 return -EINVAL;
5800 v <<= 5;
5801
5802 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5803 PCI_EXP_DEVCTL_PAYLOAD, v);
5804
5805 return pcibios_err_to_errno(ret);
5806 }
5807 EXPORT_SYMBOL(pcie_set_mps);
5808
5809 /**
5810 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5811 * device and its bandwidth limitation
5812 * @dev: PCI device to query
5813 * @limiting_dev: storage for device causing the bandwidth limitation
5814 * @speed: storage for speed of limiting device
5815 * @width: storage for width of limiting device
5816 *
5817 * Walk up the PCI device chain and find the point where the minimum
5818 * bandwidth is available. Return the bandwidth available there and (if
5819 * limiting_dev, speed, and width pointers are supplied) information about
5820 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5821 * raw bandwidth.
5822 */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5823 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5824 enum pci_bus_speed *speed,
5825 enum pcie_link_width *width)
5826 {
5827 u16 lnksta;
5828 enum pci_bus_speed next_speed;
5829 enum pcie_link_width next_width;
5830 u32 bw, next_bw;
5831
5832 if (speed)
5833 *speed = PCI_SPEED_UNKNOWN;
5834 if (width)
5835 *width = PCIE_LNK_WIDTH_UNKNOWN;
5836
5837 bw = 0;
5838
5839 while (dev) {
5840 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5841
5842 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5843 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5844 PCI_EXP_LNKSTA_NLW_SHIFT;
5845
5846 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5847
5848 /* Check if current device limits the total bandwidth */
5849 if (!bw || next_bw <= bw) {
5850 bw = next_bw;
5851
5852 if (limiting_dev)
5853 *limiting_dev = dev;
5854 if (speed)
5855 *speed = next_speed;
5856 if (width)
5857 *width = next_width;
5858 }
5859
5860 dev = pci_upstream_bridge(dev);
5861 }
5862
5863 return bw;
5864 }
5865 EXPORT_SYMBOL(pcie_bandwidth_available);
5866
5867 /**
5868 * pcie_get_speed_cap - query for the PCI device's link speed capability
5869 * @dev: PCI device to query
5870 *
5871 * Query the PCI device speed capability. Return the maximum link speed
5872 * supported by the device.
5873 */
pcie_get_speed_cap(struct pci_dev * dev)5874 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5875 {
5876 u32 lnkcap2, lnkcap;
5877
5878 /*
5879 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5880 * implementation note there recommends using the Supported Link
5881 * Speeds Vector in Link Capabilities 2 when supported.
5882 *
5883 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5884 * should use the Supported Link Speeds field in Link Capabilities,
5885 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5886 */
5887 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5888
5889 /* PCIe r3.0-compliant */
5890 if (lnkcap2)
5891 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5892
5893 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5894 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5895 return PCIE_SPEED_5_0GT;
5896 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5897 return PCIE_SPEED_2_5GT;
5898
5899 return PCI_SPEED_UNKNOWN;
5900 }
5901 EXPORT_SYMBOL(pcie_get_speed_cap);
5902
5903 /**
5904 * pcie_get_width_cap - query for the PCI device's link width capability
5905 * @dev: PCI device to query
5906 *
5907 * Query the PCI device width capability. Return the maximum link width
5908 * supported by the device.
5909 */
pcie_get_width_cap(struct pci_dev * dev)5910 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5911 {
5912 u32 lnkcap;
5913
5914 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5915 if (lnkcap)
5916 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5917
5918 return PCIE_LNK_WIDTH_UNKNOWN;
5919 }
5920 EXPORT_SYMBOL(pcie_get_width_cap);
5921
5922 /**
5923 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5924 * @dev: PCI device
5925 * @speed: storage for link speed
5926 * @width: storage for link width
5927 *
5928 * Calculate a PCI device's link bandwidth by querying for its link speed
5929 * and width, multiplying them, and applying encoding overhead. The result
5930 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5931 */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5932 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5933 enum pcie_link_width *width)
5934 {
5935 *speed = pcie_get_speed_cap(dev);
5936 *width = pcie_get_width_cap(dev);
5937
5938 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5939 return 0;
5940
5941 return *width * PCIE_SPEED2MBS_ENC(*speed);
5942 }
5943
5944 /**
5945 * __pcie_print_link_status - Report the PCI device's link speed and width
5946 * @dev: PCI device to query
5947 * @verbose: Print info even when enough bandwidth is available
5948 *
5949 * If the available bandwidth at the device is less than the device is
5950 * capable of, report the device's maximum possible bandwidth and the
5951 * upstream link that limits its performance. If @verbose, always print
5952 * the available bandwidth, even if the device isn't constrained.
5953 */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)5954 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5955 {
5956 enum pcie_link_width width, width_cap;
5957 enum pci_bus_speed speed, speed_cap;
5958 struct pci_dev *limiting_dev = NULL;
5959 u32 bw_avail, bw_cap;
5960
5961 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5962 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5963
5964 if (bw_avail >= bw_cap && verbose)
5965 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5966 bw_cap / 1000, bw_cap % 1000,
5967 pci_speed_string(speed_cap), width_cap);
5968 else if (bw_avail < bw_cap)
5969 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5970 bw_avail / 1000, bw_avail % 1000,
5971 pci_speed_string(speed), width,
5972 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5973 bw_cap / 1000, bw_cap % 1000,
5974 pci_speed_string(speed_cap), width_cap);
5975 }
5976
5977 /**
5978 * pcie_print_link_status - Report the PCI device's link speed and width
5979 * @dev: PCI device to query
5980 *
5981 * Report the available bandwidth at the device.
5982 */
pcie_print_link_status(struct pci_dev * dev)5983 void pcie_print_link_status(struct pci_dev *dev)
5984 {
5985 __pcie_print_link_status(dev, true);
5986 }
5987 EXPORT_SYMBOL(pcie_print_link_status);
5988
5989 /**
5990 * pci_select_bars - Make BAR mask from the type of resource
5991 * @dev: the PCI device for which BAR mask is made
5992 * @flags: resource type mask to be selected
5993 *
5994 * This helper routine makes bar mask from the type of resource.
5995 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)5996 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5997 {
5998 int i, bars = 0;
5999 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6000 if (pci_resource_flags(dev, i) & flags)
6001 bars |= (1 << i);
6002 return bars;
6003 }
6004 EXPORT_SYMBOL(pci_select_bars);
6005
6006 /* Some architectures require additional programming to enable VGA */
6007 static arch_set_vga_state_t arch_set_vga_state;
6008
pci_register_set_vga_state(arch_set_vga_state_t func)6009 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6010 {
6011 arch_set_vga_state = func; /* NULL disables */
6012 }
6013
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6014 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6015 unsigned int command_bits, u32 flags)
6016 {
6017 if (arch_set_vga_state)
6018 return arch_set_vga_state(dev, decode, command_bits,
6019 flags);
6020 return 0;
6021 }
6022
6023 /**
6024 * pci_set_vga_state - set VGA decode state on device and parents if requested
6025 * @dev: the PCI device
6026 * @decode: true = enable decoding, false = disable decoding
6027 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6028 * @flags: traverse ancestors and change bridges
6029 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6030 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6031 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6032 unsigned int command_bits, u32 flags)
6033 {
6034 struct pci_bus *bus;
6035 struct pci_dev *bridge;
6036 u16 cmd;
6037 int rc;
6038
6039 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6040
6041 /* ARCH specific VGA enables */
6042 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6043 if (rc)
6044 return rc;
6045
6046 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6047 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6048 if (decode)
6049 cmd |= command_bits;
6050 else
6051 cmd &= ~command_bits;
6052 pci_write_config_word(dev, PCI_COMMAND, cmd);
6053 }
6054
6055 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6056 return 0;
6057
6058 bus = dev->bus;
6059 while (bus) {
6060 bridge = bus->self;
6061 if (bridge) {
6062 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6063 &cmd);
6064 if (decode)
6065 cmd |= PCI_BRIDGE_CTL_VGA;
6066 else
6067 cmd &= ~PCI_BRIDGE_CTL_VGA;
6068 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6069 cmd);
6070 }
6071 bus = bus->parent;
6072 }
6073 return 0;
6074 }
6075
6076 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6077 bool pci_pr3_present(struct pci_dev *pdev)
6078 {
6079 struct acpi_device *adev;
6080
6081 if (acpi_disabled)
6082 return false;
6083
6084 adev = ACPI_COMPANION(&pdev->dev);
6085 if (!adev)
6086 return false;
6087
6088 return adev->power.flags.power_resources &&
6089 acpi_has_method(adev->handle, "_PR3");
6090 }
6091 EXPORT_SYMBOL_GPL(pci_pr3_present);
6092 #endif
6093
6094 /**
6095 * pci_add_dma_alias - Add a DMA devfn alias for a device
6096 * @dev: the PCI device for which alias is added
6097 * @devfn_from: alias slot and function
6098 * @nr_devfns: number of subsequent devfns to alias
6099 *
6100 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6101 * which is used to program permissible bus-devfn source addresses for DMA
6102 * requests in an IOMMU. These aliases factor into IOMMU group creation
6103 * and are useful for devices generating DMA requests beyond or different
6104 * from their logical bus-devfn. Examples include device quirks where the
6105 * device simply uses the wrong devfn, as well as non-transparent bridges
6106 * where the alias may be a proxy for devices in another domain.
6107 *
6108 * IOMMU group creation is performed during device discovery or addition,
6109 * prior to any potential DMA mapping and therefore prior to driver probing
6110 * (especially for userspace assigned devices where IOMMU group definition
6111 * cannot be left as a userspace activity). DMA aliases should therefore
6112 * be configured via quirks, such as the PCI fixup header quirk.
6113 */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned nr_devfns)6114 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6115 {
6116 int devfn_to;
6117
6118 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6119 devfn_to = devfn_from + nr_devfns - 1;
6120
6121 if (!dev->dma_alias_mask)
6122 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6123 if (!dev->dma_alias_mask) {
6124 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6125 return;
6126 }
6127
6128 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6129
6130 if (nr_devfns == 1)
6131 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6132 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6133 else if (nr_devfns > 1)
6134 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6135 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6136 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6137 }
6138
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6139 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6140 {
6141 return (dev1->dma_alias_mask &&
6142 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6143 (dev2->dma_alias_mask &&
6144 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6145 pci_real_dma_dev(dev1) == dev2 ||
6146 pci_real_dma_dev(dev2) == dev1;
6147 }
6148
pci_device_is_present(struct pci_dev * pdev)6149 bool pci_device_is_present(struct pci_dev *pdev)
6150 {
6151 u32 v;
6152
6153 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6154 pdev = pci_physfn(pdev);
6155 if (pci_dev_is_disconnected(pdev))
6156 return false;
6157 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6158 }
6159 EXPORT_SYMBOL_GPL(pci_device_is_present);
6160
pci_ignore_hotplug(struct pci_dev * dev)6161 void pci_ignore_hotplug(struct pci_dev *dev)
6162 {
6163 struct pci_dev *bridge = dev->bus->self;
6164
6165 dev->ignore_hotplug = 1;
6166 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6167 if (bridge)
6168 bridge->ignore_hotplug = 1;
6169 }
6170 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6171
6172 /**
6173 * pci_real_dma_dev - Get PCI DMA device for PCI device
6174 * @dev: the PCI device that may have a PCI DMA alias
6175 *
6176 * Permits the platform to provide architecture-specific functionality to
6177 * devices needing to alias DMA to another PCI device on another PCI bus. If
6178 * the PCI device is on the same bus, it is recommended to use
6179 * pci_add_dma_alias(). This is the default implementation. Architecture
6180 * implementations can override this.
6181 */
pci_real_dma_dev(struct pci_dev * dev)6182 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6183 {
6184 return dev;
6185 }
6186
pcibios_default_alignment(void)6187 resource_size_t __weak pcibios_default_alignment(void)
6188 {
6189 return 0;
6190 }
6191
6192 /*
6193 * Arches that don't want to expose struct resource to userland as-is in
6194 * sysfs and /proc can implement their own pci_resource_to_user().
6195 */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6196 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6197 const struct resource *rsrc,
6198 resource_size_t *start, resource_size_t *end)
6199 {
6200 *start = rsrc->start;
6201 *end = rsrc->end;
6202 }
6203
6204 static char *resource_alignment_param;
6205 static DEFINE_SPINLOCK(resource_alignment_lock);
6206
6207 /**
6208 * pci_specified_resource_alignment - get resource alignment specified by user.
6209 * @dev: the PCI device to get
6210 * @resize: whether or not to change resources' size when reassigning alignment
6211 *
6212 * RETURNS: Resource alignment if it is specified.
6213 * Zero if it is not specified.
6214 */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6215 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6216 bool *resize)
6217 {
6218 int align_order, count;
6219 resource_size_t align = pcibios_default_alignment();
6220 const char *p;
6221 int ret;
6222
6223 spin_lock(&resource_alignment_lock);
6224 p = resource_alignment_param;
6225 if (!p || !*p)
6226 goto out;
6227 if (pci_has_flag(PCI_PROBE_ONLY)) {
6228 align = 0;
6229 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6230 goto out;
6231 }
6232
6233 while (*p) {
6234 count = 0;
6235 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6236 p[count] == '@') {
6237 p += count + 1;
6238 if (align_order > 63) {
6239 pr_err("PCI: Invalid requested alignment (order %d)\n",
6240 align_order);
6241 align_order = PAGE_SHIFT;
6242 }
6243 } else {
6244 align_order = PAGE_SHIFT;
6245 }
6246
6247 ret = pci_dev_str_match(dev, p, &p);
6248 if (ret == 1) {
6249 *resize = true;
6250 align = 1ULL << align_order;
6251 break;
6252 } else if (ret < 0) {
6253 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6254 p);
6255 break;
6256 }
6257
6258 if (*p != ';' && *p != ',') {
6259 /* End of param or invalid format */
6260 break;
6261 }
6262 p++;
6263 }
6264 out:
6265 spin_unlock(&resource_alignment_lock);
6266 return align;
6267 }
6268
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6269 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6270 resource_size_t align, bool resize)
6271 {
6272 struct resource *r = &dev->resource[bar];
6273 resource_size_t size;
6274
6275 if (!(r->flags & IORESOURCE_MEM))
6276 return;
6277
6278 if (r->flags & IORESOURCE_PCI_FIXED) {
6279 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6280 bar, r, (unsigned long long)align);
6281 return;
6282 }
6283
6284 size = resource_size(r);
6285 if (size >= align)
6286 return;
6287
6288 /*
6289 * Increase the alignment of the resource. There are two ways we
6290 * can do this:
6291 *
6292 * 1) Increase the size of the resource. BARs are aligned on their
6293 * size, so when we reallocate space for this resource, we'll
6294 * allocate it with the larger alignment. This also prevents
6295 * assignment of any other BARs inside the alignment region, so
6296 * if we're requesting page alignment, this means no other BARs
6297 * will share the page.
6298 *
6299 * The disadvantage is that this makes the resource larger than
6300 * the hardware BAR, which may break drivers that compute things
6301 * based on the resource size, e.g., to find registers at a
6302 * fixed offset before the end of the BAR.
6303 *
6304 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6305 * set r->start to the desired alignment. By itself this
6306 * doesn't prevent other BARs being put inside the alignment
6307 * region, but if we realign *every* resource of every device in
6308 * the system, none of them will share an alignment region.
6309 *
6310 * When the user has requested alignment for only some devices via
6311 * the "pci=resource_alignment" argument, "resize" is true and we
6312 * use the first method. Otherwise we assume we're aligning all
6313 * devices and we use the second.
6314 */
6315
6316 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6317 bar, r, (unsigned long long)align);
6318
6319 if (resize) {
6320 r->start = 0;
6321 r->end = align - 1;
6322 } else {
6323 r->flags &= ~IORESOURCE_SIZEALIGN;
6324 r->flags |= IORESOURCE_STARTALIGN;
6325 r->start = align;
6326 r->end = r->start + size - 1;
6327 }
6328 r->flags |= IORESOURCE_UNSET;
6329 }
6330
6331 /*
6332 * This function disables memory decoding and releases memory resources
6333 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6334 * It also rounds up size to specified alignment.
6335 * Later on, the kernel will assign page-aligned memory resource back
6336 * to the device.
6337 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6338 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6339 {
6340 int i;
6341 struct resource *r;
6342 resource_size_t align;
6343 u16 command;
6344 bool resize = false;
6345
6346 /*
6347 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6348 * 3.4.1.11. Their resources are allocated from the space
6349 * described by the VF BARx register in the PF's SR-IOV capability.
6350 * We can't influence their alignment here.
6351 */
6352 if (dev->is_virtfn)
6353 return;
6354
6355 /* check if specified PCI is target device to reassign */
6356 align = pci_specified_resource_alignment(dev, &resize);
6357 if (!align)
6358 return;
6359
6360 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6361 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6362 pci_warn(dev, "Can't reassign resources to host bridge\n");
6363 return;
6364 }
6365
6366 pci_read_config_word(dev, PCI_COMMAND, &command);
6367 command &= ~PCI_COMMAND_MEMORY;
6368 pci_write_config_word(dev, PCI_COMMAND, command);
6369
6370 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6371 pci_request_resource_alignment(dev, i, align, resize);
6372
6373 /*
6374 * Need to disable bridge's resource window,
6375 * to enable the kernel to reassign new resource
6376 * window later on.
6377 */
6378 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6379 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6380 r = &dev->resource[i];
6381 if (!(r->flags & IORESOURCE_MEM))
6382 continue;
6383 r->flags |= IORESOURCE_UNSET;
6384 r->end = resource_size(r) - 1;
6385 r->start = 0;
6386 }
6387 pci_disable_bridge_window(dev);
6388 }
6389 }
6390
resource_alignment_show(struct bus_type * bus,char * buf)6391 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6392 {
6393 size_t count = 0;
6394
6395 spin_lock(&resource_alignment_lock);
6396 if (resource_alignment_param)
6397 count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6398 spin_unlock(&resource_alignment_lock);
6399
6400 /*
6401 * When set by the command line, resource_alignment_param will not
6402 * have a trailing line feed, which is ugly. So conditionally add
6403 * it here.
6404 */
6405 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6406 buf[count - 1] = '\n';
6407 buf[count++] = 0;
6408 }
6409
6410 return count;
6411 }
6412
resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)6413 static ssize_t resource_alignment_store(struct bus_type *bus,
6414 const char *buf, size_t count)
6415 {
6416 char *param = kstrndup(buf, count, GFP_KERNEL);
6417
6418 if (!param)
6419 return -ENOMEM;
6420
6421 spin_lock(&resource_alignment_lock);
6422 kfree(resource_alignment_param);
6423 resource_alignment_param = param;
6424 spin_unlock(&resource_alignment_lock);
6425 return count;
6426 }
6427
6428 static BUS_ATTR_RW(resource_alignment);
6429
pci_resource_alignment_sysfs_init(void)6430 static int __init pci_resource_alignment_sysfs_init(void)
6431 {
6432 return bus_create_file(&pci_bus_type,
6433 &bus_attr_resource_alignment);
6434 }
6435 late_initcall(pci_resource_alignment_sysfs_init);
6436
pci_no_domains(void)6437 static void pci_no_domains(void)
6438 {
6439 #ifdef CONFIG_PCI_DOMAINS
6440 pci_domains_supported = 0;
6441 #endif
6442 }
6443
6444 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6445 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6446
pci_get_new_domain_nr(void)6447 static int pci_get_new_domain_nr(void)
6448 {
6449 return atomic_inc_return(&__domain_nr);
6450 }
6451
of_pci_bus_find_domain_nr(struct device * parent)6452 static int of_pci_bus_find_domain_nr(struct device *parent)
6453 {
6454 static int use_dt_domains = -1;
6455 int domain = -1;
6456
6457 if (parent)
6458 domain = of_get_pci_domain_nr(parent->of_node);
6459
6460 /*
6461 * Check DT domain and use_dt_domains values.
6462 *
6463 * If DT domain property is valid (domain >= 0) and
6464 * use_dt_domains != 0, the DT assignment is valid since this means
6465 * we have not previously allocated a domain number by using
6466 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6467 * 1, to indicate that we have just assigned a domain number from
6468 * DT.
6469 *
6470 * If DT domain property value is not valid (ie domain < 0), and we
6471 * have not previously assigned a domain number from DT
6472 * (use_dt_domains != 1) we should assign a domain number by
6473 * using the:
6474 *
6475 * pci_get_new_domain_nr()
6476 *
6477 * API and update the use_dt_domains value to keep track of method we
6478 * are using to assign domain numbers (use_dt_domains = 0).
6479 *
6480 * All other combinations imply we have a platform that is trying
6481 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6482 * which is a recipe for domain mishandling and it is prevented by
6483 * invalidating the domain value (domain = -1) and printing a
6484 * corresponding error.
6485 */
6486 if (domain >= 0 && use_dt_domains) {
6487 use_dt_domains = 1;
6488 } else if (domain < 0 && use_dt_domains != 1) {
6489 use_dt_domains = 0;
6490 domain = pci_get_new_domain_nr();
6491 } else {
6492 if (parent)
6493 pr_err("Node %pOF has ", parent->of_node);
6494 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6495 domain = -1;
6496 }
6497
6498 return domain;
6499 }
6500
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6501 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6502 {
6503 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6504 acpi_pci_bus_find_domain_nr(bus);
6505 }
6506 #endif
6507
6508 /**
6509 * pci_ext_cfg_avail - can we access extended PCI config space?
6510 *
6511 * Returns 1 if we can access PCI extended config space (offsets
6512 * greater than 0xff). This is the default implementation. Architecture
6513 * implementations can override this.
6514 */
pci_ext_cfg_avail(void)6515 int __weak pci_ext_cfg_avail(void)
6516 {
6517 return 1;
6518 }
6519
pci_fixup_cardbus(struct pci_bus * bus)6520 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6521 {
6522 }
6523 EXPORT_SYMBOL(pci_fixup_cardbus);
6524
pci_setup(char * str)6525 static int __init pci_setup(char *str)
6526 {
6527 while (str) {
6528 char *k = strchr(str, ',');
6529 if (k)
6530 *k++ = 0;
6531 if (*str && (str = pcibios_setup(str)) && *str) {
6532 if (!strcmp(str, "nomsi")) {
6533 pci_no_msi();
6534 } else if (!strncmp(str, "noats", 5)) {
6535 pr_info("PCIe: ATS is disabled\n");
6536 pcie_ats_disabled = true;
6537 } else if (!strcmp(str, "noaer")) {
6538 pci_no_aer();
6539 } else if (!strcmp(str, "earlydump")) {
6540 pci_early_dump = true;
6541 } else if (!strncmp(str, "realloc=", 8)) {
6542 pci_realloc_get_opt(str + 8);
6543 } else if (!strncmp(str, "realloc", 7)) {
6544 pci_realloc_get_opt("on");
6545 } else if (!strcmp(str, "nodomains")) {
6546 pci_no_domains();
6547 } else if (!strncmp(str, "noari", 5)) {
6548 pcie_ari_disabled = true;
6549 } else if (!strncmp(str, "cbiosize=", 9)) {
6550 pci_cardbus_io_size = memparse(str + 9, &str);
6551 } else if (!strncmp(str, "cbmemsize=", 10)) {
6552 pci_cardbus_mem_size = memparse(str + 10, &str);
6553 } else if (!strncmp(str, "resource_alignment=", 19)) {
6554 resource_alignment_param = str + 19;
6555 } else if (!strncmp(str, "ecrc=", 5)) {
6556 pcie_ecrc_get_policy(str + 5);
6557 } else if (!strncmp(str, "hpiosize=", 9)) {
6558 pci_hotplug_io_size = memparse(str + 9, &str);
6559 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6560 pci_hotplug_mmio_size = memparse(str + 11, &str);
6561 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6562 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6563 } else if (!strncmp(str, "hpmemsize=", 10)) {
6564 pci_hotplug_mmio_size = memparse(str + 10, &str);
6565 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6566 } else if (!strncmp(str, "hpbussize=", 10)) {
6567 pci_hotplug_bus_size =
6568 simple_strtoul(str + 10, &str, 0);
6569 if (pci_hotplug_bus_size > 0xff)
6570 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6571 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6572 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6573 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6574 pcie_bus_config = PCIE_BUS_SAFE;
6575 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6576 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6577 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6578 pcie_bus_config = PCIE_BUS_PEER2PEER;
6579 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6580 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6581 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6582 disable_acs_redir_param = str + 18;
6583 } else {
6584 pr_err("PCI: Unknown option `%s'\n", str);
6585 }
6586 }
6587 str = k;
6588 }
6589 return 0;
6590 }
6591 early_param("pci", pci_setup);
6592
6593 /*
6594 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6595 * in pci_setup(), above, to point to data in the __initdata section which
6596 * will be freed after the init sequence is complete. We can't allocate memory
6597 * in pci_setup() because some architectures do not have any memory allocation
6598 * service available during an early_param() call. So we allocate memory and
6599 * copy the variable here before the init section is freed.
6600 *
6601 */
pci_realloc_setup_params(void)6602 static int __init pci_realloc_setup_params(void)
6603 {
6604 resource_alignment_param = kstrdup(resource_alignment_param,
6605 GFP_KERNEL);
6606 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6607
6608 return 0;
6609 }
6610 pure_initcall(pci_realloc_setup_params);
6611