• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24 
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
49 #include "clockid.h"
50 
51 #include <linux/ctype.h>
52 #include <internal/lib.h>
53 
54 /*
55  * magic2 = "PERFILE2"
56  * must be a numerical value to let the endianness
57  * determine the memory layout. That way we are able
58  * to detect endianness when reading the perf.data file
59  * back.
60  *
61  * we check for legacy (PERFFILE) format.
62  */
63 static const char *__perf_magic1 = "PERFFILE";
64 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
65 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
66 
67 #define PERF_MAGIC	__perf_magic2
68 
69 const char perf_version_string[] = PERF_VERSION;
70 
71 struct perf_file_attr {
72 	struct perf_event_attr	attr;
73 	struct perf_file_section	ids;
74 };
75 
perf_header__set_feat(struct perf_header * header,int feat)76 void perf_header__set_feat(struct perf_header *header, int feat)
77 {
78 	set_bit(feat, header->adds_features);
79 }
80 
perf_header__clear_feat(struct perf_header * header,int feat)81 void perf_header__clear_feat(struct perf_header *header, int feat)
82 {
83 	clear_bit(feat, header->adds_features);
84 }
85 
perf_header__has_feat(const struct perf_header * header,int feat)86 bool perf_header__has_feat(const struct perf_header *header, int feat)
87 {
88 	return test_bit(feat, header->adds_features);
89 }
90 
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92 {
93 	ssize_t ret = writen(ff->fd, buf, size);
94 
95 	if (ret != (ssize_t)size)
96 		return ret < 0 ? (int)ret : -1;
97 	return 0;
98 }
99 
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)100 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
101 {
102 	/* struct perf_event_header::size is u16 */
103 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104 	size_t new_size = ff->size;
105 	void *addr;
106 
107 	if (size + ff->offset > max_size)
108 		return -E2BIG;
109 
110 	while (size > (new_size - ff->offset))
111 		new_size <<= 1;
112 	new_size = min(max_size, new_size);
113 
114 	if (ff->size < new_size) {
115 		addr = realloc(ff->buf, new_size);
116 		if (!addr)
117 			return -ENOMEM;
118 		ff->buf = addr;
119 		ff->size = new_size;
120 	}
121 
122 	memcpy(ff->buf + ff->offset, buf, size);
123 	ff->offset += size;
124 
125 	return 0;
126 }
127 
128 /* Return: 0 if succeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)129 int do_write(struct feat_fd *ff, const void *buf, size_t size)
130 {
131 	if (!ff->buf)
132 		return __do_write_fd(ff, buf, size);
133 	return __do_write_buf(ff, buf, size);
134 }
135 
136 /* Return: 0 if succeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138 {
139 	u64 *p = (u64 *) set;
140 	int i, ret;
141 
142 	ret = do_write(ff, &size, sizeof(size));
143 	if (ret < 0)
144 		return ret;
145 
146 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147 		ret = do_write(ff, p + i, sizeof(*p));
148 		if (ret < 0)
149 			return ret;
150 	}
151 
152 	return 0;
153 }
154 
155 /* Return: 0 if succeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)156 int write_padded(struct feat_fd *ff, const void *bf,
157 		 size_t count, size_t count_aligned)
158 {
159 	static const char zero_buf[NAME_ALIGN];
160 	int err = do_write(ff, bf, count);
161 
162 	if (!err)
163 		err = do_write(ff, zero_buf, count_aligned - count);
164 
165 	return err;
166 }
167 
168 #define string_size(str)						\
169 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170 
171 /* Return: 0 if succeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)172 static int do_write_string(struct feat_fd *ff, const char *str)
173 {
174 	u32 len, olen;
175 	int ret;
176 
177 	olen = strlen(str) + 1;
178 	len = PERF_ALIGN(olen, NAME_ALIGN);
179 
180 	/* write len, incl. \0 */
181 	ret = do_write(ff, &len, sizeof(len));
182 	if (ret < 0)
183 		return ret;
184 
185 	return write_padded(ff, str, olen, len);
186 }
187 
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189 {
190 	ssize_t ret = readn(ff->fd, addr, size);
191 
192 	if (ret != size)
193 		return ret < 0 ? (int)ret : -1;
194 	return 0;
195 }
196 
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199 	if (size > (ssize_t)ff->size - ff->offset)
200 		return -1;
201 
202 	memcpy(addr, ff->buf + ff->offset, size);
203 	ff->offset += size;
204 
205 	return 0;
206 
207 }
208 
__do_read(struct feat_fd * ff,void * addr,ssize_t size)209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210 {
211 	if (!ff->buf)
212 		return __do_read_fd(ff, addr, size);
213 	return __do_read_buf(ff, addr, size);
214 }
215 
do_read_u32(struct feat_fd * ff,u32 * addr)216 static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 {
218 	int ret;
219 
220 	ret = __do_read(ff, addr, sizeof(*addr));
221 	if (ret)
222 		return ret;
223 
224 	if (ff->ph->needs_swap)
225 		*addr = bswap_32(*addr);
226 	return 0;
227 }
228 
do_read_u64(struct feat_fd * ff,u64 * addr)229 static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 {
231 	int ret;
232 
233 	ret = __do_read(ff, addr, sizeof(*addr));
234 	if (ret)
235 		return ret;
236 
237 	if (ff->ph->needs_swap)
238 		*addr = bswap_64(*addr);
239 	return 0;
240 }
241 
do_read_string(struct feat_fd * ff)242 static char *do_read_string(struct feat_fd *ff)
243 {
244 	u32 len;
245 	char *buf;
246 
247 	if (do_read_u32(ff, &len))
248 		return NULL;
249 
250 	buf = malloc(len);
251 	if (!buf)
252 		return NULL;
253 
254 	if (!__do_read(ff, buf, len)) {
255 		/*
256 		 * strings are padded by zeroes
257 		 * thus the actual strlen of buf
258 		 * may be less than len
259 		 */
260 		return buf;
261 	}
262 
263 	free(buf);
264 	return NULL;
265 }
266 
267 /* Return: 0 if succeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269 {
270 	unsigned long *set;
271 	u64 size, *p;
272 	int i, ret;
273 
274 	ret = do_read_u64(ff, &size);
275 	if (ret)
276 		return ret;
277 
278 	set = bitmap_alloc(size);
279 	if (!set)
280 		return -ENOMEM;
281 
282 	p = (u64 *) set;
283 
284 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
285 		ret = do_read_u64(ff, p + i);
286 		if (ret < 0) {
287 			free(set);
288 			return ret;
289 		}
290 	}
291 
292 	*pset  = set;
293 	*psize = size;
294 	return 0;
295 }
296 
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)297 static int write_tracing_data(struct feat_fd *ff,
298 			      struct evlist *evlist)
299 {
300 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
301 		return -1;
302 
303 	return read_tracing_data(ff->fd, &evlist->core.entries);
304 }
305 
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)306 static int write_build_id(struct feat_fd *ff,
307 			  struct evlist *evlist __maybe_unused)
308 {
309 	struct perf_session *session;
310 	int err;
311 
312 	session = container_of(ff->ph, struct perf_session, header);
313 
314 	if (!perf_session__read_build_ids(session, true))
315 		return -1;
316 
317 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
318 		return -1;
319 
320 	err = perf_session__write_buildid_table(session, ff);
321 	if (err < 0) {
322 		pr_debug("failed to write buildid table\n");
323 		return err;
324 	}
325 	perf_session__cache_build_ids(session);
326 
327 	return 0;
328 }
329 
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)330 static int write_hostname(struct feat_fd *ff,
331 			  struct evlist *evlist __maybe_unused)
332 {
333 	struct utsname uts;
334 	int ret;
335 
336 	ret = uname(&uts);
337 	if (ret < 0)
338 		return -1;
339 
340 	return do_write_string(ff, uts.nodename);
341 }
342 
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)343 static int write_osrelease(struct feat_fd *ff,
344 			   struct evlist *evlist __maybe_unused)
345 {
346 	struct utsname uts;
347 	int ret;
348 
349 	ret = uname(&uts);
350 	if (ret < 0)
351 		return -1;
352 
353 	return do_write_string(ff, uts.release);
354 }
355 
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)356 static int write_arch(struct feat_fd *ff,
357 		      struct evlist *evlist __maybe_unused)
358 {
359 	struct utsname uts;
360 	int ret;
361 
362 	ret = uname(&uts);
363 	if (ret < 0)
364 		return -1;
365 
366 	return do_write_string(ff, uts.machine);
367 }
368 
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)369 static int write_version(struct feat_fd *ff,
370 			 struct evlist *evlist __maybe_unused)
371 {
372 	return do_write_string(ff, perf_version_string);
373 }
374 
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)375 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376 {
377 	FILE *file;
378 	char *buf = NULL;
379 	char *s, *p;
380 	const char *search = cpuinfo_proc;
381 	size_t len = 0;
382 	int ret = -1;
383 
384 	if (!search)
385 		return -1;
386 
387 	file = fopen("/proc/cpuinfo", "r");
388 	if (!file)
389 		return -1;
390 
391 	while (getline(&buf, &len, file) > 0) {
392 		ret = strncmp(buf, search, strlen(search));
393 		if (!ret)
394 			break;
395 	}
396 
397 	if (ret) {
398 		ret = -1;
399 		goto done;
400 	}
401 
402 	s = buf;
403 
404 	p = strchr(buf, ':');
405 	if (p && *(p+1) == ' ' && *(p+2))
406 		s = p + 2;
407 	p = strchr(s, '\n');
408 	if (p)
409 		*p = '\0';
410 
411 	/* squash extra space characters (branding string) */
412 	p = s;
413 	while (*p) {
414 		if (isspace(*p)) {
415 			char *r = p + 1;
416 			char *q = skip_spaces(r);
417 			*p = ' ';
418 			if (q != (p+1))
419 				while ((*r++ = *q++));
420 		}
421 		p++;
422 	}
423 	ret = do_write_string(ff, s);
424 done:
425 	free(buf);
426 	fclose(file);
427 	return ret;
428 }
429 
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)430 static int write_cpudesc(struct feat_fd *ff,
431 		       struct evlist *evlist __maybe_unused)
432 {
433 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
434 #define CPUINFO_PROC	{ "cpu", }
435 #elif defined(__s390__)
436 #define CPUINFO_PROC	{ "vendor_id", }
437 #elif defined(__sh__)
438 #define CPUINFO_PROC	{ "cpu type", }
439 #elif defined(__alpha__) || defined(__mips__)
440 #define CPUINFO_PROC	{ "cpu model", }
441 #elif defined(__arm__)
442 #define CPUINFO_PROC	{ "model name", "Processor", }
443 #elif defined(__arc__)
444 #define CPUINFO_PROC	{ "Processor", }
445 #elif defined(__xtensa__)
446 #define CPUINFO_PROC	{ "core ID", }
447 #else
448 #define CPUINFO_PROC	{ "model name", }
449 #endif
450 	const char *cpuinfo_procs[] = CPUINFO_PROC;
451 #undef CPUINFO_PROC
452 	unsigned int i;
453 
454 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
455 		int ret;
456 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
457 		if (ret >= 0)
458 			return ret;
459 	}
460 	return -1;
461 }
462 
463 
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)464 static int write_nrcpus(struct feat_fd *ff,
465 			struct evlist *evlist __maybe_unused)
466 {
467 	long nr;
468 	u32 nrc, nra;
469 	int ret;
470 
471 	nrc = cpu__max_present_cpu();
472 
473 	nr = sysconf(_SC_NPROCESSORS_ONLN);
474 	if (nr < 0)
475 		return -1;
476 
477 	nra = (u32)(nr & UINT_MAX);
478 
479 	ret = do_write(ff, &nrc, sizeof(nrc));
480 	if (ret < 0)
481 		return ret;
482 
483 	return do_write(ff, &nra, sizeof(nra));
484 }
485 
write_event_desc(struct feat_fd * ff,struct evlist * evlist)486 static int write_event_desc(struct feat_fd *ff,
487 			    struct evlist *evlist)
488 {
489 	struct evsel *evsel;
490 	u32 nre, nri, sz;
491 	int ret;
492 
493 	nre = evlist->core.nr_entries;
494 
495 	/*
496 	 * write number of events
497 	 */
498 	ret = do_write(ff, &nre, sizeof(nre));
499 	if (ret < 0)
500 		return ret;
501 
502 	/*
503 	 * size of perf_event_attr struct
504 	 */
505 	sz = (u32)sizeof(evsel->core.attr);
506 	ret = do_write(ff, &sz, sizeof(sz));
507 	if (ret < 0)
508 		return ret;
509 
510 	evlist__for_each_entry(evlist, evsel) {
511 		ret = do_write(ff, &evsel->core.attr, sz);
512 		if (ret < 0)
513 			return ret;
514 		/*
515 		 * write number of unique id per event
516 		 * there is one id per instance of an event
517 		 *
518 		 * copy into an nri to be independent of the
519 		 * type of ids,
520 		 */
521 		nri = evsel->core.ids;
522 		ret = do_write(ff, &nri, sizeof(nri));
523 		if (ret < 0)
524 			return ret;
525 
526 		/*
527 		 * write event string as passed on cmdline
528 		 */
529 		ret = do_write_string(ff, evsel__name(evsel));
530 		if (ret < 0)
531 			return ret;
532 		/*
533 		 * write unique ids for this event
534 		 */
535 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
536 		if (ret < 0)
537 			return ret;
538 	}
539 	return 0;
540 }
541 
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)542 static int write_cmdline(struct feat_fd *ff,
543 			 struct evlist *evlist __maybe_unused)
544 {
545 	char pbuf[MAXPATHLEN], *buf;
546 	int i, ret, n;
547 
548 	/* actual path to perf binary */
549 	buf = perf_exe(pbuf, MAXPATHLEN);
550 
551 	/* account for binary path */
552 	n = perf_env.nr_cmdline + 1;
553 
554 	ret = do_write(ff, &n, sizeof(n));
555 	if (ret < 0)
556 		return ret;
557 
558 	ret = do_write_string(ff, buf);
559 	if (ret < 0)
560 		return ret;
561 
562 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
563 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
564 		if (ret < 0)
565 			return ret;
566 	}
567 	return 0;
568 }
569 
570 
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)571 static int write_cpu_topology(struct feat_fd *ff,
572 			      struct evlist *evlist __maybe_unused)
573 {
574 	struct cpu_topology *tp;
575 	u32 i;
576 	int ret, j;
577 
578 	tp = cpu_topology__new();
579 	if (!tp)
580 		return -1;
581 
582 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
583 	if (ret < 0)
584 		goto done;
585 
586 	for (i = 0; i < tp->core_sib; i++) {
587 		ret = do_write_string(ff, tp->core_siblings[i]);
588 		if (ret < 0)
589 			goto done;
590 	}
591 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
592 	if (ret < 0)
593 		goto done;
594 
595 	for (i = 0; i < tp->thread_sib; i++) {
596 		ret = do_write_string(ff, tp->thread_siblings[i]);
597 		if (ret < 0)
598 			break;
599 	}
600 
601 	ret = perf_env__read_cpu_topology_map(&perf_env);
602 	if (ret < 0)
603 		goto done;
604 
605 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
606 		ret = do_write(ff, &perf_env.cpu[j].core_id,
607 			       sizeof(perf_env.cpu[j].core_id));
608 		if (ret < 0)
609 			return ret;
610 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
611 			       sizeof(perf_env.cpu[j].socket_id));
612 		if (ret < 0)
613 			return ret;
614 	}
615 
616 	if (!tp->die_sib)
617 		goto done;
618 
619 	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
620 	if (ret < 0)
621 		goto done;
622 
623 	for (i = 0; i < tp->die_sib; i++) {
624 		ret = do_write_string(ff, tp->die_siblings[i]);
625 		if (ret < 0)
626 			goto done;
627 	}
628 
629 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
630 		ret = do_write(ff, &perf_env.cpu[j].die_id,
631 			       sizeof(perf_env.cpu[j].die_id));
632 		if (ret < 0)
633 			return ret;
634 	}
635 
636 done:
637 	cpu_topology__delete(tp);
638 	return ret;
639 }
640 
641 
642 
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)643 static int write_total_mem(struct feat_fd *ff,
644 			   struct evlist *evlist __maybe_unused)
645 {
646 	char *buf = NULL;
647 	FILE *fp;
648 	size_t len = 0;
649 	int ret = -1, n;
650 	uint64_t mem;
651 
652 	fp = fopen("/proc/meminfo", "r");
653 	if (!fp)
654 		return -1;
655 
656 	while (getline(&buf, &len, fp) > 0) {
657 		ret = strncmp(buf, "MemTotal:", 9);
658 		if (!ret)
659 			break;
660 	}
661 	if (!ret) {
662 		n = sscanf(buf, "%*s %"PRIu64, &mem);
663 		if (n == 1)
664 			ret = do_write(ff, &mem, sizeof(mem));
665 	} else
666 		ret = -1;
667 	free(buf);
668 	fclose(fp);
669 	return ret;
670 }
671 
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)672 static int write_numa_topology(struct feat_fd *ff,
673 			       struct evlist *evlist __maybe_unused)
674 {
675 	struct numa_topology *tp;
676 	int ret = -1;
677 	u32 i;
678 
679 	tp = numa_topology__new();
680 	if (!tp)
681 		return -ENOMEM;
682 
683 	ret = do_write(ff, &tp->nr, sizeof(u32));
684 	if (ret < 0)
685 		goto err;
686 
687 	for (i = 0; i < tp->nr; i++) {
688 		struct numa_topology_node *n = &tp->nodes[i];
689 
690 		ret = do_write(ff, &n->node, sizeof(u32));
691 		if (ret < 0)
692 			goto err;
693 
694 		ret = do_write(ff, &n->mem_total, sizeof(u64));
695 		if (ret)
696 			goto err;
697 
698 		ret = do_write(ff, &n->mem_free, sizeof(u64));
699 		if (ret)
700 			goto err;
701 
702 		ret = do_write_string(ff, n->cpus);
703 		if (ret < 0)
704 			goto err;
705 	}
706 
707 	ret = 0;
708 
709 err:
710 	numa_topology__delete(tp);
711 	return ret;
712 }
713 
714 /*
715  * File format:
716  *
717  * struct pmu_mappings {
718  *	u32	pmu_num;
719  *	struct pmu_map {
720  *		u32	type;
721  *		char	name[];
722  *	}[pmu_num];
723  * };
724  */
725 
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)726 static int write_pmu_mappings(struct feat_fd *ff,
727 			      struct evlist *evlist __maybe_unused)
728 {
729 	struct perf_pmu *pmu = NULL;
730 	u32 pmu_num = 0;
731 	int ret;
732 
733 	/*
734 	 * Do a first pass to count number of pmu to avoid lseek so this
735 	 * works in pipe mode as well.
736 	 */
737 	while ((pmu = perf_pmu__scan(pmu))) {
738 		if (!pmu->name)
739 			continue;
740 		pmu_num++;
741 	}
742 
743 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
744 	if (ret < 0)
745 		return ret;
746 
747 	while ((pmu = perf_pmu__scan(pmu))) {
748 		if (!pmu->name)
749 			continue;
750 
751 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
752 		if (ret < 0)
753 			return ret;
754 
755 		ret = do_write_string(ff, pmu->name);
756 		if (ret < 0)
757 			return ret;
758 	}
759 
760 	return 0;
761 }
762 
763 /*
764  * File format:
765  *
766  * struct group_descs {
767  *	u32	nr_groups;
768  *	struct group_desc {
769  *		char	name[];
770  *		u32	leader_idx;
771  *		u32	nr_members;
772  *	}[nr_groups];
773  * };
774  */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)775 static int write_group_desc(struct feat_fd *ff,
776 			    struct evlist *evlist)
777 {
778 	u32 nr_groups = evlist->nr_groups;
779 	struct evsel *evsel;
780 	int ret;
781 
782 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
783 	if (ret < 0)
784 		return ret;
785 
786 	evlist__for_each_entry(evlist, evsel) {
787 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
788 			const char *name = evsel->group_name ?: "{anon_group}";
789 			u32 leader_idx = evsel->idx;
790 			u32 nr_members = evsel->core.nr_members;
791 
792 			ret = do_write_string(ff, name);
793 			if (ret < 0)
794 				return ret;
795 
796 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 			if (ret < 0)
798 				return ret;
799 
800 			ret = do_write(ff, &nr_members, sizeof(nr_members));
801 			if (ret < 0)
802 				return ret;
803 		}
804 	}
805 	return 0;
806 }
807 
808 /*
809  * Return the CPU id as a raw string.
810  *
811  * Each architecture should provide a more precise id string that
812  * can be use to match the architecture's "mapfile".
813  */
get_cpuid_str(struct perf_pmu * pmu __maybe_unused)814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815 {
816 	return NULL;
817 }
818 
819 /* Return zero when the cpuid from the mapfile.csv matches the
820  * cpuid string generated on this platform.
821  * Otherwise return non-zero.
822  */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824 {
825 	regex_t re;
826 	regmatch_t pmatch[1];
827 	int match;
828 
829 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830 		/* Warn unable to generate match particular string. */
831 		pr_info("Invalid regular expression %s\n", mapcpuid);
832 		return 1;
833 	}
834 
835 	match = !regexec(&re, cpuid, 1, pmatch, 0);
836 	regfree(&re);
837 	if (match) {
838 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839 
840 		/* Verify the entire string matched. */
841 		if (match_len == strlen(cpuid))
842 			return 0;
843 	}
844 	return 1;
845 }
846 
847 /*
848  * default get_cpuid(): nothing gets recorded
849  * actual implementation must be in arch/$(SRCARCH)/util/header.c
850  */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused)851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852 {
853 	return ENOSYS; /* Not implemented */
854 }
855 
write_cpuid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)856 static int write_cpuid(struct feat_fd *ff,
857 		       struct evlist *evlist __maybe_unused)
858 {
859 	char buffer[64];
860 	int ret;
861 
862 	ret = get_cpuid(buffer, sizeof(buffer));
863 	if (ret)
864 		return -1;
865 
866 	return do_write_string(ff, buffer);
867 }
868 
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)869 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870 			      struct evlist *evlist __maybe_unused)
871 {
872 	return 0;
873 }
874 
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)875 static int write_auxtrace(struct feat_fd *ff,
876 			  struct evlist *evlist __maybe_unused)
877 {
878 	struct perf_session *session;
879 	int err;
880 
881 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882 		return -1;
883 
884 	session = container_of(ff->ph, struct perf_session, header);
885 
886 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 	if (err < 0)
888 		pr_err("Failed to write auxtrace index\n");
889 	return err;
890 }
891 
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)892 static int write_clockid(struct feat_fd *ff,
893 			 struct evlist *evlist __maybe_unused)
894 {
895 	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
896 			sizeof(ff->ph->env.clock.clockid_res_ns));
897 }
898 
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)899 static int write_clock_data(struct feat_fd *ff,
900 			    struct evlist *evlist __maybe_unused)
901 {
902 	u64 *data64;
903 	u32 data32;
904 	int ret;
905 
906 	/* version */
907 	data32 = 1;
908 
909 	ret = do_write(ff, &data32, sizeof(data32));
910 	if (ret < 0)
911 		return ret;
912 
913 	/* clockid */
914 	data32 = ff->ph->env.clock.clockid;
915 
916 	ret = do_write(ff, &data32, sizeof(data32));
917 	if (ret < 0)
918 		return ret;
919 
920 	/* TOD ref time */
921 	data64 = &ff->ph->env.clock.tod_ns;
922 
923 	ret = do_write(ff, data64, sizeof(*data64));
924 	if (ret < 0)
925 		return ret;
926 
927 	/* clockid ref time */
928 	data64 = &ff->ph->env.clock.clockid_ns;
929 
930 	return do_write(ff, data64, sizeof(*data64));
931 }
932 
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)933 static int write_dir_format(struct feat_fd *ff,
934 			    struct evlist *evlist __maybe_unused)
935 {
936 	struct perf_session *session;
937 	struct perf_data *data;
938 
939 	session = container_of(ff->ph, struct perf_session, header);
940 	data = session->data;
941 
942 	if (WARN_ON(!perf_data__is_dir(data)))
943 		return -1;
944 
945 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
946 }
947 
948 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)949 static int write_bpf_prog_info(struct feat_fd *ff,
950 			       struct evlist *evlist __maybe_unused)
951 {
952 	struct perf_env *env = &ff->ph->env;
953 	struct rb_root *root;
954 	struct rb_node *next;
955 	int ret;
956 
957 	down_read(&env->bpf_progs.lock);
958 
959 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
960 		       sizeof(env->bpf_progs.infos_cnt));
961 	if (ret < 0)
962 		goto out;
963 
964 	root = &env->bpf_progs.infos;
965 	next = rb_first(root);
966 	while (next) {
967 		struct bpf_prog_info_node *node;
968 		size_t len;
969 
970 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
971 		next = rb_next(&node->rb_node);
972 		len = sizeof(struct bpf_prog_info_linear) +
973 			node->info_linear->data_len;
974 
975 		/* before writing to file, translate address to offset */
976 		bpf_program__bpil_addr_to_offs(node->info_linear);
977 		ret = do_write(ff, node->info_linear, len);
978 		/*
979 		 * translate back to address even when do_write() fails,
980 		 * so that this function never changes the data.
981 		 */
982 		bpf_program__bpil_offs_to_addr(node->info_linear);
983 		if (ret < 0)
984 			goto out;
985 	}
986 out:
987 	up_read(&env->bpf_progs.lock);
988 	return ret;
989 }
990 #else // HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)991 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
992 			       struct evlist *evlist __maybe_unused)
993 {
994 	return 0;
995 }
996 #endif // HAVE_LIBBPF_SUPPORT
997 
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)998 static int write_bpf_btf(struct feat_fd *ff,
999 			 struct evlist *evlist __maybe_unused)
1000 {
1001 	struct perf_env *env = &ff->ph->env;
1002 	struct rb_root *root;
1003 	struct rb_node *next;
1004 	int ret;
1005 
1006 	down_read(&env->bpf_progs.lock);
1007 
1008 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1009 		       sizeof(env->bpf_progs.btfs_cnt));
1010 
1011 	if (ret < 0)
1012 		goto out;
1013 
1014 	root = &env->bpf_progs.btfs;
1015 	next = rb_first(root);
1016 	while (next) {
1017 		struct btf_node *node;
1018 
1019 		node = rb_entry(next, struct btf_node, rb_node);
1020 		next = rb_next(&node->rb_node);
1021 		ret = do_write(ff, &node->id,
1022 			       sizeof(u32) * 2 + node->data_size);
1023 		if (ret < 0)
1024 			goto out;
1025 	}
1026 out:
1027 	up_read(&env->bpf_progs.lock);
1028 	return ret;
1029 }
1030 
cpu_cache_level__sort(const void * a,const void * b)1031 static int cpu_cache_level__sort(const void *a, const void *b)
1032 {
1033 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1034 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1035 
1036 	return cache_a->level - cache_b->level;
1037 }
1038 
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1039 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1040 {
1041 	if (a->level != b->level)
1042 		return false;
1043 
1044 	if (a->line_size != b->line_size)
1045 		return false;
1046 
1047 	if (a->sets != b->sets)
1048 		return false;
1049 
1050 	if (a->ways != b->ways)
1051 		return false;
1052 
1053 	if (strcmp(a->type, b->type))
1054 		return false;
1055 
1056 	if (strcmp(a->size, b->size))
1057 		return false;
1058 
1059 	if (strcmp(a->map, b->map))
1060 		return false;
1061 
1062 	return true;
1063 }
1064 
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1065 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1066 {
1067 	char path[PATH_MAX], file[PATH_MAX];
1068 	struct stat st;
1069 	size_t len;
1070 
1071 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1072 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1073 
1074 	if (stat(file, &st))
1075 		return 1;
1076 
1077 	scnprintf(file, PATH_MAX, "%s/level", path);
1078 	if (sysfs__read_int(file, (int *) &cache->level))
1079 		return -1;
1080 
1081 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1082 	if (sysfs__read_int(file, (int *) &cache->line_size))
1083 		return -1;
1084 
1085 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1086 	if (sysfs__read_int(file, (int *) &cache->sets))
1087 		return -1;
1088 
1089 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1090 	if (sysfs__read_int(file, (int *) &cache->ways))
1091 		return -1;
1092 
1093 	scnprintf(file, PATH_MAX, "%s/type", path);
1094 	if (sysfs__read_str(file, &cache->type, &len))
1095 		return -1;
1096 
1097 	cache->type[len] = 0;
1098 	cache->type = strim(cache->type);
1099 
1100 	scnprintf(file, PATH_MAX, "%s/size", path);
1101 	if (sysfs__read_str(file, &cache->size, &len)) {
1102 		zfree(&cache->type);
1103 		return -1;
1104 	}
1105 
1106 	cache->size[len] = 0;
1107 	cache->size = strim(cache->size);
1108 
1109 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1110 	if (sysfs__read_str(file, &cache->map, &len)) {
1111 		zfree(&cache->size);
1112 		zfree(&cache->type);
1113 		return -1;
1114 	}
1115 
1116 	cache->map[len] = 0;
1117 	cache->map = strim(cache->map);
1118 	return 0;
1119 }
1120 
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1121 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1122 {
1123 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1124 }
1125 
1126 #define MAX_CACHE_LVL 4
1127 
build_caches(struct cpu_cache_level caches[],u32 * cntp)1128 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1129 {
1130 	u32 i, cnt = 0;
1131 	u32 nr, cpu;
1132 	u16 level;
1133 
1134 	nr = cpu__max_cpu();
1135 
1136 	for (cpu = 0; cpu < nr; cpu++) {
1137 		for (level = 0; level < MAX_CACHE_LVL; level++) {
1138 			struct cpu_cache_level c;
1139 			int err;
1140 
1141 			err = cpu_cache_level__read(&c, cpu, level);
1142 			if (err < 0)
1143 				return err;
1144 
1145 			if (err == 1)
1146 				break;
1147 
1148 			for (i = 0; i < cnt; i++) {
1149 				if (cpu_cache_level__cmp(&c, &caches[i]))
1150 					break;
1151 			}
1152 
1153 			if (i == cnt)
1154 				caches[cnt++] = c;
1155 			else
1156 				cpu_cache_level__free(&c);
1157 		}
1158 	}
1159 	*cntp = cnt;
1160 	return 0;
1161 }
1162 
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1163 static int write_cache(struct feat_fd *ff,
1164 		       struct evlist *evlist __maybe_unused)
1165 {
1166 	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1167 	struct cpu_cache_level caches[max_caches];
1168 	u32 cnt = 0, i, version = 1;
1169 	int ret;
1170 
1171 	ret = build_caches(caches, &cnt);
1172 	if (ret)
1173 		goto out;
1174 
1175 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1176 
1177 	ret = do_write(ff, &version, sizeof(u32));
1178 	if (ret < 0)
1179 		goto out;
1180 
1181 	ret = do_write(ff, &cnt, sizeof(u32));
1182 	if (ret < 0)
1183 		goto out;
1184 
1185 	for (i = 0; i < cnt; i++) {
1186 		struct cpu_cache_level *c = &caches[i];
1187 
1188 		#define _W(v)					\
1189 			ret = do_write(ff, &c->v, sizeof(u32));	\
1190 			if (ret < 0)				\
1191 				goto out;
1192 
1193 		_W(level)
1194 		_W(line_size)
1195 		_W(sets)
1196 		_W(ways)
1197 		#undef _W
1198 
1199 		#define _W(v)						\
1200 			ret = do_write_string(ff, (const char *) c->v);	\
1201 			if (ret < 0)					\
1202 				goto out;
1203 
1204 		_W(type)
1205 		_W(size)
1206 		_W(map)
1207 		#undef _W
1208 	}
1209 
1210 out:
1211 	for (i = 0; i < cnt; i++)
1212 		cpu_cache_level__free(&caches[i]);
1213 	return ret;
1214 }
1215 
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1216 static int write_stat(struct feat_fd *ff __maybe_unused,
1217 		      struct evlist *evlist __maybe_unused)
1218 {
1219 	return 0;
1220 }
1221 
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1222 static int write_sample_time(struct feat_fd *ff,
1223 			     struct evlist *evlist)
1224 {
1225 	int ret;
1226 
1227 	ret = do_write(ff, &evlist->first_sample_time,
1228 		       sizeof(evlist->first_sample_time));
1229 	if (ret < 0)
1230 		return ret;
1231 
1232 	return do_write(ff, &evlist->last_sample_time,
1233 			sizeof(evlist->last_sample_time));
1234 }
1235 
1236 
memory_node__read(struct memory_node * n,unsigned long idx)1237 static int memory_node__read(struct memory_node *n, unsigned long idx)
1238 {
1239 	unsigned int phys, size = 0;
1240 	char path[PATH_MAX];
1241 	struct dirent *ent;
1242 	DIR *dir;
1243 
1244 #define for_each_memory(mem, dir)					\
1245 	while ((ent = readdir(dir)))					\
1246 		if (strcmp(ent->d_name, ".") &&				\
1247 		    strcmp(ent->d_name, "..") &&			\
1248 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1249 
1250 	scnprintf(path, PATH_MAX,
1251 		  "%s/devices/system/node/node%lu",
1252 		  sysfs__mountpoint(), idx);
1253 
1254 	dir = opendir(path);
1255 	if (!dir) {
1256 		pr_warning("failed: cant' open memory sysfs data\n");
1257 		return -1;
1258 	}
1259 
1260 	for_each_memory(phys, dir) {
1261 		size = max(phys, size);
1262 	}
1263 
1264 	size++;
1265 
1266 	n->set = bitmap_alloc(size);
1267 	if (!n->set) {
1268 		closedir(dir);
1269 		return -ENOMEM;
1270 	}
1271 
1272 	n->node = idx;
1273 	n->size = size;
1274 
1275 	rewinddir(dir);
1276 
1277 	for_each_memory(phys, dir) {
1278 		set_bit(phys, n->set);
1279 	}
1280 
1281 	closedir(dir);
1282 	return 0;
1283 }
1284 
memory_node__sort(const void * a,const void * b)1285 static int memory_node__sort(const void *a, const void *b)
1286 {
1287 	const struct memory_node *na = a;
1288 	const struct memory_node *nb = b;
1289 
1290 	return na->node - nb->node;
1291 }
1292 
build_mem_topology(struct memory_node * nodes,u64 size,u64 * cntp)1293 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1294 {
1295 	char path[PATH_MAX];
1296 	struct dirent *ent;
1297 	DIR *dir;
1298 	u64 cnt = 0;
1299 	int ret = 0;
1300 
1301 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1302 		  sysfs__mountpoint());
1303 
1304 	dir = opendir(path);
1305 	if (!dir) {
1306 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1307 			  __func__, path);
1308 		return -1;
1309 	}
1310 
1311 	while (!ret && (ent = readdir(dir))) {
1312 		unsigned int idx;
1313 		int r;
1314 
1315 		if (!strcmp(ent->d_name, ".") ||
1316 		    !strcmp(ent->d_name, ".."))
1317 			continue;
1318 
1319 		r = sscanf(ent->d_name, "node%u", &idx);
1320 		if (r != 1)
1321 			continue;
1322 
1323 		if (WARN_ONCE(cnt >= size,
1324 			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1325 			closedir(dir);
1326 			return -1;
1327 		}
1328 
1329 		ret = memory_node__read(&nodes[cnt++], idx);
1330 	}
1331 
1332 	*cntp = cnt;
1333 	closedir(dir);
1334 
1335 	if (!ret)
1336 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1337 
1338 	return ret;
1339 }
1340 
1341 #define MAX_MEMORY_NODES 2000
1342 
1343 /*
1344  * The MEM_TOPOLOGY holds physical memory map for every
1345  * node in system. The format of data is as follows:
1346  *
1347  *  0 - version          | for future changes
1348  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1349  * 16 - count            | number of nodes
1350  *
1351  * For each node we store map of physical indexes for
1352  * each node:
1353  *
1354  * 32 - node id          | node index
1355  * 40 - size             | size of bitmap
1356  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1357  */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1358 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1359 			      struct evlist *evlist __maybe_unused)
1360 {
1361 	static struct memory_node nodes[MAX_MEMORY_NODES];
1362 	u64 bsize, version = 1, i, nr;
1363 	int ret;
1364 
1365 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1366 			      (unsigned long long *) &bsize);
1367 	if (ret)
1368 		return ret;
1369 
1370 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1371 	if (ret)
1372 		return ret;
1373 
1374 	ret = do_write(ff, &version, sizeof(version));
1375 	if (ret < 0)
1376 		goto out;
1377 
1378 	ret = do_write(ff, &bsize, sizeof(bsize));
1379 	if (ret < 0)
1380 		goto out;
1381 
1382 	ret = do_write(ff, &nr, sizeof(nr));
1383 	if (ret < 0)
1384 		goto out;
1385 
1386 	for (i = 0; i < nr; i++) {
1387 		struct memory_node *n = &nodes[i];
1388 
1389 		#define _W(v)						\
1390 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1391 			if (ret < 0)					\
1392 				goto out;
1393 
1394 		_W(node)
1395 		_W(size)
1396 
1397 		#undef _W
1398 
1399 		ret = do_write_bitmap(ff, n->set, n->size);
1400 		if (ret < 0)
1401 			goto out;
1402 	}
1403 
1404 out:
1405 	return ret;
1406 }
1407 
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1408 static int write_compressed(struct feat_fd *ff __maybe_unused,
1409 			    struct evlist *evlist __maybe_unused)
1410 {
1411 	int ret;
1412 
1413 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1414 	if (ret)
1415 		return ret;
1416 
1417 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1418 	if (ret)
1419 		return ret;
1420 
1421 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1422 	if (ret)
1423 		return ret;
1424 
1425 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1426 	if (ret)
1427 		return ret;
1428 
1429 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1430 }
1431 
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1432 static int write_cpu_pmu_caps(struct feat_fd *ff,
1433 			      struct evlist *evlist __maybe_unused)
1434 {
1435 	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1436 	struct perf_pmu_caps *caps = NULL;
1437 	int nr_caps;
1438 	int ret;
1439 
1440 	if (!cpu_pmu)
1441 		return -ENOENT;
1442 
1443 	nr_caps = perf_pmu__caps_parse(cpu_pmu);
1444 	if (nr_caps < 0)
1445 		return nr_caps;
1446 
1447 	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1448 	if (ret < 0)
1449 		return ret;
1450 
1451 	list_for_each_entry(caps, &cpu_pmu->caps, list) {
1452 		ret = do_write_string(ff, caps->name);
1453 		if (ret < 0)
1454 			return ret;
1455 
1456 		ret = do_write_string(ff, caps->value);
1457 		if (ret < 0)
1458 			return ret;
1459 	}
1460 
1461 	return ret;
1462 }
1463 
print_hostname(struct feat_fd * ff,FILE * fp)1464 static void print_hostname(struct feat_fd *ff, FILE *fp)
1465 {
1466 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1467 }
1468 
print_osrelease(struct feat_fd * ff,FILE * fp)1469 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1470 {
1471 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1472 }
1473 
print_arch(struct feat_fd * ff,FILE * fp)1474 static void print_arch(struct feat_fd *ff, FILE *fp)
1475 {
1476 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1477 }
1478 
print_cpudesc(struct feat_fd * ff,FILE * fp)1479 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1480 {
1481 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1482 }
1483 
print_nrcpus(struct feat_fd * ff,FILE * fp)1484 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1485 {
1486 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1487 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1488 }
1489 
print_version(struct feat_fd * ff,FILE * fp)1490 static void print_version(struct feat_fd *ff, FILE *fp)
1491 {
1492 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1493 }
1494 
print_cmdline(struct feat_fd * ff,FILE * fp)1495 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1496 {
1497 	int nr, i;
1498 
1499 	nr = ff->ph->env.nr_cmdline;
1500 
1501 	fprintf(fp, "# cmdline : ");
1502 
1503 	for (i = 0; i < nr; i++) {
1504 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1505 		if (!argv_i) {
1506 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1507 		} else {
1508 			char *mem = argv_i;
1509 			do {
1510 				char *quote = strchr(argv_i, '\'');
1511 				if (!quote)
1512 					break;
1513 				*quote++ = '\0';
1514 				fprintf(fp, "%s\\\'", argv_i);
1515 				argv_i = quote;
1516 			} while (1);
1517 			fprintf(fp, "%s ", argv_i);
1518 			free(mem);
1519 		}
1520 	}
1521 	fputc('\n', fp);
1522 }
1523 
print_cpu_topology(struct feat_fd * ff,FILE * fp)1524 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1525 {
1526 	struct perf_header *ph = ff->ph;
1527 	int cpu_nr = ph->env.nr_cpus_avail;
1528 	int nr, i;
1529 	char *str;
1530 
1531 	nr = ph->env.nr_sibling_cores;
1532 	str = ph->env.sibling_cores;
1533 
1534 	for (i = 0; i < nr; i++) {
1535 		fprintf(fp, "# sibling sockets : %s\n", str);
1536 		str += strlen(str) + 1;
1537 	}
1538 
1539 	if (ph->env.nr_sibling_dies) {
1540 		nr = ph->env.nr_sibling_dies;
1541 		str = ph->env.sibling_dies;
1542 
1543 		for (i = 0; i < nr; i++) {
1544 			fprintf(fp, "# sibling dies    : %s\n", str);
1545 			str += strlen(str) + 1;
1546 		}
1547 	}
1548 
1549 	nr = ph->env.nr_sibling_threads;
1550 	str = ph->env.sibling_threads;
1551 
1552 	for (i = 0; i < nr; i++) {
1553 		fprintf(fp, "# sibling threads : %s\n", str);
1554 		str += strlen(str) + 1;
1555 	}
1556 
1557 	if (ph->env.nr_sibling_dies) {
1558 		if (ph->env.cpu != NULL) {
1559 			for (i = 0; i < cpu_nr; i++)
1560 				fprintf(fp, "# CPU %d: Core ID %d, "
1561 					    "Die ID %d, Socket ID %d\n",
1562 					    i, ph->env.cpu[i].core_id,
1563 					    ph->env.cpu[i].die_id,
1564 					    ph->env.cpu[i].socket_id);
1565 		} else
1566 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1567 				    "information is not available\n");
1568 	} else {
1569 		if (ph->env.cpu != NULL) {
1570 			for (i = 0; i < cpu_nr; i++)
1571 				fprintf(fp, "# CPU %d: Core ID %d, "
1572 					    "Socket ID %d\n",
1573 					    i, ph->env.cpu[i].core_id,
1574 					    ph->env.cpu[i].socket_id);
1575 		} else
1576 			fprintf(fp, "# Core ID and Socket ID "
1577 				    "information is not available\n");
1578 	}
1579 }
1580 
print_clockid(struct feat_fd * ff,FILE * fp)1581 static void print_clockid(struct feat_fd *ff, FILE *fp)
1582 {
1583 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1584 		ff->ph->env.clock.clockid_res_ns * 1000);
1585 }
1586 
print_clock_data(struct feat_fd * ff,FILE * fp)1587 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1588 {
1589 	struct timespec clockid_ns;
1590 	char tstr[64], date[64];
1591 	struct timeval tod_ns;
1592 	clockid_t clockid;
1593 	struct tm ltime;
1594 	u64 ref;
1595 
1596 	if (!ff->ph->env.clock.enabled) {
1597 		fprintf(fp, "# reference time disabled\n");
1598 		return;
1599 	}
1600 
1601 	/* Compute TOD time. */
1602 	ref = ff->ph->env.clock.tod_ns;
1603 	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1604 	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1605 	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1606 
1607 	/* Compute clockid time. */
1608 	ref = ff->ph->env.clock.clockid_ns;
1609 	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1610 	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1611 	clockid_ns.tv_nsec = ref;
1612 
1613 	clockid = ff->ph->env.clock.clockid;
1614 
1615 	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1616 		snprintf(tstr, sizeof(tstr), "<error>");
1617 	else {
1618 		strftime(date, sizeof(date), "%F %T", &ltime);
1619 		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1620 			  date, (int) tod_ns.tv_usec);
1621 	}
1622 
1623 	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1624 	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1625 		    tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
1626 		    clockid_ns.tv_sec, clockid_ns.tv_nsec,
1627 		    clockid_name(clockid));
1628 }
1629 
print_dir_format(struct feat_fd * ff,FILE * fp)1630 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1631 {
1632 	struct perf_session *session;
1633 	struct perf_data *data;
1634 
1635 	session = container_of(ff->ph, struct perf_session, header);
1636 	data = session->data;
1637 
1638 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1639 }
1640 
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1641 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1642 {
1643 	struct perf_env *env = &ff->ph->env;
1644 	struct rb_root *root;
1645 	struct rb_node *next;
1646 
1647 	down_read(&env->bpf_progs.lock);
1648 
1649 	root = &env->bpf_progs.infos;
1650 	next = rb_first(root);
1651 
1652 	while (next) {
1653 		struct bpf_prog_info_node *node;
1654 
1655 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1656 		next = rb_next(&node->rb_node);
1657 
1658 		__bpf_event__print_bpf_prog_info(&node->info_linear->info,
1659 						 env, fp);
1660 	}
1661 
1662 	up_read(&env->bpf_progs.lock);
1663 }
1664 
print_bpf_btf(struct feat_fd * ff,FILE * fp)1665 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1666 {
1667 	struct perf_env *env = &ff->ph->env;
1668 	struct rb_root *root;
1669 	struct rb_node *next;
1670 
1671 	down_read(&env->bpf_progs.lock);
1672 
1673 	root = &env->bpf_progs.btfs;
1674 	next = rb_first(root);
1675 
1676 	while (next) {
1677 		struct btf_node *node;
1678 
1679 		node = rb_entry(next, struct btf_node, rb_node);
1680 		next = rb_next(&node->rb_node);
1681 		fprintf(fp, "# btf info of id %u\n", node->id);
1682 	}
1683 
1684 	up_read(&env->bpf_progs.lock);
1685 }
1686 
free_event_desc(struct evsel * events)1687 static void free_event_desc(struct evsel *events)
1688 {
1689 	struct evsel *evsel;
1690 
1691 	if (!events)
1692 		return;
1693 
1694 	for (evsel = events; evsel->core.attr.size; evsel++) {
1695 		zfree(&evsel->name);
1696 		zfree(&evsel->core.id);
1697 	}
1698 
1699 	free(events);
1700 }
1701 
perf_attr_check(struct perf_event_attr * attr)1702 static bool perf_attr_check(struct perf_event_attr *attr)
1703 {
1704 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1705 		pr_warning("Reserved bits are set unexpectedly. "
1706 			   "Please update perf tool.\n");
1707 		return false;
1708 	}
1709 
1710 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1711 		pr_warning("Unknown sample type (0x%llx) is detected. "
1712 			   "Please update perf tool.\n",
1713 			   attr->sample_type);
1714 		return false;
1715 	}
1716 
1717 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1718 		pr_warning("Unknown read format (0x%llx) is detected. "
1719 			   "Please update perf tool.\n",
1720 			   attr->read_format);
1721 		return false;
1722 	}
1723 
1724 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1725 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1726 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1727 			   "Please update perf tool.\n",
1728 			   attr->branch_sample_type);
1729 
1730 		return false;
1731 	}
1732 
1733 	return true;
1734 }
1735 
read_event_desc(struct feat_fd * ff)1736 static struct evsel *read_event_desc(struct feat_fd *ff)
1737 {
1738 	struct evsel *evsel, *events = NULL;
1739 	u64 *id;
1740 	void *buf = NULL;
1741 	u32 nre, sz, nr, i, j;
1742 	size_t msz;
1743 
1744 	/* number of events */
1745 	if (do_read_u32(ff, &nre))
1746 		goto error;
1747 
1748 	if (do_read_u32(ff, &sz))
1749 		goto error;
1750 
1751 	/* buffer to hold on file attr struct */
1752 	buf = malloc(sz);
1753 	if (!buf)
1754 		goto error;
1755 
1756 	/* the last event terminates with evsel->core.attr.size == 0: */
1757 	events = calloc(nre + 1, sizeof(*events));
1758 	if (!events)
1759 		goto error;
1760 
1761 	msz = sizeof(evsel->core.attr);
1762 	if (sz < msz)
1763 		msz = sz;
1764 
1765 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1766 		evsel->idx = i;
1767 
1768 		/*
1769 		 * must read entire on-file attr struct to
1770 		 * sync up with layout.
1771 		 */
1772 		if (__do_read(ff, buf, sz))
1773 			goto error;
1774 
1775 		if (ff->ph->needs_swap)
1776 			perf_event__attr_swap(buf);
1777 
1778 		memcpy(&evsel->core.attr, buf, msz);
1779 
1780 		if (!perf_attr_check(&evsel->core.attr))
1781 			goto error;
1782 
1783 		if (do_read_u32(ff, &nr))
1784 			goto error;
1785 
1786 		if (ff->ph->needs_swap)
1787 			evsel->needs_swap = true;
1788 
1789 		evsel->name = do_read_string(ff);
1790 		if (!evsel->name)
1791 			goto error;
1792 
1793 		if (!nr)
1794 			continue;
1795 
1796 		id = calloc(nr, sizeof(*id));
1797 		if (!id)
1798 			goto error;
1799 		evsel->core.ids = nr;
1800 		evsel->core.id = id;
1801 
1802 		for (j = 0 ; j < nr; j++) {
1803 			if (do_read_u64(ff, id))
1804 				goto error;
1805 			id++;
1806 		}
1807 	}
1808 out:
1809 	free(buf);
1810 	return events;
1811 error:
1812 	free_event_desc(events);
1813 	events = NULL;
1814 	goto out;
1815 }
1816 
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1817 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1818 				void *priv __maybe_unused)
1819 {
1820 	return fprintf(fp, ", %s = %s", name, val);
1821 }
1822 
print_event_desc(struct feat_fd * ff,FILE * fp)1823 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1824 {
1825 	struct evsel *evsel, *events;
1826 	u32 j;
1827 	u64 *id;
1828 
1829 	if (ff->events)
1830 		events = ff->events;
1831 	else
1832 		events = read_event_desc(ff);
1833 
1834 	if (!events) {
1835 		fprintf(fp, "# event desc: not available or unable to read\n");
1836 		return;
1837 	}
1838 
1839 	for (evsel = events; evsel->core.attr.size; evsel++) {
1840 		fprintf(fp, "# event : name = %s, ", evsel->name);
1841 
1842 		if (evsel->core.ids) {
1843 			fprintf(fp, ", id = {");
1844 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1845 				if (j)
1846 					fputc(',', fp);
1847 				fprintf(fp, " %"PRIu64, *id);
1848 			}
1849 			fprintf(fp, " }");
1850 		}
1851 
1852 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1853 
1854 		fputc('\n', fp);
1855 	}
1856 
1857 	free_event_desc(events);
1858 	ff->events = NULL;
1859 }
1860 
print_total_mem(struct feat_fd * ff,FILE * fp)1861 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1862 {
1863 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1864 }
1865 
print_numa_topology(struct feat_fd * ff,FILE * fp)1866 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1867 {
1868 	int i;
1869 	struct numa_node *n;
1870 
1871 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1872 		n = &ff->ph->env.numa_nodes[i];
1873 
1874 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1875 			    " free = %"PRIu64" kB\n",
1876 			n->node, n->mem_total, n->mem_free);
1877 
1878 		fprintf(fp, "# node%u cpu list : ", n->node);
1879 		cpu_map__fprintf(n->map, fp);
1880 	}
1881 }
1882 
print_cpuid(struct feat_fd * ff,FILE * fp)1883 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1884 {
1885 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1886 }
1887 
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)1888 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1889 {
1890 	fprintf(fp, "# contains samples with branch stack\n");
1891 }
1892 
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)1893 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1894 {
1895 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1896 }
1897 
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)1898 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1899 {
1900 	fprintf(fp, "# contains stat data\n");
1901 }
1902 
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)1903 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1904 {
1905 	int i;
1906 
1907 	fprintf(fp, "# CPU cache info:\n");
1908 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1909 		fprintf(fp, "#  ");
1910 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1911 	}
1912 }
1913 
print_compressed(struct feat_fd * ff,FILE * fp)1914 static void print_compressed(struct feat_fd *ff, FILE *fp)
1915 {
1916 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1917 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1918 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1919 }
1920 
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)1921 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1922 {
1923 	const char *delimiter = "# cpu pmu capabilities: ";
1924 	u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1925 	char *str;
1926 
1927 	if (!nr_caps) {
1928 		fprintf(fp, "# cpu pmu capabilities: not available\n");
1929 		return;
1930 	}
1931 
1932 	str = ff->ph->env.cpu_pmu_caps;
1933 	while (nr_caps--) {
1934 		fprintf(fp, "%s%s", delimiter, str);
1935 		delimiter = ", ";
1936 		str += strlen(str) + 1;
1937 	}
1938 
1939 	fprintf(fp, "\n");
1940 }
1941 
print_pmu_mappings(struct feat_fd * ff,FILE * fp)1942 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1943 {
1944 	const char *delimiter = "# pmu mappings: ";
1945 	char *str, *tmp;
1946 	u32 pmu_num;
1947 	u32 type;
1948 
1949 	pmu_num = ff->ph->env.nr_pmu_mappings;
1950 	if (!pmu_num) {
1951 		fprintf(fp, "# pmu mappings: not available\n");
1952 		return;
1953 	}
1954 
1955 	str = ff->ph->env.pmu_mappings;
1956 
1957 	while (pmu_num) {
1958 		type = strtoul(str, &tmp, 0);
1959 		if (*tmp != ':')
1960 			goto error;
1961 
1962 		str = tmp + 1;
1963 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1964 
1965 		delimiter = ", ";
1966 		str += strlen(str) + 1;
1967 		pmu_num--;
1968 	}
1969 
1970 	fprintf(fp, "\n");
1971 
1972 	if (!pmu_num)
1973 		return;
1974 error:
1975 	fprintf(fp, "# pmu mappings: unable to read\n");
1976 }
1977 
print_group_desc(struct feat_fd * ff,FILE * fp)1978 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1979 {
1980 	struct perf_session *session;
1981 	struct evsel *evsel;
1982 	u32 nr = 0;
1983 
1984 	session = container_of(ff->ph, struct perf_session, header);
1985 
1986 	evlist__for_each_entry(session->evlist, evsel) {
1987 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1988 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1989 
1990 			nr = evsel->core.nr_members - 1;
1991 		} else if (nr) {
1992 			fprintf(fp, ",%s", evsel__name(evsel));
1993 
1994 			if (--nr == 0)
1995 				fprintf(fp, "}\n");
1996 		}
1997 	}
1998 }
1999 
print_sample_time(struct feat_fd * ff,FILE * fp)2000 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2001 {
2002 	struct perf_session *session;
2003 	char time_buf[32];
2004 	double d;
2005 
2006 	session = container_of(ff->ph, struct perf_session, header);
2007 
2008 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2009 				  time_buf, sizeof(time_buf));
2010 	fprintf(fp, "# time of first sample : %s\n", time_buf);
2011 
2012 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2013 				  time_buf, sizeof(time_buf));
2014 	fprintf(fp, "# time of last sample : %s\n", time_buf);
2015 
2016 	d = (double)(session->evlist->last_sample_time -
2017 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2018 
2019 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2020 }
2021 
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2022 static void memory_node__fprintf(struct memory_node *n,
2023 				 unsigned long long bsize, FILE *fp)
2024 {
2025 	char buf_map[100], buf_size[50];
2026 	unsigned long long size;
2027 
2028 	size = bsize * bitmap_weight(n->set, n->size);
2029 	unit_number__scnprintf(buf_size, 50, size);
2030 
2031 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2032 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2033 }
2034 
print_mem_topology(struct feat_fd * ff,FILE * fp)2035 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2036 {
2037 	struct memory_node *nodes;
2038 	int i, nr;
2039 
2040 	nodes = ff->ph->env.memory_nodes;
2041 	nr    = ff->ph->env.nr_memory_nodes;
2042 
2043 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2044 		nr, ff->ph->env.memory_bsize);
2045 
2046 	for (i = 0; i < nr; i++) {
2047 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2048 	}
2049 }
2050 
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2051 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2052 				    char *filename,
2053 				    struct perf_session *session)
2054 {
2055 	int err = -1;
2056 	struct machine *machine;
2057 	u16 cpumode;
2058 	struct dso *dso;
2059 	enum dso_space_type dso_space;
2060 
2061 	machine = perf_session__findnew_machine(session, bev->pid);
2062 	if (!machine)
2063 		goto out;
2064 
2065 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2066 
2067 	switch (cpumode) {
2068 	case PERF_RECORD_MISC_KERNEL:
2069 		dso_space = DSO_SPACE__KERNEL;
2070 		break;
2071 	case PERF_RECORD_MISC_GUEST_KERNEL:
2072 		dso_space = DSO_SPACE__KERNEL_GUEST;
2073 		break;
2074 	case PERF_RECORD_MISC_USER:
2075 	case PERF_RECORD_MISC_GUEST_USER:
2076 		dso_space = DSO_SPACE__USER;
2077 		break;
2078 	default:
2079 		goto out;
2080 	}
2081 
2082 	dso = machine__findnew_dso(machine, filename);
2083 	if (dso != NULL) {
2084 		char sbuild_id[SBUILD_ID_SIZE];
2085 		struct build_id bid;
2086 		size_t size = BUILD_ID_SIZE;
2087 
2088 		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2089 			size = bev->size;
2090 
2091 		build_id__init(&bid, bev->data, size);
2092 		dso__set_build_id(dso, &bid);
2093 
2094 		if (dso_space != DSO_SPACE__USER) {
2095 			struct kmod_path m = { .name = NULL, };
2096 
2097 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2098 				dso__set_module_info(dso, &m, machine);
2099 
2100 			dso->kernel = dso_space;
2101 			free(m.name);
2102 		}
2103 
2104 		build_id__sprintf(&dso->bid, sbuild_id);
2105 		pr_debug("build id event received for %s: %s [%zu]\n",
2106 			 dso->long_name, sbuild_id, size);
2107 		dso__put(dso);
2108 	}
2109 
2110 	err = 0;
2111 out:
2112 	return err;
2113 }
2114 
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2115 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2116 						 int input, u64 offset, u64 size)
2117 {
2118 	struct perf_session *session = container_of(header, struct perf_session, header);
2119 	struct {
2120 		struct perf_event_header   header;
2121 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2122 		char			   filename[0];
2123 	} old_bev;
2124 	struct perf_record_header_build_id bev;
2125 	char filename[PATH_MAX];
2126 	u64 limit = offset + size;
2127 
2128 	while (offset < limit) {
2129 		ssize_t len;
2130 
2131 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2132 			return -1;
2133 
2134 		if (header->needs_swap)
2135 			perf_event_header__bswap(&old_bev.header);
2136 
2137 		len = old_bev.header.size - sizeof(old_bev);
2138 		if (readn(input, filename, len) != len)
2139 			return -1;
2140 
2141 		bev.header = old_bev.header;
2142 
2143 		/*
2144 		 * As the pid is the missing value, we need to fill
2145 		 * it properly. The header.misc value give us nice hint.
2146 		 */
2147 		bev.pid	= HOST_KERNEL_ID;
2148 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2149 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2150 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2151 
2152 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2153 		__event_process_build_id(&bev, filename, session);
2154 
2155 		offset += bev.header.size;
2156 	}
2157 
2158 	return 0;
2159 }
2160 
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2161 static int perf_header__read_build_ids(struct perf_header *header,
2162 				       int input, u64 offset, u64 size)
2163 {
2164 	struct perf_session *session = container_of(header, struct perf_session, header);
2165 	struct perf_record_header_build_id bev;
2166 	char filename[PATH_MAX];
2167 	u64 limit = offset + size, orig_offset = offset;
2168 	int err = -1;
2169 
2170 	while (offset < limit) {
2171 		ssize_t len;
2172 
2173 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2174 			goto out;
2175 
2176 		if (header->needs_swap)
2177 			perf_event_header__bswap(&bev.header);
2178 
2179 		len = bev.header.size - sizeof(bev);
2180 		if (readn(input, filename, len) != len)
2181 			goto out;
2182 		/*
2183 		 * The a1645ce1 changeset:
2184 		 *
2185 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2186 		 *
2187 		 * Added a field to struct perf_record_header_build_id that broke the file
2188 		 * format.
2189 		 *
2190 		 * Since the kernel build-id is the first entry, process the
2191 		 * table using the old format if the well known
2192 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2193 		 * first 4 characters chopped off (where the pid_t sits).
2194 		 */
2195 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2196 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2197 				return -1;
2198 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2199 		}
2200 
2201 		__event_process_build_id(&bev, filename, session);
2202 
2203 		offset += bev.header.size;
2204 	}
2205 	err = 0;
2206 out:
2207 	return err;
2208 }
2209 
2210 /* Macro for features that simply need to read and store a string. */
2211 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2212 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2213 {\
2214 	ff->ph->env.__feat_env = do_read_string(ff); \
2215 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2216 }
2217 
2218 FEAT_PROCESS_STR_FUN(hostname, hostname);
2219 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2220 FEAT_PROCESS_STR_FUN(version, version);
2221 FEAT_PROCESS_STR_FUN(arch, arch);
2222 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2223 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2224 
process_tracing_data(struct feat_fd * ff,void * data)2225 static int process_tracing_data(struct feat_fd *ff, void *data)
2226 {
2227 	ssize_t ret = trace_report(ff->fd, data, false);
2228 
2229 	return ret < 0 ? -1 : 0;
2230 }
2231 
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2232 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2233 {
2234 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2235 		pr_debug("Failed to read buildids, continuing...\n");
2236 	return 0;
2237 }
2238 
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2239 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2240 {
2241 	int ret;
2242 	u32 nr_cpus_avail, nr_cpus_online;
2243 
2244 	ret = do_read_u32(ff, &nr_cpus_avail);
2245 	if (ret)
2246 		return ret;
2247 
2248 	ret = do_read_u32(ff, &nr_cpus_online);
2249 	if (ret)
2250 		return ret;
2251 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2252 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2253 	return 0;
2254 }
2255 
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2256 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2257 {
2258 	u64 total_mem;
2259 	int ret;
2260 
2261 	ret = do_read_u64(ff, &total_mem);
2262 	if (ret)
2263 		return -1;
2264 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2265 	return 0;
2266 }
2267 
2268 static struct evsel *
perf_evlist__find_by_index(struct evlist * evlist,int idx)2269 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2270 {
2271 	struct evsel *evsel;
2272 
2273 	evlist__for_each_entry(evlist, evsel) {
2274 		if (evsel->idx == idx)
2275 			return evsel;
2276 	}
2277 
2278 	return NULL;
2279 }
2280 
2281 static void
perf_evlist__set_event_name(struct evlist * evlist,struct evsel * event)2282 perf_evlist__set_event_name(struct evlist *evlist,
2283 			    struct evsel *event)
2284 {
2285 	struct evsel *evsel;
2286 
2287 	if (!event->name)
2288 		return;
2289 
2290 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2291 	if (!evsel)
2292 		return;
2293 
2294 	if (evsel->name)
2295 		return;
2296 
2297 	evsel->name = strdup(event->name);
2298 }
2299 
2300 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2301 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2302 {
2303 	struct perf_session *session;
2304 	struct evsel *evsel, *events = read_event_desc(ff);
2305 
2306 	if (!events)
2307 		return 0;
2308 
2309 	session = container_of(ff->ph, struct perf_session, header);
2310 
2311 	if (session->data->is_pipe) {
2312 		/* Save events for reading later by print_event_desc,
2313 		 * since they can't be read again in pipe mode. */
2314 		ff->events = events;
2315 	}
2316 
2317 	for (evsel = events; evsel->core.attr.size; evsel++)
2318 		perf_evlist__set_event_name(session->evlist, evsel);
2319 
2320 	if (!session->data->is_pipe)
2321 		free_event_desc(events);
2322 
2323 	return 0;
2324 }
2325 
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2326 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2327 {
2328 	char *str, *cmdline = NULL, **argv = NULL;
2329 	u32 nr, i, len = 0;
2330 
2331 	if (do_read_u32(ff, &nr))
2332 		return -1;
2333 
2334 	ff->ph->env.nr_cmdline = nr;
2335 
2336 	cmdline = zalloc(ff->size + nr + 1);
2337 	if (!cmdline)
2338 		return -1;
2339 
2340 	argv = zalloc(sizeof(char *) * (nr + 1));
2341 	if (!argv)
2342 		goto error;
2343 
2344 	for (i = 0; i < nr; i++) {
2345 		str = do_read_string(ff);
2346 		if (!str)
2347 			goto error;
2348 
2349 		argv[i] = cmdline + len;
2350 		memcpy(argv[i], str, strlen(str) + 1);
2351 		len += strlen(str) + 1;
2352 		free(str);
2353 	}
2354 	ff->ph->env.cmdline = cmdline;
2355 	ff->ph->env.cmdline_argv = (const char **) argv;
2356 	return 0;
2357 
2358 error:
2359 	free(argv);
2360 	free(cmdline);
2361 	return -1;
2362 }
2363 
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2364 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2365 {
2366 	u32 nr, i;
2367 	char *str;
2368 	struct strbuf sb;
2369 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2370 	u64 size = 0;
2371 	struct perf_header *ph = ff->ph;
2372 	bool do_core_id_test = true;
2373 
2374 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2375 	if (!ph->env.cpu)
2376 		return -1;
2377 
2378 	if (do_read_u32(ff, &nr))
2379 		goto free_cpu;
2380 
2381 	ph->env.nr_sibling_cores = nr;
2382 	size += sizeof(u32);
2383 	if (strbuf_init(&sb, 128) < 0)
2384 		goto free_cpu;
2385 
2386 	for (i = 0; i < nr; i++) {
2387 		str = do_read_string(ff);
2388 		if (!str)
2389 			goto error;
2390 
2391 		/* include a NULL character at the end */
2392 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2393 			goto error;
2394 		size += string_size(str);
2395 		free(str);
2396 	}
2397 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2398 
2399 	if (do_read_u32(ff, &nr))
2400 		return -1;
2401 
2402 	ph->env.nr_sibling_threads = nr;
2403 	size += sizeof(u32);
2404 
2405 	for (i = 0; i < nr; i++) {
2406 		str = do_read_string(ff);
2407 		if (!str)
2408 			goto error;
2409 
2410 		/* include a NULL character at the end */
2411 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2412 			goto error;
2413 		size += string_size(str);
2414 		free(str);
2415 	}
2416 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2417 
2418 	/*
2419 	 * The header may be from old perf,
2420 	 * which doesn't include core id and socket id information.
2421 	 */
2422 	if (ff->size <= size) {
2423 		zfree(&ph->env.cpu);
2424 		return 0;
2425 	}
2426 
2427 	/* On s390 the socket_id number is not related to the numbers of cpus.
2428 	 * The socket_id number might be higher than the numbers of cpus.
2429 	 * This depends on the configuration.
2430 	 * AArch64 is the same.
2431 	 */
2432 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2433 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2434 		do_core_id_test = false;
2435 
2436 	for (i = 0; i < (u32)cpu_nr; i++) {
2437 		if (do_read_u32(ff, &nr))
2438 			goto free_cpu;
2439 
2440 		ph->env.cpu[i].core_id = nr;
2441 		size += sizeof(u32);
2442 
2443 		if (do_read_u32(ff, &nr))
2444 			goto free_cpu;
2445 
2446 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2447 			pr_debug("socket_id number is too big."
2448 				 "You may need to upgrade the perf tool.\n");
2449 			goto free_cpu;
2450 		}
2451 
2452 		ph->env.cpu[i].socket_id = nr;
2453 		size += sizeof(u32);
2454 	}
2455 
2456 	/*
2457 	 * The header may be from old perf,
2458 	 * which doesn't include die information.
2459 	 */
2460 	if (ff->size <= size)
2461 		return 0;
2462 
2463 	if (do_read_u32(ff, &nr))
2464 		return -1;
2465 
2466 	ph->env.nr_sibling_dies = nr;
2467 	size += sizeof(u32);
2468 
2469 	for (i = 0; i < nr; i++) {
2470 		str = do_read_string(ff);
2471 		if (!str)
2472 			goto error;
2473 
2474 		/* include a NULL character at the end */
2475 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2476 			goto error;
2477 		size += string_size(str);
2478 		free(str);
2479 	}
2480 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2481 
2482 	for (i = 0; i < (u32)cpu_nr; i++) {
2483 		if (do_read_u32(ff, &nr))
2484 			goto free_cpu;
2485 
2486 		ph->env.cpu[i].die_id = nr;
2487 	}
2488 
2489 	return 0;
2490 
2491 error:
2492 	strbuf_release(&sb);
2493 free_cpu:
2494 	zfree(&ph->env.cpu);
2495 	return -1;
2496 }
2497 
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2498 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2499 {
2500 	struct numa_node *nodes, *n;
2501 	u32 nr, i;
2502 	char *str;
2503 
2504 	/* nr nodes */
2505 	if (do_read_u32(ff, &nr))
2506 		return -1;
2507 
2508 	nodes = zalloc(sizeof(*nodes) * nr);
2509 	if (!nodes)
2510 		return -ENOMEM;
2511 
2512 	for (i = 0; i < nr; i++) {
2513 		n = &nodes[i];
2514 
2515 		/* node number */
2516 		if (do_read_u32(ff, &n->node))
2517 			goto error;
2518 
2519 		if (do_read_u64(ff, &n->mem_total))
2520 			goto error;
2521 
2522 		if (do_read_u64(ff, &n->mem_free))
2523 			goto error;
2524 
2525 		str = do_read_string(ff);
2526 		if (!str)
2527 			goto error;
2528 
2529 		n->map = perf_cpu_map__new(str);
2530 		if (!n->map)
2531 			goto error;
2532 
2533 		free(str);
2534 	}
2535 	ff->ph->env.nr_numa_nodes = nr;
2536 	ff->ph->env.numa_nodes = nodes;
2537 	return 0;
2538 
2539 error:
2540 	free(nodes);
2541 	return -1;
2542 }
2543 
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2544 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2545 {
2546 	char *name;
2547 	u32 pmu_num;
2548 	u32 type;
2549 	struct strbuf sb;
2550 
2551 	if (do_read_u32(ff, &pmu_num))
2552 		return -1;
2553 
2554 	if (!pmu_num) {
2555 		pr_debug("pmu mappings not available\n");
2556 		return 0;
2557 	}
2558 
2559 	ff->ph->env.nr_pmu_mappings = pmu_num;
2560 	if (strbuf_init(&sb, 128) < 0)
2561 		return -1;
2562 
2563 	while (pmu_num) {
2564 		if (do_read_u32(ff, &type))
2565 			goto error;
2566 
2567 		name = do_read_string(ff);
2568 		if (!name)
2569 			goto error;
2570 
2571 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2572 			goto error;
2573 		/* include a NULL character at the end */
2574 		if (strbuf_add(&sb, "", 1) < 0)
2575 			goto error;
2576 
2577 		if (!strcmp(name, "msr"))
2578 			ff->ph->env.msr_pmu_type = type;
2579 
2580 		free(name);
2581 		pmu_num--;
2582 	}
2583 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2584 	return 0;
2585 
2586 error:
2587 	strbuf_release(&sb);
2588 	return -1;
2589 }
2590 
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2591 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2592 {
2593 	size_t ret = -1;
2594 	u32 i, nr, nr_groups;
2595 	struct perf_session *session;
2596 	struct evsel *evsel, *leader = NULL;
2597 	struct group_desc {
2598 		char *name;
2599 		u32 leader_idx;
2600 		u32 nr_members;
2601 	} *desc;
2602 
2603 	if (do_read_u32(ff, &nr_groups))
2604 		return -1;
2605 
2606 	ff->ph->env.nr_groups = nr_groups;
2607 	if (!nr_groups) {
2608 		pr_debug("group desc not available\n");
2609 		return 0;
2610 	}
2611 
2612 	desc = calloc(nr_groups, sizeof(*desc));
2613 	if (!desc)
2614 		return -1;
2615 
2616 	for (i = 0; i < nr_groups; i++) {
2617 		desc[i].name = do_read_string(ff);
2618 		if (!desc[i].name)
2619 			goto out_free;
2620 
2621 		if (do_read_u32(ff, &desc[i].leader_idx))
2622 			goto out_free;
2623 
2624 		if (do_read_u32(ff, &desc[i].nr_members))
2625 			goto out_free;
2626 	}
2627 
2628 	/*
2629 	 * Rebuild group relationship based on the group_desc
2630 	 */
2631 	session = container_of(ff->ph, struct perf_session, header);
2632 	session->evlist->nr_groups = nr_groups;
2633 
2634 	i = nr = 0;
2635 	evlist__for_each_entry(session->evlist, evsel) {
2636 		if (evsel->idx == (int) desc[i].leader_idx) {
2637 			evsel->leader = evsel;
2638 			/* {anon_group} is a dummy name */
2639 			if (strcmp(desc[i].name, "{anon_group}")) {
2640 				evsel->group_name = desc[i].name;
2641 				desc[i].name = NULL;
2642 			}
2643 			evsel->core.nr_members = desc[i].nr_members;
2644 
2645 			if (i >= nr_groups || nr > 0) {
2646 				pr_debug("invalid group desc\n");
2647 				goto out_free;
2648 			}
2649 
2650 			leader = evsel;
2651 			nr = evsel->core.nr_members - 1;
2652 			i++;
2653 		} else if (nr) {
2654 			/* This is a group member */
2655 			evsel->leader = leader;
2656 
2657 			nr--;
2658 		}
2659 	}
2660 
2661 	if (i != nr_groups || nr != 0) {
2662 		pr_debug("invalid group desc\n");
2663 		goto out_free;
2664 	}
2665 
2666 	ret = 0;
2667 out_free:
2668 	for (i = 0; i < nr_groups; i++)
2669 		zfree(&desc[i].name);
2670 	free(desc);
2671 
2672 	return ret;
2673 }
2674 
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2675 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2676 {
2677 	struct perf_session *session;
2678 	int err;
2679 
2680 	session = container_of(ff->ph, struct perf_session, header);
2681 
2682 	err = auxtrace_index__process(ff->fd, ff->size, session,
2683 				      ff->ph->needs_swap);
2684 	if (err < 0)
2685 		pr_err("Failed to process auxtrace index\n");
2686 	return err;
2687 }
2688 
process_cache(struct feat_fd * ff,void * data __maybe_unused)2689 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2690 {
2691 	struct cpu_cache_level *caches;
2692 	u32 cnt, i, version;
2693 
2694 	if (do_read_u32(ff, &version))
2695 		return -1;
2696 
2697 	if (version != 1)
2698 		return -1;
2699 
2700 	if (do_read_u32(ff, &cnt))
2701 		return -1;
2702 
2703 	caches = zalloc(sizeof(*caches) * cnt);
2704 	if (!caches)
2705 		return -1;
2706 
2707 	for (i = 0; i < cnt; i++) {
2708 		struct cpu_cache_level c;
2709 
2710 		#define _R(v)						\
2711 			if (do_read_u32(ff, &c.v))\
2712 				goto out_free_caches;			\
2713 
2714 		_R(level)
2715 		_R(line_size)
2716 		_R(sets)
2717 		_R(ways)
2718 		#undef _R
2719 
2720 		#define _R(v)					\
2721 			c.v = do_read_string(ff);		\
2722 			if (!c.v)				\
2723 				goto out_free_caches;
2724 
2725 		_R(type)
2726 		_R(size)
2727 		_R(map)
2728 		#undef _R
2729 
2730 		caches[i] = c;
2731 	}
2732 
2733 	ff->ph->env.caches = caches;
2734 	ff->ph->env.caches_cnt = cnt;
2735 	return 0;
2736 out_free_caches:
2737 	free(caches);
2738 	return -1;
2739 }
2740 
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2741 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2742 {
2743 	struct perf_session *session;
2744 	u64 first_sample_time, last_sample_time;
2745 	int ret;
2746 
2747 	session = container_of(ff->ph, struct perf_session, header);
2748 
2749 	ret = do_read_u64(ff, &first_sample_time);
2750 	if (ret)
2751 		return -1;
2752 
2753 	ret = do_read_u64(ff, &last_sample_time);
2754 	if (ret)
2755 		return -1;
2756 
2757 	session->evlist->first_sample_time = first_sample_time;
2758 	session->evlist->last_sample_time = last_sample_time;
2759 	return 0;
2760 }
2761 
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2762 static int process_mem_topology(struct feat_fd *ff,
2763 				void *data __maybe_unused)
2764 {
2765 	struct memory_node *nodes;
2766 	u64 version, i, nr, bsize;
2767 	int ret = -1;
2768 
2769 	if (do_read_u64(ff, &version))
2770 		return -1;
2771 
2772 	if (version != 1)
2773 		return -1;
2774 
2775 	if (do_read_u64(ff, &bsize))
2776 		return -1;
2777 
2778 	if (do_read_u64(ff, &nr))
2779 		return -1;
2780 
2781 	nodes = zalloc(sizeof(*nodes) * nr);
2782 	if (!nodes)
2783 		return -1;
2784 
2785 	for (i = 0; i < nr; i++) {
2786 		struct memory_node n;
2787 
2788 		#define _R(v)				\
2789 			if (do_read_u64(ff, &n.v))	\
2790 				goto out;		\
2791 
2792 		_R(node)
2793 		_R(size)
2794 
2795 		#undef _R
2796 
2797 		if (do_read_bitmap(ff, &n.set, &n.size))
2798 			goto out;
2799 
2800 		nodes[i] = n;
2801 	}
2802 
2803 	ff->ph->env.memory_bsize    = bsize;
2804 	ff->ph->env.memory_nodes    = nodes;
2805 	ff->ph->env.nr_memory_nodes = nr;
2806 	ret = 0;
2807 
2808 out:
2809 	if (ret)
2810 		free(nodes);
2811 	return ret;
2812 }
2813 
process_clockid(struct feat_fd * ff,void * data __maybe_unused)2814 static int process_clockid(struct feat_fd *ff,
2815 			   void *data __maybe_unused)
2816 {
2817 	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2818 		return -1;
2819 
2820 	return 0;
2821 }
2822 
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)2823 static int process_clock_data(struct feat_fd *ff,
2824 			      void *_data __maybe_unused)
2825 {
2826 	u32 data32;
2827 	u64 data64;
2828 
2829 	/* version */
2830 	if (do_read_u32(ff, &data32))
2831 		return -1;
2832 
2833 	if (data32 != 1)
2834 		return -1;
2835 
2836 	/* clockid */
2837 	if (do_read_u32(ff, &data32))
2838 		return -1;
2839 
2840 	ff->ph->env.clock.clockid = data32;
2841 
2842 	/* TOD ref time */
2843 	if (do_read_u64(ff, &data64))
2844 		return -1;
2845 
2846 	ff->ph->env.clock.tod_ns = data64;
2847 
2848 	/* clockid ref time */
2849 	if (do_read_u64(ff, &data64))
2850 		return -1;
2851 
2852 	ff->ph->env.clock.clockid_ns = data64;
2853 	ff->ph->env.clock.enabled = true;
2854 	return 0;
2855 }
2856 
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)2857 static int process_dir_format(struct feat_fd *ff,
2858 			      void *_data __maybe_unused)
2859 {
2860 	struct perf_session *session;
2861 	struct perf_data *data;
2862 
2863 	session = container_of(ff->ph, struct perf_session, header);
2864 	data = session->data;
2865 
2866 	if (WARN_ON(!perf_data__is_dir(data)))
2867 		return -1;
2868 
2869 	return do_read_u64(ff, &data->dir.version);
2870 }
2871 
2872 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)2873 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2874 {
2875 	struct bpf_prog_info_linear *info_linear;
2876 	struct bpf_prog_info_node *info_node;
2877 	struct perf_env *env = &ff->ph->env;
2878 	u32 count, i;
2879 	int err = -1;
2880 
2881 	if (ff->ph->needs_swap) {
2882 		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2883 		return 0;
2884 	}
2885 
2886 	if (do_read_u32(ff, &count))
2887 		return -1;
2888 
2889 	down_write(&env->bpf_progs.lock);
2890 
2891 	for (i = 0; i < count; ++i) {
2892 		u32 info_len, data_len;
2893 
2894 		info_linear = NULL;
2895 		info_node = NULL;
2896 		if (do_read_u32(ff, &info_len))
2897 			goto out;
2898 		if (do_read_u32(ff, &data_len))
2899 			goto out;
2900 
2901 		if (info_len > sizeof(struct bpf_prog_info)) {
2902 			pr_warning("detected invalid bpf_prog_info\n");
2903 			goto out;
2904 		}
2905 
2906 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2907 				     data_len);
2908 		if (!info_linear)
2909 			goto out;
2910 		info_linear->info_len = sizeof(struct bpf_prog_info);
2911 		info_linear->data_len = data_len;
2912 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2913 			goto out;
2914 		if (__do_read(ff, &info_linear->info, info_len))
2915 			goto out;
2916 		if (info_len < sizeof(struct bpf_prog_info))
2917 			memset(((void *)(&info_linear->info)) + info_len, 0,
2918 			       sizeof(struct bpf_prog_info) - info_len);
2919 
2920 		if (__do_read(ff, info_linear->data, data_len))
2921 			goto out;
2922 
2923 		info_node = malloc(sizeof(struct bpf_prog_info_node));
2924 		if (!info_node)
2925 			goto out;
2926 
2927 		/* after reading from file, translate offset to address */
2928 		bpf_program__bpil_offs_to_addr(info_linear);
2929 		info_node->info_linear = info_linear;
2930 		__perf_env__insert_bpf_prog_info(env, info_node);
2931 	}
2932 
2933 	up_write(&env->bpf_progs.lock);
2934 	return 0;
2935 out:
2936 	free(info_linear);
2937 	free(info_node);
2938 	up_write(&env->bpf_progs.lock);
2939 	return err;
2940 }
2941 #else // HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff __maybe_unused,void * data __maybe_unused)2942 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2943 {
2944 	return 0;
2945 }
2946 #endif // HAVE_LIBBPF_SUPPORT
2947 
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)2948 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2949 {
2950 	struct perf_env *env = &ff->ph->env;
2951 	struct btf_node *node = NULL;
2952 	u32 count, i;
2953 	int err = -1;
2954 
2955 	if (ff->ph->needs_swap) {
2956 		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2957 		return 0;
2958 	}
2959 
2960 	if (do_read_u32(ff, &count))
2961 		return -1;
2962 
2963 	down_write(&env->bpf_progs.lock);
2964 
2965 	for (i = 0; i < count; ++i) {
2966 		u32 id, data_size;
2967 
2968 		if (do_read_u32(ff, &id))
2969 			goto out;
2970 		if (do_read_u32(ff, &data_size))
2971 			goto out;
2972 
2973 		node = malloc(sizeof(struct btf_node) + data_size);
2974 		if (!node)
2975 			goto out;
2976 
2977 		node->id = id;
2978 		node->data_size = data_size;
2979 
2980 		if (__do_read(ff, node->data, data_size))
2981 			goto out;
2982 
2983 		__perf_env__insert_btf(env, node);
2984 		node = NULL;
2985 	}
2986 
2987 	err = 0;
2988 out:
2989 	up_write(&env->bpf_progs.lock);
2990 	free(node);
2991 	return err;
2992 }
2993 
process_compressed(struct feat_fd * ff,void * data __maybe_unused)2994 static int process_compressed(struct feat_fd *ff,
2995 			      void *data __maybe_unused)
2996 {
2997 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2998 		return -1;
2999 
3000 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3001 		return -1;
3002 
3003 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3004 		return -1;
3005 
3006 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3007 		return -1;
3008 
3009 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3010 		return -1;
3011 
3012 	return 0;
3013 }
3014 
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3015 static int process_cpu_pmu_caps(struct feat_fd *ff,
3016 				void *data __maybe_unused)
3017 {
3018 	char *name, *value;
3019 	struct strbuf sb;
3020 	u32 nr_caps;
3021 
3022 	if (do_read_u32(ff, &nr_caps))
3023 		return -1;
3024 
3025 	if (!nr_caps) {
3026 		pr_debug("cpu pmu capabilities not available\n");
3027 		return 0;
3028 	}
3029 
3030 	ff->ph->env.nr_cpu_pmu_caps = nr_caps;
3031 
3032 	if (strbuf_init(&sb, 128) < 0)
3033 		return -1;
3034 
3035 	while (nr_caps--) {
3036 		name = do_read_string(ff);
3037 		if (!name)
3038 			goto error;
3039 
3040 		value = do_read_string(ff);
3041 		if (!value)
3042 			goto free_name;
3043 
3044 		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3045 			goto free_value;
3046 
3047 		/* include a NULL character at the end */
3048 		if (strbuf_add(&sb, "", 1) < 0)
3049 			goto free_value;
3050 
3051 		if (!strcmp(name, "branches"))
3052 			ff->ph->env.max_branches = atoi(value);
3053 
3054 		free(value);
3055 		free(name);
3056 	}
3057 	ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
3058 	return 0;
3059 
3060 free_value:
3061 	free(value);
3062 free_name:
3063 	free(name);
3064 error:
3065 	strbuf_release(&sb);
3066 	return -1;
3067 }
3068 
3069 #define FEAT_OPR(n, func, __full_only) \
3070 	[HEADER_##n] = {					\
3071 		.name	    = __stringify(n),			\
3072 		.write	    = write_##func,			\
3073 		.print	    = print_##func,			\
3074 		.full_only  = __full_only,			\
3075 		.process    = process_##func,			\
3076 		.synthesize = true				\
3077 	}
3078 
3079 #define FEAT_OPN(n, func, __full_only) \
3080 	[HEADER_##n] = {					\
3081 		.name	    = __stringify(n),			\
3082 		.write	    = write_##func,			\
3083 		.print	    = print_##func,			\
3084 		.full_only  = __full_only,			\
3085 		.process    = process_##func			\
3086 	}
3087 
3088 /* feature_ops not implemented: */
3089 #define print_tracing_data	NULL
3090 #define print_build_id		NULL
3091 
3092 #define process_branch_stack	NULL
3093 #define process_stat		NULL
3094 
3095 // Only used in util/synthetic-events.c
3096 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3097 
3098 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3099 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3100 	FEAT_OPN(BUILD_ID,	build_id,	false),
3101 	FEAT_OPR(HOSTNAME,	hostname,	false),
3102 	FEAT_OPR(OSRELEASE,	osrelease,	false),
3103 	FEAT_OPR(VERSION,	version,	false),
3104 	FEAT_OPR(ARCH,		arch,		false),
3105 	FEAT_OPR(NRCPUS,	nrcpus,		false),
3106 	FEAT_OPR(CPUDESC,	cpudesc,	false),
3107 	FEAT_OPR(CPUID,		cpuid,		false),
3108 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3109 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3110 	FEAT_OPR(CMDLINE,	cmdline,	false),
3111 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3112 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3113 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3114 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3115 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3116 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3117 	FEAT_OPN(STAT,		stat,		false),
3118 	FEAT_OPN(CACHE,		cache,		true),
3119 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3120 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3121 	FEAT_OPR(CLOCKID,	clockid,	false),
3122 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3123 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3124 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3125 	FEAT_OPR(COMPRESSED,	compressed,	false),
3126 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3127 	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3128 };
3129 
3130 struct header_print_data {
3131 	FILE *fp;
3132 	bool full; /* extended list of headers */
3133 };
3134 
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3135 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3136 					   struct perf_header *ph,
3137 					   int feat, int fd, void *data)
3138 {
3139 	struct header_print_data *hd = data;
3140 	struct feat_fd ff;
3141 
3142 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3143 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3144 				"%d, continuing...\n", section->offset, feat);
3145 		return 0;
3146 	}
3147 	if (feat >= HEADER_LAST_FEATURE) {
3148 		pr_warning("unknown feature %d\n", feat);
3149 		return 0;
3150 	}
3151 	if (!feat_ops[feat].print)
3152 		return 0;
3153 
3154 	ff = (struct  feat_fd) {
3155 		.fd = fd,
3156 		.ph = ph,
3157 	};
3158 
3159 	if (!feat_ops[feat].full_only || hd->full)
3160 		feat_ops[feat].print(&ff, hd->fp);
3161 	else
3162 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3163 			feat_ops[feat].name);
3164 
3165 	return 0;
3166 }
3167 
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3168 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3169 {
3170 	struct header_print_data hd;
3171 	struct perf_header *header = &session->header;
3172 	int fd = perf_data__fd(session->data);
3173 	struct stat st;
3174 	time_t stctime;
3175 	int ret, bit;
3176 
3177 	hd.fp = fp;
3178 	hd.full = full;
3179 
3180 	ret = fstat(fd, &st);
3181 	if (ret == -1)
3182 		return -1;
3183 
3184 	stctime = st.st_mtime;
3185 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3186 
3187 	fprintf(fp, "# header version : %u\n", header->version);
3188 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3189 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3190 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3191 
3192 	perf_header__process_sections(header, fd, &hd,
3193 				      perf_file_section__fprintf_info);
3194 
3195 	if (session->data->is_pipe)
3196 		return 0;
3197 
3198 	fprintf(fp, "# missing features: ");
3199 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3200 		if (bit)
3201 			fprintf(fp, "%s ", feat_ops[bit].name);
3202 	}
3203 
3204 	fprintf(fp, "\n");
3205 	return 0;
3206 }
3207 
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist)3208 static int do_write_feat(struct feat_fd *ff, int type,
3209 			 struct perf_file_section **p,
3210 			 struct evlist *evlist)
3211 {
3212 	int err;
3213 	int ret = 0;
3214 
3215 	if (perf_header__has_feat(ff->ph, type)) {
3216 		if (!feat_ops[type].write)
3217 			return -1;
3218 
3219 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3220 			return -1;
3221 
3222 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3223 
3224 		err = feat_ops[type].write(ff, evlist);
3225 		if (err < 0) {
3226 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3227 
3228 			/* undo anything written */
3229 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3230 
3231 			return -1;
3232 		}
3233 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3234 		(*p)++;
3235 	}
3236 	return ret;
3237 }
3238 
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd)3239 static int perf_header__adds_write(struct perf_header *header,
3240 				   struct evlist *evlist, int fd)
3241 {
3242 	int nr_sections;
3243 	struct feat_fd ff;
3244 	struct perf_file_section *feat_sec, *p;
3245 	int sec_size;
3246 	u64 sec_start;
3247 	int feat;
3248 	int err;
3249 
3250 	ff = (struct feat_fd){
3251 		.fd  = fd,
3252 		.ph = header,
3253 	};
3254 
3255 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3256 	if (!nr_sections)
3257 		return 0;
3258 
3259 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3260 	if (feat_sec == NULL)
3261 		return -ENOMEM;
3262 
3263 	sec_size = sizeof(*feat_sec) * nr_sections;
3264 
3265 	sec_start = header->feat_offset;
3266 	lseek(fd, sec_start + sec_size, SEEK_SET);
3267 
3268 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3269 		if (do_write_feat(&ff, feat, &p, evlist))
3270 			perf_header__clear_feat(header, feat);
3271 	}
3272 
3273 	lseek(fd, sec_start, SEEK_SET);
3274 	/*
3275 	 * may write more than needed due to dropped feature, but
3276 	 * this is okay, reader will skip the missing entries
3277 	 */
3278 	err = do_write(&ff, feat_sec, sec_size);
3279 	if (err < 0)
3280 		pr_debug("failed to write feature section\n");
3281 	free(feat_sec);
3282 	return err;
3283 }
3284 
perf_header__write_pipe(int fd)3285 int perf_header__write_pipe(int fd)
3286 {
3287 	struct perf_pipe_file_header f_header;
3288 	struct feat_fd ff;
3289 	int err;
3290 
3291 	ff = (struct feat_fd){ .fd = fd };
3292 
3293 	f_header = (struct perf_pipe_file_header){
3294 		.magic	   = PERF_MAGIC,
3295 		.size	   = sizeof(f_header),
3296 	};
3297 
3298 	err = do_write(&ff, &f_header, sizeof(f_header));
3299 	if (err < 0) {
3300 		pr_debug("failed to write perf pipe header\n");
3301 		return err;
3302 	}
3303 
3304 	return 0;
3305 }
3306 
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3307 int perf_session__write_header(struct perf_session *session,
3308 			       struct evlist *evlist,
3309 			       int fd, bool at_exit)
3310 {
3311 	struct perf_file_header f_header;
3312 	struct perf_file_attr   f_attr;
3313 	struct perf_header *header = &session->header;
3314 	struct evsel *evsel;
3315 	struct feat_fd ff;
3316 	u64 attr_offset;
3317 	int err;
3318 
3319 	ff = (struct feat_fd){ .fd = fd};
3320 	lseek(fd, sizeof(f_header), SEEK_SET);
3321 
3322 	evlist__for_each_entry(session->evlist, evsel) {
3323 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3324 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3325 		if (err < 0) {
3326 			pr_debug("failed to write perf header\n");
3327 			return err;
3328 		}
3329 	}
3330 
3331 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3332 
3333 	evlist__for_each_entry(evlist, evsel) {
3334 		f_attr = (struct perf_file_attr){
3335 			.attr = evsel->core.attr,
3336 			.ids  = {
3337 				.offset = evsel->id_offset,
3338 				.size   = evsel->core.ids * sizeof(u64),
3339 			}
3340 		};
3341 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3342 		if (err < 0) {
3343 			pr_debug("failed to write perf header attribute\n");
3344 			return err;
3345 		}
3346 	}
3347 
3348 	if (!header->data_offset)
3349 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3350 	header->feat_offset = header->data_offset + header->data_size;
3351 
3352 	if (at_exit) {
3353 		err = perf_header__adds_write(header, evlist, fd);
3354 		if (err < 0)
3355 			return err;
3356 	}
3357 
3358 	f_header = (struct perf_file_header){
3359 		.magic	   = PERF_MAGIC,
3360 		.size	   = sizeof(f_header),
3361 		.attr_size = sizeof(f_attr),
3362 		.attrs = {
3363 			.offset = attr_offset,
3364 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3365 		},
3366 		.data = {
3367 			.offset = header->data_offset,
3368 			.size	= header->data_size,
3369 		},
3370 		/* event_types is ignored, store zeros */
3371 	};
3372 
3373 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3374 
3375 	lseek(fd, 0, SEEK_SET);
3376 	err = do_write(&ff, &f_header, sizeof(f_header));
3377 	if (err < 0) {
3378 		pr_debug("failed to write perf header\n");
3379 		return err;
3380 	}
3381 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3382 
3383 	return 0;
3384 }
3385 
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3386 static int perf_header__getbuffer64(struct perf_header *header,
3387 				    int fd, void *buf, size_t size)
3388 {
3389 	if (readn(fd, buf, size) <= 0)
3390 		return -1;
3391 
3392 	if (header->needs_swap)
3393 		mem_bswap_64(buf, size);
3394 
3395 	return 0;
3396 }
3397 
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3398 int perf_header__process_sections(struct perf_header *header, int fd,
3399 				  void *data,
3400 				  int (*process)(struct perf_file_section *section,
3401 						 struct perf_header *ph,
3402 						 int feat, int fd, void *data))
3403 {
3404 	struct perf_file_section *feat_sec, *sec;
3405 	int nr_sections;
3406 	int sec_size;
3407 	int feat;
3408 	int err;
3409 
3410 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3411 	if (!nr_sections)
3412 		return 0;
3413 
3414 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3415 	if (!feat_sec)
3416 		return -1;
3417 
3418 	sec_size = sizeof(*feat_sec) * nr_sections;
3419 
3420 	lseek(fd, header->feat_offset, SEEK_SET);
3421 
3422 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3423 	if (err < 0)
3424 		goto out_free;
3425 
3426 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3427 		err = process(sec++, header, feat, fd, data);
3428 		if (err < 0)
3429 			goto out_free;
3430 	}
3431 	err = 0;
3432 out_free:
3433 	free(feat_sec);
3434 	return err;
3435 }
3436 
3437 static const int attr_file_abi_sizes[] = {
3438 	[0] = PERF_ATTR_SIZE_VER0,
3439 	[1] = PERF_ATTR_SIZE_VER1,
3440 	[2] = PERF_ATTR_SIZE_VER2,
3441 	[3] = PERF_ATTR_SIZE_VER3,
3442 	[4] = PERF_ATTR_SIZE_VER4,
3443 	0,
3444 };
3445 
3446 /*
3447  * In the legacy file format, the magic number is not used to encode endianness.
3448  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3449  * on ABI revisions, we need to try all combinations for all endianness to
3450  * detect the endianness.
3451  */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3452 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3453 {
3454 	uint64_t ref_size, attr_size;
3455 	int i;
3456 
3457 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3458 		ref_size = attr_file_abi_sizes[i]
3459 			 + sizeof(struct perf_file_section);
3460 		if (hdr_sz != ref_size) {
3461 			attr_size = bswap_64(hdr_sz);
3462 			if (attr_size != ref_size)
3463 				continue;
3464 
3465 			ph->needs_swap = true;
3466 		}
3467 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3468 			 i,
3469 			 ph->needs_swap);
3470 		return 0;
3471 	}
3472 	/* could not determine endianness */
3473 	return -1;
3474 }
3475 
3476 #define PERF_PIPE_HDR_VER0	16
3477 
3478 static const size_t attr_pipe_abi_sizes[] = {
3479 	[0] = PERF_PIPE_HDR_VER0,
3480 	0,
3481 };
3482 
3483 /*
3484  * In the legacy pipe format, there is an implicit assumption that endiannesss
3485  * between host recording the samples, and host parsing the samples is the
3486  * same. This is not always the case given that the pipe output may always be
3487  * redirected into a file and analyzed on a different machine with possibly a
3488  * different endianness and perf_event ABI revsions in the perf tool itself.
3489  */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3490 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3491 {
3492 	u64 attr_size;
3493 	int i;
3494 
3495 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3496 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3497 			attr_size = bswap_64(hdr_sz);
3498 			if (attr_size != hdr_sz)
3499 				continue;
3500 
3501 			ph->needs_swap = true;
3502 		}
3503 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3504 		return 0;
3505 	}
3506 	return -1;
3507 }
3508 
is_perf_magic(u64 magic)3509 bool is_perf_magic(u64 magic)
3510 {
3511 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3512 		|| magic == __perf_magic2
3513 		|| magic == __perf_magic2_sw)
3514 		return true;
3515 
3516 	return false;
3517 }
3518 
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3519 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3520 			      bool is_pipe, struct perf_header *ph)
3521 {
3522 	int ret;
3523 
3524 	/* check for legacy format */
3525 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3526 	if (ret == 0) {
3527 		ph->version = PERF_HEADER_VERSION_1;
3528 		pr_debug("legacy perf.data format\n");
3529 		if (is_pipe)
3530 			return try_all_pipe_abis(hdr_sz, ph);
3531 
3532 		return try_all_file_abis(hdr_sz, ph);
3533 	}
3534 	/*
3535 	 * the new magic number serves two purposes:
3536 	 * - unique number to identify actual perf.data files
3537 	 * - encode endianness of file
3538 	 */
3539 	ph->version = PERF_HEADER_VERSION_2;
3540 
3541 	/* check magic number with one endianness */
3542 	if (magic == __perf_magic2)
3543 		return 0;
3544 
3545 	/* check magic number with opposite endianness */
3546 	if (magic != __perf_magic2_sw)
3547 		return -1;
3548 
3549 	ph->needs_swap = true;
3550 
3551 	return 0;
3552 }
3553 
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3554 int perf_file_header__read(struct perf_file_header *header,
3555 			   struct perf_header *ph, int fd)
3556 {
3557 	ssize_t ret;
3558 
3559 	lseek(fd, 0, SEEK_SET);
3560 
3561 	ret = readn(fd, header, sizeof(*header));
3562 	if (ret <= 0)
3563 		return -1;
3564 
3565 	if (check_magic_endian(header->magic,
3566 			       header->attr_size, false, ph) < 0) {
3567 		pr_debug("magic/endian check failed\n");
3568 		return -1;
3569 	}
3570 
3571 	if (ph->needs_swap) {
3572 		mem_bswap_64(header, offsetof(struct perf_file_header,
3573 			     adds_features));
3574 	}
3575 
3576 	if (header->size != sizeof(*header)) {
3577 		/* Support the previous format */
3578 		if (header->size == offsetof(typeof(*header), adds_features))
3579 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3580 		else
3581 			return -1;
3582 	} else if (ph->needs_swap) {
3583 		/*
3584 		 * feature bitmap is declared as an array of unsigned longs --
3585 		 * not good since its size can differ between the host that
3586 		 * generated the data file and the host analyzing the file.
3587 		 *
3588 		 * We need to handle endianness, but we don't know the size of
3589 		 * the unsigned long where the file was generated. Take a best
3590 		 * guess at determining it: try 64-bit swap first (ie., file
3591 		 * created on a 64-bit host), and check if the hostname feature
3592 		 * bit is set (this feature bit is forced on as of fbe96f2).
3593 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3594 		 * swap. If the hostname bit is still not set (e.g., older data
3595 		 * file), punt and fallback to the original behavior --
3596 		 * clearing all feature bits and setting buildid.
3597 		 */
3598 		mem_bswap_64(&header->adds_features,
3599 			    BITS_TO_U64(HEADER_FEAT_BITS));
3600 
3601 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3602 			/* unswap as u64 */
3603 			mem_bswap_64(&header->adds_features,
3604 				    BITS_TO_U64(HEADER_FEAT_BITS));
3605 
3606 			/* unswap as u32 */
3607 			mem_bswap_32(&header->adds_features,
3608 				    BITS_TO_U32(HEADER_FEAT_BITS));
3609 		}
3610 
3611 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3612 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3613 			set_bit(HEADER_BUILD_ID, header->adds_features);
3614 		}
3615 	}
3616 
3617 	memcpy(&ph->adds_features, &header->adds_features,
3618 	       sizeof(ph->adds_features));
3619 
3620 	ph->data_offset  = header->data.offset;
3621 	ph->data_size	 = header->data.size;
3622 	ph->feat_offset  = header->data.offset + header->data.size;
3623 	return 0;
3624 }
3625 
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3626 static int perf_file_section__process(struct perf_file_section *section,
3627 				      struct perf_header *ph,
3628 				      int feat, int fd, void *data)
3629 {
3630 	struct feat_fd fdd = {
3631 		.fd	= fd,
3632 		.ph	= ph,
3633 		.size	= section->size,
3634 		.offset	= section->offset,
3635 	};
3636 
3637 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3638 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3639 			  "%d, continuing...\n", section->offset, feat);
3640 		return 0;
3641 	}
3642 
3643 	if (feat >= HEADER_LAST_FEATURE) {
3644 		pr_debug("unknown feature %d, continuing...\n", feat);
3645 		return 0;
3646 	}
3647 
3648 	if (!feat_ops[feat].process)
3649 		return 0;
3650 
3651 	return feat_ops[feat].process(&fdd, data);
3652 }
3653 
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,int fd,bool repipe)3654 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3655 				       struct perf_header *ph, int fd,
3656 				       bool repipe)
3657 {
3658 	struct feat_fd ff = {
3659 		.fd = STDOUT_FILENO,
3660 		.ph = ph,
3661 	};
3662 	ssize_t ret;
3663 
3664 	ret = readn(fd, header, sizeof(*header));
3665 	if (ret <= 0)
3666 		return -1;
3667 
3668 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3669 		pr_debug("endian/magic failed\n");
3670 		return -1;
3671 	}
3672 
3673 	if (ph->needs_swap)
3674 		header->size = bswap_64(header->size);
3675 
3676 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3677 		return -1;
3678 
3679 	return 0;
3680 }
3681 
perf_header__read_pipe(struct perf_session * session)3682 static int perf_header__read_pipe(struct perf_session *session)
3683 {
3684 	struct perf_header *header = &session->header;
3685 	struct perf_pipe_file_header f_header;
3686 
3687 	if (perf_file_header__read_pipe(&f_header, header,
3688 					perf_data__fd(session->data),
3689 					session->repipe) < 0) {
3690 		pr_debug("incompatible file format\n");
3691 		return -EINVAL;
3692 	}
3693 
3694 	return f_header.size == sizeof(f_header) ? 0 : -1;
3695 }
3696 
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)3697 static int read_attr(int fd, struct perf_header *ph,
3698 		     struct perf_file_attr *f_attr)
3699 {
3700 	struct perf_event_attr *attr = &f_attr->attr;
3701 	size_t sz, left;
3702 	size_t our_sz = sizeof(f_attr->attr);
3703 	ssize_t ret;
3704 
3705 	memset(f_attr, 0, sizeof(*f_attr));
3706 
3707 	/* read minimal guaranteed structure */
3708 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3709 	if (ret <= 0) {
3710 		pr_debug("cannot read %d bytes of header attr\n",
3711 			 PERF_ATTR_SIZE_VER0);
3712 		return -1;
3713 	}
3714 
3715 	/* on file perf_event_attr size */
3716 	sz = attr->size;
3717 
3718 	if (ph->needs_swap)
3719 		sz = bswap_32(sz);
3720 
3721 	if (sz == 0) {
3722 		/* assume ABI0 */
3723 		sz =  PERF_ATTR_SIZE_VER0;
3724 	} else if (sz > our_sz) {
3725 		pr_debug("file uses a more recent and unsupported ABI"
3726 			 " (%zu bytes extra)\n", sz - our_sz);
3727 		return -1;
3728 	}
3729 	/* what we have not yet read and that we know about */
3730 	left = sz - PERF_ATTR_SIZE_VER0;
3731 	if (left) {
3732 		void *ptr = attr;
3733 		ptr += PERF_ATTR_SIZE_VER0;
3734 
3735 		ret = readn(fd, ptr, left);
3736 	}
3737 	/* read perf_file_section, ids are read in caller */
3738 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3739 
3740 	return ret <= 0 ? -1 : 0;
3741 }
3742 
perf_evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)3743 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3744 						struct tep_handle *pevent)
3745 {
3746 	struct tep_event *event;
3747 	char bf[128];
3748 
3749 	/* already prepared */
3750 	if (evsel->tp_format)
3751 		return 0;
3752 
3753 	if (pevent == NULL) {
3754 		pr_debug("broken or missing trace data\n");
3755 		return -1;
3756 	}
3757 
3758 	event = tep_find_event(pevent, evsel->core.attr.config);
3759 	if (event == NULL) {
3760 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3761 		return -1;
3762 	}
3763 
3764 	if (!evsel->name) {
3765 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3766 		evsel->name = strdup(bf);
3767 		if (evsel->name == NULL)
3768 			return -1;
3769 	}
3770 
3771 	evsel->tp_format = event;
3772 	return 0;
3773 }
3774 
perf_evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)3775 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3776 						  struct tep_handle *pevent)
3777 {
3778 	struct evsel *pos;
3779 
3780 	evlist__for_each_entry(evlist, pos) {
3781 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3782 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3783 			return -1;
3784 	}
3785 
3786 	return 0;
3787 }
3788 
perf_session__read_header(struct perf_session * session)3789 int perf_session__read_header(struct perf_session *session)
3790 {
3791 	struct perf_data *data = session->data;
3792 	struct perf_header *header = &session->header;
3793 	struct perf_file_header	f_header;
3794 	struct perf_file_attr	f_attr;
3795 	u64			f_id;
3796 	int nr_attrs, nr_ids, i, j, err;
3797 	int fd = perf_data__fd(data);
3798 
3799 	session->evlist = evlist__new();
3800 	if (session->evlist == NULL)
3801 		return -ENOMEM;
3802 
3803 	session->evlist->env = &header->env;
3804 	session->machines.host.env = &header->env;
3805 
3806 	/*
3807 	 * We can read 'pipe' data event from regular file,
3808 	 * check for the pipe header regardless of source.
3809 	 */
3810 	err = perf_header__read_pipe(session);
3811 	if (!err || (err && perf_data__is_pipe(data))) {
3812 		data->is_pipe = true;
3813 		return err;
3814 	}
3815 
3816 	if (perf_file_header__read(&f_header, header, fd) < 0)
3817 		return -EINVAL;
3818 
3819 	/*
3820 	 * Sanity check that perf.data was written cleanly; data size is
3821 	 * initialized to 0 and updated only if the on_exit function is run.
3822 	 * If data size is still 0 then the file contains only partial
3823 	 * information.  Just warn user and process it as much as it can.
3824 	 */
3825 	if (f_header.data.size == 0) {
3826 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3827 			   "Was the 'perf record' command properly terminated?\n",
3828 			   data->file.path);
3829 	}
3830 
3831 	if (f_header.attr_size == 0) {
3832 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3833 		       "Was the 'perf record' command properly terminated?\n",
3834 		       data->file.path);
3835 		return -EINVAL;
3836 	}
3837 
3838 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3839 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3840 
3841 	for (i = 0; i < nr_attrs; i++) {
3842 		struct evsel *evsel;
3843 		off_t tmp;
3844 
3845 		if (read_attr(fd, header, &f_attr) < 0)
3846 			goto out_errno;
3847 
3848 		if (header->needs_swap) {
3849 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3850 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3851 			perf_event__attr_swap(&f_attr.attr);
3852 		}
3853 
3854 		tmp = lseek(fd, 0, SEEK_CUR);
3855 		evsel = evsel__new(&f_attr.attr);
3856 
3857 		if (evsel == NULL)
3858 			goto out_delete_evlist;
3859 
3860 		evsel->needs_swap = header->needs_swap;
3861 		/*
3862 		 * Do it before so that if perf_evsel__alloc_id fails, this
3863 		 * entry gets purged too at evlist__delete().
3864 		 */
3865 		evlist__add(session->evlist, evsel);
3866 
3867 		nr_ids = f_attr.ids.size / sizeof(u64);
3868 		/*
3869 		 * We don't have the cpu and thread maps on the header, so
3870 		 * for allocating the perf_sample_id table we fake 1 cpu and
3871 		 * hattr->ids threads.
3872 		 */
3873 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3874 			goto out_delete_evlist;
3875 
3876 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3877 
3878 		for (j = 0; j < nr_ids; j++) {
3879 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3880 				goto out_errno;
3881 
3882 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3883 		}
3884 
3885 		lseek(fd, tmp, SEEK_SET);
3886 	}
3887 
3888 	perf_header__process_sections(header, fd, &session->tevent,
3889 				      perf_file_section__process);
3890 
3891 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3892 						   session->tevent.pevent))
3893 		goto out_delete_evlist;
3894 
3895 	return 0;
3896 out_errno:
3897 	return -errno;
3898 
3899 out_delete_evlist:
3900 	evlist__delete(session->evlist);
3901 	session->evlist = NULL;
3902 	return -ENOMEM;
3903 }
3904 
perf_event__process_feature(struct perf_session * session,union perf_event * event)3905 int perf_event__process_feature(struct perf_session *session,
3906 				union perf_event *event)
3907 {
3908 	struct perf_tool *tool = session->tool;
3909 	struct feat_fd ff = { .fd = 0 };
3910 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3911 	int type = fe->header.type;
3912 	u64 feat = fe->feat_id;
3913 
3914 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3915 		pr_warning("invalid record type %d in pipe-mode\n", type);
3916 		return 0;
3917 	}
3918 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3919 		pr_warning("invalid record type %d in pipe-mode\n", type);
3920 		return -1;
3921 	}
3922 
3923 	if (!feat_ops[feat].process)
3924 		return 0;
3925 
3926 	ff.buf  = (void *)fe->data;
3927 	ff.size = event->header.size - sizeof(*fe);
3928 	ff.ph = &session->header;
3929 
3930 	if (feat_ops[feat].process(&ff, NULL))
3931 		return -1;
3932 
3933 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3934 		return 0;
3935 
3936 	if (!feat_ops[feat].full_only ||
3937 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3938 		feat_ops[feat].print(&ff, stdout);
3939 	} else {
3940 		fprintf(stdout, "# %s info available, use -I to display\n",
3941 			feat_ops[feat].name);
3942 	}
3943 
3944 	return 0;
3945 }
3946 
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)3947 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3948 {
3949 	struct perf_record_event_update *ev = &event->event_update;
3950 	struct perf_record_event_update_scale *ev_scale;
3951 	struct perf_record_event_update_cpus *ev_cpus;
3952 	struct perf_cpu_map *map;
3953 	size_t ret;
3954 
3955 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3956 
3957 	switch (ev->type) {
3958 	case PERF_EVENT_UPDATE__SCALE:
3959 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3960 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3961 		break;
3962 	case PERF_EVENT_UPDATE__UNIT:
3963 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3964 		break;
3965 	case PERF_EVENT_UPDATE__NAME:
3966 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3967 		break;
3968 	case PERF_EVENT_UPDATE__CPUS:
3969 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3970 		ret += fprintf(fp, "... ");
3971 
3972 		map = cpu_map__new_data(&ev_cpus->cpus);
3973 		if (map)
3974 			ret += cpu_map__fprintf(map, fp);
3975 		else
3976 			ret += fprintf(fp, "failed to get cpus\n");
3977 		break;
3978 	default:
3979 		ret += fprintf(fp, "... unknown type\n");
3980 		break;
3981 	}
3982 
3983 	return ret;
3984 }
3985 
perf_event__process_attr(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)3986 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3987 			     union perf_event *event,
3988 			     struct evlist **pevlist)
3989 {
3990 	u32 i, n_ids;
3991 	u64 *ids;
3992 	struct evsel *evsel;
3993 	struct evlist *evlist = *pevlist;
3994 
3995 	if (evlist == NULL) {
3996 		*pevlist = evlist = evlist__new();
3997 		if (evlist == NULL)
3998 			return -ENOMEM;
3999 	}
4000 
4001 	evsel = evsel__new(&event->attr.attr);
4002 	if (evsel == NULL)
4003 		return -ENOMEM;
4004 
4005 	evlist__add(evlist, evsel);
4006 
4007 	n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4008 	n_ids = n_ids / sizeof(u64);
4009 	/*
4010 	 * We don't have the cpu and thread maps on the header, so
4011 	 * for allocating the perf_sample_id table we fake 1 cpu and
4012 	 * hattr->ids threads.
4013 	 */
4014 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4015 		return -ENOMEM;
4016 
4017 	ids = (void *)&event->attr.attr + event->attr.attr.size;
4018 	for (i = 0; i < n_ids; i++) {
4019 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4020 	}
4021 
4022 	return 0;
4023 }
4024 
perf_event__process_event_update(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4025 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4026 				     union perf_event *event,
4027 				     struct evlist **pevlist)
4028 {
4029 	struct perf_record_event_update *ev = &event->event_update;
4030 	struct perf_record_event_update_scale *ev_scale;
4031 	struct perf_record_event_update_cpus *ev_cpus;
4032 	struct evlist *evlist;
4033 	struct evsel *evsel;
4034 	struct perf_cpu_map *map;
4035 
4036 	if (!pevlist || *pevlist == NULL)
4037 		return -EINVAL;
4038 
4039 	evlist = *pevlist;
4040 
4041 	evsel = perf_evlist__id2evsel(evlist, ev->id);
4042 	if (evsel == NULL)
4043 		return -EINVAL;
4044 
4045 	switch (ev->type) {
4046 	case PERF_EVENT_UPDATE__UNIT:
4047 		evsel->unit = strdup(ev->data);
4048 		break;
4049 	case PERF_EVENT_UPDATE__NAME:
4050 		evsel->name = strdup(ev->data);
4051 		break;
4052 	case PERF_EVENT_UPDATE__SCALE:
4053 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4054 		evsel->scale = ev_scale->scale;
4055 		break;
4056 	case PERF_EVENT_UPDATE__CPUS:
4057 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4058 
4059 		map = cpu_map__new_data(&ev_cpus->cpus);
4060 		if (map)
4061 			evsel->core.own_cpus = map;
4062 		else
4063 			pr_err("failed to get event_update cpus\n");
4064 	default:
4065 		break;
4066 	}
4067 
4068 	return 0;
4069 }
4070 
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)4071 int perf_event__process_tracing_data(struct perf_session *session,
4072 				     union perf_event *event)
4073 {
4074 	ssize_t size_read, padding, size = event->tracing_data.size;
4075 	int fd = perf_data__fd(session->data);
4076 	char buf[BUFSIZ];
4077 
4078 	/*
4079 	 * The pipe fd is already in proper place and in any case
4080 	 * we can't move it, and we'd screw the case where we read
4081 	 * 'pipe' data from regular file. The trace_report reads
4082 	 * data from 'fd' so we need to set it directly behind the
4083 	 * event, where the tracing data starts.
4084 	 */
4085 	if (!perf_data__is_pipe(session->data)) {
4086 		off_t offset = lseek(fd, 0, SEEK_CUR);
4087 
4088 		/* setup for reading amidst mmap */
4089 		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4090 		      SEEK_SET);
4091 	}
4092 
4093 	size_read = trace_report(fd, &session->tevent,
4094 				 session->repipe);
4095 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4096 
4097 	if (readn(fd, buf, padding) < 0) {
4098 		pr_err("%s: reading input file", __func__);
4099 		return -1;
4100 	}
4101 	if (session->repipe) {
4102 		int retw = write(STDOUT_FILENO, buf, padding);
4103 		if (retw <= 0 || retw != padding) {
4104 			pr_err("%s: repiping tracing data padding", __func__);
4105 			return -1;
4106 		}
4107 	}
4108 
4109 	if (size_read + padding != size) {
4110 		pr_err("%s: tracing data size mismatch", __func__);
4111 		return -1;
4112 	}
4113 
4114 	perf_evlist__prepare_tracepoint_events(session->evlist,
4115 					       session->tevent.pevent);
4116 
4117 	return size_read + padding;
4118 }
4119 
perf_event__process_build_id(struct perf_session * session,union perf_event * event)4120 int perf_event__process_build_id(struct perf_session *session,
4121 				 union perf_event *event)
4122 {
4123 	__event_process_build_id(&event->build_id,
4124 				 event->build_id.filename,
4125 				 session);
4126 	return 0;
4127 }
4128