• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/page_pinner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <trace/hooks/mm.h>
75 #include <trace/hooks/vmscan.h>
76 
77 #include <asm/sections.h>
78 #include <asm/tlbflush.h>
79 #include <asm/div64.h>
80 #include "internal.h"
81 #include "shuffle.h"
82 #include "page_reporting.h"
83 
84 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
85 typedef int __bitwise fpi_t;
86 
87 /* No special request */
88 #define FPI_NONE		((__force fpi_t)0)
89 
90 /*
91  * Skip free page reporting notification for the (possibly merged) page.
92  * This does not hinder free page reporting from grabbing the page,
93  * reporting it and marking it "reported" -  it only skips notifying
94  * the free page reporting infrastructure about a newly freed page. For
95  * example, used when temporarily pulling a page from a freelist and
96  * putting it back unmodified.
97  */
98 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
99 
100 /*
101  * Place the (possibly merged) page to the tail of the freelist. Will ignore
102  * page shuffling (relevant code - e.g., memory onlining - is expected to
103  * shuffle the whole zone).
104  *
105  * Note: No code should rely on this flag for correctness - it's purely
106  *       to allow for optimizations when handing back either fresh pages
107  *       (memory onlining) or untouched pages (page isolation, free page
108  *       reporting).
109  */
110 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
111 
112 /*
113  * Don't poison memory with KASAN (only for the tag-based modes).
114  * During boot, all non-reserved memblock memory is exposed to page_alloc.
115  * Poisoning all that memory lengthens boot time, especially on systems with
116  * large amount of RAM. This flag is used to skip that poisoning.
117  * This is only done for the tag-based KASAN modes, as those are able to
118  * detect memory corruptions with the memory tags assigned by default.
119  * All memory allocated normally after boot gets poisoned as usual.
120  */
121 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
122 
123 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
124 static DEFINE_MUTEX(pcp_batch_high_lock);
125 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
126 
127 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
128 DEFINE_PER_CPU(int, numa_node);
129 EXPORT_PER_CPU_SYMBOL(numa_node);
130 #endif
131 
132 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
133 
134 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
135 /*
136  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
137  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
138  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
139  * defined in <linux/topology.h>.
140  */
141 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
142 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
143 #endif
144 
145 /* work_structs for global per-cpu drains */
146 struct pcpu_drain {
147 	struct zone *zone;
148 	struct work_struct work;
149 };
150 static DEFINE_MUTEX(pcpu_drain_mutex);
151 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
152 
153 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
154 volatile unsigned long latent_entropy __latent_entropy;
155 EXPORT_SYMBOL(latent_entropy);
156 #endif
157 
158 /*
159  * Array of node states.
160  */
161 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
162 	[N_POSSIBLE] = NODE_MASK_ALL,
163 	[N_ONLINE] = { { [0] = 1UL } },
164 #ifndef CONFIG_NUMA
165 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
166 #ifdef CONFIG_HIGHMEM
167 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
168 #endif
169 	[N_MEMORY] = { { [0] = 1UL } },
170 	[N_CPU] = { { [0] = 1UL } },
171 #endif	/* NUMA */
172 };
173 EXPORT_SYMBOL(node_states);
174 
175 atomic_long_t _totalram_pages __read_mostly;
176 EXPORT_SYMBOL(_totalram_pages);
177 unsigned long totalreserve_pages __read_mostly;
178 unsigned long totalcma_pages __read_mostly;
179 
180 int percpu_pagelist_fraction;
181 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
182 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
183 EXPORT_SYMBOL(init_on_alloc);
184 
185 DEFINE_STATIC_KEY_FALSE(init_on_free);
186 EXPORT_SYMBOL(init_on_free);
187 
188 static bool _init_on_alloc_enabled_early __read_mostly
189 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)190 static int __init early_init_on_alloc(char *buf)
191 {
192 
193 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
194 }
195 early_param("init_on_alloc", early_init_on_alloc);
196 
197 static bool _init_on_free_enabled_early __read_mostly
198 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)199 static int __init early_init_on_free(char *buf)
200 {
201 	return kstrtobool(buf, &_init_on_free_enabled_early);
202 }
203 early_param("init_on_free", early_init_on_free);
204 
205 /*
206  * A cached value of the page's pageblock's migratetype, used when the page is
207  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
208  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
209  * Also the migratetype set in the page does not necessarily match the pcplist
210  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
211  * other index - this ensures that it will be put on the correct CMA freelist.
212  */
get_pcppage_migratetype(struct page * page)213 static inline int get_pcppage_migratetype(struct page *page)
214 {
215 	return page->index;
216 }
217 
set_pcppage_migratetype(struct page * page,int migratetype)218 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
219 {
220 	page->index = migratetype;
221 }
222 
223 #ifdef CONFIG_PM_SLEEP
224 /*
225  * The following functions are used by the suspend/hibernate code to temporarily
226  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
227  * while devices are suspended.  To avoid races with the suspend/hibernate code,
228  * they should always be called with system_transition_mutex held
229  * (gfp_allowed_mask also should only be modified with system_transition_mutex
230  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
231  * with that modification).
232  */
233 
234 static gfp_t saved_gfp_mask;
235 
pm_restore_gfp_mask(void)236 void pm_restore_gfp_mask(void)
237 {
238 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
239 	if (saved_gfp_mask) {
240 		gfp_allowed_mask = saved_gfp_mask;
241 		saved_gfp_mask = 0;
242 	}
243 }
244 
pm_restrict_gfp_mask(void)245 void pm_restrict_gfp_mask(void)
246 {
247 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
248 	WARN_ON(saved_gfp_mask);
249 	saved_gfp_mask = gfp_allowed_mask;
250 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
251 }
252 
pm_suspended_storage(void)253 bool pm_suspended_storage(void)
254 {
255 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
256 		return false;
257 	return true;
258 }
259 #endif /* CONFIG_PM_SLEEP */
260 
261 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
262 unsigned int pageblock_order __read_mostly;
263 #endif
264 
265 static void __free_pages_ok(struct page *page, unsigned int order,
266 			    fpi_t fpi_flags);
267 
268 /*
269  * results with 256, 32 in the lowmem_reserve sysctl:
270  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
271  *	1G machine -> (16M dma, 784M normal, 224M high)
272  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
273  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
274  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
275  *
276  * TBD: should special case ZONE_DMA32 machines here - in those we normally
277  * don't need any ZONE_NORMAL reservation
278  */
279 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
280 #ifdef CONFIG_ZONE_DMA
281 	[ZONE_DMA] = 256,
282 #endif
283 #ifdef CONFIG_ZONE_DMA32
284 	[ZONE_DMA32] = 256,
285 #endif
286 	[ZONE_NORMAL] = 32,
287 #ifdef CONFIG_HIGHMEM
288 	[ZONE_HIGHMEM] = 0,
289 #endif
290 	[ZONE_MOVABLE] = 0,
291 };
292 
293 static char * const zone_names[MAX_NR_ZONES] = {
294 #ifdef CONFIG_ZONE_DMA
295 	 "DMA",
296 #endif
297 #ifdef CONFIG_ZONE_DMA32
298 	 "DMA32",
299 #endif
300 	 "Normal",
301 #ifdef CONFIG_HIGHMEM
302 	 "HighMem",
303 #endif
304 	 "Movable",
305 #ifdef CONFIG_ZONE_DEVICE
306 	 "Device",
307 #endif
308 };
309 
310 const char * const migratetype_names[MIGRATE_TYPES] = {
311 	"Unmovable",
312 	"Movable",
313 	"Reclaimable",
314 #ifdef CONFIG_CMA
315 	"CMA",
316 #endif
317 	"HighAtomic",
318 #ifdef CONFIG_MEMORY_ISOLATION
319 	"Isolate",
320 #endif
321 };
322 
323 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
324 	[NULL_COMPOUND_DTOR] = NULL,
325 	[COMPOUND_PAGE_DTOR] = free_compound_page,
326 #ifdef CONFIG_HUGETLB_PAGE
327 	[HUGETLB_PAGE_DTOR] = free_huge_page,
328 #endif
329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
330 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
331 #endif
332 };
333 
334 /*
335  * Try to keep at least this much lowmem free.  Do not allow normal
336  * allocations below this point, only high priority ones. Automatically
337  * tuned according to the amount of memory in the system.
338  */
339 int min_free_kbytes = 1024;
340 int user_min_free_kbytes = -1;
341 #ifdef CONFIG_DISCONTIGMEM
342 /*
343  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
344  * are not on separate NUMA nodes. Functionally this works but with
345  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
346  * quite small. By default, do not boost watermarks on discontigmem as in
347  * many cases very high-order allocations like THP are likely to be
348  * unsupported and the premature reclaim offsets the advantage of long-term
349  * fragmentation avoidance.
350  */
351 int watermark_boost_factor __read_mostly;
352 #else
353 int watermark_boost_factor __read_mostly = 15000;
354 #endif
355 int watermark_scale_factor = 10;
356 
357 /*
358  * Extra memory for the system to try freeing. Used to temporarily
359  * free memory, to make space for new workloads. Anyone can allocate
360  * down to the min watermarks controlled by min_free_kbytes above.
361  */
362 int extra_free_kbytes = 0;
363 
364 static unsigned long nr_kernel_pages __initdata;
365 static unsigned long nr_all_pages __initdata;
366 static unsigned long dma_reserve __initdata;
367 
368 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
369 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
370 static unsigned long required_kernelcore __initdata;
371 static unsigned long required_kernelcore_percent __initdata;
372 static unsigned long required_movablecore __initdata;
373 static unsigned long required_movablecore_percent __initdata;
374 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
375 static bool mirrored_kernelcore __meminitdata;
376 
377 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
378 int movable_zone;
379 EXPORT_SYMBOL(movable_zone);
380 
381 #if MAX_NUMNODES > 1
382 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
383 unsigned int nr_online_nodes __read_mostly = 1;
384 EXPORT_SYMBOL(nr_node_ids);
385 EXPORT_SYMBOL(nr_online_nodes);
386 #endif
387 
388 int page_group_by_mobility_disabled __read_mostly;
389 
390 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
391 /*
392  * During boot we initialize deferred pages on-demand, as needed, but once
393  * page_alloc_init_late() has finished, the deferred pages are all initialized,
394  * and we can permanently disable that path.
395  */
396 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
397 
398 /*
399  * Calling kasan_poison_pages() only after deferred memory initialization
400  * has completed. Poisoning pages during deferred memory init will greatly
401  * lengthen the process and cause problem in large memory systems as the
402  * deferred pages initialization is done with interrupt disabled.
403  *
404  * Assuming that there will be no reference to those newly initialized
405  * pages before they are ever allocated, this should have no effect on
406  * KASAN memory tracking as the poison will be properly inserted at page
407  * allocation time. The only corner case is when pages are allocated by
408  * on-demand allocation and then freed again before the deferred pages
409  * initialization is done, but this is not likely to happen.
410  */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)411 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
412 {
413 	return static_branch_unlikely(&deferred_pages) ||
414 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
415 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
416 	       PageSkipKASanPoison(page);
417 }
418 
419 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)420 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
421 {
422 	int nid = early_pfn_to_nid(pfn);
423 
424 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
425 		return true;
426 
427 	return false;
428 }
429 
430 /*
431  * Returns true when the remaining initialisation should be deferred until
432  * later in the boot cycle when it can be parallelised.
433  */
434 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)435 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
436 {
437 	static unsigned long prev_end_pfn, nr_initialised;
438 
439 	/*
440 	 * prev_end_pfn static that contains the end of previous zone
441 	 * No need to protect because called very early in boot before smp_init.
442 	 */
443 	if (prev_end_pfn != end_pfn) {
444 		prev_end_pfn = end_pfn;
445 		nr_initialised = 0;
446 	}
447 
448 	/* Always populate low zones for address-constrained allocations */
449 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
450 		return false;
451 
452 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
453 		return true;
454 	/*
455 	 * We start only with one section of pages, more pages are added as
456 	 * needed until the rest of deferred pages are initialized.
457 	 */
458 	nr_initialised++;
459 	if ((nr_initialised > PAGES_PER_SECTION) &&
460 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
461 		NODE_DATA(nid)->first_deferred_pfn = pfn;
462 		return true;
463 	}
464 	return false;
465 }
466 #else
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)467 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
468 {
469 	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
470 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
471 	       PageSkipKASanPoison(page);
472 }
473 
early_page_uninitialised(unsigned long pfn)474 static inline bool early_page_uninitialised(unsigned long pfn)
475 {
476 	return false;
477 }
478 
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)479 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
480 {
481 	return false;
482 }
483 #endif
484 
485 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct page * page,unsigned long pfn)486 static inline unsigned long *get_pageblock_bitmap(struct page *page,
487 							unsigned long pfn)
488 {
489 #ifdef CONFIG_SPARSEMEM
490 	return section_to_usemap(__pfn_to_section(pfn));
491 #else
492 	return page_zone(page)->pageblock_flags;
493 #endif /* CONFIG_SPARSEMEM */
494 }
495 
pfn_to_bitidx(struct page * page,unsigned long pfn)496 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
497 {
498 #ifdef CONFIG_SPARSEMEM
499 	pfn &= (PAGES_PER_SECTION-1);
500 #else
501 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
502 #endif /* CONFIG_SPARSEMEM */
503 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
504 }
505 
506 /**
507  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
508  * @page: The page within the block of interest
509  * @pfn: The target page frame number
510  * @mask: mask of bits that the caller is interested in
511  *
512  * Return: pageblock_bits flags
513  */
514 static __always_inline
__get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long mask)515 unsigned long __get_pfnblock_flags_mask(struct page *page,
516 					unsigned long pfn,
517 					unsigned long mask)
518 {
519 	unsigned long *bitmap;
520 	unsigned long bitidx, word_bitidx;
521 	unsigned long word;
522 
523 	bitmap = get_pageblock_bitmap(page, pfn);
524 	bitidx = pfn_to_bitidx(page, pfn);
525 	word_bitidx = bitidx / BITS_PER_LONG;
526 	bitidx &= (BITS_PER_LONG-1);
527 
528 	word = bitmap[word_bitidx];
529 	return (word >> bitidx) & mask;
530 }
531 
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long mask)532 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
533 					unsigned long mask)
534 {
535 	return __get_pfnblock_flags_mask(page, pfn, mask);
536 }
537 EXPORT_SYMBOL_GPL(get_pfnblock_flags_mask);
538 
isolate_anon_lru_page(struct page * page)539 int isolate_anon_lru_page(struct page *page)
540 {
541 	int ret;
542 
543 	if (!PageLRU(page) || !PageAnon(page))
544 		return -EINVAL;
545 
546 	if (!get_page_unless_zero(page))
547 		return -EINVAL;
548 
549 	ret = isolate_lru_page(page);
550 	put_page(page);
551 
552 	return ret;
553 }
554 EXPORT_SYMBOL_GPL(isolate_anon_lru_page);
555 
get_pfnblock_migratetype(struct page * page,unsigned long pfn)556 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
557 {
558 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
559 }
560 
561 /**
562  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
563  * @page: The page within the block of interest
564  * @flags: The flags to set
565  * @pfn: The target page frame number
566  * @mask: mask of bits that the caller is interested in
567  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)568 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
569 					unsigned long pfn,
570 					unsigned long mask)
571 {
572 	unsigned long *bitmap;
573 	unsigned long bitidx, word_bitidx;
574 	unsigned long old_word, word;
575 
576 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
577 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
578 
579 	bitmap = get_pageblock_bitmap(page, pfn);
580 	bitidx = pfn_to_bitidx(page, pfn);
581 	word_bitidx = bitidx / BITS_PER_LONG;
582 	bitidx &= (BITS_PER_LONG-1);
583 
584 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
585 
586 	mask <<= bitidx;
587 	flags <<= bitidx;
588 
589 	word = READ_ONCE(bitmap[word_bitidx]);
590 	for (;;) {
591 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
592 		if (word == old_word)
593 			break;
594 		word = old_word;
595 	}
596 }
597 
set_pageblock_migratetype(struct page * page,int migratetype)598 void set_pageblock_migratetype(struct page *page, int migratetype)
599 {
600 	if (unlikely(page_group_by_mobility_disabled &&
601 		     migratetype < MIGRATE_PCPTYPES))
602 		migratetype = MIGRATE_UNMOVABLE;
603 
604 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
605 				page_to_pfn(page), MIGRATETYPE_MASK);
606 }
607 
608 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)609 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
610 {
611 	int ret = 0;
612 	unsigned seq;
613 	unsigned long pfn = page_to_pfn(page);
614 	unsigned long sp, start_pfn;
615 
616 	do {
617 		seq = zone_span_seqbegin(zone);
618 		start_pfn = zone->zone_start_pfn;
619 		sp = zone->spanned_pages;
620 		if (!zone_spans_pfn(zone, pfn))
621 			ret = 1;
622 	} while (zone_span_seqretry(zone, seq));
623 
624 	if (ret)
625 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
626 			pfn, zone_to_nid(zone), zone->name,
627 			start_pfn, start_pfn + sp);
628 
629 	return ret;
630 }
631 
page_is_consistent(struct zone * zone,struct page * page)632 static int page_is_consistent(struct zone *zone, struct page *page)
633 {
634 	if (!pfn_valid_within(page_to_pfn(page)))
635 		return 0;
636 	if (zone != page_zone(page))
637 		return 0;
638 
639 	return 1;
640 }
641 /*
642  * Temporary debugging check for pages not lying within a given zone.
643  */
bad_range(struct zone * zone,struct page * page)644 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
645 {
646 	if (page_outside_zone_boundaries(zone, page))
647 		return 1;
648 	if (!page_is_consistent(zone, page))
649 		return 1;
650 
651 	return 0;
652 }
653 #else
bad_range(struct zone * zone,struct page * page)654 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
655 {
656 	return 0;
657 }
658 #endif
659 
bad_page(struct page * page,const char * reason)660 static void bad_page(struct page *page, const char *reason)
661 {
662 	static unsigned long resume;
663 	static unsigned long nr_shown;
664 	static unsigned long nr_unshown;
665 
666 	/*
667 	 * Allow a burst of 60 reports, then keep quiet for that minute;
668 	 * or allow a steady drip of one report per second.
669 	 */
670 	if (nr_shown == 60) {
671 		if (time_before(jiffies, resume)) {
672 			nr_unshown++;
673 			goto out;
674 		}
675 		if (nr_unshown) {
676 			pr_alert(
677 			      "BUG: Bad page state: %lu messages suppressed\n",
678 				nr_unshown);
679 			nr_unshown = 0;
680 		}
681 		nr_shown = 0;
682 	}
683 	if (nr_shown++ == 0)
684 		resume = jiffies + 60 * HZ;
685 
686 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
687 		current->comm, page_to_pfn(page));
688 	__dump_page(page, reason);
689 	dump_page_owner(page);
690 
691 	print_modules();
692 	dump_stack();
693 out:
694 	/* Leave bad fields for debug, except PageBuddy could make trouble */
695 	page_mapcount_reset(page); /* remove PageBuddy */
696 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
697 }
698 
699 /*
700  * Higher-order pages are called "compound pages".  They are structured thusly:
701  *
702  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
703  *
704  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
705  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
706  *
707  * The first tail page's ->compound_dtor holds the offset in array of compound
708  * page destructors. See compound_page_dtors.
709  *
710  * The first tail page's ->compound_order holds the order of allocation.
711  * This usage means that zero-order pages may not be compound.
712  */
713 
free_compound_page(struct page * page)714 void free_compound_page(struct page *page)
715 {
716 	mem_cgroup_uncharge(page);
717 	__free_pages_ok(page, compound_order(page), FPI_NONE);
718 }
719 
prep_compound_page(struct page * page,unsigned int order)720 void prep_compound_page(struct page *page, unsigned int order)
721 {
722 	int i;
723 	int nr_pages = 1 << order;
724 
725 	__SetPageHead(page);
726 	for (i = 1; i < nr_pages; i++) {
727 		struct page *p = page + i;
728 		set_page_count(p, 0);
729 		p->mapping = TAIL_MAPPING;
730 		set_compound_head(p, page);
731 	}
732 
733 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
734 	set_compound_order(page, order);
735 	atomic_set(compound_mapcount_ptr(page), -1);
736 	if (hpage_pincount_available(page))
737 		atomic_set(compound_pincount_ptr(page), 0);
738 }
739 
740 #ifdef CONFIG_DEBUG_PAGEALLOC
741 unsigned int _debug_guardpage_minorder;
742 
743 bool _debug_pagealloc_enabled_early __read_mostly
744 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
745 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
746 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
747 EXPORT_SYMBOL(_debug_pagealloc_enabled);
748 
749 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
750 
early_debug_pagealloc(char * buf)751 static int __init early_debug_pagealloc(char *buf)
752 {
753 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
754 }
755 early_param("debug_pagealloc", early_debug_pagealloc);
756 
debug_guardpage_minorder_setup(char * buf)757 static int __init debug_guardpage_minorder_setup(char *buf)
758 {
759 	unsigned long res;
760 
761 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
762 		pr_err("Bad debug_guardpage_minorder value\n");
763 		return 0;
764 	}
765 	_debug_guardpage_minorder = res;
766 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
767 	return 0;
768 }
769 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
770 
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)771 static inline bool set_page_guard(struct zone *zone, struct page *page,
772 				unsigned int order, int migratetype)
773 {
774 	if (!debug_guardpage_enabled())
775 		return false;
776 
777 	if (order >= debug_guardpage_minorder())
778 		return false;
779 
780 	__SetPageGuard(page);
781 	INIT_LIST_HEAD(&page->lru);
782 	set_page_private(page, order);
783 	/* Guard pages are not available for any usage */
784 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
785 
786 	return true;
787 }
788 
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)789 static inline void clear_page_guard(struct zone *zone, struct page *page,
790 				unsigned int order, int migratetype)
791 {
792 	if (!debug_guardpage_enabled())
793 		return;
794 
795 	__ClearPageGuard(page);
796 
797 	set_page_private(page, 0);
798 	if (!is_migrate_isolate(migratetype))
799 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
800 }
801 #else
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)802 static inline bool set_page_guard(struct zone *zone, struct page *page,
803 			unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)804 static inline void clear_page_guard(struct zone *zone, struct page *page,
805 				unsigned int order, int migratetype) {}
806 #endif
807 
808 /*
809  * Enable static keys related to various memory debugging and hardening options.
810  * Some override others, and depend on early params that are evaluated in the
811  * order of appearance. So we need to first gather the full picture of what was
812  * enabled, and then make decisions.
813  */
init_mem_debugging_and_hardening(void)814 void init_mem_debugging_and_hardening(void)
815 {
816 	bool page_poisoning_requested = false;
817 
818 #ifdef CONFIG_PAGE_POISONING
819 	/*
820 	 * Page poisoning is debug page alloc for some arches. If
821 	 * either of those options are enabled, enable poisoning.
822 	 */
823 	if (page_poisoning_enabled() ||
824 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
825 	      debug_pagealloc_enabled())) {
826 		static_branch_enable(&_page_poisoning_enabled);
827 		page_poisoning_requested = true;
828 	}
829 #endif
830 
831 	if (_init_on_alloc_enabled_early) {
832 		if (page_poisoning_requested)
833 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
834 				"will take precedence over init_on_alloc\n");
835 		else
836 			static_branch_enable(&init_on_alloc);
837 	}
838 	if (_init_on_free_enabled_early) {
839 		if (page_poisoning_requested)
840 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
841 				"will take precedence over init_on_free\n");
842 		else
843 			static_branch_enable(&init_on_free);
844 	}
845 
846 #ifdef CONFIG_DEBUG_PAGEALLOC
847 	if (!debug_pagealloc_enabled())
848 		return;
849 
850 	static_branch_enable(&_debug_pagealloc_enabled);
851 
852 	if (!debug_guardpage_minorder())
853 		return;
854 
855 	static_branch_enable(&_debug_guardpage_enabled);
856 #endif
857 }
858 
set_buddy_order(struct page * page,unsigned int order)859 static inline void set_buddy_order(struct page *page, unsigned int order)
860 {
861 	set_page_private(page, order);
862 	__SetPageBuddy(page);
863 }
864 
865 /*
866  * This function checks whether a page is free && is the buddy
867  * we can coalesce a page and its buddy if
868  * (a) the buddy is not in a hole (check before calling!) &&
869  * (b) the buddy is in the buddy system &&
870  * (c) a page and its buddy have the same order &&
871  * (d) a page and its buddy are in the same zone.
872  *
873  * For recording whether a page is in the buddy system, we set PageBuddy.
874  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
875  *
876  * For recording page's order, we use page_private(page).
877  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)878 static inline bool page_is_buddy(struct page *page, struct page *buddy,
879 							unsigned int order)
880 {
881 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
882 		return false;
883 
884 	if (buddy_order(buddy) != order)
885 		return false;
886 
887 	/*
888 	 * zone check is done late to avoid uselessly calculating
889 	 * zone/node ids for pages that could never merge.
890 	 */
891 	if (page_zone_id(page) != page_zone_id(buddy))
892 		return false;
893 
894 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
895 
896 	return true;
897 }
898 
899 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)900 static inline struct capture_control *task_capc(struct zone *zone)
901 {
902 	struct capture_control *capc = current->capture_control;
903 
904 	return unlikely(capc) &&
905 		!(current->flags & PF_KTHREAD) &&
906 		!capc->page &&
907 		capc->cc->zone == zone ? capc : NULL;
908 }
909 
910 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)911 compaction_capture(struct capture_control *capc, struct page *page,
912 		   int order, int migratetype)
913 {
914 	if (!capc || order != capc->cc->order)
915 		return false;
916 
917 	/* Do not accidentally pollute CMA or isolated regions*/
918 	if (is_migrate_cma(migratetype) ||
919 	    is_migrate_isolate(migratetype))
920 		return false;
921 
922 	/*
923 	 * Do not let lower order allocations polluate a movable pageblock.
924 	 * This might let an unmovable request use a reclaimable pageblock
925 	 * and vice-versa but no more than normal fallback logic which can
926 	 * have trouble finding a high-order free page.
927 	 */
928 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
929 		return false;
930 
931 	capc->page = page;
932 	return true;
933 }
934 
935 #else
task_capc(struct zone * zone)936 static inline struct capture_control *task_capc(struct zone *zone)
937 {
938 	return NULL;
939 }
940 
941 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)942 compaction_capture(struct capture_control *capc, struct page *page,
943 		   int order, int migratetype)
944 {
945 	return false;
946 }
947 #endif /* CONFIG_COMPACTION */
948 
949 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)950 static inline void add_to_free_list(struct page *page, struct zone *zone,
951 				    unsigned int order, int migratetype)
952 {
953 	struct free_area *area = &zone->free_area[order];
954 
955 	list_add(&page->lru, &area->free_list[migratetype]);
956 	area->nr_free++;
957 }
958 
959 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)960 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
961 					 unsigned int order, int migratetype)
962 {
963 	struct free_area *area = &zone->free_area[order];
964 
965 	list_add_tail(&page->lru, &area->free_list[migratetype]);
966 	area->nr_free++;
967 }
968 
969 /*
970  * Used for pages which are on another list. Move the pages to the tail
971  * of the list - so the moved pages won't immediately be considered for
972  * allocation again (e.g., optimization for memory onlining).
973  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)974 static inline void move_to_free_list(struct page *page, struct zone *zone,
975 				     unsigned int order, int migratetype)
976 {
977 	struct free_area *area = &zone->free_area[order];
978 
979 	list_move_tail(&page->lru, &area->free_list[migratetype]);
980 }
981 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)982 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
983 					   unsigned int order)
984 {
985 	/* clear reported state and update reported page count */
986 	if (page_reported(page))
987 		__ClearPageReported(page);
988 
989 	list_del(&page->lru);
990 	__ClearPageBuddy(page);
991 	set_page_private(page, 0);
992 	zone->free_area[order].nr_free--;
993 }
994 
995 /*
996  * If this is not the largest possible page, check if the buddy
997  * of the next-highest order is free. If it is, it's possible
998  * that pages are being freed that will coalesce soon. In case,
999  * that is happening, add the free page to the tail of the list
1000  * so it's less likely to be used soon and more likely to be merged
1001  * as a higher order page
1002  */
1003 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)1004 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1005 		   struct page *page, unsigned int order)
1006 {
1007 	struct page *higher_page, *higher_buddy;
1008 	unsigned long combined_pfn;
1009 
1010 	if (order >= MAX_ORDER - 2)
1011 		return false;
1012 
1013 	if (!pfn_valid_within(buddy_pfn))
1014 		return false;
1015 
1016 	combined_pfn = buddy_pfn & pfn;
1017 	higher_page = page + (combined_pfn - pfn);
1018 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1019 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1020 
1021 	return pfn_valid_within(buddy_pfn) &&
1022 	       page_is_buddy(higher_page, higher_buddy, order + 1);
1023 }
1024 
1025 /*
1026  * Freeing function for a buddy system allocator.
1027  *
1028  * The concept of a buddy system is to maintain direct-mapped table
1029  * (containing bit values) for memory blocks of various "orders".
1030  * The bottom level table contains the map for the smallest allocatable
1031  * units of memory (here, pages), and each level above it describes
1032  * pairs of units from the levels below, hence, "buddies".
1033  * At a high level, all that happens here is marking the table entry
1034  * at the bottom level available, and propagating the changes upward
1035  * as necessary, plus some accounting needed to play nicely with other
1036  * parts of the VM system.
1037  * At each level, we keep a list of pages, which are heads of continuous
1038  * free pages of length of (1 << order) and marked with PageBuddy.
1039  * Page's order is recorded in page_private(page) field.
1040  * So when we are allocating or freeing one, we can derive the state of the
1041  * other.  That is, if we allocate a small block, and both were
1042  * free, the remainder of the region must be split into blocks.
1043  * If a block is freed, and its buddy is also free, then this
1044  * triggers coalescing into a block of larger size.
1045  *
1046  * -- nyc
1047  */
1048 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)1049 static inline void __free_one_page(struct page *page,
1050 		unsigned long pfn,
1051 		struct zone *zone, unsigned int order,
1052 		int migratetype, fpi_t fpi_flags)
1053 {
1054 	struct capture_control *capc = task_capc(zone);
1055 	unsigned long buddy_pfn;
1056 	unsigned long combined_pfn;
1057 	unsigned int max_order;
1058 	struct page *buddy;
1059 	bool to_tail;
1060 
1061 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1062 
1063 	VM_BUG_ON(!zone_is_initialized(zone));
1064 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1065 
1066 	VM_BUG_ON(migratetype == -1);
1067 	if (likely(!is_migrate_isolate(migratetype)))
1068 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1069 
1070 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1071 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1072 
1073 continue_merging:
1074 	while (order < max_order) {
1075 		if (compaction_capture(capc, page, order, migratetype)) {
1076 			__mod_zone_freepage_state(zone, -(1 << order),
1077 								migratetype);
1078 			return;
1079 		}
1080 		buddy_pfn = __find_buddy_pfn(pfn, order);
1081 		buddy = page + (buddy_pfn - pfn);
1082 
1083 		if (!pfn_valid_within(buddy_pfn))
1084 			goto done_merging;
1085 		if (!page_is_buddy(page, buddy, order))
1086 			goto done_merging;
1087 		/*
1088 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1089 		 * merge with it and move up one order.
1090 		 */
1091 		if (page_is_guard(buddy))
1092 			clear_page_guard(zone, buddy, order, migratetype);
1093 		else
1094 			del_page_from_free_list(buddy, zone, order);
1095 		combined_pfn = buddy_pfn & pfn;
1096 		page = page + (combined_pfn - pfn);
1097 		pfn = combined_pfn;
1098 		order++;
1099 	}
1100 	if (order < MAX_ORDER - 1) {
1101 		/* If we are here, it means order is >= pageblock_order.
1102 		 * We want to prevent merge between freepages on isolate
1103 		 * pageblock and normal pageblock. Without this, pageblock
1104 		 * isolation could cause incorrect freepage or CMA accounting.
1105 		 *
1106 		 * We don't want to hit this code for the more frequent
1107 		 * low-order merging.
1108 		 */
1109 		if (unlikely(has_isolate_pageblock(zone))) {
1110 			int buddy_mt;
1111 
1112 			buddy_pfn = __find_buddy_pfn(pfn, order);
1113 			buddy = page + (buddy_pfn - pfn);
1114 			buddy_mt = get_pageblock_migratetype(buddy);
1115 
1116 			if (migratetype != buddy_mt
1117 					&& (is_migrate_isolate(migratetype) ||
1118 						is_migrate_isolate(buddy_mt)))
1119 				goto done_merging;
1120 		}
1121 		max_order = order + 1;
1122 		goto continue_merging;
1123 	}
1124 
1125 done_merging:
1126 	set_buddy_order(page, order);
1127 
1128 	if (fpi_flags & FPI_TO_TAIL)
1129 		to_tail = true;
1130 	else if (is_shuffle_order(order))
1131 		to_tail = shuffle_pick_tail();
1132 	else
1133 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1134 
1135 	if (to_tail)
1136 		add_to_free_list_tail(page, zone, order, migratetype);
1137 	else
1138 		add_to_free_list(page, zone, order, migratetype);
1139 
1140 	/* Notify page reporting subsystem of freed page */
1141 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1142 		page_reporting_notify_free(order);
1143 }
1144 
1145 /*
1146  * A bad page could be due to a number of fields. Instead of multiple branches,
1147  * try and check multiple fields with one check. The caller must do a detailed
1148  * check if necessary.
1149  */
page_expected_state(struct page * page,unsigned long check_flags)1150 static inline bool page_expected_state(struct page *page,
1151 					unsigned long check_flags)
1152 {
1153 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1154 		return false;
1155 
1156 	if (unlikely((unsigned long)page->mapping |
1157 			page_ref_count(page) |
1158 #ifdef CONFIG_MEMCG
1159 			(unsigned long)page->mem_cgroup |
1160 #endif
1161 			(page->flags & check_flags)))
1162 		return false;
1163 
1164 	return true;
1165 }
1166 
page_bad_reason(struct page * page,unsigned long flags)1167 static const char *page_bad_reason(struct page *page, unsigned long flags)
1168 {
1169 	const char *bad_reason = NULL;
1170 
1171 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1172 		bad_reason = "nonzero mapcount";
1173 	if (unlikely(page->mapping != NULL))
1174 		bad_reason = "non-NULL mapping";
1175 	if (unlikely(page_ref_count(page) != 0))
1176 		bad_reason = "nonzero _refcount";
1177 	if (unlikely(page->flags & flags)) {
1178 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1179 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1180 		else
1181 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1182 	}
1183 #ifdef CONFIG_MEMCG
1184 	if (unlikely(page->mem_cgroup))
1185 		bad_reason = "page still charged to cgroup";
1186 #endif
1187 	return bad_reason;
1188 }
1189 
check_free_page_bad(struct page * page)1190 static void check_free_page_bad(struct page *page)
1191 {
1192 	bad_page(page,
1193 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1194 }
1195 
check_free_page(struct page * page)1196 static inline int check_free_page(struct page *page)
1197 {
1198 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1199 		return 0;
1200 
1201 	/* Something has gone sideways, find it */
1202 	check_free_page_bad(page);
1203 	return 1;
1204 }
1205 
free_tail_pages_check(struct page * head_page,struct page * page)1206 static int free_tail_pages_check(struct page *head_page, struct page *page)
1207 {
1208 	int ret = 1;
1209 
1210 	/*
1211 	 * We rely page->lru.next never has bit 0 set, unless the page
1212 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1213 	 */
1214 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1215 
1216 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1217 		ret = 0;
1218 		goto out;
1219 	}
1220 	switch (page - head_page) {
1221 	case 1:
1222 		/* the first tail page: ->mapping may be compound_mapcount() */
1223 		if (unlikely(compound_mapcount(page))) {
1224 			bad_page(page, "nonzero compound_mapcount");
1225 			goto out;
1226 		}
1227 		break;
1228 	case 2:
1229 		/*
1230 		 * the second tail page: ->mapping is
1231 		 * deferred_list.next -- ignore value.
1232 		 */
1233 		break;
1234 	default:
1235 		if (page->mapping != TAIL_MAPPING) {
1236 			bad_page(page, "corrupted mapping in tail page");
1237 			goto out;
1238 		}
1239 		break;
1240 	}
1241 	if (unlikely(!PageTail(page))) {
1242 		bad_page(page, "PageTail not set");
1243 		goto out;
1244 	}
1245 	if (unlikely(compound_head(page) != head_page)) {
1246 		bad_page(page, "compound_head not consistent");
1247 		goto out;
1248 	}
1249 	ret = 0;
1250 out:
1251 	page->mapping = NULL;
1252 	clear_compound_head(page);
1253 	return ret;
1254 }
1255 
kernel_init_free_pages(struct page * page,int numpages,bool zero_tags)1256 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1257 {
1258 	int i;
1259 
1260 	if (zero_tags) {
1261 		for (i = 0; i < numpages; i++)
1262 			tag_clear_highpage(page + i);
1263 		return;
1264 	}
1265 
1266 	/* s390's use of memset() could override KASAN redzones. */
1267 	kasan_disable_current();
1268 	for (i = 0; i < numpages; i++) {
1269 		u8 tag = page_kasan_tag(page + i);
1270 		page_kasan_tag_reset(page + i);
1271 		clear_highpage(page + i);
1272 		page_kasan_tag_set(page + i, tag);
1273 	}
1274 	kasan_enable_current();
1275 }
1276 
free_pages_prepare(struct page * page,unsigned int order,bool check_free,fpi_t fpi_flags)1277 static __always_inline bool free_pages_prepare(struct page *page,
1278 			unsigned int order, bool check_free, fpi_t fpi_flags)
1279 {
1280 	int bad = 0;
1281 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1282 
1283 	VM_BUG_ON_PAGE(PageTail(page), page);
1284 
1285 	trace_mm_page_free(page, order);
1286 
1287 	if (unlikely(PageHWPoison(page)) && !order) {
1288 		/*
1289 		 * Do not let hwpoison pages hit pcplists/buddy
1290 		 * Untie memcg state and reset page's owner
1291 		 */
1292 		if (memcg_kmem_enabled() && PageKmemcg(page))
1293 			__memcg_kmem_uncharge_page(page, order);
1294 		reset_page_owner(page, order);
1295 		free_page_pinner(page, order);
1296 		return false;
1297 	}
1298 
1299 	/*
1300 	 * Check tail pages before head page information is cleared to
1301 	 * avoid checking PageCompound for order-0 pages.
1302 	 */
1303 	if (unlikely(order)) {
1304 		bool compound = PageCompound(page);
1305 		int i;
1306 
1307 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1308 
1309 		if (compound)
1310 			ClearPageDoubleMap(page);
1311 		for (i = 1; i < (1 << order); i++) {
1312 			if (compound)
1313 				bad += free_tail_pages_check(page, page + i);
1314 			if (unlikely(check_free_page(page + i))) {
1315 				bad++;
1316 				continue;
1317 			}
1318 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1319 		}
1320 	}
1321 	if (PageMappingFlags(page))
1322 		page->mapping = NULL;
1323 	if (memcg_kmem_enabled() && PageKmemcg(page))
1324 		__memcg_kmem_uncharge_page(page, order);
1325 	if (check_free)
1326 		bad += check_free_page(page);
1327 	if (bad)
1328 		return false;
1329 
1330 	page_cpupid_reset_last(page);
1331 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1332 	reset_page_owner(page, order);
1333 	free_page_pinner(page, order);
1334 
1335 	if (!PageHighMem(page)) {
1336 		debug_check_no_locks_freed(page_address(page),
1337 					   PAGE_SIZE << order);
1338 		debug_check_no_obj_freed(page_address(page),
1339 					   PAGE_SIZE << order);
1340 	}
1341 
1342 	kernel_poison_pages(page, 1 << order);
1343 
1344 	/*
1345 	 * As memory initialization might be integrated into KASAN,
1346 	 * kasan_free_pages and kernel_init_free_pages must be
1347 	 * kept together to avoid discrepancies in behavior.
1348 	 *
1349 	 * With hardware tag-based KASAN, memory tags must be set before the
1350 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1351 	 */
1352 	if (kasan_has_integrated_init()) {
1353 		if (!skip_kasan_poison)
1354 			kasan_free_pages(page, order);
1355 	} else {
1356 		bool init = want_init_on_free();
1357 
1358 		if (init)
1359 			kernel_init_free_pages(page, 1 << order, false);
1360 		if (!skip_kasan_poison)
1361 			kasan_poison_pages(page, order, init);
1362 	}
1363 
1364 	/*
1365 	 * arch_free_page() can make the page's contents inaccessible.  s390
1366 	 * does this.  So nothing which can access the page's contents should
1367 	 * happen after this.
1368 	 */
1369 	arch_free_page(page, order);
1370 
1371 	debug_pagealloc_unmap_pages(page, 1 << order);
1372 
1373 	return true;
1374 }
1375 
1376 #ifdef CONFIG_DEBUG_VM
1377 /*
1378  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1379  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1380  * moved from pcp lists to free lists.
1381  */
free_pcp_prepare(struct page * page)1382 static bool free_pcp_prepare(struct page *page)
1383 {
1384 	return free_pages_prepare(page, 0, true, FPI_NONE);
1385 }
1386 
bulkfree_pcp_prepare(struct page * page)1387 static bool bulkfree_pcp_prepare(struct page *page)
1388 {
1389 	if (debug_pagealloc_enabled_static())
1390 		return check_free_page(page);
1391 	else
1392 		return false;
1393 }
1394 #else
1395 /*
1396  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1397  * moving from pcp lists to free list in order to reduce overhead. With
1398  * debug_pagealloc enabled, they are checked also immediately when being freed
1399  * to the pcp lists.
1400  */
free_pcp_prepare(struct page * page)1401 static bool free_pcp_prepare(struct page *page)
1402 {
1403 	if (debug_pagealloc_enabled_static())
1404 		return free_pages_prepare(page, 0, true, FPI_NONE);
1405 	else
1406 		return free_pages_prepare(page, 0, false, FPI_NONE);
1407 }
1408 
bulkfree_pcp_prepare(struct page * page)1409 static bool bulkfree_pcp_prepare(struct page *page)
1410 {
1411 	return check_free_page(page);
1412 }
1413 #endif /* CONFIG_DEBUG_VM */
1414 
prefetch_buddy(struct page * page)1415 static inline void prefetch_buddy(struct page *page)
1416 {
1417 	unsigned long pfn = page_to_pfn(page);
1418 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1419 	struct page *buddy = page + (buddy_pfn - pfn);
1420 
1421 	prefetch(buddy);
1422 }
1423 
1424 /*
1425  * Frees a number of pages from the PCP lists
1426  * Assumes all pages on list are in same zone, and of same order.
1427  * count is the number of pages to free.
1428  *
1429  * If the zone was previously in an "all pages pinned" state then look to
1430  * see if this freeing clears that state.
1431  *
1432  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1433  * pinned" detection logic.
1434  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1435 static void free_pcppages_bulk(struct zone *zone, int count,
1436 					struct per_cpu_pages *pcp)
1437 {
1438 	int migratetype = 0;
1439 	int batch_free = 0;
1440 	int prefetch_nr = 0;
1441 	bool isolated_pageblocks;
1442 	struct page *page, *tmp;
1443 	LIST_HEAD(head);
1444 
1445 	/*
1446 	 * Ensure proper count is passed which otherwise would stuck in the
1447 	 * below while (list_empty(list)) loop.
1448 	 */
1449 	count = min(pcp->count, count);
1450 	while (count) {
1451 		struct list_head *list;
1452 
1453 		/*
1454 		 * Remove pages from lists in a round-robin fashion. A
1455 		 * batch_free count is maintained that is incremented when an
1456 		 * empty list is encountered.  This is so more pages are freed
1457 		 * off fuller lists instead of spinning excessively around empty
1458 		 * lists
1459 		 */
1460 		do {
1461 			batch_free++;
1462 			if (++migratetype == MIGRATE_PCPTYPES)
1463 				migratetype = 0;
1464 			list = &pcp->lists[migratetype];
1465 		} while (list_empty(list));
1466 
1467 		/* This is the only non-empty list. Free them all. */
1468 		if (batch_free == MIGRATE_PCPTYPES)
1469 			batch_free = count;
1470 
1471 		do {
1472 			page = list_last_entry(list, struct page, lru);
1473 			/* must delete to avoid corrupting pcp list */
1474 			list_del(&page->lru);
1475 			pcp->count--;
1476 
1477 			if (bulkfree_pcp_prepare(page))
1478 				continue;
1479 
1480 			list_add_tail(&page->lru, &head);
1481 
1482 			/*
1483 			 * We are going to put the page back to the global
1484 			 * pool, prefetch its buddy to speed up later access
1485 			 * under zone->lock. It is believed the overhead of
1486 			 * an additional test and calculating buddy_pfn here
1487 			 * can be offset by reduced memory latency later. To
1488 			 * avoid excessive prefetching due to large count, only
1489 			 * prefetch buddy for the first pcp->batch nr of pages.
1490 			 */
1491 			if (prefetch_nr++ < pcp->batch)
1492 				prefetch_buddy(page);
1493 		} while (--count && --batch_free && !list_empty(list));
1494 	}
1495 
1496 	spin_lock(&zone->lock);
1497 	isolated_pageblocks = has_isolate_pageblock(zone);
1498 
1499 	/*
1500 	 * Use safe version since after __free_one_page(),
1501 	 * page->lru.next will not point to original list.
1502 	 */
1503 	list_for_each_entry_safe(page, tmp, &head, lru) {
1504 		int mt = get_pcppage_migratetype(page);
1505 		/* MIGRATE_ISOLATE page should not go to pcplists */
1506 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1507 		/* Pageblock could have been isolated meanwhile */
1508 		if (unlikely(isolated_pageblocks))
1509 			mt = get_pageblock_migratetype(page);
1510 
1511 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1512 		trace_mm_page_pcpu_drain(page, 0, mt);
1513 	}
1514 	spin_unlock(&zone->lock);
1515 }
1516 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1517 static void free_one_page(struct zone *zone,
1518 				struct page *page, unsigned long pfn,
1519 				unsigned int order,
1520 				int migratetype, fpi_t fpi_flags)
1521 {
1522 	spin_lock(&zone->lock);
1523 	if (unlikely(has_isolate_pageblock(zone) ||
1524 		is_migrate_isolate(migratetype))) {
1525 		migratetype = get_pfnblock_migratetype(page, pfn);
1526 	}
1527 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1528 	spin_unlock(&zone->lock);
1529 }
1530 
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1531 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1532 				unsigned long zone, int nid)
1533 {
1534 	mm_zero_struct_page(page);
1535 	set_page_links(page, zone, nid, pfn);
1536 	init_page_count(page);
1537 	page_mapcount_reset(page);
1538 	page_cpupid_reset_last(page);
1539 	page_kasan_tag_reset(page);
1540 
1541 	INIT_LIST_HEAD(&page->lru);
1542 #ifdef WANT_PAGE_VIRTUAL
1543 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1544 	if (!is_highmem_idx(zone))
1545 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1546 #endif
1547 }
1548 
1549 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1550 static void __meminit init_reserved_page(unsigned long pfn)
1551 {
1552 	pg_data_t *pgdat;
1553 	int nid, zid;
1554 
1555 	if (!early_page_uninitialised(pfn))
1556 		return;
1557 
1558 	nid = early_pfn_to_nid(pfn);
1559 	pgdat = NODE_DATA(nid);
1560 
1561 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1562 		struct zone *zone = &pgdat->node_zones[zid];
1563 
1564 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1565 			break;
1566 	}
1567 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1568 }
1569 #else
init_reserved_page(unsigned long pfn)1570 static inline void init_reserved_page(unsigned long pfn)
1571 {
1572 }
1573 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1574 
1575 /*
1576  * Initialised pages do not have PageReserved set. This function is
1577  * called for each range allocated by the bootmem allocator and
1578  * marks the pages PageReserved. The remaining valid pages are later
1579  * sent to the buddy page allocator.
1580  */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1581 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1582 {
1583 	unsigned long start_pfn = PFN_DOWN(start);
1584 	unsigned long end_pfn = PFN_UP(end);
1585 
1586 	for (; start_pfn < end_pfn; start_pfn++) {
1587 		if (pfn_valid(start_pfn)) {
1588 			struct page *page = pfn_to_page(start_pfn);
1589 
1590 			init_reserved_page(start_pfn);
1591 
1592 			/* Avoid false-positive PageTail() */
1593 			INIT_LIST_HEAD(&page->lru);
1594 
1595 			/*
1596 			 * no need for atomic set_bit because the struct
1597 			 * page is not visible yet so nobody should
1598 			 * access it yet.
1599 			 */
1600 			__SetPageReserved(page);
1601 		}
1602 	}
1603 }
1604 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1605 static void __free_pages_ok(struct page *page, unsigned int order,
1606 			    fpi_t fpi_flags)
1607 {
1608 	unsigned long flags;
1609 	int migratetype;
1610 	unsigned long pfn = page_to_pfn(page);
1611 	bool skip_free_unref_page = false;
1612 
1613 	if (!free_pages_prepare(page, order, true, fpi_flags))
1614 		return;
1615 
1616 	migratetype = get_pfnblock_migratetype(page, pfn);
1617 	trace_android_vh_free_unref_page_bypass(page, order, migratetype, &skip_free_unref_page);
1618 	if (skip_free_unref_page)
1619 		return;
1620 
1621 	local_irq_save(flags);
1622 	__count_vm_events(PGFREE, 1 << order);
1623 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1624 		      fpi_flags);
1625 	local_irq_restore(flags);
1626 }
1627 
__free_pages_core(struct page * page,unsigned int order)1628 void __free_pages_core(struct page *page, unsigned int order)
1629 {
1630 	unsigned int nr_pages = 1 << order;
1631 	struct page *p = page;
1632 	unsigned int loop;
1633 
1634 	/*
1635 	 * When initializing the memmap, __init_single_page() sets the refcount
1636 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1637 	 * refcount of all involved pages to 0.
1638 	 */
1639 	prefetchw(p);
1640 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1641 		prefetchw(p + 1);
1642 		__ClearPageReserved(p);
1643 		set_page_count(p, 0);
1644 	}
1645 	__ClearPageReserved(p);
1646 	set_page_count(p, 0);
1647 
1648 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1649 
1650 	/*
1651 	 * Bypass PCP and place fresh pages right to the tail, primarily
1652 	 * relevant for memory onlining.
1653 	 */
1654 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1655 }
1656 
1657 #ifdef CONFIG_NEED_MULTIPLE_NODES
1658 
1659 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1660 
1661 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1662 
1663 /*
1664  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1665  */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)1666 int __meminit __early_pfn_to_nid(unsigned long pfn,
1667 					struct mminit_pfnnid_cache *state)
1668 {
1669 	unsigned long start_pfn, end_pfn;
1670 	int nid;
1671 
1672 	if (state->last_start <= pfn && pfn < state->last_end)
1673 		return state->last_nid;
1674 
1675 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1676 	if (nid != NUMA_NO_NODE) {
1677 		state->last_start = start_pfn;
1678 		state->last_end = end_pfn;
1679 		state->last_nid = nid;
1680 	}
1681 
1682 	return nid;
1683 }
1684 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1685 
early_pfn_to_nid(unsigned long pfn)1686 int __meminit early_pfn_to_nid(unsigned long pfn)
1687 {
1688 	static DEFINE_SPINLOCK(early_pfn_lock);
1689 	int nid;
1690 
1691 	spin_lock(&early_pfn_lock);
1692 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1693 	if (nid < 0)
1694 		nid = first_online_node;
1695 	spin_unlock(&early_pfn_lock);
1696 
1697 	return nid;
1698 }
1699 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1700 
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)1701 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1702 							unsigned int order)
1703 {
1704 	if (early_page_uninitialised(pfn))
1705 		return;
1706 	__free_pages_core(page, order);
1707 }
1708 
1709 /*
1710  * Check that the whole (or subset of) a pageblock given by the interval of
1711  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1712  * with the migration of free compaction scanner. The scanners then need to
1713  * use only pfn_valid_within() check for arches that allow holes within
1714  * pageblocks.
1715  *
1716  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1717  *
1718  * It's possible on some configurations to have a setup like node0 node1 node0
1719  * i.e. it's possible that all pages within a zones range of pages do not
1720  * belong to a single zone. We assume that a border between node0 and node1
1721  * can occur within a single pageblock, but not a node0 node1 node0
1722  * interleaving within a single pageblock. It is therefore sufficient to check
1723  * the first and last page of a pageblock and avoid checking each individual
1724  * page in a pageblock.
1725  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1726 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1727 				     unsigned long end_pfn, struct zone *zone)
1728 {
1729 	struct page *start_page;
1730 	struct page *end_page;
1731 
1732 	/* end_pfn is one past the range we are checking */
1733 	end_pfn--;
1734 
1735 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1736 		return NULL;
1737 
1738 	start_page = pfn_to_online_page(start_pfn);
1739 	if (!start_page)
1740 		return NULL;
1741 
1742 	if (page_zone(start_page) != zone)
1743 		return NULL;
1744 
1745 	end_page = pfn_to_page(end_pfn);
1746 
1747 	/* This gives a shorter code than deriving page_zone(end_page) */
1748 	if (page_zone_id(start_page) != page_zone_id(end_page))
1749 		return NULL;
1750 
1751 	return start_page;
1752 }
1753 
set_zone_contiguous(struct zone * zone)1754 void set_zone_contiguous(struct zone *zone)
1755 {
1756 	unsigned long block_start_pfn = zone->zone_start_pfn;
1757 	unsigned long block_end_pfn;
1758 
1759 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1760 	for (; block_start_pfn < zone_end_pfn(zone);
1761 			block_start_pfn = block_end_pfn,
1762 			 block_end_pfn += pageblock_nr_pages) {
1763 
1764 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1765 
1766 		if (!__pageblock_pfn_to_page(block_start_pfn,
1767 					     block_end_pfn, zone))
1768 			return;
1769 		cond_resched();
1770 	}
1771 
1772 	/* We confirm that there is no hole */
1773 	zone->contiguous = true;
1774 }
1775 
clear_zone_contiguous(struct zone * zone)1776 void clear_zone_contiguous(struct zone *zone)
1777 {
1778 	zone->contiguous = false;
1779 }
1780 
1781 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1782 static void __init deferred_free_range(unsigned long pfn,
1783 				       unsigned long nr_pages)
1784 {
1785 	struct page *page;
1786 	unsigned long i;
1787 
1788 	if (!nr_pages)
1789 		return;
1790 
1791 	page = pfn_to_page(pfn);
1792 
1793 	/* Free a large naturally-aligned chunk if possible */
1794 	if (nr_pages == pageblock_nr_pages &&
1795 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1796 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1797 		__free_pages_core(page, pageblock_order);
1798 		return;
1799 	}
1800 
1801 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1802 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1803 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1804 		__free_pages_core(page, 0);
1805 	}
1806 }
1807 
1808 /* Completion tracking for deferred_init_memmap() threads */
1809 static atomic_t pgdat_init_n_undone __initdata;
1810 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1811 
pgdat_init_report_one_done(void)1812 static inline void __init pgdat_init_report_one_done(void)
1813 {
1814 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1815 		complete(&pgdat_init_all_done_comp);
1816 }
1817 
1818 /*
1819  * Returns true if page needs to be initialized or freed to buddy allocator.
1820  *
1821  * First we check if pfn is valid on architectures where it is possible to have
1822  * holes within pageblock_nr_pages. On systems where it is not possible, this
1823  * function is optimized out.
1824  *
1825  * Then, we check if a current large page is valid by only checking the validity
1826  * of the head pfn.
1827  */
deferred_pfn_valid(unsigned long pfn)1828 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1829 {
1830 	if (!pfn_valid_within(pfn))
1831 		return false;
1832 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1833 		return false;
1834 	return true;
1835 }
1836 
1837 /*
1838  * Free pages to buddy allocator. Try to free aligned pages in
1839  * pageblock_nr_pages sizes.
1840  */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)1841 static void __init deferred_free_pages(unsigned long pfn,
1842 				       unsigned long end_pfn)
1843 {
1844 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1845 	unsigned long nr_free = 0;
1846 
1847 	for (; pfn < end_pfn; pfn++) {
1848 		if (!deferred_pfn_valid(pfn)) {
1849 			deferred_free_range(pfn - nr_free, nr_free);
1850 			nr_free = 0;
1851 		} else if (!(pfn & nr_pgmask)) {
1852 			deferred_free_range(pfn - nr_free, nr_free);
1853 			nr_free = 1;
1854 		} else {
1855 			nr_free++;
1856 		}
1857 	}
1858 	/* Free the last block of pages to allocator */
1859 	deferred_free_range(pfn - nr_free, nr_free);
1860 }
1861 
1862 /*
1863  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1864  * by performing it only once every pageblock_nr_pages.
1865  * Return number of pages initialized.
1866  */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)1867 static unsigned long  __init deferred_init_pages(struct zone *zone,
1868 						 unsigned long pfn,
1869 						 unsigned long end_pfn)
1870 {
1871 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1872 	int nid = zone_to_nid(zone);
1873 	unsigned long nr_pages = 0;
1874 	int zid = zone_idx(zone);
1875 	struct page *page = NULL;
1876 
1877 	for (; pfn < end_pfn; pfn++) {
1878 		if (!deferred_pfn_valid(pfn)) {
1879 			page = NULL;
1880 			continue;
1881 		} else if (!page || !(pfn & nr_pgmask)) {
1882 			page = pfn_to_page(pfn);
1883 		} else {
1884 			page++;
1885 		}
1886 		__init_single_page(page, pfn, zid, nid);
1887 		nr_pages++;
1888 	}
1889 	return (nr_pages);
1890 }
1891 
1892 /*
1893  * This function is meant to pre-load the iterator for the zone init.
1894  * Specifically it walks through the ranges until we are caught up to the
1895  * first_init_pfn value and exits there. If we never encounter the value we
1896  * return false indicating there are no valid ranges left.
1897  */
1898 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)1899 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1900 				    unsigned long *spfn, unsigned long *epfn,
1901 				    unsigned long first_init_pfn)
1902 {
1903 	u64 j;
1904 
1905 	/*
1906 	 * Start out by walking through the ranges in this zone that have
1907 	 * already been initialized. We don't need to do anything with them
1908 	 * so we just need to flush them out of the system.
1909 	 */
1910 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1911 		if (*epfn <= first_init_pfn)
1912 			continue;
1913 		if (*spfn < first_init_pfn)
1914 			*spfn = first_init_pfn;
1915 		*i = j;
1916 		return true;
1917 	}
1918 
1919 	return false;
1920 }
1921 
1922 /*
1923  * Initialize and free pages. We do it in two loops: first we initialize
1924  * struct page, then free to buddy allocator, because while we are
1925  * freeing pages we can access pages that are ahead (computing buddy
1926  * page in __free_one_page()).
1927  *
1928  * In order to try and keep some memory in the cache we have the loop
1929  * broken along max page order boundaries. This way we will not cause
1930  * any issues with the buddy page computation.
1931  */
1932 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)1933 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1934 		       unsigned long *end_pfn)
1935 {
1936 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1937 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1938 	unsigned long nr_pages = 0;
1939 	u64 j = *i;
1940 
1941 	/* First we loop through and initialize the page values */
1942 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1943 		unsigned long t;
1944 
1945 		if (mo_pfn <= *start_pfn)
1946 			break;
1947 
1948 		t = min(mo_pfn, *end_pfn);
1949 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1950 
1951 		if (mo_pfn < *end_pfn) {
1952 			*start_pfn = mo_pfn;
1953 			break;
1954 		}
1955 	}
1956 
1957 	/* Reset values and now loop through freeing pages as needed */
1958 	swap(j, *i);
1959 
1960 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1961 		unsigned long t;
1962 
1963 		if (mo_pfn <= spfn)
1964 			break;
1965 
1966 		t = min(mo_pfn, epfn);
1967 		deferred_free_pages(spfn, t);
1968 
1969 		if (mo_pfn <= epfn)
1970 			break;
1971 	}
1972 
1973 	return nr_pages;
1974 }
1975 
1976 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)1977 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1978 			   void *arg)
1979 {
1980 	unsigned long spfn, epfn;
1981 	struct zone *zone = arg;
1982 	u64 i;
1983 
1984 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1985 
1986 	/*
1987 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1988 	 * can avoid introducing any issues with the buddy allocator.
1989 	 */
1990 	while (spfn < end_pfn) {
1991 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1992 		cond_resched();
1993 	}
1994 }
1995 
1996 /* An arch may override for more concurrency. */
1997 __weak int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)1998 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1999 {
2000 	return 1;
2001 }
2002 
2003 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2004 static int __init deferred_init_memmap(void *data)
2005 {
2006 	pg_data_t *pgdat = data;
2007 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2008 	unsigned long spfn = 0, epfn = 0;
2009 	unsigned long first_init_pfn, flags;
2010 	unsigned long start = jiffies;
2011 	struct zone *zone;
2012 	int zid, max_threads;
2013 	u64 i;
2014 
2015 	/* Bind memory initialisation thread to a local node if possible */
2016 	if (!cpumask_empty(cpumask))
2017 		set_cpus_allowed_ptr(current, cpumask);
2018 
2019 	pgdat_resize_lock(pgdat, &flags);
2020 	first_init_pfn = pgdat->first_deferred_pfn;
2021 	if (first_init_pfn == ULONG_MAX) {
2022 		pgdat_resize_unlock(pgdat, &flags);
2023 		pgdat_init_report_one_done();
2024 		return 0;
2025 	}
2026 
2027 	/* Sanity check boundaries */
2028 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2029 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2030 	pgdat->first_deferred_pfn = ULONG_MAX;
2031 
2032 	/*
2033 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2034 	 * interrupt thread must allocate this early in boot, zone must be
2035 	 * pre-grown prior to start of deferred page initialization.
2036 	 */
2037 	pgdat_resize_unlock(pgdat, &flags);
2038 
2039 	/* Only the highest zone is deferred so find it */
2040 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2041 		zone = pgdat->node_zones + zid;
2042 		if (first_init_pfn < zone_end_pfn(zone))
2043 			break;
2044 	}
2045 
2046 	/* If the zone is empty somebody else may have cleared out the zone */
2047 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2048 						 first_init_pfn))
2049 		goto zone_empty;
2050 
2051 	max_threads = deferred_page_init_max_threads(cpumask);
2052 
2053 	while (spfn < epfn) {
2054 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2055 		struct padata_mt_job job = {
2056 			.thread_fn   = deferred_init_memmap_chunk,
2057 			.fn_arg      = zone,
2058 			.start       = spfn,
2059 			.size        = epfn_align - spfn,
2060 			.align       = PAGES_PER_SECTION,
2061 			.min_chunk   = PAGES_PER_SECTION,
2062 			.max_threads = max_threads,
2063 		};
2064 
2065 		padata_do_multithreaded(&job);
2066 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2067 						    epfn_align);
2068 	}
2069 zone_empty:
2070 	/* Sanity check that the next zone really is unpopulated */
2071 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2072 
2073 	pr_info("node %d deferred pages initialised in %ums\n",
2074 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2075 
2076 	pgdat_init_report_one_done();
2077 	return 0;
2078 }
2079 
2080 /*
2081  * If this zone has deferred pages, try to grow it by initializing enough
2082  * deferred pages to satisfy the allocation specified by order, rounded up to
2083  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2084  * of SECTION_SIZE bytes by initializing struct pages in increments of
2085  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2086  *
2087  * Return true when zone was grown, otherwise return false. We return true even
2088  * when we grow less than requested, to let the caller decide if there are
2089  * enough pages to satisfy the allocation.
2090  *
2091  * Note: We use noinline because this function is needed only during boot, and
2092  * it is called from a __ref function _deferred_grow_zone. This way we are
2093  * making sure that it is not inlined into permanent text section.
2094  */
2095 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)2096 deferred_grow_zone(struct zone *zone, unsigned int order)
2097 {
2098 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2099 	pg_data_t *pgdat = zone->zone_pgdat;
2100 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2101 	unsigned long spfn, epfn, flags;
2102 	unsigned long nr_pages = 0;
2103 	u64 i;
2104 
2105 	/* Only the last zone may have deferred pages */
2106 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2107 		return false;
2108 
2109 	pgdat_resize_lock(pgdat, &flags);
2110 
2111 	/*
2112 	 * If someone grew this zone while we were waiting for spinlock, return
2113 	 * true, as there might be enough pages already.
2114 	 */
2115 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2116 		pgdat_resize_unlock(pgdat, &flags);
2117 		return true;
2118 	}
2119 
2120 	/* If the zone is empty somebody else may have cleared out the zone */
2121 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2122 						 first_deferred_pfn)) {
2123 		pgdat->first_deferred_pfn = ULONG_MAX;
2124 		pgdat_resize_unlock(pgdat, &flags);
2125 		/* Retry only once. */
2126 		return first_deferred_pfn != ULONG_MAX;
2127 	}
2128 
2129 	/*
2130 	 * Initialize and free pages in MAX_ORDER sized increments so
2131 	 * that we can avoid introducing any issues with the buddy
2132 	 * allocator.
2133 	 */
2134 	while (spfn < epfn) {
2135 		/* update our first deferred PFN for this section */
2136 		first_deferred_pfn = spfn;
2137 
2138 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2139 		touch_nmi_watchdog();
2140 
2141 		/* We should only stop along section boundaries */
2142 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2143 			continue;
2144 
2145 		/* If our quota has been met we can stop here */
2146 		if (nr_pages >= nr_pages_needed)
2147 			break;
2148 	}
2149 
2150 	pgdat->first_deferred_pfn = spfn;
2151 	pgdat_resize_unlock(pgdat, &flags);
2152 
2153 	return nr_pages > 0;
2154 }
2155 
2156 /*
2157  * deferred_grow_zone() is __init, but it is called from
2158  * get_page_from_freelist() during early boot until deferred_pages permanently
2159  * disables this call. This is why we have refdata wrapper to avoid warning,
2160  * and to ensure that the function body gets unloaded.
2161  */
2162 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)2163 _deferred_grow_zone(struct zone *zone, unsigned int order)
2164 {
2165 	return deferred_grow_zone(zone, order);
2166 }
2167 
2168 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2169 
page_alloc_init_late(void)2170 void __init page_alloc_init_late(void)
2171 {
2172 	struct zone *zone;
2173 	int nid;
2174 
2175 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2176 
2177 	/* There will be num_node_state(N_MEMORY) threads */
2178 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2179 	for_each_node_state(nid, N_MEMORY) {
2180 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2181 	}
2182 
2183 	/* Block until all are initialised */
2184 	wait_for_completion(&pgdat_init_all_done_comp);
2185 
2186 	/*
2187 	 * The number of managed pages has changed due to the initialisation
2188 	 * so the pcpu batch and high limits needs to be updated or the limits
2189 	 * will be artificially small.
2190 	 */
2191 	for_each_populated_zone(zone)
2192 		zone_pcp_update(zone);
2193 
2194 	/*
2195 	 * We initialized the rest of the deferred pages.  Permanently disable
2196 	 * on-demand struct page initialization.
2197 	 */
2198 	static_branch_disable(&deferred_pages);
2199 
2200 	/* Reinit limits that are based on free pages after the kernel is up */
2201 	files_maxfiles_init();
2202 #endif
2203 
2204 	/* Discard memblock private memory */
2205 	memblock_discard();
2206 
2207 	for_each_node_state(nid, N_MEMORY)
2208 		shuffle_free_memory(NODE_DATA(nid));
2209 
2210 	for_each_populated_zone(zone)
2211 		set_zone_contiguous(zone);
2212 }
2213 
2214 #ifdef CONFIG_CMA
2215 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)2216 void __init init_cma_reserved_pageblock(struct page *page)
2217 {
2218 	unsigned i = pageblock_nr_pages;
2219 	struct page *p = page;
2220 
2221 	do {
2222 		__ClearPageReserved(p);
2223 		set_page_count(p, 0);
2224 	} while (++p, --i);
2225 
2226 	set_pageblock_migratetype(page, MIGRATE_CMA);
2227 
2228 	if (pageblock_order >= MAX_ORDER) {
2229 		i = pageblock_nr_pages;
2230 		p = page;
2231 		do {
2232 			set_page_refcounted(p);
2233 			__free_pages(p, MAX_ORDER - 1);
2234 			p += MAX_ORDER_NR_PAGES;
2235 		} while (i -= MAX_ORDER_NR_PAGES);
2236 	} else {
2237 		set_page_refcounted(page);
2238 		__free_pages(page, pageblock_order);
2239 	}
2240 
2241 	adjust_managed_page_count(page, pageblock_nr_pages);
2242 	page_zone(page)->cma_pages += pageblock_nr_pages;
2243 }
2244 #endif
2245 
2246 /*
2247  * The order of subdivision here is critical for the IO subsystem.
2248  * Please do not alter this order without good reasons and regression
2249  * testing. Specifically, as large blocks of memory are subdivided,
2250  * the order in which smaller blocks are delivered depends on the order
2251  * they're subdivided in this function. This is the primary factor
2252  * influencing the order in which pages are delivered to the IO
2253  * subsystem according to empirical testing, and this is also justified
2254  * by considering the behavior of a buddy system containing a single
2255  * large block of memory acted on by a series of small allocations.
2256  * This behavior is a critical factor in sglist merging's success.
2257  *
2258  * -- nyc
2259  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)2260 static inline void expand(struct zone *zone, struct page *page,
2261 	int low, int high, int migratetype)
2262 {
2263 	unsigned long size = 1 << high;
2264 
2265 	while (high > low) {
2266 		high--;
2267 		size >>= 1;
2268 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2269 
2270 		/*
2271 		 * Mark as guard pages (or page), that will allow to
2272 		 * merge back to allocator when buddy will be freed.
2273 		 * Corresponding page table entries will not be touched,
2274 		 * pages will stay not present in virtual address space
2275 		 */
2276 		if (set_page_guard(zone, &page[size], high, migratetype))
2277 			continue;
2278 
2279 		add_to_free_list(&page[size], zone, high, migratetype);
2280 		set_buddy_order(&page[size], high);
2281 	}
2282 }
2283 
check_new_page_bad(struct page * page)2284 static void check_new_page_bad(struct page *page)
2285 {
2286 	if (unlikely(page->flags & __PG_HWPOISON)) {
2287 		/* Don't complain about hwpoisoned pages */
2288 		page_mapcount_reset(page); /* remove PageBuddy */
2289 		return;
2290 	}
2291 
2292 	bad_page(page,
2293 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2294 }
2295 
2296 /*
2297  * This page is about to be returned from the page allocator
2298  */
check_new_page(struct page * page)2299 static inline int check_new_page(struct page *page)
2300 {
2301 	if (likely(page_expected_state(page,
2302 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2303 		return 0;
2304 
2305 	check_new_page_bad(page);
2306 	return 1;
2307 }
2308 
2309 #ifdef CONFIG_DEBUG_VM
2310 /*
2311  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2312  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2313  * also checked when pcp lists are refilled from the free lists.
2314  */
check_pcp_refill(struct page * page)2315 static inline bool check_pcp_refill(struct page *page)
2316 {
2317 	if (debug_pagealloc_enabled_static())
2318 		return check_new_page(page);
2319 	else
2320 		return false;
2321 }
2322 
check_new_pcp(struct page * page)2323 static inline bool check_new_pcp(struct page *page)
2324 {
2325 	return check_new_page(page);
2326 }
2327 #else
2328 /*
2329  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2330  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2331  * enabled, they are also checked when being allocated from the pcp lists.
2332  */
check_pcp_refill(struct page * page)2333 static inline bool check_pcp_refill(struct page *page)
2334 {
2335 	return check_new_page(page);
2336 }
check_new_pcp(struct page * page)2337 static inline bool check_new_pcp(struct page *page)
2338 {
2339 	if (debug_pagealloc_enabled_static())
2340 		return check_new_page(page);
2341 	else
2342 		return false;
2343 }
2344 #endif /* CONFIG_DEBUG_VM */
2345 
check_new_pages(struct page * page,unsigned int order)2346 static bool check_new_pages(struct page *page, unsigned int order)
2347 {
2348 	int i;
2349 	for (i = 0; i < (1 << order); i++) {
2350 		struct page *p = page + i;
2351 
2352 		if (unlikely(check_new_page(p)))
2353 			return true;
2354 	}
2355 
2356 	return false;
2357 }
2358 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)2359 inline void post_alloc_hook(struct page *page, unsigned int order,
2360 				gfp_t gfp_flags)
2361 {
2362 	set_page_private(page, 0);
2363 	set_page_refcounted(page);
2364 
2365 	arch_alloc_page(page, order);
2366 	debug_pagealloc_map_pages(page, 1 << order);
2367 
2368 	/*
2369 	 * Page unpoisoning must happen before memory initialization.
2370 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2371 	 * allocations and the page unpoisoning code will complain.
2372 	 */
2373 	kernel_unpoison_pages(page, 1 << order);
2374 
2375 	/*
2376 	 * As memory initialization might be integrated into KASAN,
2377 	 * kasan_alloc_pages and kernel_init_free_pages must be
2378 	 * kept together to avoid discrepancies in behavior.
2379 	 */
2380 	if (kasan_has_integrated_init()) {
2381 		kasan_alloc_pages(page, order, gfp_flags);
2382 	} else {
2383 		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2384 
2385 		kasan_unpoison_pages(page, order, init);
2386 		if (init)
2387 			kernel_init_free_pages(page, 1 << order,
2388 					       gfp_flags & __GFP_ZEROTAGS);
2389 	}
2390 
2391 	set_page_owner(page, order, gfp_flags);
2392 }
2393 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)2394 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2395 							unsigned int alloc_flags)
2396 {
2397 	post_alloc_hook(page, order, gfp_flags);
2398 
2399 	if (order && (gfp_flags & __GFP_COMP))
2400 		prep_compound_page(page, order);
2401 
2402 	/*
2403 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2404 	 * allocate the page. The expectation is that the caller is taking
2405 	 * steps that will free more memory. The caller should avoid the page
2406 	 * being used for !PFMEMALLOC purposes.
2407 	 */
2408 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2409 		set_page_pfmemalloc(page);
2410 	else
2411 		clear_page_pfmemalloc(page);
2412 	trace_android_vh_test_clear_look_around_ref(page);
2413 }
2414 
2415 /*
2416  * Go through the free lists for the given migratetype and remove
2417  * the smallest available page from the freelists
2418  */
2419 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)2420 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2421 						int migratetype)
2422 {
2423 	unsigned int current_order;
2424 	struct free_area *area;
2425 	struct page *page;
2426 
2427 	/* Find a page of the appropriate size in the preferred list */
2428 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2429 		area = &(zone->free_area[current_order]);
2430 		page = get_page_from_free_area(area, migratetype);
2431 		if (!page)
2432 			continue;
2433 		del_page_from_free_list(page, zone, current_order);
2434 		expand(zone, page, order, current_order, migratetype);
2435 		set_pcppage_migratetype(page, migratetype);
2436 		return page;
2437 	}
2438 
2439 	return NULL;
2440 }
2441 
2442 
2443 /*
2444  * This array describes the order lists are fallen back to when
2445  * the free lists for the desirable migrate type are depleted
2446  */
2447 static int fallbacks[MIGRATE_TYPES][3] = {
2448 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2449 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2450 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2451 #ifdef CONFIG_CMA
2452 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2453 #endif
2454 #ifdef CONFIG_MEMORY_ISOLATION
2455 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2456 #endif
2457 };
2458 
2459 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2460 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2461 					unsigned int order)
2462 {
2463 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2464 }
2465 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2466 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2467 					unsigned int order) { return NULL; }
2468 #endif
2469 
2470 /*
2471  * Move the free pages in a range to the freelist tail of the requested type.
2472  * Note that start_page and end_pages are not aligned on a pageblock
2473  * boundary. If alignment is required, use move_freepages_block()
2474  */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype,int * num_movable)2475 static int move_freepages(struct zone *zone,
2476 			  struct page *start_page, struct page *end_page,
2477 			  int migratetype, int *num_movable)
2478 {
2479 	struct page *page;
2480 	unsigned int order;
2481 	int pages_moved = 0;
2482 
2483 	for (page = start_page; page <= end_page;) {
2484 		if (!pfn_valid_within(page_to_pfn(page))) {
2485 			page++;
2486 			continue;
2487 		}
2488 
2489 		if (!PageBuddy(page)) {
2490 			/*
2491 			 * We assume that pages that could be isolated for
2492 			 * migration are movable. But we don't actually try
2493 			 * isolating, as that would be expensive.
2494 			 */
2495 			if (num_movable &&
2496 					(PageLRU(page) || __PageMovable(page)))
2497 				(*num_movable)++;
2498 
2499 			page++;
2500 			continue;
2501 		}
2502 
2503 		/* Make sure we are not inadvertently changing nodes */
2504 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2505 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2506 
2507 		order = buddy_order(page);
2508 		move_to_free_list(page, zone, order, migratetype);
2509 		page += 1 << order;
2510 		pages_moved += 1 << order;
2511 	}
2512 
2513 	return pages_moved;
2514 }
2515 
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2516 int move_freepages_block(struct zone *zone, struct page *page,
2517 				int migratetype, int *num_movable)
2518 {
2519 	unsigned long start_pfn, end_pfn;
2520 	struct page *start_page, *end_page;
2521 
2522 	if (num_movable)
2523 		*num_movable = 0;
2524 
2525 	start_pfn = page_to_pfn(page);
2526 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2527 	start_page = pfn_to_page(start_pfn);
2528 	end_page = start_page + pageblock_nr_pages - 1;
2529 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2530 
2531 	/* Do not cross zone boundaries */
2532 	if (!zone_spans_pfn(zone, start_pfn))
2533 		start_page = page;
2534 	if (!zone_spans_pfn(zone, end_pfn))
2535 		return 0;
2536 
2537 	return move_freepages(zone, start_page, end_page, migratetype,
2538 								num_movable);
2539 }
2540 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2541 static void change_pageblock_range(struct page *pageblock_page,
2542 					int start_order, int migratetype)
2543 {
2544 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2545 
2546 	while (nr_pageblocks--) {
2547 		set_pageblock_migratetype(pageblock_page, migratetype);
2548 		pageblock_page += pageblock_nr_pages;
2549 	}
2550 }
2551 
2552 /*
2553  * When we are falling back to another migratetype during allocation, try to
2554  * steal extra free pages from the same pageblocks to satisfy further
2555  * allocations, instead of polluting multiple pageblocks.
2556  *
2557  * If we are stealing a relatively large buddy page, it is likely there will
2558  * be more free pages in the pageblock, so try to steal them all. For
2559  * reclaimable and unmovable allocations, we steal regardless of page size,
2560  * as fragmentation caused by those allocations polluting movable pageblocks
2561  * is worse than movable allocations stealing from unmovable and reclaimable
2562  * pageblocks.
2563  */
can_steal_fallback(unsigned int order,int start_mt)2564 static bool can_steal_fallback(unsigned int order, int start_mt)
2565 {
2566 	/*
2567 	 * Leaving this order check is intended, although there is
2568 	 * relaxed order check in next check. The reason is that
2569 	 * we can actually steal whole pageblock if this condition met,
2570 	 * but, below check doesn't guarantee it and that is just heuristic
2571 	 * so could be changed anytime.
2572 	 */
2573 	if (order >= pageblock_order)
2574 		return true;
2575 
2576 	if (order >= pageblock_order / 2 ||
2577 		start_mt == MIGRATE_RECLAIMABLE ||
2578 		start_mt == MIGRATE_UNMOVABLE ||
2579 		page_group_by_mobility_disabled)
2580 		return true;
2581 
2582 	return false;
2583 }
2584 
boost_watermark(struct zone * zone)2585 static inline bool boost_watermark(struct zone *zone)
2586 {
2587 	unsigned long max_boost;
2588 
2589 	if (!watermark_boost_factor)
2590 		return false;
2591 	/*
2592 	 * Don't bother in zones that are unlikely to produce results.
2593 	 * On small machines, including kdump capture kernels running
2594 	 * in a small area, boosting the watermark can cause an out of
2595 	 * memory situation immediately.
2596 	 */
2597 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2598 		return false;
2599 
2600 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2601 			watermark_boost_factor, 10000);
2602 
2603 	/*
2604 	 * high watermark may be uninitialised if fragmentation occurs
2605 	 * very early in boot so do not boost. We do not fall
2606 	 * through and boost by pageblock_nr_pages as failing
2607 	 * allocations that early means that reclaim is not going
2608 	 * to help and it may even be impossible to reclaim the
2609 	 * boosted watermark resulting in a hang.
2610 	 */
2611 	if (!max_boost)
2612 		return false;
2613 
2614 	max_boost = max(pageblock_nr_pages, max_boost);
2615 
2616 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2617 		max_boost);
2618 
2619 	return true;
2620 }
2621 
2622 /*
2623  * This function implements actual steal behaviour. If order is large enough,
2624  * we can steal whole pageblock. If not, we first move freepages in this
2625  * pageblock to our migratetype and determine how many already-allocated pages
2626  * are there in the pageblock with a compatible migratetype. If at least half
2627  * of pages are free or compatible, we can change migratetype of the pageblock
2628  * itself, so pages freed in the future will be put on the correct free list.
2629  */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)2630 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2631 		unsigned int alloc_flags, int start_type, bool whole_block)
2632 {
2633 	unsigned int current_order = buddy_order(page);
2634 	int free_pages, movable_pages, alike_pages;
2635 	int old_block_type;
2636 
2637 	old_block_type = get_pageblock_migratetype(page);
2638 
2639 	/*
2640 	 * This can happen due to races and we want to prevent broken
2641 	 * highatomic accounting.
2642 	 */
2643 	if (is_migrate_highatomic(old_block_type))
2644 		goto single_page;
2645 
2646 	/* Take ownership for orders >= pageblock_order */
2647 	if (current_order >= pageblock_order) {
2648 		change_pageblock_range(page, current_order, start_type);
2649 		goto single_page;
2650 	}
2651 
2652 	/*
2653 	 * Boost watermarks to increase reclaim pressure to reduce the
2654 	 * likelihood of future fallbacks. Wake kswapd now as the node
2655 	 * may be balanced overall and kswapd will not wake naturally.
2656 	 */
2657 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2658 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2659 
2660 	/* We are not allowed to try stealing from the whole block */
2661 	if (!whole_block)
2662 		goto single_page;
2663 
2664 	free_pages = move_freepages_block(zone, page, start_type,
2665 						&movable_pages);
2666 	/*
2667 	 * Determine how many pages are compatible with our allocation.
2668 	 * For movable allocation, it's the number of movable pages which
2669 	 * we just obtained. For other types it's a bit more tricky.
2670 	 */
2671 	if (start_type == MIGRATE_MOVABLE) {
2672 		alike_pages = movable_pages;
2673 	} else {
2674 		/*
2675 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2676 		 * to MOVABLE pageblock, consider all non-movable pages as
2677 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2678 		 * vice versa, be conservative since we can't distinguish the
2679 		 * exact migratetype of non-movable pages.
2680 		 */
2681 		if (old_block_type == MIGRATE_MOVABLE)
2682 			alike_pages = pageblock_nr_pages
2683 						- (free_pages + movable_pages);
2684 		else
2685 			alike_pages = 0;
2686 	}
2687 
2688 	/* moving whole block can fail due to zone boundary conditions */
2689 	if (!free_pages)
2690 		goto single_page;
2691 
2692 	/*
2693 	 * If a sufficient number of pages in the block are either free or of
2694 	 * comparable migratability as our allocation, claim the whole block.
2695 	 */
2696 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2697 			page_group_by_mobility_disabled)
2698 		set_pageblock_migratetype(page, start_type);
2699 
2700 	return;
2701 
2702 single_page:
2703 	move_to_free_list(page, zone, current_order, start_type);
2704 }
2705 
2706 /*
2707  * Check whether there is a suitable fallback freepage with requested order.
2708  * If only_stealable is true, this function returns fallback_mt only if
2709  * we can steal other freepages all together. This would help to reduce
2710  * fragmentation due to mixed migratetype pages in one pageblock.
2711  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2712 int find_suitable_fallback(struct free_area *area, unsigned int order,
2713 			int migratetype, bool only_stealable, bool *can_steal)
2714 {
2715 	int i;
2716 	int fallback_mt;
2717 
2718 	if (area->nr_free == 0)
2719 		return -1;
2720 
2721 	*can_steal = false;
2722 	for (i = 0;; i++) {
2723 		fallback_mt = fallbacks[migratetype][i];
2724 		if (fallback_mt == MIGRATE_TYPES)
2725 			break;
2726 
2727 		if (free_area_empty(area, fallback_mt))
2728 			continue;
2729 
2730 		if (can_steal_fallback(order, migratetype))
2731 			*can_steal = true;
2732 
2733 		if (!only_stealable)
2734 			return fallback_mt;
2735 
2736 		if (*can_steal)
2737 			return fallback_mt;
2738 	}
2739 
2740 	return -1;
2741 }
2742 
2743 /*
2744  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2745  * there are no empty page blocks that contain a page with a suitable order
2746  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2747 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2748 				unsigned int alloc_order)
2749 {
2750 	int mt;
2751 	unsigned long max_managed, flags;
2752 
2753 	/*
2754 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2755 	 * Check is race-prone but harmless.
2756 	 */
2757 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2758 	if (zone->nr_reserved_highatomic >= max_managed)
2759 		return;
2760 
2761 	spin_lock_irqsave(&zone->lock, flags);
2762 
2763 	/* Recheck the nr_reserved_highatomic limit under the lock */
2764 	if (zone->nr_reserved_highatomic >= max_managed)
2765 		goto out_unlock;
2766 
2767 	/* Yoink! */
2768 	mt = get_pageblock_migratetype(page);
2769 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2770 	    && !is_migrate_cma(mt)) {
2771 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2772 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2773 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2774 	}
2775 
2776 out_unlock:
2777 	spin_unlock_irqrestore(&zone->lock, flags);
2778 }
2779 
2780 /*
2781  * Used when an allocation is about to fail under memory pressure. This
2782  * potentially hurts the reliability of high-order allocations when under
2783  * intense memory pressure but failed atomic allocations should be easier
2784  * to recover from than an OOM.
2785  *
2786  * If @force is true, try to unreserve a pageblock even though highatomic
2787  * pageblock is exhausted.
2788  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2789 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2790 						bool force)
2791 {
2792 	struct zonelist *zonelist = ac->zonelist;
2793 	unsigned long flags;
2794 	struct zoneref *z;
2795 	struct zone *zone;
2796 	struct page *page;
2797 	int order;
2798 	bool ret;
2799 	bool skip_unreserve_highatomic = false;
2800 
2801 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2802 								ac->nodemask) {
2803 		/*
2804 		 * Preserve at least one pageblock unless memory pressure
2805 		 * is really high.
2806 		 */
2807 		if (!force && zone->nr_reserved_highatomic <=
2808 					pageblock_nr_pages)
2809 			continue;
2810 
2811 		trace_android_vh_unreserve_highatomic_bypass(force, zone,
2812 				&skip_unreserve_highatomic);
2813 		if (skip_unreserve_highatomic)
2814 			continue;
2815 
2816 		spin_lock_irqsave(&zone->lock, flags);
2817 		for (order = 0; order < MAX_ORDER; order++) {
2818 			struct free_area *area = &(zone->free_area[order]);
2819 
2820 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2821 			if (!page)
2822 				continue;
2823 
2824 			/*
2825 			 * In page freeing path, migratetype change is racy so
2826 			 * we can counter several free pages in a pageblock
2827 			 * in this loop althoug we changed the pageblock type
2828 			 * from highatomic to ac->migratetype. So we should
2829 			 * adjust the count once.
2830 			 */
2831 			if (is_migrate_highatomic_page(page)) {
2832 				/*
2833 				 * It should never happen but changes to
2834 				 * locking could inadvertently allow a per-cpu
2835 				 * drain to add pages to MIGRATE_HIGHATOMIC
2836 				 * while unreserving so be safe and watch for
2837 				 * underflows.
2838 				 */
2839 				zone->nr_reserved_highatomic -= min(
2840 						pageblock_nr_pages,
2841 						zone->nr_reserved_highatomic);
2842 			}
2843 
2844 			/*
2845 			 * Convert to ac->migratetype and avoid the normal
2846 			 * pageblock stealing heuristics. Minimally, the caller
2847 			 * is doing the work and needs the pages. More
2848 			 * importantly, if the block was always converted to
2849 			 * MIGRATE_UNMOVABLE or another type then the number
2850 			 * of pageblocks that cannot be completely freed
2851 			 * may increase.
2852 			 */
2853 			set_pageblock_migratetype(page, ac->migratetype);
2854 			ret = move_freepages_block(zone, page, ac->migratetype,
2855 									NULL);
2856 			if (ret) {
2857 				spin_unlock_irqrestore(&zone->lock, flags);
2858 				return ret;
2859 			}
2860 		}
2861 		spin_unlock_irqrestore(&zone->lock, flags);
2862 	}
2863 
2864 	return false;
2865 }
2866 
2867 /*
2868  * Try finding a free buddy page on the fallback list and put it on the free
2869  * list of requested migratetype, possibly along with other pages from the same
2870  * block, depending on fragmentation avoidance heuristics. Returns true if
2871  * fallback was found so that __rmqueue_smallest() can grab it.
2872  *
2873  * The use of signed ints for order and current_order is a deliberate
2874  * deviation from the rest of this file, to make the for loop
2875  * condition simpler.
2876  */
2877 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2878 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2879 						unsigned int alloc_flags)
2880 {
2881 	struct free_area *area;
2882 	int current_order;
2883 	int min_order = order;
2884 	struct page *page;
2885 	int fallback_mt;
2886 	bool can_steal;
2887 
2888 	/*
2889 	 * Do not steal pages from freelists belonging to other pageblocks
2890 	 * i.e. orders < pageblock_order. If there are no local zones free,
2891 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2892 	 */
2893 	if (alloc_flags & ALLOC_NOFRAGMENT)
2894 		min_order = pageblock_order;
2895 
2896 	/*
2897 	 * Find the largest available free page in the other list. This roughly
2898 	 * approximates finding the pageblock with the most free pages, which
2899 	 * would be too costly to do exactly.
2900 	 */
2901 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2902 				--current_order) {
2903 		area = &(zone->free_area[current_order]);
2904 		fallback_mt = find_suitable_fallback(area, current_order,
2905 				start_migratetype, false, &can_steal);
2906 		if (fallback_mt == -1)
2907 			continue;
2908 
2909 		/*
2910 		 * We cannot steal all free pages from the pageblock and the
2911 		 * requested migratetype is movable. In that case it's better to
2912 		 * steal and split the smallest available page instead of the
2913 		 * largest available page, because even if the next movable
2914 		 * allocation falls back into a different pageblock than this
2915 		 * one, it won't cause permanent fragmentation.
2916 		 */
2917 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2918 					&& current_order > order)
2919 			goto find_smallest;
2920 
2921 		goto do_steal;
2922 	}
2923 
2924 	return false;
2925 
2926 find_smallest:
2927 	for (current_order = order; current_order < MAX_ORDER;
2928 							current_order++) {
2929 		area = &(zone->free_area[current_order]);
2930 		fallback_mt = find_suitable_fallback(area, current_order,
2931 				start_migratetype, false, &can_steal);
2932 		if (fallback_mt != -1)
2933 			break;
2934 	}
2935 
2936 	/*
2937 	 * This should not happen - we already found a suitable fallback
2938 	 * when looking for the largest page.
2939 	 */
2940 	VM_BUG_ON(current_order == MAX_ORDER);
2941 
2942 do_steal:
2943 	page = get_page_from_free_area(area, fallback_mt);
2944 
2945 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2946 								can_steal);
2947 
2948 	trace_mm_page_alloc_extfrag(page, order, current_order,
2949 		start_migratetype, fallback_mt);
2950 
2951 	return true;
2952 
2953 }
2954 
2955 /*
2956  * Do the hard work of removing an element from the buddy allocator.
2957  * Call me with the zone->lock already held.
2958  */
2959 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2960 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2961 						unsigned int alloc_flags)
2962 {
2963 	struct page *page;
2964 
2965 retry:
2966 	page = __rmqueue_smallest(zone, order, migratetype);
2967 
2968 	if (unlikely(!page) && __rmqueue_fallback(zone, order, migratetype,
2969 						  alloc_flags))
2970 		goto retry;
2971 
2972 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2973 	return page;
2974 }
2975 
2976 #ifdef CONFIG_CMA
__rmqueue_cma(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2977 static struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
2978 				  int migratetype,
2979 				  unsigned int alloc_flags)
2980 {
2981 	struct page *page = __rmqueue_cma_fallback(zone, order);
2982 	trace_mm_page_alloc_zone_locked(page, order, MIGRATE_CMA);
2983 	return page;
2984 }
2985 #else
__rmqueue_cma(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2986 static inline struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
2987 					 int migratetype,
2988 					 unsigned int alloc_flags)
2989 {
2990 	return NULL;
2991 }
2992 #endif
2993 
2994 /*
2995  * Obtain a specified number of elements from the buddy allocator, all under
2996  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2997  * Returns the number of new pages which were placed at *list.
2998  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2999 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3000 			unsigned long count, struct list_head *list,
3001 			int migratetype, unsigned int alloc_flags)
3002 {
3003 	int i, alloced = 0;
3004 
3005 	spin_lock(&zone->lock);
3006 	for (i = 0; i < count; ++i) {
3007 		struct page *page;
3008 
3009 		if (is_migrate_cma(migratetype))
3010 			page = __rmqueue_cma(zone, order, migratetype,
3011 					     alloc_flags);
3012 		else
3013 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3014 
3015 		if (unlikely(page == NULL))
3016 			break;
3017 
3018 		if (unlikely(check_pcp_refill(page)))
3019 			continue;
3020 
3021 		/*
3022 		 * Split buddy pages returned by expand() are received here in
3023 		 * physical page order. The page is added to the tail of
3024 		 * caller's list. From the callers perspective, the linked list
3025 		 * is ordered by page number under some conditions. This is
3026 		 * useful for IO devices that can forward direction from the
3027 		 * head, thus also in the physical page order. This is useful
3028 		 * for IO devices that can merge IO requests if the physical
3029 		 * pages are ordered properly.
3030 		 */
3031 		list_add_tail(&page->lru, list);
3032 		alloced++;
3033 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3034 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3035 					      -(1 << order));
3036 	}
3037 
3038 	/*
3039 	 * i pages were removed from the buddy list even if some leak due
3040 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3041 	 * on i. Do not confuse with 'alloced' which is the number of
3042 	 * pages added to the pcp list.
3043 	 */
3044 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3045 	spin_unlock(&zone->lock);
3046 	return alloced;
3047 }
3048 
3049 /*
3050  * Return the pcp list that corresponds to the migrate type if that list isn't
3051  * empty.
3052  * If the list is empty return NULL.
3053  */
get_populated_pcp_list(struct zone * zone,unsigned int order,struct per_cpu_pages * pcp,int migratetype,unsigned int alloc_flags)3054 static struct list_head *get_populated_pcp_list(struct zone *zone,
3055 			unsigned int order, struct per_cpu_pages *pcp,
3056 			int migratetype, unsigned int alloc_flags)
3057 {
3058 	struct list_head *list = &pcp->lists[migratetype];
3059 
3060 	if (list_empty(list)) {
3061 		trace_android_vh_rmqueue_bulk_bypass(order, pcp, migratetype, list);
3062 		if (!list_empty(list))
3063 			return list;
3064 
3065 		pcp->count += rmqueue_bulk(zone, order,
3066 				pcp->batch, list,
3067 				migratetype, alloc_flags);
3068 
3069 		if (list_empty(list))
3070 			list = NULL;
3071 	}
3072 	return list;
3073 }
3074 
3075 #ifdef CONFIG_NUMA
3076 /*
3077  * Called from the vmstat counter updater to drain pagesets of this
3078  * currently executing processor on remote nodes after they have
3079  * expired.
3080  *
3081  * Note that this function must be called with the thread pinned to
3082  * a single processor.
3083  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)3084 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3085 {
3086 	unsigned long flags;
3087 	int to_drain, batch;
3088 
3089 	local_irq_save(flags);
3090 	batch = READ_ONCE(pcp->batch);
3091 	to_drain = min(pcp->count, batch);
3092 	if (to_drain > 0)
3093 		free_pcppages_bulk(zone, to_drain, pcp);
3094 	local_irq_restore(flags);
3095 }
3096 #endif
3097 
3098 /*
3099  * Drain pcplists of the indicated processor and zone.
3100  *
3101  * The processor must either be the current processor and the
3102  * thread pinned to the current processor or a processor that
3103  * is not online.
3104  */
drain_pages_zone(unsigned int cpu,struct zone * zone)3105 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3106 {
3107 	unsigned long flags;
3108 	struct per_cpu_pageset *pset;
3109 	struct per_cpu_pages *pcp;
3110 
3111 	local_irq_save(flags);
3112 	pset = per_cpu_ptr(zone->pageset, cpu);
3113 
3114 	pcp = &pset->pcp;
3115 	if (pcp->count)
3116 		free_pcppages_bulk(zone, pcp->count, pcp);
3117 	local_irq_restore(flags);
3118 }
3119 
3120 /*
3121  * Drain pcplists of all zones on the indicated processor.
3122  *
3123  * The processor must either be the current processor and the
3124  * thread pinned to the current processor or a processor that
3125  * is not online.
3126  */
drain_pages(unsigned int cpu)3127 static void drain_pages(unsigned int cpu)
3128 {
3129 	struct zone *zone;
3130 
3131 	for_each_populated_zone(zone) {
3132 		drain_pages_zone(cpu, zone);
3133 	}
3134 }
3135 
3136 /*
3137  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3138  *
3139  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3140  * the single zone's pages.
3141  */
drain_local_pages(struct zone * zone)3142 void drain_local_pages(struct zone *zone)
3143 {
3144 	int cpu = smp_processor_id();
3145 
3146 	if (zone)
3147 		drain_pages_zone(cpu, zone);
3148 	else
3149 		drain_pages(cpu);
3150 }
3151 
drain_local_pages_wq(struct work_struct * work)3152 static void drain_local_pages_wq(struct work_struct *work)
3153 {
3154 	struct pcpu_drain *drain;
3155 
3156 	drain = container_of(work, struct pcpu_drain, work);
3157 
3158 	/*
3159 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3160 	 * we can race with cpu offline when the WQ can move this from
3161 	 * a cpu pinned worker to an unbound one. We can operate on a different
3162 	 * cpu which is allright but we also have to make sure to not move to
3163 	 * a different one.
3164 	 */
3165 	preempt_disable();
3166 	drain_local_pages(drain->zone);
3167 	preempt_enable();
3168 }
3169 
3170 /*
3171  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3172  *
3173  * When zone parameter is non-NULL, spill just the single zone's pages.
3174  *
3175  * Note that this can be extremely slow as the draining happens in a workqueue.
3176  */
drain_all_pages(struct zone * zone)3177 void drain_all_pages(struct zone *zone)
3178 {
3179 	int cpu;
3180 
3181 	/*
3182 	 * Allocate in the BSS so we wont require allocation in
3183 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3184 	 */
3185 	static cpumask_t cpus_with_pcps;
3186 
3187 	/*
3188 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3189 	 * initialized.
3190 	 */
3191 	if (WARN_ON_ONCE(!mm_percpu_wq))
3192 		return;
3193 
3194 	/*
3195 	 * Do not drain if one is already in progress unless it's specific to
3196 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3197 	 * the drain to be complete when the call returns.
3198 	 */
3199 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3200 		if (!zone)
3201 			return;
3202 		mutex_lock(&pcpu_drain_mutex);
3203 	}
3204 
3205 	/*
3206 	 * We don't care about racing with CPU hotplug event
3207 	 * as offline notification will cause the notified
3208 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3209 	 * disables preemption as part of its processing
3210 	 */
3211 	for_each_online_cpu(cpu) {
3212 		struct per_cpu_pageset *pcp;
3213 		struct zone *z;
3214 		bool has_pcps = false;
3215 
3216 		if (zone) {
3217 			pcp = per_cpu_ptr(zone->pageset, cpu);
3218 			if (pcp->pcp.count)
3219 				has_pcps = true;
3220 		} else {
3221 			for_each_populated_zone(z) {
3222 				pcp = per_cpu_ptr(z->pageset, cpu);
3223 				if (pcp->pcp.count) {
3224 					has_pcps = true;
3225 					break;
3226 				}
3227 			}
3228 		}
3229 
3230 		if (has_pcps)
3231 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3232 		else
3233 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3234 	}
3235 
3236 	for_each_cpu(cpu, &cpus_with_pcps) {
3237 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3238 
3239 		drain->zone = zone;
3240 		INIT_WORK(&drain->work, drain_local_pages_wq);
3241 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3242 	}
3243 	for_each_cpu(cpu, &cpus_with_pcps)
3244 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3245 
3246 	mutex_unlock(&pcpu_drain_mutex);
3247 }
3248 
3249 #ifdef CONFIG_HIBERNATION
3250 
3251 /*
3252  * Touch the watchdog for every WD_PAGE_COUNT pages.
3253  */
3254 #define WD_PAGE_COUNT	(128*1024)
3255 
mark_free_pages(struct zone * zone)3256 void mark_free_pages(struct zone *zone)
3257 {
3258 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3259 	unsigned long flags;
3260 	unsigned int order, t;
3261 	struct page *page;
3262 
3263 	if (zone_is_empty(zone))
3264 		return;
3265 
3266 	spin_lock_irqsave(&zone->lock, flags);
3267 
3268 	max_zone_pfn = zone_end_pfn(zone);
3269 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3270 		if (pfn_valid(pfn)) {
3271 			page = pfn_to_page(pfn);
3272 
3273 			if (!--page_count) {
3274 				touch_nmi_watchdog();
3275 				page_count = WD_PAGE_COUNT;
3276 			}
3277 
3278 			if (page_zone(page) != zone)
3279 				continue;
3280 
3281 			if (!swsusp_page_is_forbidden(page))
3282 				swsusp_unset_page_free(page);
3283 		}
3284 
3285 	for_each_migratetype_order(order, t) {
3286 		list_for_each_entry(page,
3287 				&zone->free_area[order].free_list[t], lru) {
3288 			unsigned long i;
3289 
3290 			pfn = page_to_pfn(page);
3291 			for (i = 0; i < (1UL << order); i++) {
3292 				if (!--page_count) {
3293 					touch_nmi_watchdog();
3294 					page_count = WD_PAGE_COUNT;
3295 				}
3296 				swsusp_set_page_free(pfn_to_page(pfn + i));
3297 			}
3298 		}
3299 	}
3300 	spin_unlock_irqrestore(&zone->lock, flags);
3301 }
3302 #endif /* CONFIG_PM */
3303 
free_unref_page_prepare(struct page * page,unsigned long pfn)3304 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3305 {
3306 	int migratetype;
3307 
3308 	if (!free_pcp_prepare(page))
3309 		return false;
3310 
3311 	migratetype = get_pfnblock_migratetype(page, pfn);
3312 	set_pcppage_migratetype(page, migratetype);
3313 	return true;
3314 }
3315 
free_unref_page_commit(struct page * page,unsigned long pfn)3316 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3317 {
3318 	struct zone *zone = page_zone(page);
3319 	struct per_cpu_pages *pcp;
3320 	int migratetype;
3321 	bool pcp_skip_cma_pages = false;
3322 
3323 	migratetype = get_pcppage_migratetype(page);
3324 	__count_vm_event(PGFREE);
3325 
3326 	/*
3327 	 * We only track unmovable, reclaimable and movable on pcp lists.
3328 	 * Free ISOLATE pages back to the allocator because they are being
3329 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3330 	 * areas back if necessary. Otherwise, we may have to free
3331 	 * excessively into the page allocator
3332 	 */
3333 	if (migratetype >= MIGRATE_PCPTYPES) {
3334 		trace_android_vh_pcplist_add_cma_pages_bypass(migratetype,
3335 			&pcp_skip_cma_pages);
3336 		if (unlikely(is_migrate_isolate(migratetype)) ||
3337 				pcp_skip_cma_pages) {
3338 			free_one_page(zone, page, pfn, 0, migratetype,
3339 				      FPI_NONE);
3340 			return;
3341 		}
3342 		migratetype = MIGRATE_MOVABLE;
3343 	}
3344 
3345 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3346 	list_add(&page->lru, &pcp->lists[migratetype]);
3347 	pcp->count++;
3348 	if (pcp->count >= pcp->high) {
3349 		unsigned long batch = READ_ONCE(pcp->batch);
3350 		free_pcppages_bulk(zone, batch, pcp);
3351 	}
3352 }
3353 
3354 /*
3355  * Free a 0-order page
3356  */
free_unref_page(struct page * page)3357 void free_unref_page(struct page *page)
3358 {
3359 	unsigned long flags;
3360 	unsigned long pfn = page_to_pfn(page);
3361 	int migratetype;
3362 	bool skip_free_unref_page = false;
3363 
3364 	if (!free_unref_page_prepare(page, pfn))
3365 		return;
3366 
3367 	migratetype = get_pfnblock_migratetype(page, pfn);
3368 	trace_android_vh_free_unref_page_bypass(page, 0, migratetype, &skip_free_unref_page);
3369 	if (skip_free_unref_page)
3370 		return;
3371 
3372 	local_irq_save(flags);
3373 	free_unref_page_commit(page, pfn);
3374 	local_irq_restore(flags);
3375 }
3376 
3377 /*
3378  * Free a list of 0-order pages
3379  */
free_unref_page_list(struct list_head * list)3380 void free_unref_page_list(struct list_head *list)
3381 {
3382 	struct page *page, *next;
3383 	unsigned long flags, pfn;
3384 	int batch_count = 0;
3385 
3386 	/* Prepare pages for freeing */
3387 	list_for_each_entry_safe(page, next, list, lru) {
3388 		pfn = page_to_pfn(page);
3389 		if (!free_unref_page_prepare(page, pfn))
3390 			list_del(&page->lru);
3391 		set_page_private(page, pfn);
3392 	}
3393 
3394 	local_irq_save(flags);
3395 	list_for_each_entry_safe(page, next, list, lru) {
3396 		unsigned long pfn = page_private(page);
3397 
3398 		set_page_private(page, 0);
3399 		trace_mm_page_free_batched(page);
3400 		free_unref_page_commit(page, pfn);
3401 
3402 		/*
3403 		 * Guard against excessive IRQ disabled times when we get
3404 		 * a large list of pages to free.
3405 		 */
3406 		if (++batch_count == SWAP_CLUSTER_MAX) {
3407 			local_irq_restore(flags);
3408 			batch_count = 0;
3409 			local_irq_save(flags);
3410 		}
3411 	}
3412 	local_irq_restore(flags);
3413 }
3414 
3415 /*
3416  * split_page takes a non-compound higher-order page, and splits it into
3417  * n (1<<order) sub-pages: page[0..n]
3418  * Each sub-page must be freed individually.
3419  *
3420  * Note: this is probably too low level an operation for use in drivers.
3421  * Please consult with lkml before using this in your driver.
3422  */
split_page(struct page * page,unsigned int order)3423 void split_page(struct page *page, unsigned int order)
3424 {
3425 	int i;
3426 
3427 	VM_BUG_ON_PAGE(PageCompound(page), page);
3428 	VM_BUG_ON_PAGE(!page_count(page), page);
3429 
3430 	for (i = 1; i < (1 << order); i++)
3431 		set_page_refcounted(page + i);
3432 	split_page_owner(page, 1 << order);
3433 	split_page_memcg(page, 1 << order);
3434 }
3435 EXPORT_SYMBOL_GPL(split_page);
3436 
__isolate_free_page(struct page * page,unsigned int order)3437 int __isolate_free_page(struct page *page, unsigned int order)
3438 {
3439 	unsigned long watermark;
3440 	struct zone *zone;
3441 	int mt;
3442 
3443 	BUG_ON(!PageBuddy(page));
3444 
3445 	zone = page_zone(page);
3446 	mt = get_pageblock_migratetype(page);
3447 
3448 	if (!is_migrate_isolate(mt)) {
3449 		/*
3450 		 * Obey watermarks as if the page was being allocated. We can
3451 		 * emulate a high-order watermark check with a raised order-0
3452 		 * watermark, because we already know our high-order page
3453 		 * exists.
3454 		 */
3455 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3456 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3457 			return 0;
3458 
3459 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3460 	}
3461 
3462 	/* Remove page from free list */
3463 
3464 	del_page_from_free_list(page, zone, order);
3465 
3466 	/*
3467 	 * Set the pageblock if the isolated page is at least half of a
3468 	 * pageblock
3469 	 */
3470 	if (order >= pageblock_order - 1) {
3471 		struct page *endpage = page + (1 << order) - 1;
3472 		for (; page < endpage; page += pageblock_nr_pages) {
3473 			int mt = get_pageblock_migratetype(page);
3474 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3475 			    && !is_migrate_highatomic(mt))
3476 				set_pageblock_migratetype(page,
3477 							  MIGRATE_MOVABLE);
3478 		}
3479 	}
3480 
3481 
3482 	return 1UL << order;
3483 }
3484 
3485 /**
3486  * __putback_isolated_page - Return a now-isolated page back where we got it
3487  * @page: Page that was isolated
3488  * @order: Order of the isolated page
3489  * @mt: The page's pageblock's migratetype
3490  *
3491  * This function is meant to return a page pulled from the free lists via
3492  * __isolate_free_page back to the free lists they were pulled from.
3493  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)3494 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3495 {
3496 	struct zone *zone = page_zone(page);
3497 
3498 	/* zone lock should be held when this function is called */
3499 	lockdep_assert_held(&zone->lock);
3500 
3501 	/* Return isolated page to tail of freelist. */
3502 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3503 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3504 }
3505 
3506 /*
3507  * Update NUMA hit/miss statistics
3508  *
3509  * Must be called with interrupts disabled.
3510  */
zone_statistics(struct zone * preferred_zone,struct zone * z)3511 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3512 {
3513 #ifdef CONFIG_NUMA
3514 	enum numa_stat_item local_stat = NUMA_LOCAL;
3515 
3516 	/* skip numa counters update if numa stats is disabled */
3517 	if (!static_branch_likely(&vm_numa_stat_key))
3518 		return;
3519 
3520 	if (zone_to_nid(z) != numa_node_id())
3521 		local_stat = NUMA_OTHER;
3522 
3523 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3524 		__inc_numa_state(z, NUMA_HIT);
3525 	else {
3526 		__inc_numa_state(z, NUMA_MISS);
3527 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3528 	}
3529 	__inc_numa_state(z, local_stat);
3530 #endif
3531 }
3532 
3533 /* Remove page from the per-cpu list, caller must protect the list */
__rmqueue_pcplist(struct zone * zone,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,gfp_t gfp_flags)3534 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3535 			unsigned int alloc_flags,
3536 			struct per_cpu_pages *pcp,
3537 			gfp_t gfp_flags)
3538 {
3539 	struct page *page = NULL;
3540 	struct list_head *list = NULL;
3541 
3542 	do {
3543 		/* First try to get CMA pages */
3544 		if (migratetype == MIGRATE_MOVABLE &&
3545 				alloc_flags & ALLOC_CMA) {
3546 			list = get_populated_pcp_list(zone, 0, pcp,
3547 					get_cma_migrate_type(), alloc_flags);
3548 		}
3549 
3550 		if (list == NULL) {
3551 			/*
3552 			 * Either CMA is not suitable or there are no
3553 			 * free CMA pages.
3554 			 */
3555 			list = get_populated_pcp_list(zone, 0, pcp,
3556 					migratetype, alloc_flags);
3557 			if (unlikely(list == NULL) ||
3558 					unlikely(list_empty(list)))
3559 				return NULL;
3560 		}
3561 
3562 		page = list_first_entry(list, struct page, lru);
3563 		list_del(&page->lru);
3564 		pcp->count--;
3565 	} while (check_new_pcp(page));
3566 
3567 	return page;
3568 }
3569 
3570 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,gfp_t gfp_flags,int migratetype,unsigned int alloc_flags)3571 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3572 			struct zone *zone, gfp_t gfp_flags,
3573 			int migratetype, unsigned int alloc_flags)
3574 {
3575 	struct per_cpu_pages *pcp;
3576 	struct page *page;
3577 	unsigned long flags;
3578 
3579 	local_irq_save(flags);
3580 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3581 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp,
3582 				 gfp_flags);
3583 	if (page) {
3584 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3585 		zone_statistics(preferred_zone, zone);
3586 	}
3587 	local_irq_restore(flags);
3588 	return page;
3589 }
3590 
3591 /*
3592  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3593  */
3594 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3595 struct page *rmqueue(struct zone *preferred_zone,
3596 			struct zone *zone, unsigned int order,
3597 			gfp_t gfp_flags, unsigned int alloc_flags,
3598 			int migratetype)
3599 {
3600 	unsigned long flags;
3601 	struct page *page;
3602 
3603 	if (likely(order == 0)) {
3604 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3605 				       migratetype, alloc_flags);
3606 		goto out;
3607 	}
3608 
3609 	/*
3610 	 * We most definitely don't want callers attempting to
3611 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3612 	 */
3613 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3614 	spin_lock_irqsave(&zone->lock, flags);
3615 
3616 	do {
3617 		page = NULL;
3618 		/*
3619 		 * order-0 request can reach here when the pcplist is skipped
3620 		 * due to non-CMA allocation context. HIGHATOMIC area is
3621 		 * reserved for high-order atomic allocation, so order-0
3622 		 * request should skip it.
3623 		 */
3624 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3625 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3626 			if (page)
3627 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3628 		}
3629 		if (!page) {
3630 			if (migratetype == MIGRATE_MOVABLE &&
3631 					alloc_flags & ALLOC_CMA)
3632 				page = __rmqueue_cma(zone, order, migratetype,
3633 						     alloc_flags);
3634 			if (!page)
3635 				page = __rmqueue(zone, order, migratetype,
3636 						 alloc_flags);
3637 		}
3638 	} while (page && check_new_pages(page, order));
3639 	spin_unlock(&zone->lock);
3640 	if (!page)
3641 		goto failed;
3642 	__mod_zone_freepage_state(zone, -(1 << order),
3643 				  get_pcppage_migratetype(page));
3644 
3645 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3646 	zone_statistics(preferred_zone, zone);
3647 	trace_android_vh_rmqueue(preferred_zone, zone, order,
3648 			gfp_flags, alloc_flags, migratetype);
3649 	local_irq_restore(flags);
3650 
3651 out:
3652 	/* Separate test+clear to avoid unnecessary atomics */
3653 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3654 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3655 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3656 	}
3657 
3658 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3659 	return page;
3660 
3661 failed:
3662 	local_irq_restore(flags);
3663 	return NULL;
3664 }
3665 
3666 #ifdef CONFIG_FAIL_PAGE_ALLOC
3667 
3668 static struct {
3669 	struct fault_attr attr;
3670 
3671 	bool ignore_gfp_highmem;
3672 	bool ignore_gfp_reclaim;
3673 	u32 min_order;
3674 } fail_page_alloc = {
3675 	.attr = FAULT_ATTR_INITIALIZER,
3676 	.ignore_gfp_reclaim = true,
3677 	.ignore_gfp_highmem = true,
3678 	.min_order = 1,
3679 };
3680 
setup_fail_page_alloc(char * str)3681 static int __init setup_fail_page_alloc(char *str)
3682 {
3683 	return setup_fault_attr(&fail_page_alloc.attr, str);
3684 }
3685 __setup("fail_page_alloc=", setup_fail_page_alloc);
3686 
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3687 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3688 {
3689 	if (order < fail_page_alloc.min_order)
3690 		return false;
3691 	if (gfp_mask & __GFP_NOFAIL)
3692 		return false;
3693 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3694 		return false;
3695 	if (fail_page_alloc.ignore_gfp_reclaim &&
3696 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3697 		return false;
3698 
3699 	return should_fail(&fail_page_alloc.attr, 1 << order);
3700 }
3701 
3702 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3703 
fail_page_alloc_debugfs(void)3704 static int __init fail_page_alloc_debugfs(void)
3705 {
3706 	umode_t mode = S_IFREG | 0600;
3707 	struct dentry *dir;
3708 
3709 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3710 					&fail_page_alloc.attr);
3711 
3712 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3713 			    &fail_page_alloc.ignore_gfp_reclaim);
3714 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3715 			    &fail_page_alloc.ignore_gfp_highmem);
3716 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3717 
3718 	return 0;
3719 }
3720 
3721 late_initcall(fail_page_alloc_debugfs);
3722 
3723 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3724 
3725 #else /* CONFIG_FAIL_PAGE_ALLOC */
3726 
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3727 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3728 {
3729 	return false;
3730 }
3731 
3732 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3733 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3734 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3735 {
3736 	return __should_fail_alloc_page(gfp_mask, order);
3737 }
3738 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3739 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3740 static inline long __zone_watermark_unusable_free(struct zone *z,
3741 				unsigned int order, unsigned int alloc_flags)
3742 {
3743 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3744 	long unusable_free = (1 << order) - 1;
3745 
3746 	/*
3747 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3748 	 * the high-atomic reserves. This will over-estimate the size of the
3749 	 * atomic reserve but it avoids a search.
3750 	 */
3751 	if (likely(!alloc_harder))
3752 		unusable_free += z->nr_reserved_highatomic;
3753 
3754 #ifdef CONFIG_CMA
3755 	/* If allocation can't use CMA areas don't use free CMA pages */
3756 	if (!(alloc_flags & ALLOC_CMA))
3757 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3758 #endif
3759 
3760 	return unusable_free;
3761 }
3762 
3763 /*
3764  * Return true if free base pages are above 'mark'. For high-order checks it
3765  * will return true of the order-0 watermark is reached and there is at least
3766  * one free page of a suitable size. Checking now avoids taking the zone lock
3767  * to check in the allocation paths if no pages are free.
3768  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3769 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3770 			 int highest_zoneidx, unsigned int alloc_flags,
3771 			 long free_pages)
3772 {
3773 	long min = mark;
3774 	int o;
3775 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3776 
3777 	/* free_pages may go negative - that's OK */
3778 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3779 
3780 	if (alloc_flags & ALLOC_HIGH)
3781 		min -= min / 2;
3782 
3783 	if (unlikely(alloc_harder)) {
3784 		/*
3785 		 * OOM victims can try even harder than normal ALLOC_HARDER
3786 		 * users on the grounds that it's definitely going to be in
3787 		 * the exit path shortly and free memory. Any allocation it
3788 		 * makes during the free path will be small and short-lived.
3789 		 */
3790 		if (alloc_flags & ALLOC_OOM)
3791 			min -= min / 2;
3792 		else
3793 			min -= min / 4;
3794 	}
3795 
3796 	/*
3797 	 * Check watermarks for an order-0 allocation request. If these
3798 	 * are not met, then a high-order request also cannot go ahead
3799 	 * even if a suitable page happened to be free.
3800 	 */
3801 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3802 		return false;
3803 
3804 	/* If this is an order-0 request then the watermark is fine */
3805 	if (!order)
3806 		return true;
3807 
3808 	/* For a high-order request, check at least one suitable page is free */
3809 	for (o = order; o < MAX_ORDER; o++) {
3810 		struct free_area *area = &z->free_area[o];
3811 		int mt;
3812 
3813 		if (!area->nr_free)
3814 			continue;
3815 
3816 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3817 #ifdef CONFIG_CMA
3818 			/*
3819 			 * Note that this check is needed only
3820 			 * when MIGRATE_CMA < MIGRATE_PCPTYPES.
3821 			 */
3822 			if (mt == MIGRATE_CMA)
3823 				continue;
3824 #endif
3825 			if (!free_area_empty(area, mt))
3826 				return true;
3827 		}
3828 
3829 #ifdef CONFIG_CMA
3830 		if ((alloc_flags & ALLOC_CMA) &&
3831 		    !free_area_empty(area, MIGRATE_CMA)) {
3832 			return true;
3833 		}
3834 #endif
3835 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3836 			return true;
3837 	}
3838 	return false;
3839 }
3840 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3841 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3842 		      int highest_zoneidx, unsigned int alloc_flags)
3843 {
3844 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3845 					zone_page_state(z, NR_FREE_PAGES));
3846 }
3847 EXPORT_SYMBOL_GPL(zone_watermark_ok);
3848 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3849 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3850 				unsigned long mark, int highest_zoneidx,
3851 				unsigned int alloc_flags, gfp_t gfp_mask)
3852 {
3853 	long free_pages;
3854 
3855 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3856 
3857 	/*
3858 	 * Fast check for order-0 only. If this fails then the reserves
3859 	 * need to be calculated.
3860 	 */
3861 	if (!order) {
3862 		long usable_free;
3863 		long reserved;
3864 
3865 		usable_free = free_pages;
3866 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3867 
3868 		/* reserved may over estimate high-atomic reserves. */
3869 		usable_free -= min(usable_free, reserved);
3870 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3871 			return true;
3872 	}
3873 
3874 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3875 					free_pages))
3876 		return true;
3877 	/*
3878 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3879 	 * when checking the min watermark. The min watermark is the
3880 	 * point where boosting is ignored so that kswapd is woken up
3881 	 * when below the low watermark.
3882 	 */
3883 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3884 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3885 		mark = z->_watermark[WMARK_MIN];
3886 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3887 					alloc_flags, free_pages);
3888 	}
3889 
3890 	return false;
3891 }
3892 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3893 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3894 			unsigned long mark, int highest_zoneidx)
3895 {
3896 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3897 
3898 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3899 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3900 
3901 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3902 								free_pages);
3903 }
3904 EXPORT_SYMBOL_GPL(zone_watermark_ok_safe);
3905 
3906 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3907 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3908 {
3909 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3910 				node_reclaim_distance;
3911 }
3912 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3913 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3914 {
3915 	return true;
3916 }
3917 #endif	/* CONFIG_NUMA */
3918 
3919 /*
3920  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3921  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3922  * premature use of a lower zone may cause lowmem pressure problems that
3923  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3924  * probably too small. It only makes sense to spread allocations to avoid
3925  * fragmentation between the Normal and DMA32 zones.
3926  */
3927 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3928 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3929 {
3930 	unsigned int alloc_flags;
3931 
3932 	/*
3933 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3934 	 * to save a branch.
3935 	 */
3936 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3937 
3938 #ifdef CONFIG_ZONE_DMA32
3939 	if (!zone)
3940 		return alloc_flags;
3941 
3942 	if (zone_idx(zone) != ZONE_NORMAL)
3943 		return alloc_flags;
3944 
3945 	/*
3946 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3947 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3948 	 * on UMA that if Normal is populated then so is DMA32.
3949 	 */
3950 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3951 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3952 		return alloc_flags;
3953 
3954 	alloc_flags |= ALLOC_NOFRAGMENT;
3955 #endif /* CONFIG_ZONE_DMA32 */
3956 	return alloc_flags;
3957 }
3958 
current_alloc_flags(gfp_t gfp_mask,unsigned int alloc_flags)3959 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3960 					unsigned int alloc_flags)
3961 {
3962 #ifdef CONFIG_CMA
3963 	unsigned int pflags = current->flags;
3964 
3965 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3966 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE &&
3967 			gfp_mask & __GFP_CMA)
3968 		alloc_flags |= ALLOC_CMA;
3969 
3970 #endif
3971 	return alloc_flags;
3972 }
3973 
3974 /*
3975  * get_page_from_freelist goes through the zonelist trying to allocate
3976  * a page.
3977  */
3978 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3979 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3980 						const struct alloc_context *ac)
3981 {
3982 	struct zoneref *z;
3983 	struct zone *zone;
3984 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3985 	bool no_fallback;
3986 
3987 retry:
3988 	/*
3989 	 * Scan zonelist, looking for a zone with enough free.
3990 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3991 	 */
3992 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3993 	z = ac->preferred_zoneref;
3994 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3995 					ac->nodemask) {
3996 		struct page *page;
3997 		unsigned long mark;
3998 
3999 		if (cpusets_enabled() &&
4000 			(alloc_flags & ALLOC_CPUSET) &&
4001 			!__cpuset_zone_allowed(zone, gfp_mask))
4002 				continue;
4003 		/*
4004 		 * When allocating a page cache page for writing, we
4005 		 * want to get it from a node that is within its dirty
4006 		 * limit, such that no single node holds more than its
4007 		 * proportional share of globally allowed dirty pages.
4008 		 * The dirty limits take into account the node's
4009 		 * lowmem reserves and high watermark so that kswapd
4010 		 * should be able to balance it without having to
4011 		 * write pages from its LRU list.
4012 		 *
4013 		 * XXX: For now, allow allocations to potentially
4014 		 * exceed the per-node dirty limit in the slowpath
4015 		 * (spread_dirty_pages unset) before going into reclaim,
4016 		 * which is important when on a NUMA setup the allowed
4017 		 * nodes are together not big enough to reach the
4018 		 * global limit.  The proper fix for these situations
4019 		 * will require awareness of nodes in the
4020 		 * dirty-throttling and the flusher threads.
4021 		 */
4022 		if (ac->spread_dirty_pages) {
4023 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4024 				continue;
4025 
4026 			if (!node_dirty_ok(zone->zone_pgdat)) {
4027 				last_pgdat_dirty_limit = zone->zone_pgdat;
4028 				continue;
4029 			}
4030 		}
4031 
4032 		if (no_fallback && nr_online_nodes > 1 &&
4033 		    zone != ac->preferred_zoneref->zone) {
4034 			int local_nid;
4035 
4036 			/*
4037 			 * If moving to a remote node, retry but allow
4038 			 * fragmenting fallbacks. Locality is more important
4039 			 * than fragmentation avoidance.
4040 			 */
4041 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4042 			if (zone_to_nid(zone) != local_nid) {
4043 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4044 				goto retry;
4045 			}
4046 		}
4047 
4048 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4049 		if (!zone_watermark_fast(zone, order, mark,
4050 				       ac->highest_zoneidx, alloc_flags,
4051 				       gfp_mask)) {
4052 			int ret;
4053 
4054 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4055 			/*
4056 			 * Watermark failed for this zone, but see if we can
4057 			 * grow this zone if it contains deferred pages.
4058 			 */
4059 			if (static_branch_unlikely(&deferred_pages)) {
4060 				if (_deferred_grow_zone(zone, order))
4061 					goto try_this_zone;
4062 			}
4063 #endif
4064 			/* Checked here to keep the fast path fast */
4065 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4066 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4067 				goto try_this_zone;
4068 
4069 			if (node_reclaim_mode == 0 ||
4070 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4071 				continue;
4072 
4073 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4074 			switch (ret) {
4075 			case NODE_RECLAIM_NOSCAN:
4076 				/* did not scan */
4077 				continue;
4078 			case NODE_RECLAIM_FULL:
4079 				/* scanned but unreclaimable */
4080 				continue;
4081 			default:
4082 				/* did we reclaim enough */
4083 				if (zone_watermark_ok(zone, order, mark,
4084 					ac->highest_zoneidx, alloc_flags))
4085 					goto try_this_zone;
4086 
4087 				continue;
4088 			}
4089 		}
4090 
4091 try_this_zone:
4092 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4093 				gfp_mask, alloc_flags, ac->migratetype);
4094 		if (page) {
4095 			prep_new_page(page, order, gfp_mask, alloc_flags);
4096 
4097 			/*
4098 			 * If this is a high-order atomic allocation then check
4099 			 * if the pageblock should be reserved for the future
4100 			 */
4101 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4102 				reserve_highatomic_pageblock(page, zone, order);
4103 
4104 			return page;
4105 		} else {
4106 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4107 			/* Try again if zone has deferred pages */
4108 			if (static_branch_unlikely(&deferred_pages)) {
4109 				if (_deferred_grow_zone(zone, order))
4110 					goto try_this_zone;
4111 			}
4112 #endif
4113 		}
4114 	}
4115 
4116 	/*
4117 	 * It's possible on a UMA machine to get through all zones that are
4118 	 * fragmented. If avoiding fragmentation, reset and try again.
4119 	 */
4120 	if (no_fallback) {
4121 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4122 		goto retry;
4123 	}
4124 
4125 	return NULL;
4126 }
4127 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)4128 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4129 {
4130 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4131 
4132 	/*
4133 	 * This documents exceptions given to allocations in certain
4134 	 * contexts that are allowed to allocate outside current's set
4135 	 * of allowed nodes.
4136 	 */
4137 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4138 		if (tsk_is_oom_victim(current) ||
4139 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4140 			filter &= ~SHOW_MEM_FILTER_NODES;
4141 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4142 		filter &= ~SHOW_MEM_FILTER_NODES;
4143 
4144 	show_mem(filter, nodemask);
4145 }
4146 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)4147 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4148 {
4149 	struct va_format vaf;
4150 	va_list args;
4151 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4152 
4153 	if ((gfp_mask & __GFP_NOWARN) ||
4154 	     !__ratelimit(&nopage_rs) ||
4155 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4156 		return;
4157 
4158 	va_start(args, fmt);
4159 	vaf.fmt = fmt;
4160 	vaf.va = &args;
4161 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4162 			current->comm, &vaf, gfp_mask, &gfp_mask,
4163 			nodemask_pr_args(nodemask));
4164 	va_end(args);
4165 
4166 	cpuset_print_current_mems_allowed();
4167 	pr_cont("\n");
4168 	dump_stack();
4169 	warn_alloc_show_mem(gfp_mask, nodemask);
4170 }
4171 
4172 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)4173 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4174 			      unsigned int alloc_flags,
4175 			      const struct alloc_context *ac)
4176 {
4177 	struct page *page;
4178 
4179 	page = get_page_from_freelist(gfp_mask, order,
4180 			alloc_flags|ALLOC_CPUSET, ac);
4181 	/*
4182 	 * fallback to ignore cpuset restriction if our nodes
4183 	 * are depleted
4184 	 */
4185 	if (!page)
4186 		page = get_page_from_freelist(gfp_mask, order,
4187 				alloc_flags, ac);
4188 
4189 	return page;
4190 }
4191 
4192 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)4193 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4194 	const struct alloc_context *ac, unsigned long *did_some_progress)
4195 {
4196 	struct oom_control oc = {
4197 		.zonelist = ac->zonelist,
4198 		.nodemask = ac->nodemask,
4199 		.memcg = NULL,
4200 		.gfp_mask = gfp_mask,
4201 		.order = order,
4202 	};
4203 	struct page *page;
4204 
4205 	*did_some_progress = 0;
4206 
4207 	/*
4208 	 * Acquire the oom lock.  If that fails, somebody else is
4209 	 * making progress for us.
4210 	 */
4211 	if (!mutex_trylock(&oom_lock)) {
4212 		*did_some_progress = 1;
4213 		schedule_timeout_uninterruptible(1);
4214 		return NULL;
4215 	}
4216 
4217 	/*
4218 	 * Go through the zonelist yet one more time, keep very high watermark
4219 	 * here, this is only to catch a parallel oom killing, we must fail if
4220 	 * we're still under heavy pressure. But make sure that this reclaim
4221 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4222 	 * allocation which will never fail due to oom_lock already held.
4223 	 */
4224 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4225 				      ~__GFP_DIRECT_RECLAIM, order,
4226 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4227 	if (page)
4228 		goto out;
4229 
4230 	/* Coredumps can quickly deplete all memory reserves */
4231 	if (current->flags & PF_DUMPCORE)
4232 		goto out;
4233 	/* The OOM killer will not help higher order allocs */
4234 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4235 		goto out;
4236 	/*
4237 	 * We have already exhausted all our reclaim opportunities without any
4238 	 * success so it is time to admit defeat. We will skip the OOM killer
4239 	 * because it is very likely that the caller has a more reasonable
4240 	 * fallback than shooting a random task.
4241 	 *
4242 	 * The OOM killer may not free memory on a specific node.
4243 	 */
4244 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4245 		goto out;
4246 	/* The OOM killer does not needlessly kill tasks for lowmem */
4247 	if (ac->highest_zoneidx < ZONE_NORMAL)
4248 		goto out;
4249 	if (pm_suspended_storage())
4250 		goto out;
4251 	/*
4252 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4253 	 * other request to make a forward progress.
4254 	 * We are in an unfortunate situation where out_of_memory cannot
4255 	 * do much for this context but let's try it to at least get
4256 	 * access to memory reserved if the current task is killed (see
4257 	 * out_of_memory). Once filesystems are ready to handle allocation
4258 	 * failures more gracefully we should just bail out here.
4259 	 */
4260 
4261 	/* Exhausted what can be done so it's blame time */
4262 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4263 		*did_some_progress = 1;
4264 
4265 		/*
4266 		 * Help non-failing allocations by giving them access to memory
4267 		 * reserves
4268 		 */
4269 		if (gfp_mask & __GFP_NOFAIL)
4270 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4271 					ALLOC_NO_WATERMARKS, ac);
4272 	}
4273 out:
4274 	mutex_unlock(&oom_lock);
4275 	return page;
4276 }
4277 
4278 /*
4279  * Maximum number of compaction retries wit a progress before OOM
4280  * killer is consider as the only way to move forward.
4281  */
4282 #define MAX_COMPACT_RETRIES 16
4283 
4284 #ifdef CONFIG_COMPACTION
4285 /* Try memory compaction for high-order allocations before reclaim */
4286 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4287 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4288 		unsigned int alloc_flags, const struct alloc_context *ac,
4289 		enum compact_priority prio, enum compact_result *compact_result)
4290 {
4291 	struct page *page = NULL;
4292 	unsigned long pflags;
4293 	unsigned int noreclaim_flag;
4294 
4295 	if (!order)
4296 		return NULL;
4297 
4298 	psi_memstall_enter(&pflags);
4299 	noreclaim_flag = memalloc_noreclaim_save();
4300 
4301 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4302 								prio, &page);
4303 
4304 	memalloc_noreclaim_restore(noreclaim_flag);
4305 	psi_memstall_leave(&pflags);
4306 
4307 	/*
4308 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4309 	 * count a compaction stall
4310 	 */
4311 	count_vm_event(COMPACTSTALL);
4312 
4313 	/* Prep a captured page if available */
4314 	if (page)
4315 		prep_new_page(page, order, gfp_mask, alloc_flags);
4316 
4317 	/* Try get a page from the freelist if available */
4318 	if (!page)
4319 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4320 
4321 	if (page) {
4322 		struct zone *zone = page_zone(page);
4323 
4324 		zone->compact_blockskip_flush = false;
4325 		compaction_defer_reset(zone, order, true);
4326 		count_vm_event(COMPACTSUCCESS);
4327 		return page;
4328 	}
4329 
4330 	/*
4331 	 * It's bad if compaction run occurs and fails. The most likely reason
4332 	 * is that pages exist, but not enough to satisfy watermarks.
4333 	 */
4334 	count_vm_event(COMPACTFAIL);
4335 
4336 	cond_resched();
4337 
4338 	return NULL;
4339 }
4340 
4341 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4342 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4343 		     enum compact_result compact_result,
4344 		     enum compact_priority *compact_priority,
4345 		     int *compaction_retries)
4346 {
4347 	int max_retries = MAX_COMPACT_RETRIES;
4348 	int min_priority;
4349 	bool ret = false;
4350 	int retries = *compaction_retries;
4351 	enum compact_priority priority = *compact_priority;
4352 
4353 	if (!order)
4354 		return false;
4355 
4356 	if (compaction_made_progress(compact_result))
4357 		(*compaction_retries)++;
4358 
4359 	/*
4360 	 * compaction considers all the zone as desperately out of memory
4361 	 * so it doesn't really make much sense to retry except when the
4362 	 * failure could be caused by insufficient priority
4363 	 */
4364 	if (compaction_failed(compact_result))
4365 		goto check_priority;
4366 
4367 	/*
4368 	 * compaction was skipped because there are not enough order-0 pages
4369 	 * to work with, so we retry only if it looks like reclaim can help.
4370 	 */
4371 	if (compaction_needs_reclaim(compact_result)) {
4372 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4373 		goto out;
4374 	}
4375 
4376 	/*
4377 	 * make sure the compaction wasn't deferred or didn't bail out early
4378 	 * due to locks contention before we declare that we should give up.
4379 	 * But the next retry should use a higher priority if allowed, so
4380 	 * we don't just keep bailing out endlessly.
4381 	 */
4382 	if (compaction_withdrawn(compact_result)) {
4383 		goto check_priority;
4384 	}
4385 
4386 	/*
4387 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4388 	 * costly ones because they are de facto nofail and invoke OOM
4389 	 * killer to move on while costly can fail and users are ready
4390 	 * to cope with that. 1/4 retries is rather arbitrary but we
4391 	 * would need much more detailed feedback from compaction to
4392 	 * make a better decision.
4393 	 */
4394 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4395 		max_retries /= 4;
4396 	if (*compaction_retries <= max_retries) {
4397 		ret = true;
4398 		goto out;
4399 	}
4400 
4401 	/*
4402 	 * Make sure there are attempts at the highest priority if we exhausted
4403 	 * all retries or failed at the lower priorities.
4404 	 */
4405 check_priority:
4406 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4407 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4408 
4409 	if (*compact_priority > min_priority) {
4410 		(*compact_priority)--;
4411 		*compaction_retries = 0;
4412 		ret = true;
4413 	}
4414 out:
4415 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4416 	return ret;
4417 }
4418 #else
4419 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4420 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4421 		unsigned int alloc_flags, const struct alloc_context *ac,
4422 		enum compact_priority prio, enum compact_result *compact_result)
4423 {
4424 	*compact_result = COMPACT_SKIPPED;
4425 	return NULL;
4426 }
4427 
4428 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4429 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4430 		     enum compact_result compact_result,
4431 		     enum compact_priority *compact_priority,
4432 		     int *compaction_retries)
4433 {
4434 	struct zone *zone;
4435 	struct zoneref *z;
4436 
4437 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4438 		return false;
4439 
4440 	/*
4441 	 * There are setups with compaction disabled which would prefer to loop
4442 	 * inside the allocator rather than hit the oom killer prematurely.
4443 	 * Let's give them a good hope and keep retrying while the order-0
4444 	 * watermarks are OK.
4445 	 */
4446 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4447 				ac->highest_zoneidx, ac->nodemask) {
4448 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4449 					ac->highest_zoneidx, alloc_flags))
4450 			return true;
4451 	}
4452 	return false;
4453 }
4454 #endif /* CONFIG_COMPACTION */
4455 
4456 #ifdef CONFIG_LOCKDEP
4457 static struct lockdep_map __fs_reclaim_map =
4458 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4459 
__need_fs_reclaim(gfp_t gfp_mask)4460 static bool __need_fs_reclaim(gfp_t gfp_mask)
4461 {
4462 	gfp_mask = current_gfp_context(gfp_mask);
4463 
4464 	/* no reclaim without waiting on it */
4465 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4466 		return false;
4467 
4468 	/* this guy won't enter reclaim */
4469 	if (current->flags & PF_MEMALLOC)
4470 		return false;
4471 
4472 	/* We're only interested __GFP_FS allocations for now */
4473 	if (!(gfp_mask & __GFP_FS))
4474 		return false;
4475 
4476 	if (gfp_mask & __GFP_NOLOCKDEP)
4477 		return false;
4478 
4479 	return true;
4480 }
4481 
__fs_reclaim_acquire(void)4482 void __fs_reclaim_acquire(void)
4483 {
4484 	lock_map_acquire(&__fs_reclaim_map);
4485 }
4486 
__fs_reclaim_release(void)4487 void __fs_reclaim_release(void)
4488 {
4489 	lock_map_release(&__fs_reclaim_map);
4490 }
4491 
fs_reclaim_acquire(gfp_t gfp_mask)4492 void fs_reclaim_acquire(gfp_t gfp_mask)
4493 {
4494 	if (__need_fs_reclaim(gfp_mask))
4495 		__fs_reclaim_acquire();
4496 }
4497 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4498 
fs_reclaim_release(gfp_t gfp_mask)4499 void fs_reclaim_release(gfp_t gfp_mask)
4500 {
4501 	if (__need_fs_reclaim(gfp_mask))
4502 		__fs_reclaim_release();
4503 }
4504 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4505 #endif
4506 
4507 /*
4508  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4509  * have been rebuilt so allocation retries. Reader side does not lock and
4510  * retries the allocation if zonelist changes. Writer side is protected by the
4511  * embedded spin_lock.
4512  */
4513 static DEFINE_SEQLOCK(zonelist_update_seq);
4514 
zonelist_iter_begin(void)4515 static unsigned int zonelist_iter_begin(void)
4516 {
4517 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4518 		return read_seqbegin(&zonelist_update_seq);
4519 
4520 	return 0;
4521 }
4522 
check_retry_zonelist(unsigned int seq)4523 static unsigned int check_retry_zonelist(unsigned int seq)
4524 {
4525 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4526 		return read_seqretry(&zonelist_update_seq, seq);
4527 
4528 	return seq;
4529 }
4530 
4531 /* Perform direct synchronous page reclaim */
4532 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4533 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4534 					const struct alloc_context *ac)
4535 {
4536 	unsigned int noreclaim_flag;
4537 	unsigned long progress;
4538 
4539 	cond_resched();
4540 
4541 	/* We now go into synchronous reclaim */
4542 	cpuset_memory_pressure_bump();
4543 	fs_reclaim_acquire(gfp_mask);
4544 	noreclaim_flag = memalloc_noreclaim_save();
4545 
4546 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4547 								ac->nodemask);
4548 
4549 	memalloc_noreclaim_restore(noreclaim_flag);
4550 	fs_reclaim_release(gfp_mask);
4551 
4552 	cond_resched();
4553 
4554 	return progress;
4555 }
4556 
4557 /* The really slow allocator path where we enter direct reclaim */
4558 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4559 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4560 		unsigned int alloc_flags, const struct alloc_context *ac,
4561 		unsigned long *did_some_progress)
4562 {
4563 	struct page *page = NULL;
4564 	unsigned long pflags;
4565 	bool drained = false;
4566 	bool skip_pcp_drain = false;
4567 
4568 	psi_memstall_enter(&pflags);
4569 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4570 	if (unlikely(!(*did_some_progress)))
4571 		goto out;
4572 
4573 retry:
4574 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4575 
4576 	/*
4577 	 * If an allocation failed after direct reclaim, it could be because
4578 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4579 	 * Shrink them and try again
4580 	 */
4581 	if (!page && !drained) {
4582 		unreserve_highatomic_pageblock(ac, false);
4583 		trace_android_vh_drain_all_pages_bypass(gfp_mask, order,
4584 			alloc_flags, ac->migratetype, *did_some_progress, &skip_pcp_drain);
4585 		if (!skip_pcp_drain)
4586 			drain_all_pages(NULL);
4587 		drained = true;
4588 		goto retry;
4589 	}
4590 out:
4591 	psi_memstall_leave(&pflags);
4592 
4593 	return page;
4594 }
4595 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4596 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4597 			     const struct alloc_context *ac)
4598 {
4599 	struct zoneref *z;
4600 	struct zone *zone;
4601 	pg_data_t *last_pgdat = NULL;
4602 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4603 
4604 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4605 					ac->nodemask) {
4606 		if (last_pgdat != zone->zone_pgdat)
4607 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4608 		last_pgdat = zone->zone_pgdat;
4609 	}
4610 }
4611 
4612 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)4613 gfp_to_alloc_flags(gfp_t gfp_mask)
4614 {
4615 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4616 
4617 	/*
4618 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4619 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4620 	 * to save two branches.
4621 	 */
4622 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4623 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4624 
4625 	/*
4626 	 * The caller may dip into page reserves a bit more if the caller
4627 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4628 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4629 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4630 	 */
4631 	alloc_flags |= (__force int)
4632 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4633 
4634 	if (gfp_mask & __GFP_ATOMIC) {
4635 		/*
4636 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4637 		 * if it can't schedule.
4638 		 */
4639 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4640 			alloc_flags |= ALLOC_HARDER;
4641 		/*
4642 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4643 		 * comment for __cpuset_node_allowed().
4644 		 */
4645 		alloc_flags &= ~ALLOC_CPUSET;
4646 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4647 		alloc_flags |= ALLOC_HARDER;
4648 
4649 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4650 
4651 	return alloc_flags;
4652 }
4653 
oom_reserves_allowed(struct task_struct * tsk)4654 static bool oom_reserves_allowed(struct task_struct *tsk)
4655 {
4656 	if (!tsk_is_oom_victim(tsk))
4657 		return false;
4658 
4659 	/*
4660 	 * !MMU doesn't have oom reaper so give access to memory reserves
4661 	 * only to the thread with TIF_MEMDIE set
4662 	 */
4663 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4664 		return false;
4665 
4666 	return true;
4667 }
4668 
4669 /*
4670  * Distinguish requests which really need access to full memory
4671  * reserves from oom victims which can live with a portion of it
4672  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4673 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4674 {
4675 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4676 		return 0;
4677 	if (gfp_mask & __GFP_MEMALLOC)
4678 		return ALLOC_NO_WATERMARKS;
4679 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4680 		return ALLOC_NO_WATERMARKS;
4681 	if (!in_interrupt()) {
4682 		if (current->flags & PF_MEMALLOC)
4683 			return ALLOC_NO_WATERMARKS;
4684 		else if (oom_reserves_allowed(current))
4685 			return ALLOC_OOM;
4686 	}
4687 
4688 	return 0;
4689 }
4690 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4691 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4692 {
4693 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4694 }
4695 
4696 /*
4697  * Checks whether it makes sense to retry the reclaim to make a forward progress
4698  * for the given allocation request.
4699  *
4700  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4701  * without success, or when we couldn't even meet the watermark if we
4702  * reclaimed all remaining pages on the LRU lists.
4703  *
4704  * Returns true if a retry is viable or false to enter the oom path.
4705  */
4706 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4707 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4708 		     struct alloc_context *ac, int alloc_flags,
4709 		     bool did_some_progress, int *no_progress_loops)
4710 {
4711 	struct zone *zone;
4712 	struct zoneref *z;
4713 	bool ret = false;
4714 
4715 	/*
4716 	 * Costly allocations might have made a progress but this doesn't mean
4717 	 * their order will become available due to high fragmentation so
4718 	 * always increment the no progress counter for them
4719 	 */
4720 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4721 		*no_progress_loops = 0;
4722 	else
4723 		(*no_progress_loops)++;
4724 
4725 	/*
4726 	 * Make sure we converge to OOM if we cannot make any progress
4727 	 * several times in the row.
4728 	 */
4729 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4730 		/* Before OOM, exhaust highatomic_reserve */
4731 		return unreserve_highatomic_pageblock(ac, true);
4732 	}
4733 
4734 	/*
4735 	 * Keep reclaiming pages while there is a chance this will lead
4736 	 * somewhere.  If none of the target zones can satisfy our allocation
4737 	 * request even if all reclaimable pages are considered then we are
4738 	 * screwed and have to go OOM.
4739 	 */
4740 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4741 				ac->highest_zoneidx, ac->nodemask) {
4742 		unsigned long available;
4743 		unsigned long reclaimable;
4744 		unsigned long min_wmark = min_wmark_pages(zone);
4745 		bool wmark;
4746 
4747 		available = reclaimable = zone_reclaimable_pages(zone);
4748 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4749 
4750 		/*
4751 		 * Would the allocation succeed if we reclaimed all
4752 		 * reclaimable pages?
4753 		 */
4754 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4755 				ac->highest_zoneidx, alloc_flags, available);
4756 		trace_reclaim_retry_zone(z, order, reclaimable,
4757 				available, min_wmark, *no_progress_loops, wmark);
4758 		if (wmark) {
4759 			/*
4760 			 * If we didn't make any progress and have a lot of
4761 			 * dirty + writeback pages then we should wait for
4762 			 * an IO to complete to slow down the reclaim and
4763 			 * prevent from pre mature OOM
4764 			 */
4765 			if (!did_some_progress) {
4766 				unsigned long write_pending;
4767 
4768 				write_pending = zone_page_state_snapshot(zone,
4769 							NR_ZONE_WRITE_PENDING);
4770 
4771 				if (2 * write_pending > reclaimable) {
4772 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4773 					return true;
4774 				}
4775 			}
4776 
4777 			ret = true;
4778 			goto out;
4779 		}
4780 	}
4781 
4782 out:
4783 	/*
4784 	 * Memory allocation/reclaim might be called from a WQ context and the
4785 	 * current implementation of the WQ concurrency control doesn't
4786 	 * recognize that a particular WQ is congested if the worker thread is
4787 	 * looping without ever sleeping. Therefore we have to do a short sleep
4788 	 * here rather than calling cond_resched().
4789 	 */
4790 	if (current->flags & PF_WQ_WORKER)
4791 		schedule_timeout_uninterruptible(1);
4792 	else
4793 		cond_resched();
4794 	return ret;
4795 }
4796 
4797 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4798 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4799 {
4800 	/*
4801 	 * It's possible that cpuset's mems_allowed and the nodemask from
4802 	 * mempolicy don't intersect. This should be normally dealt with by
4803 	 * policy_nodemask(), but it's possible to race with cpuset update in
4804 	 * such a way the check therein was true, and then it became false
4805 	 * before we got our cpuset_mems_cookie here.
4806 	 * This assumes that for all allocations, ac->nodemask can come only
4807 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4808 	 * when it does not intersect with the cpuset restrictions) or the
4809 	 * caller can deal with a violated nodemask.
4810 	 */
4811 	if (cpusets_enabled() && ac->nodemask &&
4812 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4813 		ac->nodemask = NULL;
4814 		return true;
4815 	}
4816 
4817 	/*
4818 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4819 	 * possible to race with parallel threads in such a way that our
4820 	 * allocation can fail while the mask is being updated. If we are about
4821 	 * to fail, check if the cpuset changed during allocation and if so,
4822 	 * retry.
4823 	 */
4824 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4825 		return true;
4826 
4827 	return false;
4828 }
4829 
4830 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4831 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4832 						struct alloc_context *ac)
4833 {
4834 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4835 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4836 	struct page *page = NULL;
4837 	unsigned int alloc_flags;
4838 	unsigned long did_some_progress;
4839 	enum compact_priority compact_priority;
4840 	enum compact_result compact_result;
4841 	int compaction_retries;
4842 	int no_progress_loops;
4843 	unsigned int cpuset_mems_cookie;
4844 	unsigned int zonelist_iter_cookie;
4845 	int reserve_flags;
4846 	unsigned long vh_record;
4847 	bool should_alloc_retry = false;
4848 
4849 	trace_android_vh_alloc_pages_slowpath_begin(gfp_mask, order, &vh_record);
4850 	/*
4851 	 * We also sanity check to catch abuse of atomic reserves being used by
4852 	 * callers that are not in atomic context.
4853 	 */
4854 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4855 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4856 		gfp_mask &= ~__GFP_ATOMIC;
4857 
4858 restart:
4859 	compaction_retries = 0;
4860 	no_progress_loops = 0;
4861 	compact_priority = DEF_COMPACT_PRIORITY;
4862 	cpuset_mems_cookie = read_mems_allowed_begin();
4863 	zonelist_iter_cookie = zonelist_iter_begin();
4864 
4865 	/*
4866 	 * The fast path uses conservative alloc_flags to succeed only until
4867 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4868 	 * alloc_flags precisely. So we do that now.
4869 	 */
4870 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4871 
4872 	/*
4873 	 * We need to recalculate the starting point for the zonelist iterator
4874 	 * because we might have used different nodemask in the fast path, or
4875 	 * there was a cpuset modification and we are retrying - otherwise we
4876 	 * could end up iterating over non-eligible zones endlessly.
4877 	 */
4878 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4879 					ac->highest_zoneidx, ac->nodemask);
4880 	if (!ac->preferred_zoneref->zone)
4881 		goto nopage;
4882 
4883 	if (alloc_flags & ALLOC_KSWAPD)
4884 		wake_all_kswapds(order, gfp_mask, ac);
4885 
4886 	/*
4887 	 * The adjusted alloc_flags might result in immediate success, so try
4888 	 * that first
4889 	 */
4890 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4891 	if (page)
4892 		goto got_pg;
4893 
4894 	/*
4895 	 * For costly allocations, try direct compaction first, as it's likely
4896 	 * that we have enough base pages and don't need to reclaim. For non-
4897 	 * movable high-order allocations, do that as well, as compaction will
4898 	 * try prevent permanent fragmentation by migrating from blocks of the
4899 	 * same migratetype.
4900 	 * Don't try this for allocations that are allowed to ignore
4901 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4902 	 */
4903 	if (can_direct_reclaim &&
4904 			(costly_order ||
4905 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4906 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4907 		page = __alloc_pages_direct_compact(gfp_mask, order,
4908 						alloc_flags, ac,
4909 						INIT_COMPACT_PRIORITY,
4910 						&compact_result);
4911 		if (page)
4912 			goto got_pg;
4913 
4914 		/*
4915 		 * Checks for costly allocations with __GFP_NORETRY, which
4916 		 * includes some THP page fault allocations
4917 		 */
4918 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4919 			/*
4920 			 * If allocating entire pageblock(s) and compaction
4921 			 * failed because all zones are below low watermarks
4922 			 * or is prohibited because it recently failed at this
4923 			 * order, fail immediately unless the allocator has
4924 			 * requested compaction and reclaim retry.
4925 			 *
4926 			 * Reclaim is
4927 			 *  - potentially very expensive because zones are far
4928 			 *    below their low watermarks or this is part of very
4929 			 *    bursty high order allocations,
4930 			 *  - not guaranteed to help because isolate_freepages()
4931 			 *    may not iterate over freed pages as part of its
4932 			 *    linear scan, and
4933 			 *  - unlikely to make entire pageblocks free on its
4934 			 *    own.
4935 			 */
4936 			if (compact_result == COMPACT_SKIPPED ||
4937 			    compact_result == COMPACT_DEFERRED)
4938 				goto nopage;
4939 
4940 			/*
4941 			 * Looks like reclaim/compaction is worth trying, but
4942 			 * sync compaction could be very expensive, so keep
4943 			 * using async compaction.
4944 			 */
4945 			compact_priority = INIT_COMPACT_PRIORITY;
4946 		}
4947 	}
4948 
4949 retry:
4950 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4951 	if (alloc_flags & ALLOC_KSWAPD)
4952 		wake_all_kswapds(order, gfp_mask, ac);
4953 
4954 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4955 	if (reserve_flags)
4956 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4957 
4958 	/*
4959 	 * Reset the nodemask and zonelist iterators if memory policies can be
4960 	 * ignored. These allocations are high priority and system rather than
4961 	 * user oriented.
4962 	 */
4963 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4964 		ac->nodemask = NULL;
4965 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4966 					ac->highest_zoneidx, ac->nodemask);
4967 	}
4968 
4969 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4970 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4971 	if (page)
4972 		goto got_pg;
4973 
4974 	/* Caller is not willing to reclaim, we can't balance anything */
4975 	if (!can_direct_reclaim)
4976 		goto nopage;
4977 
4978 	/* Avoid recursion of direct reclaim */
4979 	if (current->flags & PF_MEMALLOC)
4980 		goto nopage;
4981 
4982 	trace_android_vh_alloc_pages_reclaim_bypass(gfp_mask, order,
4983 		alloc_flags, ac->migratetype, &page);
4984 
4985 	if (page)
4986 		goto got_pg;
4987 
4988 	trace_android_vh_should_alloc_pages_retry(gfp_mask, order,
4989 		&alloc_flags, ac->migratetype, ac->preferred_zoneref->zone,
4990 		&page, &should_alloc_retry);
4991 	if (should_alloc_retry)
4992 		goto retry;
4993 
4994 	/* Try direct reclaim and then allocating */
4995 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4996 							&did_some_progress);
4997 	if (page)
4998 		goto got_pg;
4999 
5000 	/* Try direct compaction and then allocating */
5001 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5002 					compact_priority, &compact_result);
5003 	if (page)
5004 		goto got_pg;
5005 
5006 	/* Do not loop if specifically requested */
5007 	if (gfp_mask & __GFP_NORETRY)
5008 		goto nopage;
5009 
5010 	/*
5011 	 * Do not retry costly high order allocations unless they are
5012 	 * __GFP_RETRY_MAYFAIL
5013 	 */
5014 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5015 		goto nopage;
5016 
5017 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5018 				 did_some_progress > 0, &no_progress_loops))
5019 		goto retry;
5020 
5021 	/*
5022 	 * It doesn't make any sense to retry for the compaction if the order-0
5023 	 * reclaim is not able to make any progress because the current
5024 	 * implementation of the compaction depends on the sufficient amount
5025 	 * of free memory (see __compaction_suitable)
5026 	 */
5027 	if (did_some_progress > 0 &&
5028 			should_compact_retry(ac, order, alloc_flags,
5029 				compact_result, &compact_priority,
5030 				&compaction_retries))
5031 		goto retry;
5032 
5033 
5034 	/*
5035 	 * Deal with possible cpuset update races or zonelist updates to avoid
5036 	 * a unnecessary OOM kill.
5037 	 */
5038 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5039 	    check_retry_zonelist(zonelist_iter_cookie))
5040 		goto restart;
5041 
5042 	/* Reclaim has failed us, start killing things */
5043 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5044 	if (page)
5045 		goto got_pg;
5046 
5047 	/* Avoid allocations with no watermarks from looping endlessly */
5048 	if (tsk_is_oom_victim(current) &&
5049 	    (alloc_flags & ALLOC_OOM ||
5050 	     (gfp_mask & __GFP_NOMEMALLOC)))
5051 		goto nopage;
5052 
5053 	/* Retry as long as the OOM killer is making progress */
5054 	if (did_some_progress) {
5055 		no_progress_loops = 0;
5056 		goto retry;
5057 	}
5058 
5059 nopage:
5060 	/*
5061 	 * Deal with possible cpuset update races or zonelist updates to avoid
5062 	 * a unnecessary OOM kill.
5063 	 */
5064 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5065 	    check_retry_zonelist(zonelist_iter_cookie))
5066 		goto restart;
5067 
5068 	/*
5069 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5070 	 * we always retry
5071 	 */
5072 	if (gfp_mask & __GFP_NOFAIL) {
5073 		/*
5074 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5075 		 * of any new users that actually require GFP_NOWAIT
5076 		 */
5077 		if (WARN_ON_ONCE(!can_direct_reclaim))
5078 			goto fail;
5079 
5080 		/*
5081 		 * PF_MEMALLOC request from this context is rather bizarre
5082 		 * because we cannot reclaim anything and only can loop waiting
5083 		 * for somebody to do a work for us
5084 		 */
5085 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5086 
5087 		/*
5088 		 * non failing costly orders are a hard requirement which we
5089 		 * are not prepared for much so let's warn about these users
5090 		 * so that we can identify them and convert them to something
5091 		 * else.
5092 		 */
5093 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5094 
5095 		/*
5096 		 * Help non-failing allocations by giving them access to memory
5097 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5098 		 * could deplete whole memory reserves which would just make
5099 		 * the situation worse
5100 		 */
5101 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5102 		if (page)
5103 			goto got_pg;
5104 
5105 		cond_resched();
5106 		goto retry;
5107 	}
5108 fail:
5109 	trace_android_vh_alloc_pages_failure_bypass(gfp_mask, order,
5110 		alloc_flags, ac->migratetype, &page);
5111 	if (page)
5112 		goto got_pg;
5113 
5114 	warn_alloc(gfp_mask, ac->nodemask,
5115 			"page allocation failure: order:%u", order);
5116 got_pg:
5117 	trace_android_vh_alloc_pages_slowpath_end(gfp_mask, order, vh_record);
5118 	return page;
5119 }
5120 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_mask,unsigned int * alloc_flags)5121 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5122 		int preferred_nid, nodemask_t *nodemask,
5123 		struct alloc_context *ac, gfp_t *alloc_mask,
5124 		unsigned int *alloc_flags)
5125 {
5126 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5127 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5128 	ac->nodemask = nodemask;
5129 	ac->migratetype = gfp_migratetype(gfp_mask);
5130 
5131 	if (cpusets_enabled()) {
5132 		*alloc_mask |= __GFP_HARDWALL;
5133 		/*
5134 		 * When we are in the interrupt context, it is irrelevant
5135 		 * to the current task context. It means that any node ok.
5136 		 */
5137 		if (!in_interrupt() && !ac->nodemask)
5138 			ac->nodemask = &cpuset_current_mems_allowed;
5139 		else
5140 			*alloc_flags |= ALLOC_CPUSET;
5141 	}
5142 
5143 	fs_reclaim_acquire(gfp_mask);
5144 	fs_reclaim_release(gfp_mask);
5145 
5146 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5147 
5148 	if (should_fail_alloc_page(gfp_mask, order))
5149 		return false;
5150 
5151 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
5152 
5153 	/* Dirty zone balancing only done in the fast path */
5154 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5155 
5156 	/*
5157 	 * The preferred zone is used for statistics but crucially it is
5158 	 * also used as the starting point for the zonelist iterator. It
5159 	 * may get reset for allocations that ignore memory policies.
5160 	 */
5161 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5162 					ac->highest_zoneidx, ac->nodemask);
5163 
5164 	return true;
5165 }
5166 
5167 /*
5168  * This is the 'heart' of the zoned buddy allocator.
5169  */
5170 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask)5171 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
5172 							nodemask_t *nodemask)
5173 {
5174 	struct page *page;
5175 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5176 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
5177 	struct alloc_context ac = { };
5178 
5179 	/*
5180 	 * There are several places where we assume that the order value is sane
5181 	 * so bail out early if the request is out of bound.
5182 	 */
5183 	if (unlikely(order >= MAX_ORDER)) {
5184 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
5185 		return NULL;
5186 	}
5187 
5188 	gfp_mask &= gfp_allowed_mask;
5189 	alloc_mask = gfp_mask;
5190 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
5191 		return NULL;
5192 
5193 	/*
5194 	 * Forbid the first pass from falling back to types that fragment
5195 	 * memory until all local zones are considered.
5196 	 */
5197 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
5198 
5199 	/* First allocation attempt */
5200 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
5201 	if (likely(page))
5202 		goto out;
5203 
5204 	/*
5205 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5206 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5207 	 * from a particular context which has been marked by
5208 	 * memalloc_no{fs,io}_{save,restore}.
5209 	 */
5210 	alloc_mask = current_gfp_context(gfp_mask);
5211 	ac.spread_dirty_pages = false;
5212 
5213 	/*
5214 	 * Restore the original nodemask if it was potentially replaced with
5215 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5216 	 */
5217 	ac.nodemask = nodemask;
5218 
5219 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5220 
5221 out:
5222 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5223 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5224 		__free_pages(page, order);
5225 		page = NULL;
5226 	}
5227 
5228 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5229 
5230 	return page;
5231 }
5232 EXPORT_SYMBOL(__alloc_pages_nodemask);
5233 
5234 /*
5235  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5236  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5237  * you need to access high mem.
5238  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)5239 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5240 {
5241 	struct page *page;
5242 
5243 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5244 	if (!page)
5245 		return 0;
5246 	return (unsigned long) page_address(page);
5247 }
5248 EXPORT_SYMBOL(__get_free_pages);
5249 
get_zeroed_page(gfp_t gfp_mask)5250 unsigned long get_zeroed_page(gfp_t gfp_mask)
5251 {
5252 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5253 }
5254 EXPORT_SYMBOL(get_zeroed_page);
5255 
free_the_page(struct page * page,unsigned int order)5256 static inline void free_the_page(struct page *page, unsigned int order)
5257 {
5258 	if (order == 0)		/* Via pcp? */
5259 		free_unref_page(page);
5260 	else
5261 		__free_pages_ok(page, order, FPI_NONE);
5262 }
5263 
__free_pages(struct page * page,unsigned int order)5264 void __free_pages(struct page *page, unsigned int order)
5265 {
5266 	/* get PageHead before we drop reference */
5267 	int head = PageHead(page);
5268 
5269 	trace_android_vh_free_pages(page, order);
5270 	if (put_page_testzero(page))
5271 		free_the_page(page, order);
5272 	else if (!head)
5273 		while (order-- > 0)
5274 			free_the_page(page + (1 << order), order);
5275 }
5276 EXPORT_SYMBOL(__free_pages);
5277 
free_pages(unsigned long addr,unsigned int order)5278 void free_pages(unsigned long addr, unsigned int order)
5279 {
5280 	if (addr != 0) {
5281 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5282 		__free_pages(virt_to_page((void *)addr), order);
5283 	}
5284 }
5285 
5286 EXPORT_SYMBOL(free_pages);
5287 
5288 /*
5289  * Page Fragment:
5290  *  An arbitrary-length arbitrary-offset area of memory which resides
5291  *  within a 0 or higher order page.  Multiple fragments within that page
5292  *  are individually refcounted, in the page's reference counter.
5293  *
5294  * The page_frag functions below provide a simple allocation framework for
5295  * page fragments.  This is used by the network stack and network device
5296  * drivers to provide a backing region of memory for use as either an
5297  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5298  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)5299 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5300 					     gfp_t gfp_mask)
5301 {
5302 	struct page *page = NULL;
5303 	gfp_t gfp = gfp_mask;
5304 
5305 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5306 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5307 		    __GFP_NOMEMALLOC;
5308 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5309 				PAGE_FRAG_CACHE_MAX_ORDER);
5310 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5311 #endif
5312 	if (unlikely(!page))
5313 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5314 
5315 	nc->va = page ? page_address(page) : NULL;
5316 
5317 	return page;
5318 }
5319 
__page_frag_cache_drain(struct page * page,unsigned int count)5320 void __page_frag_cache_drain(struct page *page, unsigned int count)
5321 {
5322 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5323 
5324 	if (page_ref_sub_and_test(page, count))
5325 		free_the_page(page, compound_order(page));
5326 }
5327 EXPORT_SYMBOL(__page_frag_cache_drain);
5328 
page_frag_alloc(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)5329 void *page_frag_alloc(struct page_frag_cache *nc,
5330 		      unsigned int fragsz, gfp_t gfp_mask)
5331 {
5332 	unsigned int size = PAGE_SIZE;
5333 	struct page *page;
5334 	int offset;
5335 
5336 	if (unlikely(!nc->va)) {
5337 refill:
5338 		page = __page_frag_cache_refill(nc, gfp_mask);
5339 		if (!page)
5340 			return NULL;
5341 
5342 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5343 		/* if size can vary use size else just use PAGE_SIZE */
5344 		size = nc->size;
5345 #endif
5346 		/* Even if we own the page, we do not use atomic_set().
5347 		 * This would break get_page_unless_zero() users.
5348 		 */
5349 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5350 
5351 		/* reset page count bias and offset to start of new frag */
5352 		nc->pfmemalloc = page_is_pfmemalloc(page);
5353 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5354 		nc->offset = size;
5355 	}
5356 
5357 	offset = nc->offset - fragsz;
5358 	if (unlikely(offset < 0)) {
5359 		page = virt_to_page(nc->va);
5360 
5361 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5362 			goto refill;
5363 
5364 		if (unlikely(nc->pfmemalloc)) {
5365 			free_the_page(page, compound_order(page));
5366 			goto refill;
5367 		}
5368 
5369 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5370 		/* if size can vary use size else just use PAGE_SIZE */
5371 		size = nc->size;
5372 #endif
5373 		/* OK, page count is 0, we can safely set it */
5374 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5375 
5376 		/* reset page count bias and offset to start of new frag */
5377 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5378 		offset = size - fragsz;
5379 		if (unlikely(offset < 0)) {
5380 			/*
5381 			 * The caller is trying to allocate a fragment
5382 			 * with fragsz > PAGE_SIZE but the cache isn't big
5383 			 * enough to satisfy the request, this may
5384 			 * happen in low memory conditions.
5385 			 * We don't release the cache page because
5386 			 * it could make memory pressure worse
5387 			 * so we simply return NULL here.
5388 			 */
5389 			return NULL;
5390 		}
5391 	}
5392 
5393 	nc->pagecnt_bias--;
5394 	nc->offset = offset;
5395 
5396 	return nc->va + offset;
5397 }
5398 EXPORT_SYMBOL(page_frag_alloc);
5399 
5400 /*
5401  * Frees a page fragment allocated out of either a compound or order 0 page.
5402  */
page_frag_free(void * addr)5403 void page_frag_free(void *addr)
5404 {
5405 	struct page *page = virt_to_head_page(addr);
5406 
5407 	if (unlikely(put_page_testzero(page)))
5408 		free_the_page(page, compound_order(page));
5409 }
5410 EXPORT_SYMBOL(page_frag_free);
5411 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5412 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5413 		size_t size)
5414 {
5415 	if (addr) {
5416 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5417 		unsigned long used = addr + PAGE_ALIGN(size);
5418 
5419 		split_page(virt_to_page((void *)addr), order);
5420 		while (used < alloc_end) {
5421 			free_page(used);
5422 			used += PAGE_SIZE;
5423 		}
5424 	}
5425 	return (void *)addr;
5426 }
5427 
5428 /**
5429  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5430  * @size: the number of bytes to allocate
5431  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5432  *
5433  * This function is similar to alloc_pages(), except that it allocates the
5434  * minimum number of pages to satisfy the request.  alloc_pages() can only
5435  * allocate memory in power-of-two pages.
5436  *
5437  * This function is also limited by MAX_ORDER.
5438  *
5439  * Memory allocated by this function must be released by free_pages_exact().
5440  *
5441  * Return: pointer to the allocated area or %NULL in case of error.
5442  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)5443 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5444 {
5445 	unsigned int order = get_order(size);
5446 	unsigned long addr;
5447 
5448 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5449 		gfp_mask &= ~__GFP_COMP;
5450 
5451 	addr = __get_free_pages(gfp_mask, order);
5452 	return make_alloc_exact(addr, order, size);
5453 }
5454 EXPORT_SYMBOL(alloc_pages_exact);
5455 
5456 /**
5457  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5458  *			   pages on a node.
5459  * @nid: the preferred node ID where memory should be allocated
5460  * @size: the number of bytes to allocate
5461  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5462  *
5463  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5464  * back.
5465  *
5466  * Return: pointer to the allocated area or %NULL in case of error.
5467  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)5468 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5469 {
5470 	unsigned int order = get_order(size);
5471 	struct page *p;
5472 
5473 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5474 		gfp_mask &= ~__GFP_COMP;
5475 
5476 	p = alloc_pages_node(nid, gfp_mask, order);
5477 	if (!p)
5478 		return NULL;
5479 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5480 }
5481 
5482 /**
5483  * free_pages_exact - release memory allocated via alloc_pages_exact()
5484  * @virt: the value returned by alloc_pages_exact.
5485  * @size: size of allocation, same value as passed to alloc_pages_exact().
5486  *
5487  * Release the memory allocated by a previous call to alloc_pages_exact.
5488  */
free_pages_exact(void * virt,size_t size)5489 void free_pages_exact(void *virt, size_t size)
5490 {
5491 	unsigned long addr = (unsigned long)virt;
5492 	unsigned long end = addr + PAGE_ALIGN(size);
5493 
5494 	while (addr < end) {
5495 		free_page(addr);
5496 		addr += PAGE_SIZE;
5497 	}
5498 }
5499 EXPORT_SYMBOL(free_pages_exact);
5500 
5501 /**
5502  * nr_free_zone_pages - count number of pages beyond high watermark
5503  * @offset: The zone index of the highest zone
5504  *
5505  * nr_free_zone_pages() counts the number of pages which are beyond the
5506  * high watermark within all zones at or below a given zone index.  For each
5507  * zone, the number of pages is calculated as:
5508  *
5509  *     nr_free_zone_pages = managed_pages - high_pages
5510  *
5511  * Return: number of pages beyond high watermark.
5512  */
nr_free_zone_pages(int offset)5513 static unsigned long nr_free_zone_pages(int offset)
5514 {
5515 	struct zoneref *z;
5516 	struct zone *zone;
5517 
5518 	/* Just pick one node, since fallback list is circular */
5519 	unsigned long sum = 0;
5520 
5521 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5522 
5523 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5524 		unsigned long size = zone_managed_pages(zone);
5525 		unsigned long high = high_wmark_pages(zone);
5526 		if (size > high)
5527 			sum += size - high;
5528 	}
5529 
5530 	return sum;
5531 }
5532 
5533 /**
5534  * nr_free_buffer_pages - count number of pages beyond high watermark
5535  *
5536  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5537  * watermark within ZONE_DMA and ZONE_NORMAL.
5538  *
5539  * Return: number of pages beyond high watermark within ZONE_DMA and
5540  * ZONE_NORMAL.
5541  */
nr_free_buffer_pages(void)5542 unsigned long nr_free_buffer_pages(void)
5543 {
5544 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5545 }
5546 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5547 
show_node(struct zone * zone)5548 static inline void show_node(struct zone *zone)
5549 {
5550 	if (IS_ENABLED(CONFIG_NUMA))
5551 		printk("Node %d ", zone_to_nid(zone));
5552 }
5553 
si_mem_available(void)5554 long si_mem_available(void)
5555 {
5556 	long available;
5557 	unsigned long pagecache;
5558 	unsigned long wmark_low = 0;
5559 	unsigned long pages[NR_LRU_LISTS];
5560 	unsigned long reclaimable;
5561 	struct zone *zone;
5562 	int lru;
5563 
5564 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5565 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5566 
5567 	for_each_zone(zone)
5568 		wmark_low += low_wmark_pages(zone);
5569 
5570 	/*
5571 	 * Estimate the amount of memory available for userspace allocations,
5572 	 * without causing swapping.
5573 	 */
5574 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5575 
5576 	/*
5577 	 * Not all the page cache can be freed, otherwise the system will
5578 	 * start swapping. Assume at least half of the page cache, or the
5579 	 * low watermark worth of cache, needs to stay.
5580 	 */
5581 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5582 	pagecache -= min(pagecache / 2, wmark_low);
5583 	available += pagecache;
5584 
5585 	/*
5586 	 * Part of the reclaimable slab and other kernel memory consists of
5587 	 * items that are in use, and cannot be freed. Cap this estimate at the
5588 	 * low watermark.
5589 	 */
5590 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5591 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5592 	available += reclaimable - min(reclaimable / 2, wmark_low);
5593 
5594 	if (available < 0)
5595 		available = 0;
5596 	return available;
5597 }
5598 EXPORT_SYMBOL_GPL(si_mem_available);
5599 
si_meminfo(struct sysinfo * val)5600 void si_meminfo(struct sysinfo *val)
5601 {
5602 	val->totalram = totalram_pages();
5603 	val->sharedram = global_node_page_state(NR_SHMEM);
5604 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5605 	val->bufferram = nr_blockdev_pages();
5606 	val->totalhigh = totalhigh_pages();
5607 	val->freehigh = nr_free_highpages();
5608 	val->mem_unit = PAGE_SIZE;
5609 }
5610 
5611 EXPORT_SYMBOL(si_meminfo);
5612 
5613 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)5614 void si_meminfo_node(struct sysinfo *val, int nid)
5615 {
5616 	int zone_type;		/* needs to be signed */
5617 	unsigned long managed_pages = 0;
5618 	unsigned long managed_highpages = 0;
5619 	unsigned long free_highpages = 0;
5620 	pg_data_t *pgdat = NODE_DATA(nid);
5621 
5622 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5623 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5624 	val->totalram = managed_pages;
5625 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5626 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5627 #ifdef CONFIG_HIGHMEM
5628 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5629 		struct zone *zone = &pgdat->node_zones[zone_type];
5630 
5631 		if (is_highmem(zone)) {
5632 			managed_highpages += zone_managed_pages(zone);
5633 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5634 		}
5635 	}
5636 	val->totalhigh = managed_highpages;
5637 	val->freehigh = free_highpages;
5638 #else
5639 	val->totalhigh = managed_highpages;
5640 	val->freehigh = free_highpages;
5641 #endif
5642 	val->mem_unit = PAGE_SIZE;
5643 }
5644 #endif
5645 
5646 /*
5647  * Determine whether the node should be displayed or not, depending on whether
5648  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5649  */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)5650 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5651 {
5652 	if (!(flags & SHOW_MEM_FILTER_NODES))
5653 		return false;
5654 
5655 	/*
5656 	 * no node mask - aka implicit memory numa policy. Do not bother with
5657 	 * the synchronization - read_mems_allowed_begin - because we do not
5658 	 * have to be precise here.
5659 	 */
5660 	if (!nodemask)
5661 		nodemask = &cpuset_current_mems_allowed;
5662 
5663 	return !node_isset(nid, *nodemask);
5664 }
5665 
5666 #define K(x) ((x) << (PAGE_SHIFT-10))
5667 
show_migration_types(unsigned char type)5668 static void show_migration_types(unsigned char type)
5669 {
5670 	static const char types[MIGRATE_TYPES] = {
5671 		[MIGRATE_UNMOVABLE]	= 'U',
5672 		[MIGRATE_MOVABLE]	= 'M',
5673 		[MIGRATE_RECLAIMABLE]	= 'E',
5674 		[MIGRATE_HIGHATOMIC]	= 'H',
5675 #ifdef CONFIG_CMA
5676 		[MIGRATE_CMA]		= 'C',
5677 #endif
5678 #ifdef CONFIG_MEMORY_ISOLATION
5679 		[MIGRATE_ISOLATE]	= 'I',
5680 #endif
5681 	};
5682 	char tmp[MIGRATE_TYPES + 1];
5683 	char *p = tmp;
5684 	int i;
5685 
5686 	for (i = 0; i < MIGRATE_TYPES; i++) {
5687 		if (type & (1 << i))
5688 			*p++ = types[i];
5689 	}
5690 
5691 	*p = '\0';
5692 	printk(KERN_CONT "(%s) ", tmp);
5693 }
5694 
5695 /*
5696  * Show free area list (used inside shift_scroll-lock stuff)
5697  * We also calculate the percentage fragmentation. We do this by counting the
5698  * memory on each free list with the exception of the first item on the list.
5699  *
5700  * Bits in @filter:
5701  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5702  *   cpuset.
5703  */
show_free_areas(unsigned int filter,nodemask_t * nodemask)5704 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5705 {
5706 	unsigned long free_pcp = 0;
5707 	int cpu;
5708 	struct zone *zone;
5709 	pg_data_t *pgdat;
5710 
5711 	for_each_populated_zone(zone) {
5712 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5713 			continue;
5714 
5715 		for_each_online_cpu(cpu)
5716 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5717 	}
5718 
5719 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5720 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5721 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5722 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5723 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5724 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5725 		global_node_page_state(NR_ACTIVE_ANON),
5726 		global_node_page_state(NR_INACTIVE_ANON),
5727 		global_node_page_state(NR_ISOLATED_ANON),
5728 		global_node_page_state(NR_ACTIVE_FILE),
5729 		global_node_page_state(NR_INACTIVE_FILE),
5730 		global_node_page_state(NR_ISOLATED_FILE),
5731 		global_node_page_state(NR_UNEVICTABLE),
5732 		global_node_page_state(NR_FILE_DIRTY),
5733 		global_node_page_state(NR_WRITEBACK),
5734 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5735 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5736 		global_node_page_state(NR_FILE_MAPPED),
5737 		global_node_page_state(NR_SHMEM),
5738 		global_zone_page_state(NR_PAGETABLE),
5739 		global_zone_page_state(NR_BOUNCE),
5740 		global_zone_page_state(NR_FREE_PAGES),
5741 		free_pcp,
5742 		global_zone_page_state(NR_FREE_CMA_PAGES));
5743 
5744 	trace_android_vh_show_mapcount_pages(NULL);
5745 	for_each_online_pgdat(pgdat) {
5746 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5747 			continue;
5748 
5749 		printk("Node %d"
5750 			" active_anon:%lukB"
5751 			" inactive_anon:%lukB"
5752 			" active_file:%lukB"
5753 			" inactive_file:%lukB"
5754 			" unevictable:%lukB"
5755 			" isolated(anon):%lukB"
5756 			" isolated(file):%lukB"
5757 			" mapped:%lukB"
5758 			" dirty:%lukB"
5759 			" writeback:%lukB"
5760 			" shmem:%lukB"
5761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5762 			" shmem_thp: %lukB"
5763 			" shmem_pmdmapped: %lukB"
5764 			" anon_thp: %lukB"
5765 #endif
5766 			" writeback_tmp:%lukB"
5767 			" kernel_stack:%lukB"
5768 #ifdef CONFIG_SHADOW_CALL_STACK
5769 			" shadow_call_stack:%lukB"
5770 #endif
5771 			" all_unreclaimable? %s"
5772 			"\n",
5773 			pgdat->node_id,
5774 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5775 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5776 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5777 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5778 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5779 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5780 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5781 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5782 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5783 			K(node_page_state(pgdat, NR_WRITEBACK)),
5784 			K(node_page_state(pgdat, NR_SHMEM)),
5785 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5786 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5787 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5788 					* HPAGE_PMD_NR),
5789 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5790 #endif
5791 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5792 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5793 #ifdef CONFIG_SHADOW_CALL_STACK
5794 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5795 #endif
5796 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5797 				"yes" : "no");
5798 	}
5799 
5800 	for_each_populated_zone(zone) {
5801 		int i;
5802 
5803 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5804 			continue;
5805 
5806 		free_pcp = 0;
5807 		for_each_online_cpu(cpu)
5808 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5809 
5810 		show_node(zone);
5811 		printk(KERN_CONT
5812 			"%s"
5813 			" free:%lukB"
5814 			" min:%lukB"
5815 			" low:%lukB"
5816 			" high:%lukB"
5817 			" reserved_highatomic:%luKB"
5818 			" active_anon:%lukB"
5819 			" inactive_anon:%lukB"
5820 			" active_file:%lukB"
5821 			" inactive_file:%lukB"
5822 			" unevictable:%lukB"
5823 			" writepending:%lukB"
5824 			" present:%lukB"
5825 			" managed:%lukB"
5826 			" mlocked:%lukB"
5827 			" pagetables:%lukB"
5828 			" bounce:%lukB"
5829 			" free_pcp:%lukB"
5830 			" local_pcp:%ukB"
5831 			" free_cma:%lukB"
5832 			"\n",
5833 			zone->name,
5834 			K(zone_page_state(zone, NR_FREE_PAGES)),
5835 			K(min_wmark_pages(zone)),
5836 			K(low_wmark_pages(zone)),
5837 			K(high_wmark_pages(zone)),
5838 			K(zone->nr_reserved_highatomic),
5839 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5840 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5841 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5842 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5843 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5844 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5845 			K(zone->present_pages),
5846 			K(zone_managed_pages(zone)),
5847 			K(zone_page_state(zone, NR_MLOCK)),
5848 			K(zone_page_state(zone, NR_PAGETABLE)),
5849 			K(zone_page_state(zone, NR_BOUNCE)),
5850 			K(free_pcp),
5851 			K(this_cpu_read(zone->pageset->pcp.count)),
5852 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5853 		printk("lowmem_reserve[]:");
5854 		for (i = 0; i < MAX_NR_ZONES; i++)
5855 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5856 		printk(KERN_CONT "\n");
5857 	}
5858 
5859 	for_each_populated_zone(zone) {
5860 		unsigned int order;
5861 		unsigned long nr[MAX_ORDER], flags, total = 0;
5862 		unsigned char types[MAX_ORDER];
5863 
5864 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5865 			continue;
5866 		show_node(zone);
5867 		printk(KERN_CONT "%s: ", zone->name);
5868 
5869 		spin_lock_irqsave(&zone->lock, flags);
5870 		for (order = 0; order < MAX_ORDER; order++) {
5871 			struct free_area *area = &zone->free_area[order];
5872 			int type;
5873 
5874 			nr[order] = area->nr_free;
5875 			total += nr[order] << order;
5876 
5877 			types[order] = 0;
5878 			for (type = 0; type < MIGRATE_TYPES; type++) {
5879 				if (!free_area_empty(area, type))
5880 					types[order] |= 1 << type;
5881 			}
5882 		}
5883 		spin_unlock_irqrestore(&zone->lock, flags);
5884 		for (order = 0; order < MAX_ORDER; order++) {
5885 			printk(KERN_CONT "%lu*%lukB ",
5886 			       nr[order], K(1UL) << order);
5887 			if (nr[order])
5888 				show_migration_types(types[order]);
5889 		}
5890 		printk(KERN_CONT "= %lukB\n", K(total));
5891 	}
5892 
5893 	hugetlb_show_meminfo();
5894 
5895 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5896 
5897 	show_swap_cache_info();
5898 }
5899 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5900 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5901 {
5902 	zoneref->zone = zone;
5903 	zoneref->zone_idx = zone_idx(zone);
5904 }
5905 
5906 /*
5907  * Builds allocation fallback zone lists.
5908  *
5909  * Add all populated zones of a node to the zonelist.
5910  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5911 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5912 {
5913 	struct zone *zone;
5914 	enum zone_type zone_type = MAX_NR_ZONES;
5915 	int nr_zones = 0;
5916 
5917 	do {
5918 		zone_type--;
5919 		zone = pgdat->node_zones + zone_type;
5920 		if (populated_zone(zone)) {
5921 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5922 			check_highest_zone(zone_type);
5923 		}
5924 	} while (zone_type);
5925 
5926 	return nr_zones;
5927 }
5928 
5929 #ifdef CONFIG_NUMA
5930 
__parse_numa_zonelist_order(char * s)5931 static int __parse_numa_zonelist_order(char *s)
5932 {
5933 	/*
5934 	 * We used to support different zonlists modes but they turned
5935 	 * out to be just not useful. Let's keep the warning in place
5936 	 * if somebody still use the cmd line parameter so that we do
5937 	 * not fail it silently
5938 	 */
5939 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5940 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5941 		return -EINVAL;
5942 	}
5943 	return 0;
5944 }
5945 
5946 char numa_zonelist_order[] = "Node";
5947 
5948 /*
5949  * sysctl handler for numa_zonelist_order
5950  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5951 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5952 		void *buffer, size_t *length, loff_t *ppos)
5953 {
5954 	if (write)
5955 		return __parse_numa_zonelist_order(buffer);
5956 	return proc_dostring(table, write, buffer, length, ppos);
5957 }
5958 
5959 
5960 #define MAX_NODE_LOAD (nr_online_nodes)
5961 static int node_load[MAX_NUMNODES];
5962 
5963 /**
5964  * find_next_best_node - find the next node that should appear in a given node's fallback list
5965  * @node: node whose fallback list we're appending
5966  * @used_node_mask: nodemask_t of already used nodes
5967  *
5968  * We use a number of factors to determine which is the next node that should
5969  * appear on a given node's fallback list.  The node should not have appeared
5970  * already in @node's fallback list, and it should be the next closest node
5971  * according to the distance array (which contains arbitrary distance values
5972  * from each node to each node in the system), and should also prefer nodes
5973  * with no CPUs, since presumably they'll have very little allocation pressure
5974  * on them otherwise.
5975  *
5976  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5977  */
find_next_best_node(int node,nodemask_t * used_node_mask)5978 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5979 {
5980 	int n, val;
5981 	int min_val = INT_MAX;
5982 	int best_node = NUMA_NO_NODE;
5983 
5984 	/* Use the local node if we haven't already */
5985 	if (!node_isset(node, *used_node_mask)) {
5986 		node_set(node, *used_node_mask);
5987 		return node;
5988 	}
5989 
5990 	for_each_node_state(n, N_MEMORY) {
5991 
5992 		/* Don't want a node to appear more than once */
5993 		if (node_isset(n, *used_node_mask))
5994 			continue;
5995 
5996 		/* Use the distance array to find the distance */
5997 		val = node_distance(node, n);
5998 
5999 		/* Penalize nodes under us ("prefer the next node") */
6000 		val += (n < node);
6001 
6002 		/* Give preference to headless and unused nodes */
6003 		if (!cpumask_empty(cpumask_of_node(n)))
6004 			val += PENALTY_FOR_NODE_WITH_CPUS;
6005 
6006 		/* Slight preference for less loaded node */
6007 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6008 		val += node_load[n];
6009 
6010 		if (val < min_val) {
6011 			min_val = val;
6012 			best_node = n;
6013 		}
6014 	}
6015 
6016 	if (best_node >= 0)
6017 		node_set(best_node, *used_node_mask);
6018 
6019 	return best_node;
6020 }
6021 
6022 
6023 /*
6024  * Build zonelists ordered by node and zones within node.
6025  * This results in maximum locality--normal zone overflows into local
6026  * DMA zone, if any--but risks exhausting DMA zone.
6027  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)6028 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6029 		unsigned nr_nodes)
6030 {
6031 	struct zoneref *zonerefs;
6032 	int i;
6033 
6034 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6035 
6036 	for (i = 0; i < nr_nodes; i++) {
6037 		int nr_zones;
6038 
6039 		pg_data_t *node = NODE_DATA(node_order[i]);
6040 
6041 		nr_zones = build_zonerefs_node(node, zonerefs);
6042 		zonerefs += nr_zones;
6043 	}
6044 	zonerefs->zone = NULL;
6045 	zonerefs->zone_idx = 0;
6046 }
6047 
6048 /*
6049  * Build gfp_thisnode zonelists
6050  */
build_thisnode_zonelists(pg_data_t * pgdat)6051 static void build_thisnode_zonelists(pg_data_t *pgdat)
6052 {
6053 	struct zoneref *zonerefs;
6054 	int nr_zones;
6055 
6056 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6057 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6058 	zonerefs += nr_zones;
6059 	zonerefs->zone = NULL;
6060 	zonerefs->zone_idx = 0;
6061 }
6062 
6063 /*
6064  * Build zonelists ordered by zone and nodes within zones.
6065  * This results in conserving DMA zone[s] until all Normal memory is
6066  * exhausted, but results in overflowing to remote node while memory
6067  * may still exist in local DMA zone.
6068  */
6069 
build_zonelists(pg_data_t * pgdat)6070 static void build_zonelists(pg_data_t *pgdat)
6071 {
6072 	static int node_order[MAX_NUMNODES];
6073 	int node, load, nr_nodes = 0;
6074 	nodemask_t used_mask = NODE_MASK_NONE;
6075 	int local_node, prev_node;
6076 
6077 	/* NUMA-aware ordering of nodes */
6078 	local_node = pgdat->node_id;
6079 	load = nr_online_nodes;
6080 	prev_node = local_node;
6081 
6082 	memset(node_order, 0, sizeof(node_order));
6083 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6084 		/*
6085 		 * We don't want to pressure a particular node.
6086 		 * So adding penalty to the first node in same
6087 		 * distance group to make it round-robin.
6088 		 */
6089 		if (node_distance(local_node, node) !=
6090 		    node_distance(local_node, prev_node))
6091 			node_load[node] = load;
6092 
6093 		node_order[nr_nodes++] = node;
6094 		prev_node = node;
6095 		load--;
6096 	}
6097 
6098 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6099 	build_thisnode_zonelists(pgdat);
6100 }
6101 
6102 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6103 /*
6104  * Return node id of node used for "local" allocations.
6105  * I.e., first node id of first zone in arg node's generic zonelist.
6106  * Used for initializing percpu 'numa_mem', which is used primarily
6107  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6108  */
local_memory_node(int node)6109 int local_memory_node(int node)
6110 {
6111 	struct zoneref *z;
6112 
6113 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6114 				   gfp_zone(GFP_KERNEL),
6115 				   NULL);
6116 	return zone_to_nid(z->zone);
6117 }
6118 #endif
6119 
6120 static void setup_min_unmapped_ratio(void);
6121 static void setup_min_slab_ratio(void);
6122 #else	/* CONFIG_NUMA */
6123 
build_zonelists(pg_data_t * pgdat)6124 static void build_zonelists(pg_data_t *pgdat)
6125 {
6126 	int node, local_node;
6127 	struct zoneref *zonerefs;
6128 	int nr_zones;
6129 
6130 	local_node = pgdat->node_id;
6131 
6132 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6133 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6134 	zonerefs += nr_zones;
6135 
6136 	/*
6137 	 * Now we build the zonelist so that it contains the zones
6138 	 * of all the other nodes.
6139 	 * We don't want to pressure a particular node, so when
6140 	 * building the zones for node N, we make sure that the
6141 	 * zones coming right after the local ones are those from
6142 	 * node N+1 (modulo N)
6143 	 */
6144 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6145 		if (!node_online(node))
6146 			continue;
6147 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6148 		zonerefs += nr_zones;
6149 	}
6150 	for (node = 0; node < local_node; node++) {
6151 		if (!node_online(node))
6152 			continue;
6153 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6154 		zonerefs += nr_zones;
6155 	}
6156 
6157 	zonerefs->zone = NULL;
6158 	zonerefs->zone_idx = 0;
6159 }
6160 
6161 #endif	/* CONFIG_NUMA */
6162 
6163 /*
6164  * Boot pageset table. One per cpu which is going to be used for all
6165  * zones and all nodes. The parameters will be set in such a way
6166  * that an item put on a list will immediately be handed over to
6167  * the buddy list. This is safe since pageset manipulation is done
6168  * with interrupts disabled.
6169  *
6170  * The boot_pagesets must be kept even after bootup is complete for
6171  * unused processors and/or zones. They do play a role for bootstrapping
6172  * hotplugged processors.
6173  *
6174  * zoneinfo_show() and maybe other functions do
6175  * not check if the processor is online before following the pageset pointer.
6176  * Other parts of the kernel may not check if the zone is available.
6177  */
6178 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
6179 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6180 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6181 
__build_all_zonelists(void * data)6182 static void __build_all_zonelists(void *data)
6183 {
6184 	int nid;
6185 	int __maybe_unused cpu;
6186 	pg_data_t *self = data;
6187 	unsigned long flags;
6188 
6189 	/*
6190 	 * Explicitly disable this CPU's interrupts before taking seqlock
6191 	 * to prevent any IRQ handler from calling into the page allocator
6192 	 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
6193 	 */
6194 	local_irq_save(flags);
6195 	/*
6196 	 * Explicitly disable this CPU's synchronous printk() before taking
6197 	 * seqlock to prevent any printk() from trying to hold port->lock, for
6198 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
6199 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
6200 	 */
6201 	printk_deferred_enter();
6202 	write_seqlock(&zonelist_update_seq);
6203 
6204 #ifdef CONFIG_NUMA
6205 	memset(node_load, 0, sizeof(node_load));
6206 #endif
6207 
6208 	/*
6209 	 * This node is hotadded and no memory is yet present.   So just
6210 	 * building zonelists is fine - no need to touch other nodes.
6211 	 */
6212 	if (self && !node_online(self->node_id)) {
6213 		build_zonelists(self);
6214 	} else {
6215 		for_each_online_node(nid) {
6216 			pg_data_t *pgdat = NODE_DATA(nid);
6217 
6218 			build_zonelists(pgdat);
6219 		}
6220 
6221 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6222 		/*
6223 		 * We now know the "local memory node" for each node--
6224 		 * i.e., the node of the first zone in the generic zonelist.
6225 		 * Set up numa_mem percpu variable for on-line cpus.  During
6226 		 * boot, only the boot cpu should be on-line;  we'll init the
6227 		 * secondary cpus' numa_mem as they come on-line.  During
6228 		 * node/memory hotplug, we'll fixup all on-line cpus.
6229 		 */
6230 		for_each_online_cpu(cpu)
6231 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6232 #endif
6233 	}
6234 
6235 	write_sequnlock(&zonelist_update_seq);
6236 	printk_deferred_exit();
6237 	local_irq_restore(flags);
6238 }
6239 
6240 static noinline void __init
build_all_zonelists_init(void)6241 build_all_zonelists_init(void)
6242 {
6243 	int cpu;
6244 
6245 	__build_all_zonelists(NULL);
6246 
6247 	/*
6248 	 * Initialize the boot_pagesets that are going to be used
6249 	 * for bootstrapping processors. The real pagesets for
6250 	 * each zone will be allocated later when the per cpu
6251 	 * allocator is available.
6252 	 *
6253 	 * boot_pagesets are used also for bootstrapping offline
6254 	 * cpus if the system is already booted because the pagesets
6255 	 * are needed to initialize allocators on a specific cpu too.
6256 	 * F.e. the percpu allocator needs the page allocator which
6257 	 * needs the percpu allocator in order to allocate its pagesets
6258 	 * (a chicken-egg dilemma).
6259 	 */
6260 	for_each_possible_cpu(cpu)
6261 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
6262 
6263 	mminit_verify_zonelist();
6264 	cpuset_init_current_mems_allowed();
6265 }
6266 
6267 /*
6268  * unless system_state == SYSTEM_BOOTING.
6269  *
6270  * __ref due to call of __init annotated helper build_all_zonelists_init
6271  * [protected by SYSTEM_BOOTING].
6272  */
build_all_zonelists(pg_data_t * pgdat)6273 void __ref build_all_zonelists(pg_data_t *pgdat)
6274 {
6275 	unsigned long vm_total_pages;
6276 
6277 	if (system_state == SYSTEM_BOOTING) {
6278 		build_all_zonelists_init();
6279 	} else {
6280 		__build_all_zonelists(pgdat);
6281 		/* cpuset refresh routine should be here */
6282 	}
6283 	/* Get the number of free pages beyond high watermark in all zones. */
6284 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6285 	/*
6286 	 * Disable grouping by mobility if the number of pages in the
6287 	 * system is too low to allow the mechanism to work. It would be
6288 	 * more accurate, but expensive to check per-zone. This check is
6289 	 * made on memory-hotadd so a system can start with mobility
6290 	 * disabled and enable it later
6291 	 */
6292 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6293 		page_group_by_mobility_disabled = 1;
6294 	else
6295 		page_group_by_mobility_disabled = 0;
6296 
6297 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6298 		nr_online_nodes,
6299 		page_group_by_mobility_disabled ? "off" : "on",
6300 		vm_total_pages);
6301 #ifdef CONFIG_NUMA
6302 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6303 #endif
6304 }
6305 
6306 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6307 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)6308 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6309 {
6310 	static struct memblock_region *r;
6311 
6312 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6313 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6314 			for_each_mem_region(r) {
6315 				if (*pfn < memblock_region_memory_end_pfn(r))
6316 					break;
6317 			}
6318 		}
6319 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6320 		    memblock_is_mirror(r)) {
6321 			*pfn = memblock_region_memory_end_pfn(r);
6322 			return true;
6323 		}
6324 	}
6325 	return false;
6326 }
6327 
6328 /*
6329  * Initially all pages are reserved - free ones are freed
6330  * up by memblock_free_all() once the early boot process is
6331  * done. Non-atomic initialization, single-pass.
6332  *
6333  * All aligned pageblocks are initialized to the specified migratetype
6334  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6335  * zone stats (e.g., nr_isolate_pageblock) are touched.
6336  */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)6337 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6338 		unsigned long start_pfn, unsigned long zone_end_pfn,
6339 		enum meminit_context context,
6340 		struct vmem_altmap *altmap, int migratetype)
6341 {
6342 	unsigned long pfn, end_pfn = start_pfn + size;
6343 	struct page *page;
6344 
6345 	if (highest_memmap_pfn < end_pfn - 1)
6346 		highest_memmap_pfn = end_pfn - 1;
6347 
6348 #ifdef CONFIG_ZONE_DEVICE
6349 	/*
6350 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6351 	 * memory. We limit the total number of pages to initialize to just
6352 	 * those that might contain the memory mapping. We will defer the
6353 	 * ZONE_DEVICE page initialization until after we have released
6354 	 * the hotplug lock.
6355 	 */
6356 	if (zone == ZONE_DEVICE) {
6357 		if (!altmap)
6358 			return;
6359 
6360 		if (start_pfn == altmap->base_pfn)
6361 			start_pfn += altmap->reserve;
6362 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6363 	}
6364 #endif
6365 
6366 	for (pfn = start_pfn; pfn < end_pfn; ) {
6367 		/*
6368 		 * There can be holes in boot-time mem_map[]s handed to this
6369 		 * function.  They do not exist on hotplugged memory.
6370 		 */
6371 		if (context == MEMINIT_EARLY) {
6372 			if (overlap_memmap_init(zone, &pfn))
6373 				continue;
6374 			if (defer_init(nid, pfn, zone_end_pfn))
6375 				break;
6376 		}
6377 
6378 		page = pfn_to_page(pfn);
6379 		__init_single_page(page, pfn, zone, nid);
6380 		if (context == MEMINIT_HOTPLUG)
6381 			__SetPageReserved(page);
6382 
6383 		/*
6384 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6385 		 * such that unmovable allocations won't be scattered all
6386 		 * over the place during system boot.
6387 		 */
6388 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6389 			set_pageblock_migratetype(page, migratetype);
6390 			cond_resched();
6391 		}
6392 		pfn++;
6393 	}
6394 }
6395 
6396 #ifdef CONFIG_ZONE_DEVICE
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)6397 void __ref memmap_init_zone_device(struct zone *zone,
6398 				   unsigned long start_pfn,
6399 				   unsigned long nr_pages,
6400 				   struct dev_pagemap *pgmap)
6401 {
6402 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6403 	struct pglist_data *pgdat = zone->zone_pgdat;
6404 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6405 	unsigned long zone_idx = zone_idx(zone);
6406 	unsigned long start = jiffies;
6407 	int nid = pgdat->node_id;
6408 
6409 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6410 		return;
6411 
6412 	/*
6413 	 * The call to memmap_init should have already taken care
6414 	 * of the pages reserved for the memmap, so we can just jump to
6415 	 * the end of that region and start processing the device pages.
6416 	 */
6417 	if (altmap) {
6418 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6419 		nr_pages = end_pfn - start_pfn;
6420 	}
6421 
6422 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6423 		struct page *page = pfn_to_page(pfn);
6424 
6425 		__init_single_page(page, pfn, zone_idx, nid);
6426 
6427 		/*
6428 		 * Mark page reserved as it will need to wait for onlining
6429 		 * phase for it to be fully associated with a zone.
6430 		 *
6431 		 * We can use the non-atomic __set_bit operation for setting
6432 		 * the flag as we are still initializing the pages.
6433 		 */
6434 		__SetPageReserved(page);
6435 
6436 		/*
6437 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6438 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6439 		 * ever freed or placed on a driver-private list.
6440 		 */
6441 		page->pgmap = pgmap;
6442 		page->zone_device_data = NULL;
6443 
6444 		/*
6445 		 * Mark the block movable so that blocks are reserved for
6446 		 * movable at startup. This will force kernel allocations
6447 		 * to reserve their blocks rather than leaking throughout
6448 		 * the address space during boot when many long-lived
6449 		 * kernel allocations are made.
6450 		 *
6451 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6452 		 * because this is done early in section_activate()
6453 		 */
6454 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6455 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6456 			cond_resched();
6457 		}
6458 	}
6459 
6460 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6461 		nr_pages, jiffies_to_msecs(jiffies - start));
6462 }
6463 
6464 #endif
zone_init_free_lists(struct zone * zone)6465 static void __meminit zone_init_free_lists(struct zone *zone)
6466 {
6467 	unsigned int order, t;
6468 	for_each_migratetype_order(order, t) {
6469 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6470 		zone->free_area[order].nr_free = 0;
6471 	}
6472 }
6473 
6474 /*
6475  * Only struct pages that correspond to ranges defined by memblock.memory
6476  * are zeroed and initialized by going through __init_single_page() during
6477  * memmap_init_zone_range().
6478  *
6479  * But, there could be struct pages that correspond to holes in
6480  * memblock.memory. This can happen because of the following reasons:
6481  * - physical memory bank size is not necessarily the exact multiple of the
6482  *   arbitrary section size
6483  * - early reserved memory may not be listed in memblock.memory
6484  * - memory layouts defined with memmap= kernel parameter may not align
6485  *   nicely with memmap sections
6486  *
6487  * Explicitly initialize those struct pages so that:
6488  * - PG_Reserved is set
6489  * - zone and node links point to zone and node that span the page if the
6490  *   hole is in the middle of a zone
6491  * - zone and node links point to adjacent zone/node if the hole falls on
6492  *   the zone boundary; the pages in such holes will be prepended to the
6493  *   zone/node above the hole except for the trailing pages in the last
6494  *   section that will be appended to the zone/node below.
6495  */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)6496 static void __init init_unavailable_range(unsigned long spfn,
6497 					  unsigned long epfn,
6498 					  int zone, int node)
6499 {
6500 	unsigned long pfn;
6501 	u64 pgcnt = 0;
6502 
6503 	for (pfn = spfn; pfn < epfn; pfn++) {
6504 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6505 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6506 				+ pageblock_nr_pages - 1;
6507 			continue;
6508 		}
6509 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6510 		__SetPageReserved(pfn_to_page(pfn));
6511 		pgcnt++;
6512 	}
6513 
6514 	if (pgcnt)
6515 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6516 			node, zone_names[zone], pgcnt);
6517 }
6518 
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)6519 static void __init memmap_init_zone_range(struct zone *zone,
6520 					  unsigned long start_pfn,
6521 					  unsigned long end_pfn,
6522 					  unsigned long *hole_pfn)
6523 {
6524 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6525 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6526 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6527 
6528 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6529 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6530 
6531 	if (start_pfn >= end_pfn)
6532 		return;
6533 
6534 	memmap_init_zone(end_pfn - start_pfn, nid, zone_id, start_pfn,
6535 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6536 
6537 	if (*hole_pfn < start_pfn)
6538 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6539 
6540 	*hole_pfn = end_pfn;
6541 }
6542 
memmap_init(void)6543 void __init __weak memmap_init(void)
6544 {
6545 	unsigned long start_pfn, end_pfn;
6546 	unsigned long hole_pfn = 0;
6547 	int i, j, zone_id, nid;
6548 
6549 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6550 		struct pglist_data *node = NODE_DATA(nid);
6551 
6552 		for (j = 0; j < MAX_NR_ZONES; j++) {
6553 			struct zone *zone = node->node_zones + j;
6554 
6555 			if (!populated_zone(zone))
6556 				continue;
6557 
6558 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6559 					       &hole_pfn);
6560 			zone_id = j;
6561 		}
6562 	}
6563 
6564 #ifdef CONFIG_SPARSEMEM
6565 	/*
6566 	 * Initialize the memory map for hole in the range [memory_end,
6567 	 * section_end].
6568 	 * Append the pages in this hole to the highest zone in the last
6569 	 * node.
6570 	 * The call to init_unavailable_range() is outside the ifdef to
6571 	 * silence the compiler warining about zone_id set but not used;
6572 	 * for FLATMEM it is a nop anyway
6573 	 */
6574 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6575 	if (hole_pfn < end_pfn)
6576 #endif
6577 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6578 }
6579 
6580 /* A stub for backwards compatibility with custom implementatin on IA-64 */
arch_memmap_init(unsigned long size,int nid,unsigned long zone,unsigned long range_start_pfn)6581 void __meminit __weak arch_memmap_init(unsigned long size, int nid,
6582 				       unsigned long zone,
6583 				       unsigned long range_start_pfn)
6584 {
6585 }
6586 
zone_batchsize(struct zone * zone)6587 static int zone_batchsize(struct zone *zone)
6588 {
6589 #ifdef CONFIG_MMU
6590 	int batch;
6591 
6592 	/*
6593 	 * The per-cpu-pages pools are set to around 1000th of the
6594 	 * size of the zone.
6595 	 */
6596 	batch = zone_managed_pages(zone) / 1024;
6597 	/* But no more than a meg. */
6598 	if (batch * PAGE_SIZE > 1024 * 1024)
6599 		batch = (1024 * 1024) / PAGE_SIZE;
6600 	batch /= 4;		/* We effectively *= 4 below */
6601 	if (batch < 1)
6602 		batch = 1;
6603 
6604 	/*
6605 	 * Clamp the batch to a 2^n - 1 value. Having a power
6606 	 * of 2 value was found to be more likely to have
6607 	 * suboptimal cache aliasing properties in some cases.
6608 	 *
6609 	 * For example if 2 tasks are alternately allocating
6610 	 * batches of pages, one task can end up with a lot
6611 	 * of pages of one half of the possible page colors
6612 	 * and the other with pages of the other colors.
6613 	 */
6614 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6615 
6616 	return batch;
6617 
6618 #else
6619 	/* The deferral and batching of frees should be suppressed under NOMMU
6620 	 * conditions.
6621 	 *
6622 	 * The problem is that NOMMU needs to be able to allocate large chunks
6623 	 * of contiguous memory as there's no hardware page translation to
6624 	 * assemble apparent contiguous memory from discontiguous pages.
6625 	 *
6626 	 * Queueing large contiguous runs of pages for batching, however,
6627 	 * causes the pages to actually be freed in smaller chunks.  As there
6628 	 * can be a significant delay between the individual batches being
6629 	 * recycled, this leads to the once large chunks of space being
6630 	 * fragmented and becoming unavailable for high-order allocations.
6631 	 */
6632 	return 0;
6633 #endif
6634 }
6635 
6636 /*
6637  * pcp->high and pcp->batch values are related and dependent on one another:
6638  * ->batch must never be higher then ->high.
6639  * The following function updates them in a safe manner without read side
6640  * locking.
6641  *
6642  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6643  * those fields changing asynchronously (acording to the above rule).
6644  *
6645  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6646  * outside of boot time (or some other assurance that no concurrent updaters
6647  * exist).
6648  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)6649 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6650 		unsigned long batch)
6651 {
6652 	trace_android_vh_pageset_update(&high, &batch);
6653        /* start with a fail safe value for batch */
6654 	pcp->batch = 1;
6655 	smp_wmb();
6656 
6657        /* Update high, then batch, in order */
6658 	pcp->high = high;
6659 	smp_wmb();
6660 
6661 	pcp->batch = batch;
6662 }
6663 
6664 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)6665 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6666 {
6667 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6668 }
6669 
pageset_init(struct per_cpu_pageset * p)6670 static void pageset_init(struct per_cpu_pageset *p)
6671 {
6672 	struct per_cpu_pages *pcp;
6673 	int migratetype;
6674 
6675 	memset(p, 0, sizeof(*p));
6676 
6677 	pcp = &p->pcp;
6678 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6679 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6680 }
6681 
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)6682 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6683 {
6684 	pageset_init(p);
6685 	pageset_set_batch(p, batch);
6686 }
6687 
6688 /*
6689  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6690  * to the value high for the pageset p.
6691  */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)6692 static void pageset_set_high(struct per_cpu_pageset *p,
6693 				unsigned long high)
6694 {
6695 	unsigned long batch = max(1UL, high / 4);
6696 	if ((high / 4) > (PAGE_SHIFT * 8))
6697 		batch = PAGE_SHIFT * 8;
6698 
6699 	pageset_update(&p->pcp, high, batch);
6700 }
6701 
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)6702 static void pageset_set_high_and_batch(struct zone *zone,
6703 				       struct per_cpu_pageset *pcp)
6704 {
6705 	if (percpu_pagelist_fraction)
6706 		pageset_set_high(pcp,
6707 			(zone_managed_pages(zone) /
6708 				percpu_pagelist_fraction));
6709 	else
6710 		pageset_set_batch(pcp, zone_batchsize(zone));
6711 }
6712 
zone_pageset_init(struct zone * zone,int cpu)6713 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6714 {
6715 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6716 
6717 	pageset_init(pcp);
6718 	pageset_set_high_and_batch(zone, pcp);
6719 }
6720 
setup_zone_pageset(struct zone * zone)6721 void __meminit setup_zone_pageset(struct zone *zone)
6722 {
6723 	int cpu;
6724 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6725 	for_each_possible_cpu(cpu)
6726 		zone_pageset_init(zone, cpu);
6727 }
6728 
6729 /*
6730  * Allocate per cpu pagesets and initialize them.
6731  * Before this call only boot pagesets were available.
6732  */
setup_per_cpu_pageset(void)6733 void __init setup_per_cpu_pageset(void)
6734 {
6735 	struct pglist_data *pgdat;
6736 	struct zone *zone;
6737 	int __maybe_unused cpu;
6738 
6739 	for_each_populated_zone(zone)
6740 		setup_zone_pageset(zone);
6741 
6742 #ifdef CONFIG_NUMA
6743 	/*
6744 	 * Unpopulated zones continue using the boot pagesets.
6745 	 * The numa stats for these pagesets need to be reset.
6746 	 * Otherwise, they will end up skewing the stats of
6747 	 * the nodes these zones are associated with.
6748 	 */
6749 	for_each_possible_cpu(cpu) {
6750 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6751 		memset(pcp->vm_numa_stat_diff, 0,
6752 		       sizeof(pcp->vm_numa_stat_diff));
6753 	}
6754 #endif
6755 
6756 	for_each_online_pgdat(pgdat)
6757 		pgdat->per_cpu_nodestats =
6758 			alloc_percpu(struct per_cpu_nodestat);
6759 }
6760 
zone_pcp_init(struct zone * zone)6761 static __meminit void zone_pcp_init(struct zone *zone)
6762 {
6763 	/*
6764 	 * per cpu subsystem is not up at this point. The following code
6765 	 * relies on the ability of the linker to provide the
6766 	 * offset of a (static) per cpu variable into the per cpu area.
6767 	 */
6768 	zone->pageset = &boot_pageset;
6769 
6770 	if (populated_zone(zone))
6771 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6772 			zone->name, zone->present_pages,
6773 					 zone_batchsize(zone));
6774 }
6775 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)6776 void __meminit init_currently_empty_zone(struct zone *zone,
6777 					unsigned long zone_start_pfn,
6778 					unsigned long size)
6779 {
6780 	struct pglist_data *pgdat = zone->zone_pgdat;
6781 	int zone_idx = zone_idx(zone) + 1;
6782 
6783 	if (zone_idx > pgdat->nr_zones)
6784 		pgdat->nr_zones = zone_idx;
6785 
6786 	zone->zone_start_pfn = zone_start_pfn;
6787 
6788 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6789 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6790 			pgdat->node_id,
6791 			(unsigned long)zone_idx(zone),
6792 			zone_start_pfn, (zone_start_pfn + size));
6793 
6794 	zone_init_free_lists(zone);
6795 	zone->initialized = 1;
6796 }
6797 
6798 /**
6799  * get_pfn_range_for_nid - Return the start and end page frames for a node
6800  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6801  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6802  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6803  *
6804  * It returns the start and end page frame of a node based on information
6805  * provided by memblock_set_node(). If called for a node
6806  * with no available memory, a warning is printed and the start and end
6807  * PFNs will be 0.
6808  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)6809 void __init get_pfn_range_for_nid(unsigned int nid,
6810 			unsigned long *start_pfn, unsigned long *end_pfn)
6811 {
6812 	unsigned long this_start_pfn, this_end_pfn;
6813 	int i;
6814 
6815 	*start_pfn = -1UL;
6816 	*end_pfn = 0;
6817 
6818 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6819 		*start_pfn = min(*start_pfn, this_start_pfn);
6820 		*end_pfn = max(*end_pfn, this_end_pfn);
6821 	}
6822 
6823 	if (*start_pfn == -1UL)
6824 		*start_pfn = 0;
6825 }
6826 
6827 /*
6828  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6829  * assumption is made that zones within a node are ordered in monotonic
6830  * increasing memory addresses so that the "highest" populated zone is used
6831  */
find_usable_zone_for_movable(void)6832 static void __init find_usable_zone_for_movable(void)
6833 {
6834 	int zone_index;
6835 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6836 		if (zone_index == ZONE_MOVABLE)
6837 			continue;
6838 
6839 		if (arch_zone_highest_possible_pfn[zone_index] >
6840 				arch_zone_lowest_possible_pfn[zone_index])
6841 			break;
6842 	}
6843 
6844 	VM_BUG_ON(zone_index == -1);
6845 	movable_zone = zone_index;
6846 }
6847 
6848 /*
6849  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6850  * because it is sized independent of architecture. Unlike the other zones,
6851  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6852  * in each node depending on the size of each node and how evenly kernelcore
6853  * is distributed. This helper function adjusts the zone ranges
6854  * provided by the architecture for a given node by using the end of the
6855  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6856  * zones within a node are in order of monotonic increases memory addresses
6857  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)6858 static void __init adjust_zone_range_for_zone_movable(int nid,
6859 					unsigned long zone_type,
6860 					unsigned long node_start_pfn,
6861 					unsigned long node_end_pfn,
6862 					unsigned long *zone_start_pfn,
6863 					unsigned long *zone_end_pfn)
6864 {
6865 	/* Only adjust if ZONE_MOVABLE is on this node */
6866 	if (zone_movable_pfn[nid]) {
6867 		/* Size ZONE_MOVABLE */
6868 		if (zone_type == ZONE_MOVABLE) {
6869 			*zone_start_pfn = zone_movable_pfn[nid];
6870 			*zone_end_pfn = min(node_end_pfn,
6871 				arch_zone_highest_possible_pfn[movable_zone]);
6872 
6873 		/* Adjust for ZONE_MOVABLE starting within this range */
6874 		} else if (!mirrored_kernelcore &&
6875 			*zone_start_pfn < zone_movable_pfn[nid] &&
6876 			*zone_end_pfn > zone_movable_pfn[nid]) {
6877 			*zone_end_pfn = zone_movable_pfn[nid];
6878 
6879 		/* Check if this whole range is within ZONE_MOVABLE */
6880 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6881 			*zone_start_pfn = *zone_end_pfn;
6882 	}
6883 }
6884 
6885 /*
6886  * Return the number of pages a zone spans in a node, including holes
6887  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6888  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)6889 static unsigned long __init zone_spanned_pages_in_node(int nid,
6890 					unsigned long zone_type,
6891 					unsigned long node_start_pfn,
6892 					unsigned long node_end_pfn,
6893 					unsigned long *zone_start_pfn,
6894 					unsigned long *zone_end_pfn)
6895 {
6896 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6897 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6898 	/* When hotadd a new node from cpu_up(), the node should be empty */
6899 	if (!node_start_pfn && !node_end_pfn)
6900 		return 0;
6901 
6902 	/* Get the start and end of the zone */
6903 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6904 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6905 	adjust_zone_range_for_zone_movable(nid, zone_type,
6906 				node_start_pfn, node_end_pfn,
6907 				zone_start_pfn, zone_end_pfn);
6908 
6909 	/* Check that this node has pages within the zone's required range */
6910 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6911 		return 0;
6912 
6913 	/* Move the zone boundaries inside the node if necessary */
6914 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6915 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6916 
6917 	/* Return the spanned pages */
6918 	return *zone_end_pfn - *zone_start_pfn;
6919 }
6920 
6921 /*
6922  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6923  * then all holes in the requested range will be accounted for.
6924  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)6925 unsigned long __init __absent_pages_in_range(int nid,
6926 				unsigned long range_start_pfn,
6927 				unsigned long range_end_pfn)
6928 {
6929 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6930 	unsigned long start_pfn, end_pfn;
6931 	int i;
6932 
6933 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6934 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6935 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6936 		nr_absent -= end_pfn - start_pfn;
6937 	}
6938 	return nr_absent;
6939 }
6940 
6941 /**
6942  * absent_pages_in_range - Return number of page frames in holes within a range
6943  * @start_pfn: The start PFN to start searching for holes
6944  * @end_pfn: The end PFN to stop searching for holes
6945  *
6946  * Return: the number of pages frames in memory holes within a range.
6947  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)6948 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6949 							unsigned long end_pfn)
6950 {
6951 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6952 }
6953 
6954 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn)6955 static unsigned long __init zone_absent_pages_in_node(int nid,
6956 					unsigned long zone_type,
6957 					unsigned long node_start_pfn,
6958 					unsigned long node_end_pfn)
6959 {
6960 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6961 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6962 	unsigned long zone_start_pfn, zone_end_pfn;
6963 	unsigned long nr_absent;
6964 
6965 	/* When hotadd a new node from cpu_up(), the node should be empty */
6966 	if (!node_start_pfn && !node_end_pfn)
6967 		return 0;
6968 
6969 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6970 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6971 
6972 	adjust_zone_range_for_zone_movable(nid, zone_type,
6973 			node_start_pfn, node_end_pfn,
6974 			&zone_start_pfn, &zone_end_pfn);
6975 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6976 
6977 	/*
6978 	 * ZONE_MOVABLE handling.
6979 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6980 	 * and vice versa.
6981 	 */
6982 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6983 		unsigned long start_pfn, end_pfn;
6984 		struct memblock_region *r;
6985 
6986 		for_each_mem_region(r) {
6987 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6988 					  zone_start_pfn, zone_end_pfn);
6989 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6990 					zone_start_pfn, zone_end_pfn);
6991 
6992 			if (zone_type == ZONE_MOVABLE &&
6993 			    memblock_is_mirror(r))
6994 				nr_absent += end_pfn - start_pfn;
6995 
6996 			if (zone_type == ZONE_NORMAL &&
6997 			    !memblock_is_mirror(r))
6998 				nr_absent += end_pfn - start_pfn;
6999 		}
7000 	}
7001 
7002 	return nr_absent;
7003 }
7004 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)7005 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7006 						unsigned long node_start_pfn,
7007 						unsigned long node_end_pfn)
7008 {
7009 	unsigned long realtotalpages = 0, totalpages = 0;
7010 	enum zone_type i;
7011 
7012 	for (i = 0; i < MAX_NR_ZONES; i++) {
7013 		struct zone *zone = pgdat->node_zones + i;
7014 		unsigned long zone_start_pfn, zone_end_pfn;
7015 		unsigned long spanned, absent;
7016 		unsigned long size, real_size;
7017 
7018 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7019 						     node_start_pfn,
7020 						     node_end_pfn,
7021 						     &zone_start_pfn,
7022 						     &zone_end_pfn);
7023 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7024 						   node_start_pfn,
7025 						   node_end_pfn);
7026 
7027 		size = spanned;
7028 		real_size = size - absent;
7029 
7030 		if (size)
7031 			zone->zone_start_pfn = zone_start_pfn;
7032 		else
7033 			zone->zone_start_pfn = 0;
7034 		zone->spanned_pages = size;
7035 		zone->present_pages = real_size;
7036 
7037 		totalpages += size;
7038 		realtotalpages += real_size;
7039 	}
7040 
7041 	pgdat->node_spanned_pages = totalpages;
7042 	pgdat->node_present_pages = realtotalpages;
7043 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
7044 							realtotalpages);
7045 }
7046 
7047 #ifndef CONFIG_SPARSEMEM
7048 /*
7049  * Calculate the size of the zone->blockflags rounded to an unsigned long
7050  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7051  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7052  * round what is now in bits to nearest long in bits, then return it in
7053  * bytes.
7054  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)7055 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7056 {
7057 	unsigned long usemapsize;
7058 
7059 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7060 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7061 	usemapsize = usemapsize >> pageblock_order;
7062 	usemapsize *= NR_PAGEBLOCK_BITS;
7063 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7064 
7065 	return usemapsize / 8;
7066 }
7067 
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)7068 static void __ref setup_usemap(struct pglist_data *pgdat,
7069 				struct zone *zone,
7070 				unsigned long zone_start_pfn,
7071 				unsigned long zonesize)
7072 {
7073 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
7074 	zone->pageblock_flags = NULL;
7075 	if (usemapsize) {
7076 		zone->pageblock_flags =
7077 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7078 					    pgdat->node_id);
7079 		if (!zone->pageblock_flags)
7080 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7081 			      usemapsize, zone->name, pgdat->node_id);
7082 	}
7083 }
7084 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)7085 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
7086 				unsigned long zone_start_pfn, unsigned long zonesize) {}
7087 #endif /* CONFIG_SPARSEMEM */
7088 
7089 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7090 
7091 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)7092 void __init set_pageblock_order(void)
7093 {
7094 	unsigned int order;
7095 
7096 	/* Check that pageblock_nr_pages has not already been setup */
7097 	if (pageblock_order)
7098 		return;
7099 
7100 	if (HPAGE_SHIFT > PAGE_SHIFT)
7101 		order = HUGETLB_PAGE_ORDER;
7102 	else
7103 		order = MAX_ORDER - 1;
7104 
7105 	/*
7106 	 * Assume the largest contiguous order of interest is a huge page.
7107 	 * This value may be variable depending on boot parameters on IA64 and
7108 	 * powerpc.
7109 	 */
7110 	pageblock_order = order;
7111 }
7112 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7113 
7114 /*
7115  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7116  * is unused as pageblock_order is set at compile-time. See
7117  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7118  * the kernel config
7119  */
set_pageblock_order(void)7120 void __init set_pageblock_order(void)
7121 {
7122 }
7123 
7124 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7125 
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)7126 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7127 						unsigned long present_pages)
7128 {
7129 	unsigned long pages = spanned_pages;
7130 
7131 	/*
7132 	 * Provide a more accurate estimation if there are holes within
7133 	 * the zone and SPARSEMEM is in use. If there are holes within the
7134 	 * zone, each populated memory region may cost us one or two extra
7135 	 * memmap pages due to alignment because memmap pages for each
7136 	 * populated regions may not be naturally aligned on page boundary.
7137 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7138 	 */
7139 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7140 	    IS_ENABLED(CONFIG_SPARSEMEM))
7141 		pages = present_pages;
7142 
7143 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7144 }
7145 
7146 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)7147 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7148 {
7149 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7150 
7151 	spin_lock_init(&ds_queue->split_queue_lock);
7152 	INIT_LIST_HEAD(&ds_queue->split_queue);
7153 	ds_queue->split_queue_len = 0;
7154 }
7155 #else
pgdat_init_split_queue(struct pglist_data * pgdat)7156 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7157 #endif
7158 
7159 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)7160 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7161 {
7162 	init_waitqueue_head(&pgdat->kcompactd_wait);
7163 }
7164 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)7165 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7166 #endif
7167 
pgdat_init_internals(struct pglist_data * pgdat)7168 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7169 {
7170 	pgdat_resize_init(pgdat);
7171 
7172 	pgdat_init_split_queue(pgdat);
7173 	pgdat_init_kcompactd(pgdat);
7174 
7175 	init_waitqueue_head(&pgdat->kswapd_wait);
7176 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7177 
7178 	pgdat_page_ext_init(pgdat);
7179 	spin_lock_init(&pgdat->lru_lock);
7180 	lruvec_init(&pgdat->__lruvec);
7181 }
7182 
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)7183 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7184 							unsigned long remaining_pages)
7185 {
7186 	atomic_long_set(&zone->managed_pages, remaining_pages);
7187 	zone_set_nid(zone, nid);
7188 	zone->name = zone_names[idx];
7189 	zone->zone_pgdat = NODE_DATA(nid);
7190 	spin_lock_init(&zone->lock);
7191 	zone_seqlock_init(zone);
7192 	zone_pcp_init(zone);
7193 }
7194 
7195 /*
7196  * Set up the zone data structures
7197  * - init pgdat internals
7198  * - init all zones belonging to this node
7199  *
7200  * NOTE: this function is only called during memory hotplug
7201  */
7202 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)7203 void __ref free_area_init_core_hotplug(int nid)
7204 {
7205 	enum zone_type z;
7206 	pg_data_t *pgdat = NODE_DATA(nid);
7207 
7208 	pgdat_init_internals(pgdat);
7209 	for (z = 0; z < MAX_NR_ZONES; z++)
7210 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7211 }
7212 #endif
7213 
7214 /*
7215  * Set up the zone data structures:
7216  *   - mark all pages reserved
7217  *   - mark all memory queues empty
7218  *   - clear the memory bitmaps
7219  *
7220  * NOTE: pgdat should get zeroed by caller.
7221  * NOTE: this function is only called during early init.
7222  */
free_area_init_core(struct pglist_data * pgdat)7223 static void __init free_area_init_core(struct pglist_data *pgdat)
7224 {
7225 	enum zone_type j;
7226 	int nid = pgdat->node_id;
7227 
7228 	pgdat_init_internals(pgdat);
7229 	pgdat->per_cpu_nodestats = &boot_nodestats;
7230 
7231 	for (j = 0; j < MAX_NR_ZONES; j++) {
7232 		struct zone *zone = pgdat->node_zones + j;
7233 		unsigned long size, freesize, memmap_pages;
7234 		unsigned long zone_start_pfn = zone->zone_start_pfn;
7235 
7236 		size = zone->spanned_pages;
7237 		freesize = zone->present_pages;
7238 
7239 		/*
7240 		 * Adjust freesize so that it accounts for how much memory
7241 		 * is used by this zone for memmap. This affects the watermark
7242 		 * and per-cpu initialisations
7243 		 */
7244 		memmap_pages = calc_memmap_size(size, freesize);
7245 		if (!is_highmem_idx(j)) {
7246 			if (freesize >= memmap_pages) {
7247 				freesize -= memmap_pages;
7248 				if (memmap_pages)
7249 					printk(KERN_DEBUG
7250 					       "  %s zone: %lu pages used for memmap\n",
7251 					       zone_names[j], memmap_pages);
7252 			} else
7253 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
7254 					zone_names[j], memmap_pages, freesize);
7255 		}
7256 
7257 		/* Account for reserved pages */
7258 		if (j == 0 && freesize > dma_reserve) {
7259 			freesize -= dma_reserve;
7260 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
7261 					zone_names[0], dma_reserve);
7262 		}
7263 
7264 		if (!is_highmem_idx(j))
7265 			nr_kernel_pages += freesize;
7266 		/* Charge for highmem memmap if there are enough kernel pages */
7267 		else if (nr_kernel_pages > memmap_pages * 2)
7268 			nr_kernel_pages -= memmap_pages;
7269 		nr_all_pages += freesize;
7270 
7271 		/*
7272 		 * Set an approximate value for lowmem here, it will be adjusted
7273 		 * when the bootmem allocator frees pages into the buddy system.
7274 		 * And all highmem pages will be managed by the buddy system.
7275 		 */
7276 		zone_init_internals(zone, j, nid, freesize);
7277 
7278 		if (!size)
7279 			continue;
7280 
7281 		set_pageblock_order();
7282 		setup_usemap(pgdat, zone, zone_start_pfn, size);
7283 		init_currently_empty_zone(zone, zone_start_pfn, size);
7284 		arch_memmap_init(size, nid, j, zone_start_pfn);
7285 	}
7286 }
7287 
7288 #ifdef CONFIG_FLAT_NODE_MEM_MAP
alloc_node_mem_map(struct pglist_data * pgdat)7289 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7290 {
7291 	unsigned long __maybe_unused start = 0;
7292 	unsigned long __maybe_unused offset = 0;
7293 
7294 	/* Skip empty nodes */
7295 	if (!pgdat->node_spanned_pages)
7296 		return;
7297 
7298 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7299 	offset = pgdat->node_start_pfn - start;
7300 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7301 	if (!pgdat->node_mem_map) {
7302 		unsigned long size, end;
7303 		struct page *map;
7304 
7305 		/*
7306 		 * The zone's endpoints aren't required to be MAX_ORDER
7307 		 * aligned but the node_mem_map endpoints must be in order
7308 		 * for the buddy allocator to function correctly.
7309 		 */
7310 		end = pgdat_end_pfn(pgdat);
7311 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7312 		size =  (end - start) * sizeof(struct page);
7313 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7314 					  pgdat->node_id);
7315 		if (!map)
7316 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7317 			      size, pgdat->node_id);
7318 		pgdat->node_mem_map = map + offset;
7319 	}
7320 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7321 				__func__, pgdat->node_id, (unsigned long)pgdat,
7322 				(unsigned long)pgdat->node_mem_map);
7323 #ifndef CONFIG_NEED_MULTIPLE_NODES
7324 	/*
7325 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7326 	 */
7327 	if (pgdat == NODE_DATA(0)) {
7328 		mem_map = NODE_DATA(0)->node_mem_map;
7329 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7330 			mem_map -= offset;
7331 	}
7332 #endif
7333 }
7334 #else
alloc_node_mem_map(struct pglist_data * pgdat)7335 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7336 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7337 
7338 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)7339 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7340 {
7341 	pgdat->first_deferred_pfn = ULONG_MAX;
7342 }
7343 #else
pgdat_set_deferred_range(pg_data_t * pgdat)7344 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7345 #endif
7346 
free_area_init_node(int nid)7347 static void __init free_area_init_node(int nid)
7348 {
7349 	pg_data_t *pgdat = NODE_DATA(nid);
7350 	unsigned long start_pfn = 0;
7351 	unsigned long end_pfn = 0;
7352 
7353 	/* pg_data_t should be reset to zero when it's allocated */
7354 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7355 
7356 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7357 
7358 	pgdat->node_id = nid;
7359 	pgdat->node_start_pfn = start_pfn;
7360 	pgdat->per_cpu_nodestats = NULL;
7361 
7362 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7363 		(u64)start_pfn << PAGE_SHIFT,
7364 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7365 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7366 
7367 	alloc_node_mem_map(pgdat);
7368 	pgdat_set_deferred_range(pgdat);
7369 
7370 	free_area_init_core(pgdat);
7371 }
7372 
free_area_init_memoryless_node(int nid)7373 void __init free_area_init_memoryless_node(int nid)
7374 {
7375 	free_area_init_node(nid);
7376 }
7377 
7378 #if MAX_NUMNODES > 1
7379 /*
7380  * Figure out the number of possible node ids.
7381  */
setup_nr_node_ids(void)7382 void __init setup_nr_node_ids(void)
7383 {
7384 	unsigned int highest;
7385 
7386 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7387 	nr_node_ids = highest + 1;
7388 }
7389 #endif
7390 
7391 /**
7392  * node_map_pfn_alignment - determine the maximum internode alignment
7393  *
7394  * This function should be called after node map is populated and sorted.
7395  * It calculates the maximum power of two alignment which can distinguish
7396  * all the nodes.
7397  *
7398  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7399  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7400  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7401  * shifted, 1GiB is enough and this function will indicate so.
7402  *
7403  * This is used to test whether pfn -> nid mapping of the chosen memory
7404  * model has fine enough granularity to avoid incorrect mapping for the
7405  * populated node map.
7406  *
7407  * Return: the determined alignment in pfn's.  0 if there is no alignment
7408  * requirement (single node).
7409  */
node_map_pfn_alignment(void)7410 unsigned long __init node_map_pfn_alignment(void)
7411 {
7412 	unsigned long accl_mask = 0, last_end = 0;
7413 	unsigned long start, end, mask;
7414 	int last_nid = NUMA_NO_NODE;
7415 	int i, nid;
7416 
7417 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7418 		if (!start || last_nid < 0 || last_nid == nid) {
7419 			last_nid = nid;
7420 			last_end = end;
7421 			continue;
7422 		}
7423 
7424 		/*
7425 		 * Start with a mask granular enough to pin-point to the
7426 		 * start pfn and tick off bits one-by-one until it becomes
7427 		 * too coarse to separate the current node from the last.
7428 		 */
7429 		mask = ~((1 << __ffs(start)) - 1);
7430 		while (mask && last_end <= (start & (mask << 1)))
7431 			mask <<= 1;
7432 
7433 		/* accumulate all internode masks */
7434 		accl_mask |= mask;
7435 	}
7436 
7437 	/* convert mask to number of pages */
7438 	return ~accl_mask + 1;
7439 }
7440 
7441 /**
7442  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7443  *
7444  * Return: the minimum PFN based on information provided via
7445  * memblock_set_node().
7446  */
find_min_pfn_with_active_regions(void)7447 unsigned long __init find_min_pfn_with_active_regions(void)
7448 {
7449 	return PHYS_PFN(memblock_start_of_DRAM());
7450 }
7451 
7452 /*
7453  * early_calculate_totalpages()
7454  * Sum pages in active regions for movable zone.
7455  * Populate N_MEMORY for calculating usable_nodes.
7456  */
early_calculate_totalpages(void)7457 static unsigned long __init early_calculate_totalpages(void)
7458 {
7459 	unsigned long totalpages = 0;
7460 	unsigned long start_pfn, end_pfn;
7461 	int i, nid;
7462 
7463 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7464 		unsigned long pages = end_pfn - start_pfn;
7465 
7466 		totalpages += pages;
7467 		if (pages)
7468 			node_set_state(nid, N_MEMORY);
7469 	}
7470 	return totalpages;
7471 }
7472 
7473 /*
7474  * Find the PFN the Movable zone begins in each node. Kernel memory
7475  * is spread evenly between nodes as long as the nodes have enough
7476  * memory. When they don't, some nodes will have more kernelcore than
7477  * others
7478  */
find_zone_movable_pfns_for_nodes(void)7479 static void __init find_zone_movable_pfns_for_nodes(void)
7480 {
7481 	int i, nid;
7482 	unsigned long usable_startpfn;
7483 	unsigned long kernelcore_node, kernelcore_remaining;
7484 	/* save the state before borrow the nodemask */
7485 	nodemask_t saved_node_state = node_states[N_MEMORY];
7486 	unsigned long totalpages = early_calculate_totalpages();
7487 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7488 	struct memblock_region *r;
7489 
7490 	/* Need to find movable_zone earlier when movable_node is specified. */
7491 	find_usable_zone_for_movable();
7492 
7493 	/*
7494 	 * If movable_node is specified, ignore kernelcore and movablecore
7495 	 * options.
7496 	 */
7497 	if (movable_node_is_enabled()) {
7498 		for_each_mem_region(r) {
7499 			if (!memblock_is_hotpluggable(r))
7500 				continue;
7501 
7502 			nid = memblock_get_region_node(r);
7503 
7504 			usable_startpfn = PFN_DOWN(r->base);
7505 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7506 				min(usable_startpfn, zone_movable_pfn[nid]) :
7507 				usable_startpfn;
7508 		}
7509 
7510 		goto out2;
7511 	}
7512 
7513 	/*
7514 	 * If kernelcore=mirror is specified, ignore movablecore option
7515 	 */
7516 	if (mirrored_kernelcore) {
7517 		bool mem_below_4gb_not_mirrored = false;
7518 
7519 		for_each_mem_region(r) {
7520 			if (memblock_is_mirror(r))
7521 				continue;
7522 
7523 			nid = memblock_get_region_node(r);
7524 
7525 			usable_startpfn = memblock_region_memory_base_pfn(r);
7526 
7527 			if (usable_startpfn < 0x100000) {
7528 				mem_below_4gb_not_mirrored = true;
7529 				continue;
7530 			}
7531 
7532 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7533 				min(usable_startpfn, zone_movable_pfn[nid]) :
7534 				usable_startpfn;
7535 		}
7536 
7537 		if (mem_below_4gb_not_mirrored)
7538 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7539 
7540 		goto out2;
7541 	}
7542 
7543 	/*
7544 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7545 	 * amount of necessary memory.
7546 	 */
7547 	if (required_kernelcore_percent)
7548 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7549 				       10000UL;
7550 	if (required_movablecore_percent)
7551 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7552 					10000UL;
7553 
7554 	/*
7555 	 * If movablecore= was specified, calculate what size of
7556 	 * kernelcore that corresponds so that memory usable for
7557 	 * any allocation type is evenly spread. If both kernelcore
7558 	 * and movablecore are specified, then the value of kernelcore
7559 	 * will be used for required_kernelcore if it's greater than
7560 	 * what movablecore would have allowed.
7561 	 */
7562 	if (required_movablecore) {
7563 		unsigned long corepages;
7564 
7565 		/*
7566 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7567 		 * was requested by the user
7568 		 */
7569 		required_movablecore =
7570 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7571 		required_movablecore = min(totalpages, required_movablecore);
7572 		corepages = totalpages - required_movablecore;
7573 
7574 		required_kernelcore = max(required_kernelcore, corepages);
7575 	}
7576 
7577 	/*
7578 	 * If kernelcore was not specified or kernelcore size is larger
7579 	 * than totalpages, there is no ZONE_MOVABLE.
7580 	 */
7581 	if (!required_kernelcore || required_kernelcore >= totalpages)
7582 		goto out;
7583 
7584 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7585 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7586 
7587 restart:
7588 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7589 	kernelcore_node = required_kernelcore / usable_nodes;
7590 	for_each_node_state(nid, N_MEMORY) {
7591 		unsigned long start_pfn, end_pfn;
7592 
7593 		/*
7594 		 * Recalculate kernelcore_node if the division per node
7595 		 * now exceeds what is necessary to satisfy the requested
7596 		 * amount of memory for the kernel
7597 		 */
7598 		if (required_kernelcore < kernelcore_node)
7599 			kernelcore_node = required_kernelcore / usable_nodes;
7600 
7601 		/*
7602 		 * As the map is walked, we track how much memory is usable
7603 		 * by the kernel using kernelcore_remaining. When it is
7604 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7605 		 */
7606 		kernelcore_remaining = kernelcore_node;
7607 
7608 		/* Go through each range of PFNs within this node */
7609 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7610 			unsigned long size_pages;
7611 
7612 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7613 			if (start_pfn >= end_pfn)
7614 				continue;
7615 
7616 			/* Account for what is only usable for kernelcore */
7617 			if (start_pfn < usable_startpfn) {
7618 				unsigned long kernel_pages;
7619 				kernel_pages = min(end_pfn, usable_startpfn)
7620 								- start_pfn;
7621 
7622 				kernelcore_remaining -= min(kernel_pages,
7623 							kernelcore_remaining);
7624 				required_kernelcore -= min(kernel_pages,
7625 							required_kernelcore);
7626 
7627 				/* Continue if range is now fully accounted */
7628 				if (end_pfn <= usable_startpfn) {
7629 
7630 					/*
7631 					 * Push zone_movable_pfn to the end so
7632 					 * that if we have to rebalance
7633 					 * kernelcore across nodes, we will
7634 					 * not double account here
7635 					 */
7636 					zone_movable_pfn[nid] = end_pfn;
7637 					continue;
7638 				}
7639 				start_pfn = usable_startpfn;
7640 			}
7641 
7642 			/*
7643 			 * The usable PFN range for ZONE_MOVABLE is from
7644 			 * start_pfn->end_pfn. Calculate size_pages as the
7645 			 * number of pages used as kernelcore
7646 			 */
7647 			size_pages = end_pfn - start_pfn;
7648 			if (size_pages > kernelcore_remaining)
7649 				size_pages = kernelcore_remaining;
7650 			zone_movable_pfn[nid] = start_pfn + size_pages;
7651 
7652 			/*
7653 			 * Some kernelcore has been met, update counts and
7654 			 * break if the kernelcore for this node has been
7655 			 * satisfied
7656 			 */
7657 			required_kernelcore -= min(required_kernelcore,
7658 								size_pages);
7659 			kernelcore_remaining -= size_pages;
7660 			if (!kernelcore_remaining)
7661 				break;
7662 		}
7663 	}
7664 
7665 	/*
7666 	 * If there is still required_kernelcore, we do another pass with one
7667 	 * less node in the count. This will push zone_movable_pfn[nid] further
7668 	 * along on the nodes that still have memory until kernelcore is
7669 	 * satisfied
7670 	 */
7671 	usable_nodes--;
7672 	if (usable_nodes && required_kernelcore > usable_nodes)
7673 		goto restart;
7674 
7675 out2:
7676 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7677 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7678 		unsigned long start_pfn, end_pfn;
7679 
7680 		zone_movable_pfn[nid] =
7681 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7682 
7683 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7684 		if (zone_movable_pfn[nid] >= end_pfn)
7685 			zone_movable_pfn[nid] = 0;
7686 	}
7687 
7688 out:
7689 	/* restore the node_state */
7690 	node_states[N_MEMORY] = saved_node_state;
7691 }
7692 
7693 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)7694 static void check_for_memory(pg_data_t *pgdat, int nid)
7695 {
7696 	enum zone_type zone_type;
7697 
7698 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7699 		struct zone *zone = &pgdat->node_zones[zone_type];
7700 		if (populated_zone(zone)) {
7701 			if (IS_ENABLED(CONFIG_HIGHMEM))
7702 				node_set_state(nid, N_HIGH_MEMORY);
7703 			if (zone_type <= ZONE_NORMAL)
7704 				node_set_state(nid, N_NORMAL_MEMORY);
7705 			break;
7706 		}
7707 	}
7708 }
7709 
7710 /*
7711  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7712  * such cases we allow max_zone_pfn sorted in the descending order
7713  */
arch_has_descending_max_zone_pfns(void)7714 bool __weak arch_has_descending_max_zone_pfns(void)
7715 {
7716 	return false;
7717 }
7718 
7719 /**
7720  * free_area_init - Initialise all pg_data_t and zone data
7721  * @max_zone_pfn: an array of max PFNs for each zone
7722  *
7723  * This will call free_area_init_node() for each active node in the system.
7724  * Using the page ranges provided by memblock_set_node(), the size of each
7725  * zone in each node and their holes is calculated. If the maximum PFN
7726  * between two adjacent zones match, it is assumed that the zone is empty.
7727  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7728  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7729  * starts where the previous one ended. For example, ZONE_DMA32 starts
7730  * at arch_max_dma_pfn.
7731  */
free_area_init(unsigned long * max_zone_pfn)7732 void __init free_area_init(unsigned long *max_zone_pfn)
7733 {
7734 	unsigned long start_pfn, end_pfn;
7735 	int i, nid, zone;
7736 	bool descending;
7737 
7738 	/* Record where the zone boundaries are */
7739 	memset(arch_zone_lowest_possible_pfn, 0,
7740 				sizeof(arch_zone_lowest_possible_pfn));
7741 	memset(arch_zone_highest_possible_pfn, 0,
7742 				sizeof(arch_zone_highest_possible_pfn));
7743 
7744 	start_pfn = find_min_pfn_with_active_regions();
7745 	descending = arch_has_descending_max_zone_pfns();
7746 
7747 	for (i = 0; i < MAX_NR_ZONES; i++) {
7748 		if (descending)
7749 			zone = MAX_NR_ZONES - i - 1;
7750 		else
7751 			zone = i;
7752 
7753 		if (zone == ZONE_MOVABLE)
7754 			continue;
7755 
7756 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7757 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7758 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7759 
7760 		start_pfn = end_pfn;
7761 	}
7762 
7763 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7764 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7765 	find_zone_movable_pfns_for_nodes();
7766 
7767 	/* Print out the zone ranges */
7768 	pr_info("Zone ranges:\n");
7769 	for (i = 0; i < MAX_NR_ZONES; i++) {
7770 		if (i == ZONE_MOVABLE)
7771 			continue;
7772 		pr_info("  %-8s ", zone_names[i]);
7773 		if (arch_zone_lowest_possible_pfn[i] ==
7774 				arch_zone_highest_possible_pfn[i])
7775 			pr_cont("empty\n");
7776 		else
7777 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7778 				(u64)arch_zone_lowest_possible_pfn[i]
7779 					<< PAGE_SHIFT,
7780 				((u64)arch_zone_highest_possible_pfn[i]
7781 					<< PAGE_SHIFT) - 1);
7782 	}
7783 
7784 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7785 	pr_info("Movable zone start for each node\n");
7786 	for (i = 0; i < MAX_NUMNODES; i++) {
7787 		if (zone_movable_pfn[i])
7788 			pr_info("  Node %d: %#018Lx\n", i,
7789 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7790 	}
7791 
7792 	/*
7793 	 * Print out the early node map, and initialize the
7794 	 * subsection-map relative to active online memory ranges to
7795 	 * enable future "sub-section" extensions of the memory map.
7796 	 */
7797 	pr_info("Early memory node ranges\n");
7798 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7799 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7800 			(u64)start_pfn << PAGE_SHIFT,
7801 			((u64)end_pfn << PAGE_SHIFT) - 1);
7802 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7803 	}
7804 
7805 	/* Initialise every node */
7806 	mminit_verify_pageflags_layout();
7807 	setup_nr_node_ids();
7808 	for_each_online_node(nid) {
7809 		pg_data_t *pgdat = NODE_DATA(nid);
7810 		free_area_init_node(nid);
7811 
7812 		/* Any memory on that node */
7813 		if (pgdat->node_present_pages)
7814 			node_set_state(nid, N_MEMORY);
7815 		check_for_memory(pgdat, nid);
7816 	}
7817 
7818 	memmap_init();
7819 }
7820 
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)7821 static int __init cmdline_parse_core(char *p, unsigned long *core,
7822 				     unsigned long *percent)
7823 {
7824 	unsigned long long coremem;
7825 	char *endptr;
7826 
7827 	if (!p)
7828 		return -EINVAL;
7829 
7830 	/* Value may be a percentage of total memory, otherwise bytes */
7831 	coremem = simple_strtoull(p, &endptr, 0);
7832 	if (*endptr == '%') {
7833 		/* Paranoid check for percent values greater than 100 */
7834 		WARN_ON(coremem > 100);
7835 
7836 		*percent = coremem;
7837 	} else {
7838 		coremem = memparse(p, &p);
7839 		/* Paranoid check that UL is enough for the coremem value */
7840 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7841 
7842 		*core = coremem >> PAGE_SHIFT;
7843 		*percent = 0UL;
7844 	}
7845 	return 0;
7846 }
7847 
7848 /*
7849  * kernelcore=size sets the amount of memory for use for allocations that
7850  * cannot be reclaimed or migrated.
7851  */
cmdline_parse_kernelcore(char * p)7852 static int __init cmdline_parse_kernelcore(char *p)
7853 {
7854 	/* parse kernelcore=mirror */
7855 	if (parse_option_str(p, "mirror")) {
7856 		mirrored_kernelcore = true;
7857 		return 0;
7858 	}
7859 
7860 	return cmdline_parse_core(p, &required_kernelcore,
7861 				  &required_kernelcore_percent);
7862 }
7863 
7864 /*
7865  * movablecore=size sets the amount of memory for use for allocations that
7866  * can be reclaimed or migrated.
7867  */
cmdline_parse_movablecore(char * p)7868 static int __init cmdline_parse_movablecore(char *p)
7869 {
7870 	return cmdline_parse_core(p, &required_movablecore,
7871 				  &required_movablecore_percent);
7872 }
7873 
7874 early_param("kernelcore", cmdline_parse_kernelcore);
7875 early_param("movablecore", cmdline_parse_movablecore);
7876 
adjust_managed_page_count(struct page * page,long count)7877 void adjust_managed_page_count(struct page *page, long count)
7878 {
7879 	atomic_long_add(count, &page_zone(page)->managed_pages);
7880 	totalram_pages_add(count);
7881 #ifdef CONFIG_HIGHMEM
7882 	if (PageHighMem(page))
7883 		totalhigh_pages_add(count);
7884 #endif
7885 }
7886 EXPORT_SYMBOL(adjust_managed_page_count);
7887 
free_reserved_area(void * start,void * end,int poison,const char * s)7888 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7889 {
7890 	void *pos;
7891 	unsigned long pages = 0;
7892 
7893 	start = (void *)PAGE_ALIGN((unsigned long)start);
7894 	end = (void *)((unsigned long)end & PAGE_MASK);
7895 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7896 		struct page *page = virt_to_page(pos);
7897 		void *direct_map_addr;
7898 
7899 		/*
7900 		 * 'direct_map_addr' might be different from 'pos'
7901 		 * because some architectures' virt_to_page()
7902 		 * work with aliases.  Getting the direct map
7903 		 * address ensures that we get a _writeable_
7904 		 * alias for the memset().
7905 		 */
7906 		direct_map_addr = page_address(page);
7907 		/*
7908 		 * Perform a kasan-unchecked memset() since this memory
7909 		 * has not been initialized.
7910 		 */
7911 		direct_map_addr = kasan_reset_tag(direct_map_addr);
7912 		if ((unsigned int)poison <= 0xFF)
7913 			memset(direct_map_addr, poison, PAGE_SIZE);
7914 
7915 		free_reserved_page(page);
7916 	}
7917 
7918 	if (pages && s)
7919 		pr_info("Freeing %s memory: %ldK\n",
7920 			s, pages << (PAGE_SHIFT - 10));
7921 
7922 	return pages;
7923 }
7924 
7925 #ifdef	CONFIG_HIGHMEM
free_highmem_page(struct page * page)7926 void free_highmem_page(struct page *page)
7927 {
7928 	__free_reserved_page(page);
7929 	totalram_pages_inc();
7930 	atomic_long_inc(&page_zone(page)->managed_pages);
7931 	totalhigh_pages_inc();
7932 }
7933 #endif
7934 
7935 
mem_init_print_info(const char * str)7936 void __init mem_init_print_info(const char *str)
7937 {
7938 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7939 	unsigned long init_code_size, init_data_size;
7940 
7941 	physpages = get_num_physpages();
7942 	codesize = _etext - _stext;
7943 	datasize = _edata - _sdata;
7944 	rosize = __end_rodata - __start_rodata;
7945 	bss_size = __bss_stop - __bss_start;
7946 	init_data_size = __init_end - __init_begin;
7947 	init_code_size = _einittext - _sinittext;
7948 
7949 	/*
7950 	 * Detect special cases and adjust section sizes accordingly:
7951 	 * 1) .init.* may be embedded into .data sections
7952 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7953 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7954 	 * 3) .rodata.* may be embedded into .text or .data sections.
7955 	 */
7956 #define adj_init_size(start, end, size, pos, adj) \
7957 	do { \
7958 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
7959 			size -= adj; \
7960 	} while (0)
7961 
7962 	adj_init_size(__init_begin, __init_end, init_data_size,
7963 		     _sinittext, init_code_size);
7964 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7965 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7966 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7967 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7968 
7969 #undef	adj_init_size
7970 
7971 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7972 #ifdef	CONFIG_HIGHMEM
7973 		", %luK highmem"
7974 #endif
7975 		"%s%s)\n",
7976 		nr_free_pages() << (PAGE_SHIFT - 10),
7977 		physpages << (PAGE_SHIFT - 10),
7978 		codesize >> 10, datasize >> 10, rosize >> 10,
7979 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7980 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7981 		totalcma_pages << (PAGE_SHIFT - 10),
7982 #ifdef	CONFIG_HIGHMEM
7983 		totalhigh_pages() << (PAGE_SHIFT - 10),
7984 #endif
7985 		str ? ", " : "", str ? str : "");
7986 }
7987 
7988 /**
7989  * set_dma_reserve - set the specified number of pages reserved in the first zone
7990  * @new_dma_reserve: The number of pages to mark reserved
7991  *
7992  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7993  * In the DMA zone, a significant percentage may be consumed by kernel image
7994  * and other unfreeable allocations which can skew the watermarks badly. This
7995  * function may optionally be used to account for unfreeable pages in the
7996  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7997  * smaller per-cpu batchsize.
7998  */
set_dma_reserve(unsigned long new_dma_reserve)7999 void __init set_dma_reserve(unsigned long new_dma_reserve)
8000 {
8001 	dma_reserve = new_dma_reserve;
8002 }
8003 
page_alloc_cpu_dead(unsigned int cpu)8004 static int page_alloc_cpu_dead(unsigned int cpu)
8005 {
8006 
8007 	lru_add_drain_cpu(cpu);
8008 	drain_pages(cpu);
8009 
8010 	/*
8011 	 * Spill the event counters of the dead processor
8012 	 * into the current processors event counters.
8013 	 * This artificially elevates the count of the current
8014 	 * processor.
8015 	 */
8016 	vm_events_fold_cpu(cpu);
8017 
8018 	/*
8019 	 * Zero the differential counters of the dead processor
8020 	 * so that the vm statistics are consistent.
8021 	 *
8022 	 * This is only okay since the processor is dead and cannot
8023 	 * race with what we are doing.
8024 	 */
8025 	cpu_vm_stats_fold(cpu);
8026 	return 0;
8027 }
8028 
8029 #ifdef CONFIG_NUMA
8030 int hashdist = HASHDIST_DEFAULT;
8031 
set_hashdist(char * str)8032 static int __init set_hashdist(char *str)
8033 {
8034 	if (!str)
8035 		return 0;
8036 	hashdist = simple_strtoul(str, &str, 0);
8037 	return 1;
8038 }
8039 __setup("hashdist=", set_hashdist);
8040 #endif
8041 
page_alloc_init(void)8042 void __init page_alloc_init(void)
8043 {
8044 	int ret;
8045 
8046 #ifdef CONFIG_NUMA
8047 	if (num_node_state(N_MEMORY) == 1)
8048 		hashdist = 0;
8049 #endif
8050 
8051 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
8052 					"mm/page_alloc:dead", NULL,
8053 					page_alloc_cpu_dead);
8054 	WARN_ON(ret < 0);
8055 }
8056 
8057 /*
8058  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8059  *	or min_free_kbytes changes.
8060  */
calculate_totalreserve_pages(void)8061 static void calculate_totalreserve_pages(void)
8062 {
8063 	struct pglist_data *pgdat;
8064 	unsigned long reserve_pages = 0;
8065 	enum zone_type i, j;
8066 
8067 	for_each_online_pgdat(pgdat) {
8068 
8069 		pgdat->totalreserve_pages = 0;
8070 
8071 		for (i = 0; i < MAX_NR_ZONES; i++) {
8072 			struct zone *zone = pgdat->node_zones + i;
8073 			long max = 0;
8074 			unsigned long managed_pages = zone_managed_pages(zone);
8075 
8076 			/* Find valid and maximum lowmem_reserve in the zone */
8077 			for (j = i; j < MAX_NR_ZONES; j++) {
8078 				if (zone->lowmem_reserve[j] > max)
8079 					max = zone->lowmem_reserve[j];
8080 			}
8081 
8082 			/* we treat the high watermark as reserved pages. */
8083 			max += high_wmark_pages(zone);
8084 
8085 			if (max > managed_pages)
8086 				max = managed_pages;
8087 
8088 			pgdat->totalreserve_pages += max;
8089 
8090 			reserve_pages += max;
8091 		}
8092 	}
8093 	totalreserve_pages = reserve_pages;
8094 }
8095 
8096 /*
8097  * setup_per_zone_lowmem_reserve - called whenever
8098  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8099  *	has a correct pages reserved value, so an adequate number of
8100  *	pages are left in the zone after a successful __alloc_pages().
8101  */
setup_per_zone_lowmem_reserve(void)8102 static void setup_per_zone_lowmem_reserve(void)
8103 {
8104 	struct pglist_data *pgdat;
8105 	enum zone_type i, j;
8106 
8107 	for_each_online_pgdat(pgdat) {
8108 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8109 			struct zone *zone = &pgdat->node_zones[i];
8110 			int ratio = sysctl_lowmem_reserve_ratio[i];
8111 			bool clear = !ratio || !zone_managed_pages(zone);
8112 			unsigned long managed_pages = 0;
8113 
8114 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8115 				struct zone *upper_zone = &pgdat->node_zones[j];
8116 
8117 				managed_pages += zone_managed_pages(upper_zone);
8118 
8119 				if (clear)
8120 					zone->lowmem_reserve[j] = 0;
8121 				else
8122 					zone->lowmem_reserve[j] = managed_pages / ratio;
8123 			}
8124 		}
8125 	}
8126 
8127 	/* update totalreserve_pages */
8128 	calculate_totalreserve_pages();
8129 }
8130 
__setup_per_zone_wmarks(void)8131 static void __setup_per_zone_wmarks(void)
8132 {
8133 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8134 	unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
8135 	unsigned long lowmem_pages = 0;
8136 	struct zone *zone;
8137 	unsigned long flags;
8138 
8139 	/* Calculate total number of !ZONE_HIGHMEM pages */
8140 	for_each_zone(zone) {
8141 		if (!is_highmem(zone))
8142 			lowmem_pages += zone_managed_pages(zone);
8143 	}
8144 
8145 	for_each_zone(zone) {
8146 		u64 tmp, low;
8147 
8148 		spin_lock_irqsave(&zone->lock, flags);
8149 		tmp = (u64)pages_min * zone_managed_pages(zone);
8150 		do_div(tmp, lowmem_pages);
8151 		low = (u64)pages_low * zone_managed_pages(zone);
8152 		do_div(low, nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)));
8153 		if (is_highmem(zone)) {
8154 			/*
8155 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8156 			 * need highmem pages, so cap pages_min to a small
8157 			 * value here.
8158 			 *
8159 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8160 			 * deltas control async page reclaim, and so should
8161 			 * not be capped for highmem.
8162 			 */
8163 			unsigned long min_pages;
8164 
8165 			min_pages = zone_managed_pages(zone) / 1024;
8166 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8167 			zone->_watermark[WMARK_MIN] = min_pages;
8168 		} else {
8169 			/*
8170 			 * If it's a lowmem zone, reserve a number of pages
8171 			 * proportionate to the zone's size.
8172 			 */
8173 			zone->_watermark[WMARK_MIN] = tmp;
8174 		}
8175 
8176 		/*
8177 		 * Set the kswapd watermarks distance according to the
8178 		 * scale factor in proportion to available memory, but
8179 		 * ensure a minimum size on small systems.
8180 		 */
8181 		tmp = max_t(u64, tmp >> 2,
8182 			    mult_frac(zone_managed_pages(zone),
8183 				      watermark_scale_factor, 10000));
8184 
8185 		zone->watermark_boost = 0;
8186 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + low + tmp;
8187 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + low + tmp * 2;
8188 
8189 		spin_unlock_irqrestore(&zone->lock, flags);
8190 	}
8191 
8192 	/* update totalreserve_pages */
8193 	calculate_totalreserve_pages();
8194 }
8195 
8196 /**
8197  * setup_per_zone_wmarks - called when min_free_kbytes changes
8198  * or when memory is hot-{added|removed}
8199  *
8200  * Ensures that the watermark[min,low,high] values for each zone are set
8201  * correctly with respect to min_free_kbytes.
8202  */
setup_per_zone_wmarks(void)8203 void setup_per_zone_wmarks(void)
8204 {
8205 	static DEFINE_SPINLOCK(lock);
8206 
8207 	spin_lock(&lock);
8208 	__setup_per_zone_wmarks();
8209 	spin_unlock(&lock);
8210 }
8211 
8212 /*
8213  * Initialise min_free_kbytes.
8214  *
8215  * For small machines we want it small (128k min).  For large machines
8216  * we want it large (256MB max).  But it is not linear, because network
8217  * bandwidth does not increase linearly with machine size.  We use
8218  *
8219  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8220  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8221  *
8222  * which yields
8223  *
8224  * 16MB:	512k
8225  * 32MB:	724k
8226  * 64MB:	1024k
8227  * 128MB:	1448k
8228  * 256MB:	2048k
8229  * 512MB:	2896k
8230  * 1024MB:	4096k
8231  * 2048MB:	5792k
8232  * 4096MB:	8192k
8233  * 8192MB:	11584k
8234  * 16384MB:	16384k
8235  */
init_per_zone_wmark_min(void)8236 int __meminit init_per_zone_wmark_min(void)
8237 {
8238 	unsigned long lowmem_kbytes;
8239 	int new_min_free_kbytes;
8240 
8241 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8242 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8243 
8244 	if (new_min_free_kbytes > user_min_free_kbytes) {
8245 		min_free_kbytes = new_min_free_kbytes;
8246 		if (min_free_kbytes < 128)
8247 			min_free_kbytes = 128;
8248 		if (min_free_kbytes > 262144)
8249 			min_free_kbytes = 262144;
8250 	} else {
8251 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8252 				new_min_free_kbytes, user_min_free_kbytes);
8253 	}
8254 	setup_per_zone_wmarks();
8255 	refresh_zone_stat_thresholds();
8256 	setup_per_zone_lowmem_reserve();
8257 
8258 #ifdef CONFIG_NUMA
8259 	setup_min_unmapped_ratio();
8260 	setup_min_slab_ratio();
8261 #endif
8262 
8263 	khugepaged_min_free_kbytes_update();
8264 
8265 	return 0;
8266 }
postcore_initcall(init_per_zone_wmark_min)8267 postcore_initcall(init_per_zone_wmark_min)
8268 
8269 /*
8270  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8271  *	that we can call two helper functions whenever min_free_kbytes
8272  *	or extra_free_kbytes changes.
8273  */
8274 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8275 		void *buffer, size_t *length, loff_t *ppos)
8276 {
8277 	int rc;
8278 
8279 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8280 	if (rc)
8281 		return rc;
8282 
8283 	if (write) {
8284 		user_min_free_kbytes = min_free_kbytes;
8285 		setup_per_zone_wmarks();
8286 	}
8287 	return 0;
8288 }
8289 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8290 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8291 		void *buffer, size_t *length, loff_t *ppos)
8292 {
8293 	int rc;
8294 
8295 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8296 	if (rc)
8297 		return rc;
8298 
8299 	if (write)
8300 		setup_per_zone_wmarks();
8301 
8302 	return 0;
8303 }
8304 
8305 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)8306 static void setup_min_unmapped_ratio(void)
8307 {
8308 	pg_data_t *pgdat;
8309 	struct zone *zone;
8310 
8311 	for_each_online_pgdat(pgdat)
8312 		pgdat->min_unmapped_pages = 0;
8313 
8314 	for_each_zone(zone)
8315 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8316 						         sysctl_min_unmapped_ratio) / 100;
8317 }
8318 
8319 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8320 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8321 		void *buffer, size_t *length, loff_t *ppos)
8322 {
8323 	int rc;
8324 
8325 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8326 	if (rc)
8327 		return rc;
8328 
8329 	setup_min_unmapped_ratio();
8330 
8331 	return 0;
8332 }
8333 
setup_min_slab_ratio(void)8334 static void setup_min_slab_ratio(void)
8335 {
8336 	pg_data_t *pgdat;
8337 	struct zone *zone;
8338 
8339 	for_each_online_pgdat(pgdat)
8340 		pgdat->min_slab_pages = 0;
8341 
8342 	for_each_zone(zone)
8343 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8344 						     sysctl_min_slab_ratio) / 100;
8345 }
8346 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8347 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8348 		void *buffer, size_t *length, loff_t *ppos)
8349 {
8350 	int rc;
8351 
8352 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8353 	if (rc)
8354 		return rc;
8355 
8356 	setup_min_slab_ratio();
8357 
8358 	return 0;
8359 }
8360 #endif
8361 
8362 /*
8363  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8364  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8365  *	whenever sysctl_lowmem_reserve_ratio changes.
8366  *
8367  * The reserve ratio obviously has absolutely no relation with the
8368  * minimum watermarks. The lowmem reserve ratio can only make sense
8369  * if in function of the boot time zone sizes.
8370  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8371 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8372 		void *buffer, size_t *length, loff_t *ppos)
8373 {
8374 	int i;
8375 
8376 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8377 
8378 	for (i = 0; i < MAX_NR_ZONES; i++) {
8379 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8380 			sysctl_lowmem_reserve_ratio[i] = 0;
8381 	}
8382 
8383 	setup_per_zone_lowmem_reserve();
8384 	return 0;
8385 }
8386 
__zone_pcp_update(struct zone * zone)8387 static void __zone_pcp_update(struct zone *zone)
8388 {
8389 	unsigned int cpu;
8390 
8391 	for_each_possible_cpu(cpu)
8392 		pageset_set_high_and_batch(zone,
8393 				per_cpu_ptr(zone->pageset, cpu));
8394 }
8395 
8396 /*
8397  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8398  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8399  * pagelist can have before it gets flushed back to buddy allocator.
8400  */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8401 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8402 		void *buffer, size_t *length, loff_t *ppos)
8403 {
8404 	struct zone *zone;
8405 	int old_percpu_pagelist_fraction;
8406 	int ret;
8407 
8408 	mutex_lock(&pcp_batch_high_lock);
8409 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8410 
8411 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8412 	if (!write || ret < 0)
8413 		goto out;
8414 
8415 	/* Sanity checking to avoid pcp imbalance */
8416 	if (percpu_pagelist_fraction &&
8417 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8418 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8419 		ret = -EINVAL;
8420 		goto out;
8421 	}
8422 
8423 	/* No change? */
8424 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8425 		goto out;
8426 
8427 	for_each_populated_zone(zone)
8428 		__zone_pcp_update(zone);
8429 out:
8430 	mutex_unlock(&pcp_batch_high_lock);
8431 	return ret;
8432 }
8433 
8434 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8435 /*
8436  * Returns the number of pages that arch has reserved but
8437  * is not known to alloc_large_system_hash().
8438  */
arch_reserved_kernel_pages(void)8439 static unsigned long __init arch_reserved_kernel_pages(void)
8440 {
8441 	return 0;
8442 }
8443 #endif
8444 
8445 /*
8446  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8447  * machines. As memory size is increased the scale is also increased but at
8448  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8449  * quadruples the scale is increased by one, which means the size of hash table
8450  * only doubles, instead of quadrupling as well.
8451  * Because 32-bit systems cannot have large physical memory, where this scaling
8452  * makes sense, it is disabled on such platforms.
8453  */
8454 #if __BITS_PER_LONG > 32
8455 #define ADAPT_SCALE_BASE	(64ul << 30)
8456 #define ADAPT_SCALE_SHIFT	2
8457 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8458 #endif
8459 
8460 /*
8461  * allocate a large system hash table from bootmem
8462  * - it is assumed that the hash table must contain an exact power-of-2
8463  *   quantity of entries
8464  * - limit is the number of hash buckets, not the total allocation size
8465  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)8466 void *__init alloc_large_system_hash(const char *tablename,
8467 				     unsigned long bucketsize,
8468 				     unsigned long numentries,
8469 				     int scale,
8470 				     int flags,
8471 				     unsigned int *_hash_shift,
8472 				     unsigned int *_hash_mask,
8473 				     unsigned long low_limit,
8474 				     unsigned long high_limit)
8475 {
8476 	unsigned long long max = high_limit;
8477 	unsigned long log2qty, size;
8478 	void *table = NULL;
8479 	gfp_t gfp_flags;
8480 	bool virt;
8481 
8482 	/* allow the kernel cmdline to have a say */
8483 	if (!numentries) {
8484 		/* round applicable memory size up to nearest megabyte */
8485 		numentries = nr_kernel_pages;
8486 		numentries -= arch_reserved_kernel_pages();
8487 
8488 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8489 		if (PAGE_SHIFT < 20)
8490 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8491 
8492 #if __BITS_PER_LONG > 32
8493 		if (!high_limit) {
8494 			unsigned long adapt;
8495 
8496 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8497 			     adapt <<= ADAPT_SCALE_SHIFT)
8498 				scale++;
8499 		}
8500 #endif
8501 
8502 		/* limit to 1 bucket per 2^scale bytes of low memory */
8503 		if (scale > PAGE_SHIFT)
8504 			numentries >>= (scale - PAGE_SHIFT);
8505 		else
8506 			numentries <<= (PAGE_SHIFT - scale);
8507 
8508 		/* Make sure we've got at least a 0-order allocation.. */
8509 		if (unlikely(flags & HASH_SMALL)) {
8510 			/* Makes no sense without HASH_EARLY */
8511 			WARN_ON(!(flags & HASH_EARLY));
8512 			if (!(numentries >> *_hash_shift)) {
8513 				numentries = 1UL << *_hash_shift;
8514 				BUG_ON(!numentries);
8515 			}
8516 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8517 			numentries = PAGE_SIZE / bucketsize;
8518 	}
8519 	numentries = roundup_pow_of_two(numentries);
8520 
8521 	/* limit allocation size to 1/16 total memory by default */
8522 	if (max == 0) {
8523 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8524 		do_div(max, bucketsize);
8525 	}
8526 	max = min(max, 0x80000000ULL);
8527 
8528 	if (numentries < low_limit)
8529 		numentries = low_limit;
8530 	if (numentries > max)
8531 		numentries = max;
8532 
8533 	log2qty = ilog2(numentries);
8534 
8535 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8536 	do {
8537 		virt = false;
8538 		size = bucketsize << log2qty;
8539 		if (flags & HASH_EARLY) {
8540 			if (flags & HASH_ZERO)
8541 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8542 			else
8543 				table = memblock_alloc_raw(size,
8544 							   SMP_CACHE_BYTES);
8545 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8546 			table = __vmalloc(size, gfp_flags);
8547 			virt = true;
8548 		} else {
8549 			/*
8550 			 * If bucketsize is not a power-of-two, we may free
8551 			 * some pages at the end of hash table which
8552 			 * alloc_pages_exact() automatically does
8553 			 */
8554 			table = alloc_pages_exact(size, gfp_flags);
8555 			kmemleak_alloc(table, size, 1, gfp_flags);
8556 		}
8557 	} while (!table && size > PAGE_SIZE && --log2qty);
8558 
8559 	if (!table)
8560 		panic("Failed to allocate %s hash table\n", tablename);
8561 
8562 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8563 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8564 		virt ? "vmalloc" : "linear");
8565 
8566 	if (_hash_shift)
8567 		*_hash_shift = log2qty;
8568 	if (_hash_mask)
8569 		*_hash_mask = (1 << log2qty) - 1;
8570 
8571 	return table;
8572 }
8573 
8574 /*
8575  * This function checks whether pageblock includes unmovable pages or not.
8576  *
8577  * PageLRU check without isolation or lru_lock could race so that
8578  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8579  * check without lock_page also may miss some movable non-lru pages at
8580  * race condition. So you can't expect this function should be exact.
8581  *
8582  * Returns a page without holding a reference. If the caller wants to
8583  * dereference that page (e.g., dumping), it has to make sure that it
8584  * cannot get removed (e.g., via memory unplug) concurrently.
8585  *
8586  */
has_unmovable_pages(struct zone * zone,struct page * page,int migratetype,int flags)8587 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8588 				 int migratetype, int flags)
8589 {
8590 	unsigned long iter = 0;
8591 	unsigned long pfn = page_to_pfn(page);
8592 	unsigned long offset = pfn % pageblock_nr_pages;
8593 
8594 	if (is_migrate_cma_page(page)) {
8595 		/*
8596 		 * CMA allocations (alloc_contig_range) really need to mark
8597 		 * isolate CMA pageblocks even when they are not movable in fact
8598 		 * so consider them movable here.
8599 		 */
8600 		if (is_migrate_cma(migratetype))
8601 			return NULL;
8602 
8603 		return page;
8604 	}
8605 
8606 	for (; iter < pageblock_nr_pages - offset; iter++) {
8607 		if (!pfn_valid_within(pfn + iter))
8608 			continue;
8609 
8610 		page = pfn_to_page(pfn + iter);
8611 
8612 		/*
8613 		 * Both, bootmem allocations and memory holes are marked
8614 		 * PG_reserved and are unmovable. We can even have unmovable
8615 		 * allocations inside ZONE_MOVABLE, for example when
8616 		 * specifying "movablecore".
8617 		 */
8618 		if (PageReserved(page))
8619 			return page;
8620 
8621 		/*
8622 		 * If the zone is movable and we have ruled out all reserved
8623 		 * pages then it should be reasonably safe to assume the rest
8624 		 * is movable.
8625 		 */
8626 		if (zone_idx(zone) == ZONE_MOVABLE)
8627 			continue;
8628 
8629 		/*
8630 		 * Hugepages are not in LRU lists, but they're movable.
8631 		 * THPs are on the LRU, but need to be counted as #small pages.
8632 		 * We need not scan over tail pages because we don't
8633 		 * handle each tail page individually in migration.
8634 		 */
8635 		if (PageHuge(page) || PageTransCompound(page)) {
8636 			struct page *head = compound_head(page);
8637 			unsigned int skip_pages;
8638 
8639 			if (PageHuge(page)) {
8640 				if (!hugepage_migration_supported(page_hstate(head)))
8641 					return page;
8642 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8643 				return page;
8644 			}
8645 
8646 			skip_pages = compound_nr(head) - (page - head);
8647 			iter += skip_pages - 1;
8648 			continue;
8649 		}
8650 
8651 		/*
8652 		 * We can't use page_count without pin a page
8653 		 * because another CPU can free compound page.
8654 		 * This check already skips compound tails of THP
8655 		 * because their page->_refcount is zero at all time.
8656 		 */
8657 		if (!page_ref_count(page)) {
8658 			if (PageBuddy(page))
8659 				iter += (1 << buddy_order(page)) - 1;
8660 			continue;
8661 		}
8662 
8663 		/*
8664 		 * The HWPoisoned page may be not in buddy system, and
8665 		 * page_count() is not 0.
8666 		 */
8667 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8668 			continue;
8669 
8670 		/*
8671 		 * We treat all PageOffline() pages as movable when offlining
8672 		 * to give drivers a chance to decrement their reference count
8673 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8674 		 * can be offlined as there are no direct references anymore.
8675 		 * For actually unmovable PageOffline() where the driver does
8676 		 * not support this, we will fail later when trying to actually
8677 		 * move these pages that still have a reference count > 0.
8678 		 * (false negatives in this function only)
8679 		 */
8680 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8681 			continue;
8682 
8683 		if (__PageMovable(page) || PageLRU(page))
8684 			continue;
8685 
8686 		/*
8687 		 * If there are RECLAIMABLE pages, we need to check
8688 		 * it.  But now, memory offline itself doesn't call
8689 		 * shrink_node_slabs() and it still to be fixed.
8690 		 */
8691 		return page;
8692 	}
8693 	return NULL;
8694 }
8695 
8696 #ifdef CONFIG_CONTIG_ALLOC
pfn_max_align_down(unsigned long pfn)8697 static unsigned long pfn_max_align_down(unsigned long pfn)
8698 {
8699 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8700 			     pageblock_nr_pages) - 1);
8701 }
8702 
pfn_max_align_up(unsigned long pfn)8703 unsigned long pfn_max_align_up(unsigned long pfn)
8704 {
8705 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8706 				pageblock_nr_pages));
8707 }
8708 
8709 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8710 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8711 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)8712 static void alloc_contig_dump_pages(struct list_head *page_list)
8713 {
8714 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8715 
8716 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8717 		struct page *page;
8718 		unsigned long nr_skip = 0;
8719 		unsigned long nr_pages = 0;
8720 
8721 		dump_stack();
8722 		list_for_each_entry(page, page_list, lru) {
8723 			nr_pages++;
8724 			/* The page will be freed by putback_movable_pages soon */
8725 			if (page_count(page) == 1) {
8726 				nr_skip++;
8727 				continue;
8728 			}
8729 			dump_page(page, "migration failure");
8730 		}
8731 		pr_warn("total dump_pages %lu skipping %lu\n", nr_pages, nr_skip);
8732 	}
8733 }
8734 #else
alloc_contig_dump_pages(struct list_head * page_list)8735 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8736 {
8737 }
8738 #endif
8739 
8740 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,struct acr_info * info)8741 static int __alloc_contig_migrate_range(struct compact_control *cc,
8742 					unsigned long start, unsigned long end,
8743 					struct acr_info *info)
8744 {
8745 	/* This function is based on compact_zone() from compaction.c. */
8746 	unsigned int nr_reclaimed;
8747 	unsigned long pfn = start;
8748 	unsigned int tries = 0;
8749 	unsigned int max_tries = 5;
8750 	int ret = 0;
8751 	struct page *page;
8752 	struct migration_target_control mtc = {
8753 		.nid = zone_to_nid(cc->zone),
8754 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8755 	};
8756 
8757 	if (cc->alloc_contig && cc->mode == MIGRATE_ASYNC)
8758 		max_tries = 1;
8759 
8760 	lru_cache_disable();
8761 
8762 	while (pfn < end || !list_empty(&cc->migratepages)) {
8763 		if (fatal_signal_pending(current)) {
8764 			ret = -EINTR;
8765 			break;
8766 		}
8767 
8768 		if (list_empty(&cc->migratepages)) {
8769 			cc->nr_migratepages = 0;
8770 			pfn = isolate_migratepages_range(cc, pfn, end);
8771 			if (!pfn) {
8772 				ret = -EINTR;
8773 				break;
8774 			}
8775 			tries = 0;
8776 		} else if (++tries == max_tries) {
8777 			ret = ret < 0 ? ret : -EBUSY;
8778 			break;
8779 		}
8780 
8781 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8782 							&cc->migratepages);
8783 		info->nr_reclaimed += nr_reclaimed;
8784 		cc->nr_migratepages -= nr_reclaimed;
8785 
8786 		list_for_each_entry(page, &cc->migratepages, lru)
8787 			info->nr_mapped += page_mapcount(page);
8788 
8789 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8790 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8791 		if (!ret)
8792 			info->nr_migrated += cc->nr_migratepages;
8793 	}
8794 
8795 	lru_cache_enable();
8796 	if (ret < 0) {
8797 		if (ret == -EBUSY) {
8798 			alloc_contig_dump_pages(&cc->migratepages);
8799 			page_pinner_mark_migration_failed_pages(&cc->migratepages);
8800 		}
8801 
8802 		if (!list_empty(&cc->migratepages)) {
8803 			page = list_first_entry(&cc->migratepages, struct page , lru);
8804 			info->failed_pfn = page_to_pfn(page);
8805 		}
8806 
8807 		putback_movable_pages(&cc->migratepages);
8808 		info->err |= ACR_ERR_MIGRATE;
8809 		return ret;
8810 	}
8811 	return 0;
8812 }
8813 
8814 /**
8815  * alloc_contig_range() -- tries to allocate given range of pages
8816  * @start:	start PFN to allocate
8817  * @end:	one-past-the-last PFN to allocate
8818  * @migratetype:	migratetype of the underlaying pageblocks (either
8819  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8820  *			in range must have the same migratetype and it must
8821  *			be either of the two.
8822  * @gfp_mask:	GFP mask to use during compaction
8823  *
8824  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8825  * aligned.  The PFN range must belong to a single zone.
8826  *
8827  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8828  * pageblocks in the range.  Once isolated, the pageblocks should not
8829  * be modified by others.
8830  *
8831  * Return: zero on success or negative error code.  On success all
8832  * pages which PFN is in [start, end) are allocated for the caller and
8833  * need to be freed with free_contig_range().
8834  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask,struct acr_info * info)8835 int alloc_contig_range(unsigned long start, unsigned long end,
8836 		       unsigned migratetype, gfp_t gfp_mask,
8837 		       struct acr_info *info)
8838 {
8839 	unsigned long outer_start, outer_end;
8840 	unsigned int order;
8841 	int ret = 0;
8842 	bool skip_drain_all_pages = false;
8843 
8844 	struct compact_control cc = {
8845 		.nr_migratepages = 0,
8846 		.order = -1,
8847 		.zone = page_zone(pfn_to_page(start)),
8848 		.mode = gfp_mask & __GFP_NORETRY ? MIGRATE_ASYNC : MIGRATE_SYNC,
8849 		.ignore_skip_hint = true,
8850 		.no_set_skip_hint = true,
8851 		.gfp_mask = current_gfp_context(gfp_mask),
8852 		.alloc_contig = true,
8853 	};
8854 	INIT_LIST_HEAD(&cc.migratepages);
8855 
8856 	/*
8857 	 * What we do here is we mark all pageblocks in range as
8858 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8859 	 * have different sizes, and due to the way page allocator
8860 	 * work, we align the range to biggest of the two pages so
8861 	 * that page allocator won't try to merge buddies from
8862 	 * different pageblocks and change MIGRATE_ISOLATE to some
8863 	 * other migration type.
8864 	 *
8865 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8866 	 * migrate the pages from an unaligned range (ie. pages that
8867 	 * we are interested in).  This will put all the pages in
8868 	 * range back to page allocator as MIGRATE_ISOLATE.
8869 	 *
8870 	 * When this is done, we take the pages in range from page
8871 	 * allocator removing them from the buddy system.  This way
8872 	 * page allocator will never consider using them.
8873 	 *
8874 	 * This lets us mark the pageblocks back as
8875 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8876 	 * aligned range but not in the unaligned, original range are
8877 	 * put back to page allocator so that buddy can use them.
8878 	 */
8879 
8880 	ret = start_isolate_page_range(pfn_max_align_down(start),
8881 				       pfn_max_align_up(end), migratetype, 0,
8882 				       &info->failed_pfn);
8883 	if (ret) {
8884 		info->err |= ACR_ERR_ISOLATE;
8885 		return ret;
8886 	}
8887 
8888 	trace_android_vh_cma_drain_all_pages_bypass(migratetype,
8889 						&skip_drain_all_pages);
8890 	if (!skip_drain_all_pages)
8891 		drain_all_pages(cc.zone);
8892 
8893 	/*
8894 	 * In case of -EBUSY, we'd like to know which page causes problem.
8895 	 * So, just fall through. test_pages_isolated() has a tracepoint
8896 	 * which will report the busy page.
8897 	 *
8898 	 * It is possible that busy pages could become available before
8899 	 * the call to test_pages_isolated, and the range will actually be
8900 	 * allocated.  So, if we fall through be sure to clear ret so that
8901 	 * -EBUSY is not accidentally used or returned to caller.
8902 	 */
8903 	ret = __alloc_contig_migrate_range(&cc, start, end, info);
8904 	if (ret && (ret != -EBUSY || (gfp_mask & __GFP_NORETRY)))
8905 		goto done;
8906 	ret =0;
8907 
8908 	/*
8909 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8910 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8911 	 * more, all pages in [start, end) are free in page allocator.
8912 	 * What we are going to do is to allocate all pages from
8913 	 * [start, end) (that is remove them from page allocator).
8914 	 *
8915 	 * The only problem is that pages at the beginning and at the
8916 	 * end of interesting range may be not aligned with pages that
8917 	 * page allocator holds, ie. they can be part of higher order
8918 	 * pages.  Because of this, we reserve the bigger range and
8919 	 * once this is done free the pages we are not interested in.
8920 	 *
8921 	 * We don't have to hold zone->lock here because the pages are
8922 	 * isolated thus they won't get removed from buddy.
8923 	 */
8924 
8925 	order = 0;
8926 	outer_start = start;
8927 	while (!PageBuddy(pfn_to_page(outer_start))) {
8928 		if (++order >= MAX_ORDER) {
8929 			outer_start = start;
8930 			break;
8931 		}
8932 		outer_start &= ~0UL << order;
8933 	}
8934 
8935 	if (outer_start != start) {
8936 		order = buddy_order(pfn_to_page(outer_start));
8937 
8938 		/*
8939 		 * outer_start page could be small order buddy page and
8940 		 * it doesn't include start page. Adjust outer_start
8941 		 * in this case to report failed page properly
8942 		 * on tracepoint in test_pages_isolated()
8943 		 */
8944 		if (outer_start + (1UL << order) <= start)
8945 			outer_start = start;
8946 	}
8947 
8948 	/* Make sure the range is really isolated. */
8949 	if (test_pages_isolated(outer_start, end, 0, &info->failed_pfn)) {
8950 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8951 			__func__, outer_start, end);
8952 		ret = -EBUSY;
8953 		info->err |= ACR_ERR_TEST;
8954 		goto done;
8955 	}
8956 
8957 	/* Grab isolated pages from freelists. */
8958 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8959 	if (!outer_end) {
8960 		ret = -EBUSY;
8961 		goto done;
8962 	}
8963 
8964 	/* Free head and tail (if any) */
8965 	if (start != outer_start)
8966 		free_contig_range(outer_start, start - outer_start);
8967 	if (end != outer_end)
8968 		free_contig_range(end, outer_end - end);
8969 
8970 done:
8971 	undo_isolate_page_range(pfn_max_align_down(start),
8972 				pfn_max_align_up(end), migratetype);
8973 	return ret;
8974 }
8975 EXPORT_SYMBOL(alloc_contig_range);
8976 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)8977 static int __alloc_contig_pages(unsigned long start_pfn,
8978 				unsigned long nr_pages, gfp_t gfp_mask)
8979 {
8980 	struct acr_info dummy;
8981 	unsigned long end_pfn = start_pfn + nr_pages;
8982 
8983 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8984 				  gfp_mask, &dummy);
8985 }
8986 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)8987 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8988 				   unsigned long nr_pages)
8989 {
8990 	unsigned long i, end_pfn = start_pfn + nr_pages;
8991 	struct page *page;
8992 
8993 	for (i = start_pfn; i < end_pfn; i++) {
8994 		page = pfn_to_online_page(i);
8995 		if (!page)
8996 			return false;
8997 
8998 		if (page_zone(page) != z)
8999 			return false;
9000 
9001 		if (PageReserved(page))
9002 			return false;
9003 
9004 		if (page_count(page) > 0)
9005 			return false;
9006 
9007 		if (PageHuge(page))
9008 			return false;
9009 	}
9010 	return true;
9011 }
9012 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)9013 static bool zone_spans_last_pfn(const struct zone *zone,
9014 				unsigned long start_pfn, unsigned long nr_pages)
9015 {
9016 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9017 
9018 	return zone_spans_pfn(zone, last_pfn);
9019 }
9020 
9021 /**
9022  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9023  * @nr_pages:	Number of contiguous pages to allocate
9024  * @gfp_mask:	GFP mask to limit search and used during compaction
9025  * @nid:	Target node
9026  * @nodemask:	Mask for other possible nodes
9027  *
9028  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9029  * on an applicable zonelist to find a contiguous pfn range which can then be
9030  * tried for allocation with alloc_contig_range(). This routine is intended
9031  * for allocation requests which can not be fulfilled with the buddy allocator.
9032  *
9033  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9034  * power of two then the alignment is guaranteed to be to the given nr_pages
9035  * (e.g. 1GB request would be aligned to 1GB).
9036  *
9037  * Allocated pages can be freed with free_contig_range() or by manually calling
9038  * __free_page() on each allocated page.
9039  *
9040  * Return: pointer to contiguous pages on success, or NULL if not successful.
9041  */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)9042 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9043 				int nid, nodemask_t *nodemask)
9044 {
9045 	unsigned long ret, pfn, flags;
9046 	struct zonelist *zonelist;
9047 	struct zone *zone;
9048 	struct zoneref *z;
9049 
9050 	zonelist = node_zonelist(nid, gfp_mask);
9051 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9052 					gfp_zone(gfp_mask), nodemask) {
9053 		spin_lock_irqsave(&zone->lock, flags);
9054 
9055 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9056 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9057 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9058 				/*
9059 				 * We release the zone lock here because
9060 				 * alloc_contig_range() will also lock the zone
9061 				 * at some point. If there's an allocation
9062 				 * spinning on this lock, it may win the race
9063 				 * and cause alloc_contig_range() to fail...
9064 				 */
9065 				spin_unlock_irqrestore(&zone->lock, flags);
9066 				ret = __alloc_contig_pages(pfn, nr_pages,
9067 							gfp_mask);
9068 				if (!ret)
9069 					return pfn_to_page(pfn);
9070 				spin_lock_irqsave(&zone->lock, flags);
9071 			}
9072 			pfn += nr_pages;
9073 		}
9074 		spin_unlock_irqrestore(&zone->lock, flags);
9075 	}
9076 	return NULL;
9077 }
9078 #endif /* CONFIG_CONTIG_ALLOC */
9079 
free_contig_range(unsigned long pfn,unsigned int nr_pages)9080 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
9081 {
9082 	unsigned int count = 0;
9083 
9084 	for (; nr_pages--; pfn++) {
9085 		struct page *page = pfn_to_page(pfn);
9086 
9087 		count += page_count(page) != 1;
9088 		__free_page(page);
9089 	}
9090 	WARN(count != 0, "%d pages are still in use!\n", count);
9091 }
9092 EXPORT_SYMBOL(free_contig_range);
9093 
9094 /*
9095  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9096  * page high values need to be recalulated.
9097  */
zone_pcp_update(struct zone * zone)9098 void __meminit zone_pcp_update(struct zone *zone)
9099 {
9100 	mutex_lock(&pcp_batch_high_lock);
9101 	__zone_pcp_update(zone);
9102 	mutex_unlock(&pcp_batch_high_lock);
9103 }
9104 
zone_pcp_reset(struct zone * zone)9105 void zone_pcp_reset(struct zone *zone)
9106 {
9107 	unsigned long flags;
9108 	int cpu;
9109 	struct per_cpu_pageset *pset;
9110 
9111 	/* avoid races with drain_pages()  */
9112 	local_irq_save(flags);
9113 	if (zone->pageset != &boot_pageset) {
9114 		for_each_online_cpu(cpu) {
9115 			pset = per_cpu_ptr(zone->pageset, cpu);
9116 			drain_zonestat(zone, pset);
9117 		}
9118 		free_percpu(zone->pageset);
9119 		zone->pageset = &boot_pageset;
9120 	}
9121 	local_irq_restore(flags);
9122 }
9123 
9124 #ifdef CONFIG_MEMORY_HOTREMOVE
9125 /*
9126  * All pages in the range must be in a single zone, must not contain holes,
9127  * must span full sections, and must be isolated before calling this function.
9128  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)9129 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9130 {
9131 	unsigned long pfn = start_pfn;
9132 	struct page *page;
9133 	struct zone *zone;
9134 	unsigned int order;
9135 	unsigned long flags;
9136 
9137 	offline_mem_sections(pfn, end_pfn);
9138 	zone = page_zone(pfn_to_page(pfn));
9139 	spin_lock_irqsave(&zone->lock, flags);
9140 	while (pfn < end_pfn) {
9141 		page = pfn_to_page(pfn);
9142 		/*
9143 		 * The HWPoisoned page may be not in buddy system, and
9144 		 * page_count() is not 0.
9145 		 */
9146 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9147 			pfn++;
9148 			continue;
9149 		}
9150 		/*
9151 		 * At this point all remaining PageOffline() pages have a
9152 		 * reference count of 0 and can simply be skipped.
9153 		 */
9154 		if (PageOffline(page)) {
9155 			BUG_ON(page_count(page));
9156 			BUG_ON(PageBuddy(page));
9157 			pfn++;
9158 			continue;
9159 		}
9160 
9161 		BUG_ON(page_count(page));
9162 		BUG_ON(!PageBuddy(page));
9163 		order = buddy_order(page);
9164 		del_page_from_free_list(page, zone, order);
9165 		pfn += (1 << order);
9166 	}
9167 	spin_unlock_irqrestore(&zone->lock, flags);
9168 }
9169 #endif
9170 
is_free_buddy_page(struct page * page)9171 bool is_free_buddy_page(struct page *page)
9172 {
9173 	struct zone *zone = page_zone(page);
9174 	unsigned long pfn = page_to_pfn(page);
9175 	unsigned long flags;
9176 	unsigned int order;
9177 
9178 	spin_lock_irqsave(&zone->lock, flags);
9179 	for (order = 0; order < MAX_ORDER; order++) {
9180 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9181 
9182 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9183 			break;
9184 	}
9185 	spin_unlock_irqrestore(&zone->lock, flags);
9186 
9187 	return order < MAX_ORDER;
9188 }
9189 
9190 #ifdef CONFIG_MEMORY_FAILURE
9191 /*
9192  * Break down a higher-order page in sub-pages, and keep our target out of
9193  * buddy allocator.
9194  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)9195 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9196 				   struct page *target, int low, int high,
9197 				   int migratetype)
9198 {
9199 	unsigned long size = 1 << high;
9200 	struct page *current_buddy, *next_page;
9201 
9202 	while (high > low) {
9203 		high--;
9204 		size >>= 1;
9205 
9206 		if (target >= &page[size]) {
9207 			next_page = page + size;
9208 			current_buddy = page;
9209 		} else {
9210 			next_page = page;
9211 			current_buddy = page + size;
9212 		}
9213 		page = next_page;
9214 
9215 		if (set_page_guard(zone, current_buddy, high, migratetype))
9216 			continue;
9217 
9218 		if (current_buddy != target) {
9219 			add_to_free_list(current_buddy, zone, high, migratetype);
9220 			set_buddy_order(current_buddy, high);
9221 		}
9222 	}
9223 }
9224 
9225 /*
9226  * Take a page that will be marked as poisoned off the buddy allocator.
9227  */
take_page_off_buddy(struct page * page)9228 bool take_page_off_buddy(struct page *page)
9229 {
9230 	struct zone *zone = page_zone(page);
9231 	unsigned long pfn = page_to_pfn(page);
9232 	unsigned long flags;
9233 	unsigned int order;
9234 	bool ret = false;
9235 
9236 	spin_lock_irqsave(&zone->lock, flags);
9237 	for (order = 0; order < MAX_ORDER; order++) {
9238 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9239 		int page_order = buddy_order(page_head);
9240 
9241 		if (PageBuddy(page_head) && page_order >= order) {
9242 			unsigned long pfn_head = page_to_pfn(page_head);
9243 			int migratetype = get_pfnblock_migratetype(page_head,
9244 								   pfn_head);
9245 
9246 			del_page_from_free_list(page_head, zone, page_order);
9247 			break_down_buddy_pages(zone, page_head, page, 0,
9248 						page_order, migratetype);
9249 			if (!is_migrate_isolate(migratetype))
9250 				__mod_zone_freepage_state(zone, -1, migratetype);
9251 			ret = true;
9252 			break;
9253 		}
9254 		if (page_count(page_head) > 0)
9255 			break;
9256 	}
9257 	spin_unlock_irqrestore(&zone->lock, flags);
9258 	return ret;
9259 }
9260 #endif
9261 
9262 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)9263 bool has_managed_dma(void)
9264 {
9265 	struct pglist_data *pgdat;
9266 
9267 	for_each_online_pgdat(pgdat) {
9268 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9269 
9270 		if (managed_zone(zone))
9271 			return true;
9272 	}
9273 	return false;
9274 }
9275 #endif /* CONFIG_ZONE_DMA */
9276