1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "irq.h"
56 #include "kvm_cache_regs.h"
57 #include "lapic.h"
58 #include "mmu.h"
59 #include "nested.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69
70 #ifdef MODULE
71 static const struct x86_cpu_id vmx_cpu_id[] = {
72 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
73 {}
74 };
75 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
76 #endif
77
78 bool __read_mostly enable_vpid = 1;
79 module_param_named(vpid, enable_vpid, bool, 0444);
80
81 static bool __read_mostly enable_vnmi = 1;
82 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
83
84 bool __read_mostly flexpriority_enabled = 1;
85 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
86
87 bool __read_mostly enable_ept = 1;
88 module_param_named(ept, enable_ept, bool, S_IRUGO);
89
90 bool __read_mostly enable_unrestricted_guest = 1;
91 module_param_named(unrestricted_guest,
92 enable_unrestricted_guest, bool, S_IRUGO);
93
94 bool __read_mostly enable_ept_ad_bits = 1;
95 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
96
97 static bool __read_mostly emulate_invalid_guest_state = true;
98 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
99
100 static bool __read_mostly fasteoi = 1;
101 module_param(fasteoi, bool, S_IRUGO);
102
103 bool __read_mostly enable_apicv = 1;
104 module_param(enable_apicv, bool, S_IRUGO);
105
106 /*
107 * If nested=1, nested virtualization is supported, i.e., guests may use
108 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
109 * use VMX instructions.
110 */
111 static bool __read_mostly nested = 1;
112 module_param(nested, bool, S_IRUGO);
113
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116
117 static bool __read_mostly dump_invalid_vmcs = 0;
118 module_param(dump_invalid_vmcs, bool, 0644);
119
120 #define MSR_BITMAP_MODE_X2APIC 1
121 #define MSR_BITMAP_MODE_X2APIC_APICV 2
122
123 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
124
125 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
126 static int __read_mostly cpu_preemption_timer_multi;
127 static bool __read_mostly enable_preemption_timer = 1;
128 #ifdef CONFIG_X86_64
129 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
130 #endif
131
132 extern bool __read_mostly allow_smaller_maxphyaddr;
133 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
134
135 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
136 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
137 #define KVM_VM_CR0_ALWAYS_ON \
138 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
139
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149 RTIT_STATUS_BYTECNT))
150
151 /*
152 * List of MSRs that can be directly passed to the guest.
153 * In addition to these x2apic and PT MSRs are handled specially.
154 */
155 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
156 MSR_IA32_SPEC_CTRL,
157 MSR_IA32_PRED_CMD,
158 MSR_IA32_TSC,
159 #ifdef CONFIG_X86_64
160 MSR_FS_BASE,
161 MSR_GS_BASE,
162 MSR_KERNEL_GS_BASE,
163 #endif
164 MSR_IA32_SYSENTER_CS,
165 MSR_IA32_SYSENTER_ESP,
166 MSR_IA32_SYSENTER_EIP,
167 MSR_CORE_C1_RES,
168 MSR_CORE_C3_RESIDENCY,
169 MSR_CORE_C6_RESIDENCY,
170 MSR_CORE_C7_RESIDENCY,
171 };
172
173 /*
174 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
175 * ple_gap: upper bound on the amount of time between two successive
176 * executions of PAUSE in a loop. Also indicate if ple enabled.
177 * According to test, this time is usually smaller than 128 cycles.
178 * ple_window: upper bound on the amount of time a guest is allowed to execute
179 * in a PAUSE loop. Tests indicate that most spinlocks are held for
180 * less than 2^12 cycles
181 * Time is measured based on a counter that runs at the same rate as the TSC,
182 * refer SDM volume 3b section 21.6.13 & 22.1.3.
183 */
184 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
185 module_param(ple_gap, uint, 0444);
186
187 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
188 module_param(ple_window, uint, 0444);
189
190 /* Default doubles per-vcpu window every exit. */
191 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
192 module_param(ple_window_grow, uint, 0444);
193
194 /* Default resets per-vcpu window every exit to ple_window. */
195 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
196 module_param(ple_window_shrink, uint, 0444);
197
198 /* Default is to compute the maximum so we can never overflow. */
199 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
200 module_param(ple_window_max, uint, 0444);
201
202 /* Default is SYSTEM mode, 1 for host-guest mode */
203 int __read_mostly pt_mode = PT_MODE_SYSTEM;
204 module_param(pt_mode, int, S_IRUGO);
205
206 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
208 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
209
210 /* Storage for pre module init parameter parsing */
211 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
212
213 static const struct {
214 const char *option;
215 bool for_parse;
216 } vmentry_l1d_param[] = {
217 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
218 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
219 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
220 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
221 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
222 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
223 };
224
225 #define L1D_CACHE_ORDER 4
226 static void *vmx_l1d_flush_pages;
227
228 /* Control for disabling CPU Fill buffer clear */
229 static bool __read_mostly vmx_fb_clear_ctrl_available;
230
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)231 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
232 {
233 struct page *page;
234 unsigned int i;
235
236 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
237 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
238 return 0;
239 }
240
241 if (!enable_ept) {
242 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
243 return 0;
244 }
245
246 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
247 u64 msr;
248
249 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
250 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
251 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
252 return 0;
253 }
254 }
255
256 /* If set to auto use the default l1tf mitigation method */
257 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
258 switch (l1tf_mitigation) {
259 case L1TF_MITIGATION_OFF:
260 l1tf = VMENTER_L1D_FLUSH_NEVER;
261 break;
262 case L1TF_MITIGATION_FLUSH_NOWARN:
263 case L1TF_MITIGATION_FLUSH:
264 case L1TF_MITIGATION_FLUSH_NOSMT:
265 l1tf = VMENTER_L1D_FLUSH_COND;
266 break;
267 case L1TF_MITIGATION_FULL:
268 case L1TF_MITIGATION_FULL_FORCE:
269 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
270 break;
271 }
272 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
273 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
274 }
275
276 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
277 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
278 /*
279 * This allocation for vmx_l1d_flush_pages is not tied to a VM
280 * lifetime and so should not be charged to a memcg.
281 */
282 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
283 if (!page)
284 return -ENOMEM;
285 vmx_l1d_flush_pages = page_address(page);
286
287 /*
288 * Initialize each page with a different pattern in
289 * order to protect against KSM in the nested
290 * virtualization case.
291 */
292 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
293 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
294 PAGE_SIZE);
295 }
296 }
297
298 l1tf_vmx_mitigation = l1tf;
299
300 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
301 static_branch_enable(&vmx_l1d_should_flush);
302 else
303 static_branch_disable(&vmx_l1d_should_flush);
304
305 if (l1tf == VMENTER_L1D_FLUSH_COND)
306 static_branch_enable(&vmx_l1d_flush_cond);
307 else
308 static_branch_disable(&vmx_l1d_flush_cond);
309 return 0;
310 }
311
vmentry_l1d_flush_parse(const char * s)312 static int vmentry_l1d_flush_parse(const char *s)
313 {
314 unsigned int i;
315
316 if (s) {
317 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
318 if (vmentry_l1d_param[i].for_parse &&
319 sysfs_streq(s, vmentry_l1d_param[i].option))
320 return i;
321 }
322 }
323 return -EINVAL;
324 }
325
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)326 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
327 {
328 int l1tf, ret;
329
330 l1tf = vmentry_l1d_flush_parse(s);
331 if (l1tf < 0)
332 return l1tf;
333
334 if (!boot_cpu_has(X86_BUG_L1TF))
335 return 0;
336
337 /*
338 * Has vmx_init() run already? If not then this is the pre init
339 * parameter parsing. In that case just store the value and let
340 * vmx_init() do the proper setup after enable_ept has been
341 * established.
342 */
343 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
344 vmentry_l1d_flush_param = l1tf;
345 return 0;
346 }
347
348 mutex_lock(&vmx_l1d_flush_mutex);
349 ret = vmx_setup_l1d_flush(l1tf);
350 mutex_unlock(&vmx_l1d_flush_mutex);
351 return ret;
352 }
353
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)354 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
355 {
356 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
357 return sprintf(s, "???\n");
358
359 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
360 }
361
vmx_setup_fb_clear_ctrl(void)362 static void vmx_setup_fb_clear_ctrl(void)
363 {
364 u64 msr;
365
366 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
367 !boot_cpu_has_bug(X86_BUG_MDS) &&
368 !boot_cpu_has_bug(X86_BUG_TAA)) {
369 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
370 if (msr & ARCH_CAP_FB_CLEAR_CTRL)
371 vmx_fb_clear_ctrl_available = true;
372 }
373 }
374
vmx_disable_fb_clear(struct vcpu_vmx * vmx)375 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
376 {
377 u64 msr;
378
379 if (!vmx->disable_fb_clear)
380 return;
381
382 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
383 msr |= FB_CLEAR_DIS;
384 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
385 /* Cache the MSR value to avoid reading it later */
386 vmx->msr_ia32_mcu_opt_ctrl = msr;
387 }
388
vmx_enable_fb_clear(struct vcpu_vmx * vmx)389 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
390 {
391 if (!vmx->disable_fb_clear)
392 return;
393
394 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
395 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
396 }
397
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)398 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
399 {
400 vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
401
402 /*
403 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
404 * at VMEntry. Skip the MSR read/write when a guest has no use case to
405 * execute VERW.
406 */
407 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
408 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
409 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
410 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
411 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
412 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
413 vmx->disable_fb_clear = false;
414 }
415
416 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
417 .set = vmentry_l1d_flush_set,
418 .get = vmentry_l1d_flush_get,
419 };
420 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
421
422 static u32 vmx_segment_access_rights(struct kvm_segment *var);
423 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
424 u32 msr, int type);
425
426 void vmx_vmexit(void);
427
428 #define vmx_insn_failed(fmt...) \
429 do { \
430 WARN_ONCE(1, fmt); \
431 pr_warn_ratelimited(fmt); \
432 } while (0)
433
vmread_error(unsigned long field,bool fault)434 asmlinkage void vmread_error(unsigned long field, bool fault)
435 {
436 if (fault)
437 kvm_spurious_fault();
438 else
439 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
440 }
441
vmwrite_error(unsigned long field,unsigned long value)442 noinline void vmwrite_error(unsigned long field, unsigned long value)
443 {
444 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
445 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
446 }
447
vmclear_error(struct vmcs * vmcs,u64 phys_addr)448 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
449 {
450 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
451 }
452
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)453 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
454 {
455 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
456 }
457
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)458 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
459 {
460 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
461 ext, vpid, gva);
462 }
463
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)464 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
465 {
466 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
467 ext, eptp, gpa);
468 }
469
470 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
471 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
472 /*
473 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
474 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
475 */
476 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
477
478 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
479 static DEFINE_SPINLOCK(vmx_vpid_lock);
480
481 struct vmcs_config vmcs_config;
482 struct vmx_capability vmx_capability;
483
484 #define VMX_SEGMENT_FIELD(seg) \
485 [VCPU_SREG_##seg] = { \
486 .selector = GUEST_##seg##_SELECTOR, \
487 .base = GUEST_##seg##_BASE, \
488 .limit = GUEST_##seg##_LIMIT, \
489 .ar_bytes = GUEST_##seg##_AR_BYTES, \
490 }
491
492 static const struct kvm_vmx_segment_field {
493 unsigned selector;
494 unsigned base;
495 unsigned limit;
496 unsigned ar_bytes;
497 } kvm_vmx_segment_fields[] = {
498 VMX_SEGMENT_FIELD(CS),
499 VMX_SEGMENT_FIELD(DS),
500 VMX_SEGMENT_FIELD(ES),
501 VMX_SEGMENT_FIELD(FS),
502 VMX_SEGMENT_FIELD(GS),
503 VMX_SEGMENT_FIELD(SS),
504 VMX_SEGMENT_FIELD(TR),
505 VMX_SEGMENT_FIELD(LDTR),
506 };
507
vmx_segment_cache_clear(struct vcpu_vmx * vmx)508 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
509 {
510 vmx->segment_cache.bitmask = 0;
511 }
512
513 static unsigned long host_idt_base;
514
515 /*
516 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
517 * will emulate SYSCALL in legacy mode if the vendor string in guest
518 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
519 * support this emulation, IA32_STAR must always be included in
520 * vmx_uret_msrs_list[], even in i386 builds.
521 */
522 static const u32 vmx_uret_msrs_list[] = {
523 #ifdef CONFIG_X86_64
524 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
525 #endif
526 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
527 MSR_IA32_TSX_CTRL,
528 };
529
530 #if IS_ENABLED(CONFIG_HYPERV)
531 static bool __read_mostly enlightened_vmcs = true;
532 module_param(enlightened_vmcs, bool, 0444);
533
534 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)535 static void check_ept_pointer_match(struct kvm *kvm)
536 {
537 struct kvm_vcpu *vcpu;
538 u64 tmp_eptp = INVALID_PAGE;
539 int i;
540
541 kvm_for_each_vcpu(i, vcpu, kvm) {
542 if (!VALID_PAGE(tmp_eptp)) {
543 tmp_eptp = to_vmx(vcpu)->ept_pointer;
544 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
545 to_kvm_vmx(kvm)->ept_pointers_match
546 = EPT_POINTERS_MISMATCH;
547 return;
548 }
549 }
550
551 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
552 }
553
kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list * flush,void * data)554 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
555 void *data)
556 {
557 struct kvm_tlb_range *range = data;
558
559 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
560 range->pages);
561 }
562
__hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_vcpu * vcpu,struct kvm_tlb_range * range)563 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
564 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
565 {
566 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
567
568 /*
569 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
570 * of the base of EPT PML4 table, strip off EPT configuration
571 * information.
572 */
573 if (range)
574 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
575 kvm_fill_hv_flush_list_func, (void *)range);
576 else
577 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
578 }
579
hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_tlb_range * range)580 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
581 struct kvm_tlb_range *range)
582 {
583 struct kvm_vcpu *vcpu;
584 int ret = 0, i;
585
586 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
587
588 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
589 check_ept_pointer_match(kvm);
590
591 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
592 kvm_for_each_vcpu(i, vcpu, kvm) {
593 /* If ept_pointer is invalid pointer, bypass flush request. */
594 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
595 ret |= __hv_remote_flush_tlb_with_range(
596 kvm, vcpu, range);
597 }
598 } else {
599 ret = __hv_remote_flush_tlb_with_range(kvm,
600 kvm_get_vcpu(kvm, 0), range);
601 }
602
603 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
604 return ret;
605 }
hv_remote_flush_tlb(struct kvm * kvm)606 static int hv_remote_flush_tlb(struct kvm *kvm)
607 {
608 return hv_remote_flush_tlb_with_range(kvm, NULL);
609 }
610
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)611 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
612 {
613 struct hv_enlightened_vmcs *evmcs;
614 struct hv_partition_assist_pg **p_hv_pa_pg =
615 &vcpu->kvm->arch.hyperv.hv_pa_pg;
616 /*
617 * Synthetic VM-Exit is not enabled in current code and so All
618 * evmcs in singe VM shares same assist page.
619 */
620 if (!*p_hv_pa_pg)
621 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
622
623 if (!*p_hv_pa_pg)
624 return -ENOMEM;
625
626 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
627
628 evmcs->partition_assist_page =
629 __pa(*p_hv_pa_pg);
630 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
631 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
632
633 return 0;
634 }
635
636 #endif /* IS_ENABLED(CONFIG_HYPERV) */
637
638 /*
639 * Comment's format: document - errata name - stepping - processor name.
640 * Refer from
641 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
642 */
643 static u32 vmx_preemption_cpu_tfms[] = {
644 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
645 0x000206E6,
646 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
647 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
648 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
649 0x00020652,
650 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
651 0x00020655,
652 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
653 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
654 /*
655 * 320767.pdf - AAP86 - B1 -
656 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
657 */
658 0x000106E5,
659 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
660 0x000106A0,
661 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
662 0x000106A1,
663 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
664 0x000106A4,
665 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
666 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
667 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
668 0x000106A5,
669 /* Xeon E3-1220 V2 */
670 0x000306A8,
671 };
672
cpu_has_broken_vmx_preemption_timer(void)673 static inline bool cpu_has_broken_vmx_preemption_timer(void)
674 {
675 u32 eax = cpuid_eax(0x00000001), i;
676
677 /* Clear the reserved bits */
678 eax &= ~(0x3U << 14 | 0xfU << 28);
679 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
680 if (eax == vmx_preemption_cpu_tfms[i])
681 return true;
682
683 return false;
684 }
685
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)686 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
687 {
688 return flexpriority_enabled && lapic_in_kernel(vcpu);
689 }
690
report_flexpriority(void)691 static inline bool report_flexpriority(void)
692 {
693 return flexpriority_enabled;
694 }
695
possible_passthrough_msr_slot(u32 msr)696 static int possible_passthrough_msr_slot(u32 msr)
697 {
698 u32 i;
699
700 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
701 if (vmx_possible_passthrough_msrs[i] == msr)
702 return i;
703
704 return -ENOENT;
705 }
706
is_valid_passthrough_msr(u32 msr)707 static bool is_valid_passthrough_msr(u32 msr)
708 {
709 bool r;
710
711 switch (msr) {
712 case 0x800 ... 0x8ff:
713 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
714 return true;
715 case MSR_IA32_RTIT_STATUS:
716 case MSR_IA32_RTIT_OUTPUT_BASE:
717 case MSR_IA32_RTIT_OUTPUT_MASK:
718 case MSR_IA32_RTIT_CR3_MATCH:
719 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
720 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
721 return true;
722 }
723
724 r = possible_passthrough_msr_slot(msr) != -ENOENT;
725
726 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
727
728 return r;
729 }
730
__vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)731 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
732 {
733 int i;
734
735 for (i = 0; i < vmx->nr_uret_msrs; ++i)
736 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
737 return i;
738 return -1;
739 }
740
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)741 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
742 {
743 int i;
744
745 i = __vmx_find_uret_msr(vmx, msr);
746 if (i >= 0)
747 return &vmx->guest_uret_msrs[i];
748 return NULL;
749 }
750
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)751 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
752 struct vmx_uret_msr *msr, u64 data)
753 {
754 int ret = 0;
755
756 u64 old_msr_data = msr->data;
757 msr->data = data;
758 if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
759 preempt_disable();
760 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
761 preempt_enable();
762 if (ret)
763 msr->data = old_msr_data;
764 }
765 return ret;
766 }
767
768 #ifdef CONFIG_KEXEC_CORE
crash_vmclear_local_loaded_vmcss(void)769 static void crash_vmclear_local_loaded_vmcss(void)
770 {
771 int cpu = raw_smp_processor_id();
772 struct loaded_vmcs *v;
773
774 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
775 loaded_vmcss_on_cpu_link)
776 vmcs_clear(v->vmcs);
777 }
778 #endif /* CONFIG_KEXEC_CORE */
779
__loaded_vmcs_clear(void * arg)780 static void __loaded_vmcs_clear(void *arg)
781 {
782 struct loaded_vmcs *loaded_vmcs = arg;
783 int cpu = raw_smp_processor_id();
784
785 if (loaded_vmcs->cpu != cpu)
786 return; /* vcpu migration can race with cpu offline */
787 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
788 per_cpu(current_vmcs, cpu) = NULL;
789
790 vmcs_clear(loaded_vmcs->vmcs);
791 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
792 vmcs_clear(loaded_vmcs->shadow_vmcs);
793
794 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
795
796 /*
797 * Ensure all writes to loaded_vmcs, including deleting it from its
798 * current percpu list, complete before setting loaded_vmcs->vcpu to
799 * -1, otherwise a different cpu can see vcpu == -1 first and add
800 * loaded_vmcs to its percpu list before it's deleted from this cpu's
801 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
802 */
803 smp_wmb();
804
805 loaded_vmcs->cpu = -1;
806 loaded_vmcs->launched = 0;
807 }
808
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)809 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
810 {
811 int cpu = loaded_vmcs->cpu;
812
813 if (cpu != -1)
814 smp_call_function_single(cpu,
815 __loaded_vmcs_clear, loaded_vmcs, 1);
816 }
817
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)818 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
819 unsigned field)
820 {
821 bool ret;
822 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
823
824 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
825 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
826 vmx->segment_cache.bitmask = 0;
827 }
828 ret = vmx->segment_cache.bitmask & mask;
829 vmx->segment_cache.bitmask |= mask;
830 return ret;
831 }
832
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)833 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
834 {
835 u16 *p = &vmx->segment_cache.seg[seg].selector;
836
837 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
838 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
839 return *p;
840 }
841
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)842 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
843 {
844 ulong *p = &vmx->segment_cache.seg[seg].base;
845
846 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
847 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
848 return *p;
849 }
850
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)851 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
852 {
853 u32 *p = &vmx->segment_cache.seg[seg].limit;
854
855 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
856 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
857 return *p;
858 }
859
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)860 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
861 {
862 u32 *p = &vmx->segment_cache.seg[seg].ar;
863
864 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
865 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
866 return *p;
867 }
868
update_exception_bitmap(struct kvm_vcpu * vcpu)869 void update_exception_bitmap(struct kvm_vcpu *vcpu)
870 {
871 u32 eb;
872
873 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
874 (1u << DB_VECTOR) | (1u << AC_VECTOR);
875 /*
876 * Guest access to VMware backdoor ports could legitimately
877 * trigger #GP because of TSS I/O permission bitmap.
878 * We intercept those #GP and allow access to them anyway
879 * as VMware does.
880 */
881 if (enable_vmware_backdoor)
882 eb |= (1u << GP_VECTOR);
883 if ((vcpu->guest_debug &
884 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
885 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
886 eb |= 1u << BP_VECTOR;
887 if (to_vmx(vcpu)->rmode.vm86_active)
888 eb = ~0;
889 if (!vmx_need_pf_intercept(vcpu))
890 eb &= ~(1u << PF_VECTOR);
891
892 /* When we are running a nested L2 guest and L1 specified for it a
893 * certain exception bitmap, we must trap the same exceptions and pass
894 * them to L1. When running L2, we will only handle the exceptions
895 * specified above if L1 did not want them.
896 */
897 if (is_guest_mode(vcpu))
898 eb |= get_vmcs12(vcpu)->exception_bitmap;
899 else {
900 /*
901 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
902 * between guest and host. In that case we only care about present
903 * faults. For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
904 * prepare_vmcs02_rare.
905 */
906 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
907 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
908 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
909 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
910 }
911
912 vmcs_write32(EXCEPTION_BITMAP, eb);
913 }
914
915 /*
916 * Check if MSR is intercepted for currently loaded MSR bitmap.
917 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)918 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
919 {
920 unsigned long *msr_bitmap;
921 int f = sizeof(unsigned long);
922
923 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
924 return true;
925
926 msr_bitmap = vmx->loaded_vmcs->msr_bitmap;
927
928 if (msr <= 0x1fff) {
929 return !!test_bit(msr, msr_bitmap + 0x800 / f);
930 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
931 msr &= 0x1fff;
932 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
933 }
934
935 return true;
936 }
937
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)938 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
939 {
940 unsigned int flags = 0;
941
942 if (vmx->loaded_vmcs->launched)
943 flags |= VMX_RUN_VMRESUME;
944
945 /*
946 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
947 * to change it directly without causing a vmexit. In that case read
948 * it after vmexit and store it in vmx->spec_ctrl.
949 */
950 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
951 flags |= VMX_RUN_SAVE_SPEC_CTRL;
952
953 return flags;
954 }
955
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)956 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
957 unsigned long entry, unsigned long exit)
958 {
959 vm_entry_controls_clearbit(vmx, entry);
960 vm_exit_controls_clearbit(vmx, exit);
961 }
962
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)963 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
964 {
965 unsigned int i;
966
967 for (i = 0; i < m->nr; ++i) {
968 if (m->val[i].index == msr)
969 return i;
970 }
971 return -ENOENT;
972 }
973
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)974 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
975 {
976 int i;
977 struct msr_autoload *m = &vmx->msr_autoload;
978
979 switch (msr) {
980 case MSR_EFER:
981 if (cpu_has_load_ia32_efer()) {
982 clear_atomic_switch_msr_special(vmx,
983 VM_ENTRY_LOAD_IA32_EFER,
984 VM_EXIT_LOAD_IA32_EFER);
985 return;
986 }
987 break;
988 case MSR_CORE_PERF_GLOBAL_CTRL:
989 if (cpu_has_load_perf_global_ctrl()) {
990 clear_atomic_switch_msr_special(vmx,
991 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
992 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
993 return;
994 }
995 break;
996 }
997 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
998 if (i < 0)
999 goto skip_guest;
1000 --m->guest.nr;
1001 m->guest.val[i] = m->guest.val[m->guest.nr];
1002 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1003
1004 skip_guest:
1005 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1006 if (i < 0)
1007 return;
1008
1009 --m->host.nr;
1010 m->host.val[i] = m->host.val[m->host.nr];
1011 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1012 }
1013
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1014 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1015 unsigned long entry, unsigned long exit,
1016 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1017 u64 guest_val, u64 host_val)
1018 {
1019 vmcs_write64(guest_val_vmcs, guest_val);
1020 if (host_val_vmcs != HOST_IA32_EFER)
1021 vmcs_write64(host_val_vmcs, host_val);
1022 vm_entry_controls_setbit(vmx, entry);
1023 vm_exit_controls_setbit(vmx, exit);
1024 }
1025
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1026 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1027 u64 guest_val, u64 host_val, bool entry_only)
1028 {
1029 int i, j = 0;
1030 struct msr_autoload *m = &vmx->msr_autoload;
1031
1032 switch (msr) {
1033 case MSR_EFER:
1034 if (cpu_has_load_ia32_efer()) {
1035 add_atomic_switch_msr_special(vmx,
1036 VM_ENTRY_LOAD_IA32_EFER,
1037 VM_EXIT_LOAD_IA32_EFER,
1038 GUEST_IA32_EFER,
1039 HOST_IA32_EFER,
1040 guest_val, host_val);
1041 return;
1042 }
1043 break;
1044 case MSR_CORE_PERF_GLOBAL_CTRL:
1045 if (cpu_has_load_perf_global_ctrl()) {
1046 add_atomic_switch_msr_special(vmx,
1047 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1048 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1049 GUEST_IA32_PERF_GLOBAL_CTRL,
1050 HOST_IA32_PERF_GLOBAL_CTRL,
1051 guest_val, host_val);
1052 return;
1053 }
1054 break;
1055 case MSR_IA32_PEBS_ENABLE:
1056 /* PEBS needs a quiescent period after being disabled (to write
1057 * a record). Disabling PEBS through VMX MSR swapping doesn't
1058 * provide that period, so a CPU could write host's record into
1059 * guest's memory.
1060 */
1061 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1062 }
1063
1064 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1065 if (!entry_only)
1066 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1067
1068 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1069 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1070 printk_once(KERN_WARNING "Not enough msr switch entries. "
1071 "Can't add msr %x\n", msr);
1072 return;
1073 }
1074 if (i < 0) {
1075 i = m->guest.nr++;
1076 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1077 }
1078 m->guest.val[i].index = msr;
1079 m->guest.val[i].value = guest_val;
1080
1081 if (entry_only)
1082 return;
1083
1084 if (j < 0) {
1085 j = m->host.nr++;
1086 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1087 }
1088 m->host.val[j].index = msr;
1089 m->host.val[j].value = host_val;
1090 }
1091
update_transition_efer(struct vcpu_vmx * vmx)1092 static bool update_transition_efer(struct vcpu_vmx *vmx)
1093 {
1094 u64 guest_efer = vmx->vcpu.arch.efer;
1095 u64 ignore_bits = 0;
1096 int i;
1097
1098 /* Shadow paging assumes NX to be available. */
1099 if (!enable_ept)
1100 guest_efer |= EFER_NX;
1101
1102 /*
1103 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1104 */
1105 ignore_bits |= EFER_SCE;
1106 #ifdef CONFIG_X86_64
1107 ignore_bits |= EFER_LMA | EFER_LME;
1108 /* SCE is meaningful only in long mode on Intel */
1109 if (guest_efer & EFER_LMA)
1110 ignore_bits &= ~(u64)EFER_SCE;
1111 #endif
1112
1113 /*
1114 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1115 * On CPUs that support "load IA32_EFER", always switch EFER
1116 * atomically, since it's faster than switching it manually.
1117 */
1118 if (cpu_has_load_ia32_efer() ||
1119 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1120 if (!(guest_efer & EFER_LMA))
1121 guest_efer &= ~EFER_LME;
1122 if (guest_efer != host_efer)
1123 add_atomic_switch_msr(vmx, MSR_EFER,
1124 guest_efer, host_efer, false);
1125 else
1126 clear_atomic_switch_msr(vmx, MSR_EFER);
1127 return false;
1128 }
1129
1130 i = __vmx_find_uret_msr(vmx, MSR_EFER);
1131 if (i < 0)
1132 return false;
1133
1134 clear_atomic_switch_msr(vmx, MSR_EFER);
1135
1136 guest_efer &= ~ignore_bits;
1137 guest_efer |= host_efer & ignore_bits;
1138
1139 vmx->guest_uret_msrs[i].data = guest_efer;
1140 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1141
1142 return true;
1143 }
1144
1145 #ifdef CONFIG_X86_32
1146 /*
1147 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1148 * VMCS rather than the segment table. KVM uses this helper to figure
1149 * out the current bases to poke them into the VMCS before entry.
1150 */
segment_base(u16 selector)1151 static unsigned long segment_base(u16 selector)
1152 {
1153 struct desc_struct *table;
1154 unsigned long v;
1155
1156 if (!(selector & ~SEGMENT_RPL_MASK))
1157 return 0;
1158
1159 table = get_current_gdt_ro();
1160
1161 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1162 u16 ldt_selector = kvm_read_ldt();
1163
1164 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1165 return 0;
1166
1167 table = (struct desc_struct *)segment_base(ldt_selector);
1168 }
1169 v = get_desc_base(&table[selector >> 3]);
1170 return v;
1171 }
1172 #endif
1173
pt_can_write_msr(struct vcpu_vmx * vmx)1174 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1175 {
1176 return vmx_pt_mode_is_host_guest() &&
1177 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1178 }
1179
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1180 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1181 {
1182 /* The base must be 128-byte aligned and a legal physical address. */
1183 return !kvm_vcpu_is_illegal_gpa(vcpu, base) && !(base & 0x7f);
1184 }
1185
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1186 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1187 {
1188 u32 i;
1189
1190 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1191 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1192 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1193 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1194 for (i = 0; i < addr_range; i++) {
1195 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1196 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1197 }
1198 }
1199
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1200 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1201 {
1202 u32 i;
1203
1204 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1205 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1206 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1207 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1208 for (i = 0; i < addr_range; i++) {
1209 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1210 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1211 }
1212 }
1213
pt_guest_enter(struct vcpu_vmx * vmx)1214 static void pt_guest_enter(struct vcpu_vmx *vmx)
1215 {
1216 if (vmx_pt_mode_is_system())
1217 return;
1218
1219 /*
1220 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1221 * Save host state before VM entry.
1222 */
1223 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1224 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1225 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1226 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1227 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1228 }
1229 }
1230
pt_guest_exit(struct vcpu_vmx * vmx)1231 static void pt_guest_exit(struct vcpu_vmx *vmx)
1232 {
1233 if (vmx_pt_mode_is_system())
1234 return;
1235
1236 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1237 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1238 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1239 }
1240
1241 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1242 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1243 }
1244
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1245 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1246 unsigned long fs_base, unsigned long gs_base)
1247 {
1248 if (unlikely(fs_sel != host->fs_sel)) {
1249 if (!(fs_sel & 7))
1250 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1251 else
1252 vmcs_write16(HOST_FS_SELECTOR, 0);
1253 host->fs_sel = fs_sel;
1254 }
1255 if (unlikely(gs_sel != host->gs_sel)) {
1256 if (!(gs_sel & 7))
1257 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1258 else
1259 vmcs_write16(HOST_GS_SELECTOR, 0);
1260 host->gs_sel = gs_sel;
1261 }
1262 if (unlikely(fs_base != host->fs_base)) {
1263 vmcs_writel(HOST_FS_BASE, fs_base);
1264 host->fs_base = fs_base;
1265 }
1266 if (unlikely(gs_base != host->gs_base)) {
1267 vmcs_writel(HOST_GS_BASE, gs_base);
1268 host->gs_base = gs_base;
1269 }
1270 }
1271
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1272 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1273 {
1274 struct vcpu_vmx *vmx = to_vmx(vcpu);
1275 struct vmcs_host_state *host_state;
1276 #ifdef CONFIG_X86_64
1277 int cpu = raw_smp_processor_id();
1278 #endif
1279 unsigned long fs_base, gs_base;
1280 u16 fs_sel, gs_sel;
1281 int i;
1282
1283 vmx->req_immediate_exit = false;
1284
1285 /*
1286 * Note that guest MSRs to be saved/restored can also be changed
1287 * when guest state is loaded. This happens when guest transitions
1288 * to/from long-mode by setting MSR_EFER.LMA.
1289 */
1290 if (!vmx->guest_uret_msrs_loaded) {
1291 vmx->guest_uret_msrs_loaded = true;
1292 for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1293 kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1294 vmx->guest_uret_msrs[i].data,
1295 vmx->guest_uret_msrs[i].mask);
1296
1297 }
1298
1299 if (vmx->nested.need_vmcs12_to_shadow_sync)
1300 nested_sync_vmcs12_to_shadow(vcpu);
1301
1302 if (vmx->guest_state_loaded)
1303 return;
1304
1305 host_state = &vmx->loaded_vmcs->host_state;
1306
1307 /*
1308 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1309 * allow segment selectors with cpl > 0 or ti == 1.
1310 */
1311 host_state->ldt_sel = kvm_read_ldt();
1312
1313 #ifdef CONFIG_X86_64
1314 savesegment(ds, host_state->ds_sel);
1315 savesegment(es, host_state->es_sel);
1316
1317 gs_base = cpu_kernelmode_gs_base(cpu);
1318 if (likely(is_64bit_mm(current->mm))) {
1319 current_save_fsgs();
1320 fs_sel = current->thread.fsindex;
1321 gs_sel = current->thread.gsindex;
1322 fs_base = current->thread.fsbase;
1323 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1324 } else {
1325 savesegment(fs, fs_sel);
1326 savesegment(gs, gs_sel);
1327 fs_base = read_msr(MSR_FS_BASE);
1328 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1329 }
1330
1331 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1332 #else
1333 savesegment(fs, fs_sel);
1334 savesegment(gs, gs_sel);
1335 fs_base = segment_base(fs_sel);
1336 gs_base = segment_base(gs_sel);
1337 #endif
1338
1339 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1340 vmx->guest_state_loaded = true;
1341 }
1342
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1343 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1344 {
1345 struct vmcs_host_state *host_state;
1346
1347 if (!vmx->guest_state_loaded)
1348 return;
1349
1350 host_state = &vmx->loaded_vmcs->host_state;
1351
1352 ++vmx->vcpu.stat.host_state_reload;
1353
1354 #ifdef CONFIG_X86_64
1355 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1356 #endif
1357 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1358 kvm_load_ldt(host_state->ldt_sel);
1359 #ifdef CONFIG_X86_64
1360 load_gs_index(host_state->gs_sel);
1361 #else
1362 loadsegment(gs, host_state->gs_sel);
1363 #endif
1364 }
1365 if (host_state->fs_sel & 7)
1366 loadsegment(fs, host_state->fs_sel);
1367 #ifdef CONFIG_X86_64
1368 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1369 loadsegment(ds, host_state->ds_sel);
1370 loadsegment(es, host_state->es_sel);
1371 }
1372 #endif
1373 invalidate_tss_limit();
1374 #ifdef CONFIG_X86_64
1375 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1376 #endif
1377 load_fixmap_gdt(raw_smp_processor_id());
1378 vmx->guest_state_loaded = false;
1379 vmx->guest_uret_msrs_loaded = false;
1380 }
1381
1382 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1383 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1384 {
1385 preempt_disable();
1386 if (vmx->guest_state_loaded)
1387 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1388 preempt_enable();
1389 return vmx->msr_guest_kernel_gs_base;
1390 }
1391
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1392 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1393 {
1394 preempt_disable();
1395 if (vmx->guest_state_loaded)
1396 wrmsrl(MSR_KERNEL_GS_BASE, data);
1397 preempt_enable();
1398 vmx->msr_guest_kernel_gs_base = data;
1399 }
1400 #endif
1401
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1402 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1403 struct loaded_vmcs *buddy)
1404 {
1405 struct vcpu_vmx *vmx = to_vmx(vcpu);
1406 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1407 struct vmcs *prev;
1408
1409 if (!already_loaded) {
1410 loaded_vmcs_clear(vmx->loaded_vmcs);
1411 local_irq_disable();
1412
1413 /*
1414 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1415 * this cpu's percpu list, otherwise it may not yet be deleted
1416 * from its previous cpu's percpu list. Pairs with the
1417 * smb_wmb() in __loaded_vmcs_clear().
1418 */
1419 smp_rmb();
1420
1421 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1422 &per_cpu(loaded_vmcss_on_cpu, cpu));
1423 local_irq_enable();
1424 }
1425
1426 prev = per_cpu(current_vmcs, cpu);
1427 if (prev != vmx->loaded_vmcs->vmcs) {
1428 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1429 vmcs_load(vmx->loaded_vmcs->vmcs);
1430
1431 /*
1432 * No indirect branch prediction barrier needed when switching
1433 * the active VMCS within a vCPU, unless IBRS is advertised to
1434 * the vCPU. To minimize the number of IBPBs executed, KVM
1435 * performs IBPB on nested VM-Exit (a single nested transition
1436 * may switch the active VMCS multiple times).
1437 */
1438 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1439 indirect_branch_prediction_barrier();
1440 }
1441
1442 if (!already_loaded) {
1443 void *gdt = get_current_gdt_ro();
1444 unsigned long sysenter_esp;
1445
1446 /*
1447 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1448 * TLB entries from its previous association with the vCPU.
1449 */
1450 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1451
1452 /*
1453 * Linux uses per-cpu TSS and GDT, so set these when switching
1454 * processors. See 22.2.4.
1455 */
1456 vmcs_writel(HOST_TR_BASE,
1457 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1458 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1459
1460 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1461 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1462
1463 vmx->loaded_vmcs->cpu = cpu;
1464 }
1465
1466 /* Setup TSC multiplier */
1467 if (kvm_has_tsc_control &&
1468 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1469 decache_tsc_multiplier(vmx);
1470 }
1471
1472 /*
1473 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1474 * vcpu mutex is already taken.
1475 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1476 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1477 {
1478 struct vcpu_vmx *vmx = to_vmx(vcpu);
1479
1480 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1481
1482 vmx_vcpu_pi_load(vcpu, cpu);
1483
1484 vmx->host_debugctlmsr = get_debugctlmsr();
1485 }
1486
vmx_vcpu_put(struct kvm_vcpu * vcpu)1487 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1488 {
1489 vmx_vcpu_pi_put(vcpu);
1490
1491 vmx_prepare_switch_to_host(to_vmx(vcpu));
1492 }
1493
emulation_required(struct kvm_vcpu * vcpu)1494 static bool emulation_required(struct kvm_vcpu *vcpu)
1495 {
1496 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1497 }
1498
vmx_get_rflags(struct kvm_vcpu * vcpu)1499 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1500 {
1501 struct vcpu_vmx *vmx = to_vmx(vcpu);
1502 unsigned long rflags, save_rflags;
1503
1504 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1505 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1506 rflags = vmcs_readl(GUEST_RFLAGS);
1507 if (vmx->rmode.vm86_active) {
1508 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1509 save_rflags = vmx->rmode.save_rflags;
1510 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1511 }
1512 vmx->rflags = rflags;
1513 }
1514 return vmx->rflags;
1515 }
1516
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1517 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1518 {
1519 struct vcpu_vmx *vmx = to_vmx(vcpu);
1520 unsigned long old_rflags;
1521
1522 /*
1523 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1524 * is an unrestricted guest in order to mark L2 as needing emulation
1525 * if L1 runs L2 as a restricted guest.
1526 */
1527 if (is_unrestricted_guest(vcpu)) {
1528 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1529 vmx->rflags = rflags;
1530 vmcs_writel(GUEST_RFLAGS, rflags);
1531 return;
1532 }
1533
1534 old_rflags = vmx_get_rflags(vcpu);
1535 vmx->rflags = rflags;
1536 if (vmx->rmode.vm86_active) {
1537 vmx->rmode.save_rflags = rflags;
1538 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1539 }
1540 vmcs_writel(GUEST_RFLAGS, rflags);
1541
1542 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1543 vmx->emulation_required = emulation_required(vcpu);
1544 }
1545
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1546 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1547 {
1548 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1549 int ret = 0;
1550
1551 if (interruptibility & GUEST_INTR_STATE_STI)
1552 ret |= KVM_X86_SHADOW_INT_STI;
1553 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1554 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1555
1556 return ret;
1557 }
1558
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1559 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1560 {
1561 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1562 u32 interruptibility = interruptibility_old;
1563
1564 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1565
1566 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1567 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1568 else if (mask & KVM_X86_SHADOW_INT_STI)
1569 interruptibility |= GUEST_INTR_STATE_STI;
1570
1571 if ((interruptibility != interruptibility_old))
1572 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1573 }
1574
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1575 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1576 {
1577 struct vcpu_vmx *vmx = to_vmx(vcpu);
1578 unsigned long value;
1579
1580 /*
1581 * Any MSR write that attempts to change bits marked reserved will
1582 * case a #GP fault.
1583 */
1584 if (data & vmx->pt_desc.ctl_bitmask)
1585 return 1;
1586
1587 /*
1588 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1589 * result in a #GP unless the same write also clears TraceEn.
1590 */
1591 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1592 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1593 return 1;
1594
1595 /*
1596 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1597 * and FabricEn would cause #GP, if
1598 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1599 */
1600 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1601 !(data & RTIT_CTL_FABRIC_EN) &&
1602 !intel_pt_validate_cap(vmx->pt_desc.caps,
1603 PT_CAP_single_range_output))
1604 return 1;
1605
1606 /*
1607 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1608 * utilize encodings marked reserved will casue a #GP fault.
1609 */
1610 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1611 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1612 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1613 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1614 return 1;
1615 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1616 PT_CAP_cycle_thresholds);
1617 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1618 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1619 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1620 return 1;
1621 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1622 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1623 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1624 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1625 return 1;
1626
1627 /*
1628 * If ADDRx_CFG is reserved or the encodings is >2 will
1629 * cause a #GP fault.
1630 */
1631 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1632 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1633 return 1;
1634 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1635 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1636 return 1;
1637 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1638 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1639 return 1;
1640 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1641 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1642 return 1;
1643
1644 return 0;
1645 }
1646
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,void * insn,int insn_len)1647 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1648 {
1649 return true;
1650 }
1651
skip_emulated_instruction(struct kvm_vcpu * vcpu)1652 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1653 {
1654 unsigned long rip, orig_rip;
1655
1656 /*
1657 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1658 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1659 * set when EPT misconfig occurs. In practice, real hardware updates
1660 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1661 * (namely Hyper-V) don't set it due to it being undefined behavior,
1662 * i.e. we end up advancing IP with some random value.
1663 */
1664 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1665 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1666 orig_rip = kvm_rip_read(vcpu);
1667 rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1668 #ifdef CONFIG_X86_64
1669 /*
1670 * We need to mask out the high 32 bits of RIP if not in 64-bit
1671 * mode, but just finding out that we are in 64-bit mode is
1672 * quite expensive. Only do it if there was a carry.
1673 */
1674 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1675 rip = (u32)rip;
1676 #endif
1677 kvm_rip_write(vcpu, rip);
1678 } else {
1679 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1680 return 0;
1681 }
1682
1683 /* skipping an emulated instruction also counts */
1684 vmx_set_interrupt_shadow(vcpu, 0);
1685
1686 return 1;
1687 }
1688
1689 /*
1690 * Recognizes a pending MTF VM-exit and records the nested state for later
1691 * delivery.
1692 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1693 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1694 {
1695 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1696 struct vcpu_vmx *vmx = to_vmx(vcpu);
1697
1698 if (!is_guest_mode(vcpu))
1699 return;
1700
1701 /*
1702 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1703 * T-bit traps. As instruction emulation is completed (i.e. at the
1704 * instruction boundary), any #DB exception pending delivery must be a
1705 * debug-trap. Record the pending MTF state to be delivered in
1706 * vmx_check_nested_events().
1707 */
1708 if (nested_cpu_has_mtf(vmcs12) &&
1709 (!vcpu->arch.exception.pending ||
1710 vcpu->arch.exception.nr == DB_VECTOR))
1711 vmx->nested.mtf_pending = true;
1712 else
1713 vmx->nested.mtf_pending = false;
1714 }
1715
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1716 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1717 {
1718 vmx_update_emulated_instruction(vcpu);
1719 return skip_emulated_instruction(vcpu);
1720 }
1721
vmx_clear_hlt(struct kvm_vcpu * vcpu)1722 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1723 {
1724 /*
1725 * Ensure that we clear the HLT state in the VMCS. We don't need to
1726 * explicitly skip the instruction because if the HLT state is set,
1727 * then the instruction is already executing and RIP has already been
1728 * advanced.
1729 */
1730 if (kvm_hlt_in_guest(vcpu->kvm) &&
1731 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1732 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1733 }
1734
vmx_queue_exception(struct kvm_vcpu * vcpu)1735 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1736 {
1737 struct vcpu_vmx *vmx = to_vmx(vcpu);
1738 unsigned nr = vcpu->arch.exception.nr;
1739 bool has_error_code = vcpu->arch.exception.has_error_code;
1740 u32 error_code = vcpu->arch.exception.error_code;
1741 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1742
1743 kvm_deliver_exception_payload(vcpu);
1744
1745 if (has_error_code) {
1746 /*
1747 * Despite the error code being architecturally defined as 32
1748 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1749 * VMX don't actually supporting setting bits 31:16. Hardware
1750 * will (should) never provide a bogus error code, but AMD CPUs
1751 * do generate error codes with bits 31:16 set, and so KVM's
1752 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1753 * the upper bits to avoid VM-Fail, losing information that
1754 * does't really exist is preferable to killing the VM.
1755 */
1756 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)error_code);
1757 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1758 }
1759
1760 if (vmx->rmode.vm86_active) {
1761 int inc_eip = 0;
1762 if (kvm_exception_is_soft(nr))
1763 inc_eip = vcpu->arch.event_exit_inst_len;
1764 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1765 return;
1766 }
1767
1768 WARN_ON_ONCE(vmx->emulation_required);
1769
1770 if (kvm_exception_is_soft(nr)) {
1771 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1772 vmx->vcpu.arch.event_exit_inst_len);
1773 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1774 } else
1775 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1776
1777 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1778
1779 vmx_clear_hlt(vcpu);
1780 }
1781
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr)1782 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1783 {
1784 struct vmx_uret_msr tmp;
1785 int from, to;
1786
1787 from = __vmx_find_uret_msr(vmx, msr);
1788 if (from < 0)
1789 return;
1790 to = vmx->nr_active_uret_msrs++;
1791
1792 tmp = vmx->guest_uret_msrs[to];
1793 vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1794 vmx->guest_uret_msrs[from] = tmp;
1795 }
1796
1797 /*
1798 * Set up the vmcs to automatically save and restore system
1799 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1800 * mode, as fiddling with msrs is very expensive.
1801 */
setup_msrs(struct vcpu_vmx * vmx)1802 static void setup_msrs(struct vcpu_vmx *vmx)
1803 {
1804 vmx->guest_uret_msrs_loaded = false;
1805 vmx->nr_active_uret_msrs = 0;
1806 #ifdef CONFIG_X86_64
1807 /*
1808 * The SYSCALL MSRs are only needed on long mode guests, and only
1809 * when EFER.SCE is set.
1810 */
1811 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1812 vmx_setup_uret_msr(vmx, MSR_STAR);
1813 vmx_setup_uret_msr(vmx, MSR_LSTAR);
1814 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1815 }
1816 #endif
1817 if (update_transition_efer(vmx))
1818 vmx_setup_uret_msr(vmx, MSR_EFER);
1819
1820 if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1821 vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1822
1823 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1824
1825 if (cpu_has_vmx_msr_bitmap())
1826 vmx_update_msr_bitmap(&vmx->vcpu);
1827 }
1828
vmx_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1829 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1830 {
1831 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1832 u64 g_tsc_offset = 0;
1833
1834 /*
1835 * We're here if L1 chose not to trap WRMSR to TSC. According
1836 * to the spec, this should set L1's TSC; The offset that L1
1837 * set for L2 remains unchanged, and still needs to be added
1838 * to the newly set TSC to get L2's TSC.
1839 */
1840 if (is_guest_mode(vcpu) &&
1841 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1842 g_tsc_offset = vmcs12->tsc_offset;
1843
1844 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1845 vcpu->arch.tsc_offset - g_tsc_offset,
1846 offset);
1847 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1848 return offset + g_tsc_offset;
1849 }
1850
1851 /*
1852 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1853 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1854 * all guests if the "nested" module option is off, and can also be disabled
1855 * for a single guest by disabling its VMX cpuid bit.
1856 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1857 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1858 {
1859 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1860 }
1861
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1862 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1863 uint64_t val)
1864 {
1865 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1866
1867 return !(val & ~valid_bits);
1868 }
1869
vmx_get_msr_feature(struct kvm_msr_entry * msr)1870 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1871 {
1872 switch (msr->index) {
1873 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1874 if (!nested)
1875 return 1;
1876 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1877 case MSR_IA32_PERF_CAPABILITIES:
1878 msr->data = vmx_get_perf_capabilities();
1879 return 0;
1880 default:
1881 return KVM_MSR_RET_INVALID;
1882 }
1883 }
1884
1885 /*
1886 * Reads an msr value (of 'msr_index') into 'pdata'.
1887 * Returns 0 on success, non-0 otherwise.
1888 * Assumes vcpu_load() was already called.
1889 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1890 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1891 {
1892 struct vcpu_vmx *vmx = to_vmx(vcpu);
1893 struct vmx_uret_msr *msr;
1894 u32 index;
1895
1896 switch (msr_info->index) {
1897 #ifdef CONFIG_X86_64
1898 case MSR_FS_BASE:
1899 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1900 break;
1901 case MSR_GS_BASE:
1902 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1903 break;
1904 case MSR_KERNEL_GS_BASE:
1905 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1906 break;
1907 #endif
1908 case MSR_EFER:
1909 return kvm_get_msr_common(vcpu, msr_info);
1910 case MSR_IA32_TSX_CTRL:
1911 if (!msr_info->host_initiated &&
1912 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1913 return 1;
1914 goto find_uret_msr;
1915 case MSR_IA32_UMWAIT_CONTROL:
1916 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1917 return 1;
1918
1919 msr_info->data = vmx->msr_ia32_umwait_control;
1920 break;
1921 case MSR_IA32_SPEC_CTRL:
1922 if (!msr_info->host_initiated &&
1923 !guest_has_spec_ctrl_msr(vcpu))
1924 return 1;
1925
1926 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1927 break;
1928 case MSR_IA32_SYSENTER_CS:
1929 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1930 break;
1931 case MSR_IA32_SYSENTER_EIP:
1932 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1933 break;
1934 case MSR_IA32_SYSENTER_ESP:
1935 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1936 break;
1937 case MSR_IA32_BNDCFGS:
1938 if (!kvm_mpx_supported() ||
1939 (!msr_info->host_initiated &&
1940 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1941 return 1;
1942 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1943 break;
1944 case MSR_IA32_MCG_EXT_CTL:
1945 if (!msr_info->host_initiated &&
1946 !(vmx->msr_ia32_feature_control &
1947 FEAT_CTL_LMCE_ENABLED))
1948 return 1;
1949 msr_info->data = vcpu->arch.mcg_ext_ctl;
1950 break;
1951 case MSR_IA32_FEAT_CTL:
1952 msr_info->data = vmx->msr_ia32_feature_control;
1953 break;
1954 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1955 if (!nested_vmx_allowed(vcpu))
1956 return 1;
1957 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1958 &msr_info->data))
1959 return 1;
1960 /*
1961 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1962 * instead of just ignoring the features, different Hyper-V
1963 * versions are either trying to use them and fail or do some
1964 * sanity checking and refuse to boot. Filter all unsupported
1965 * features out.
1966 */
1967 if (!msr_info->host_initiated &&
1968 vmx->nested.enlightened_vmcs_enabled)
1969 nested_evmcs_filter_control_msr(msr_info->index,
1970 &msr_info->data);
1971 break;
1972 case MSR_IA32_RTIT_CTL:
1973 if (!vmx_pt_mode_is_host_guest())
1974 return 1;
1975 msr_info->data = vmx->pt_desc.guest.ctl;
1976 break;
1977 case MSR_IA32_RTIT_STATUS:
1978 if (!vmx_pt_mode_is_host_guest())
1979 return 1;
1980 msr_info->data = vmx->pt_desc.guest.status;
1981 break;
1982 case MSR_IA32_RTIT_CR3_MATCH:
1983 if (!vmx_pt_mode_is_host_guest() ||
1984 !intel_pt_validate_cap(vmx->pt_desc.caps,
1985 PT_CAP_cr3_filtering))
1986 return 1;
1987 msr_info->data = vmx->pt_desc.guest.cr3_match;
1988 break;
1989 case MSR_IA32_RTIT_OUTPUT_BASE:
1990 if (!vmx_pt_mode_is_host_guest() ||
1991 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1992 PT_CAP_topa_output) &&
1993 !intel_pt_validate_cap(vmx->pt_desc.caps,
1994 PT_CAP_single_range_output)))
1995 return 1;
1996 msr_info->data = vmx->pt_desc.guest.output_base;
1997 break;
1998 case MSR_IA32_RTIT_OUTPUT_MASK:
1999 if (!vmx_pt_mode_is_host_guest() ||
2000 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2001 PT_CAP_topa_output) &&
2002 !intel_pt_validate_cap(vmx->pt_desc.caps,
2003 PT_CAP_single_range_output)))
2004 return 1;
2005 msr_info->data = vmx->pt_desc.guest.output_mask;
2006 break;
2007 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2008 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2009 if (!vmx_pt_mode_is_host_guest() ||
2010 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2011 PT_CAP_num_address_ranges)))
2012 return 1;
2013 if (index % 2)
2014 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2015 else
2016 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2017 break;
2018 case MSR_TSC_AUX:
2019 if (!msr_info->host_initiated &&
2020 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2021 return 1;
2022 goto find_uret_msr;
2023 default:
2024 find_uret_msr:
2025 msr = vmx_find_uret_msr(vmx, msr_info->index);
2026 if (msr) {
2027 msr_info->data = msr->data;
2028 break;
2029 }
2030 return kvm_get_msr_common(vcpu, msr_info);
2031 }
2032
2033 return 0;
2034 }
2035
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2036 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2037 u64 data)
2038 {
2039 #ifdef CONFIG_X86_64
2040 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2041 return (u32)data;
2042 #endif
2043 return (unsigned long)data;
2044 }
2045
2046 /*
2047 * Writes msr value into the appropriate "register".
2048 * Returns 0 on success, non-0 otherwise.
2049 * Assumes vcpu_load() was already called.
2050 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2051 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2052 {
2053 struct vcpu_vmx *vmx = to_vmx(vcpu);
2054 struct vmx_uret_msr *msr;
2055 int ret = 0;
2056 u32 msr_index = msr_info->index;
2057 u64 data = msr_info->data;
2058 u32 index;
2059
2060 switch (msr_index) {
2061 case MSR_EFER:
2062 ret = kvm_set_msr_common(vcpu, msr_info);
2063 break;
2064 #ifdef CONFIG_X86_64
2065 case MSR_FS_BASE:
2066 vmx_segment_cache_clear(vmx);
2067 vmcs_writel(GUEST_FS_BASE, data);
2068 break;
2069 case MSR_GS_BASE:
2070 vmx_segment_cache_clear(vmx);
2071 vmcs_writel(GUEST_GS_BASE, data);
2072 break;
2073 case MSR_KERNEL_GS_BASE:
2074 vmx_write_guest_kernel_gs_base(vmx, data);
2075 break;
2076 #endif
2077 case MSR_IA32_SYSENTER_CS:
2078 if (is_guest_mode(vcpu))
2079 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2080 vmcs_write32(GUEST_SYSENTER_CS, data);
2081 break;
2082 case MSR_IA32_SYSENTER_EIP:
2083 if (is_guest_mode(vcpu)) {
2084 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2085 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2086 }
2087 vmcs_writel(GUEST_SYSENTER_EIP, data);
2088 break;
2089 case MSR_IA32_SYSENTER_ESP:
2090 if (is_guest_mode(vcpu)) {
2091 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2092 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2093 }
2094 vmcs_writel(GUEST_SYSENTER_ESP, data);
2095 break;
2096 case MSR_IA32_DEBUGCTLMSR:
2097 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2098 VM_EXIT_SAVE_DEBUG_CONTROLS)
2099 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2100
2101 ret = kvm_set_msr_common(vcpu, msr_info);
2102 break;
2103
2104 case MSR_IA32_BNDCFGS:
2105 if (!kvm_mpx_supported() ||
2106 (!msr_info->host_initiated &&
2107 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2108 return 1;
2109 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2110 (data & MSR_IA32_BNDCFGS_RSVD))
2111 return 1;
2112 vmcs_write64(GUEST_BNDCFGS, data);
2113 break;
2114 case MSR_IA32_UMWAIT_CONTROL:
2115 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2116 return 1;
2117
2118 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2119 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2120 return 1;
2121
2122 vmx->msr_ia32_umwait_control = data;
2123 break;
2124 case MSR_IA32_SPEC_CTRL:
2125 if (!msr_info->host_initiated &&
2126 !guest_has_spec_ctrl_msr(vcpu))
2127 return 1;
2128
2129 if (kvm_spec_ctrl_test_value(data))
2130 return 1;
2131
2132 vmx->spec_ctrl = data;
2133 if (!data)
2134 break;
2135
2136 /*
2137 * For non-nested:
2138 * When it's written (to non-zero) for the first time, pass
2139 * it through.
2140 *
2141 * For nested:
2142 * The handling of the MSR bitmap for L2 guests is done in
2143 * nested_vmx_prepare_msr_bitmap. We should not touch the
2144 * vmcs02.msr_bitmap here since it gets completely overwritten
2145 * in the merging. We update the vmcs01 here for L1 as well
2146 * since it will end up touching the MSR anyway now.
2147 */
2148 vmx_disable_intercept_for_msr(vcpu,
2149 MSR_IA32_SPEC_CTRL,
2150 MSR_TYPE_RW);
2151 break;
2152 case MSR_IA32_TSX_CTRL:
2153 if (!msr_info->host_initiated &&
2154 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2155 return 1;
2156 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2157 return 1;
2158 goto find_uret_msr;
2159 case MSR_IA32_PRED_CMD:
2160 if (!msr_info->host_initiated &&
2161 !guest_has_pred_cmd_msr(vcpu))
2162 return 1;
2163
2164 if (data & ~PRED_CMD_IBPB)
2165 return 1;
2166 if (!boot_cpu_has(X86_FEATURE_IBPB))
2167 return 1;
2168 if (!data)
2169 break;
2170
2171 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2172
2173 /*
2174 * For non-nested:
2175 * When it's written (to non-zero) for the first time, pass
2176 * it through.
2177 *
2178 * For nested:
2179 * The handling of the MSR bitmap for L2 guests is done in
2180 * nested_vmx_prepare_msr_bitmap. We should not touch the
2181 * vmcs02.msr_bitmap here since it gets completely overwritten
2182 * in the merging.
2183 */
2184 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2185 break;
2186 case MSR_IA32_CR_PAT:
2187 if (!kvm_pat_valid(data))
2188 return 1;
2189
2190 if (is_guest_mode(vcpu) &&
2191 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2192 get_vmcs12(vcpu)->guest_ia32_pat = data;
2193
2194 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2195 vmcs_write64(GUEST_IA32_PAT, data);
2196 vcpu->arch.pat = data;
2197 break;
2198 }
2199 ret = kvm_set_msr_common(vcpu, msr_info);
2200 break;
2201 case MSR_IA32_TSC_ADJUST:
2202 ret = kvm_set_msr_common(vcpu, msr_info);
2203 break;
2204 case MSR_IA32_MCG_EXT_CTL:
2205 if ((!msr_info->host_initiated &&
2206 !(to_vmx(vcpu)->msr_ia32_feature_control &
2207 FEAT_CTL_LMCE_ENABLED)) ||
2208 (data & ~MCG_EXT_CTL_LMCE_EN))
2209 return 1;
2210 vcpu->arch.mcg_ext_ctl = data;
2211 break;
2212 case MSR_IA32_FEAT_CTL:
2213 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2214 (to_vmx(vcpu)->msr_ia32_feature_control &
2215 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2216 return 1;
2217 vmx->msr_ia32_feature_control = data;
2218 if (msr_info->host_initiated && data == 0)
2219 vmx_leave_nested(vcpu);
2220 break;
2221 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2222 if (!msr_info->host_initiated)
2223 return 1; /* they are read-only */
2224 if (!nested_vmx_allowed(vcpu))
2225 return 1;
2226 return vmx_set_vmx_msr(vcpu, msr_index, data);
2227 case MSR_IA32_RTIT_CTL:
2228 if (!vmx_pt_mode_is_host_guest() ||
2229 vmx_rtit_ctl_check(vcpu, data) ||
2230 vmx->nested.vmxon)
2231 return 1;
2232 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2233 vmx->pt_desc.guest.ctl = data;
2234 pt_update_intercept_for_msr(vcpu);
2235 break;
2236 case MSR_IA32_RTIT_STATUS:
2237 if (!pt_can_write_msr(vmx))
2238 return 1;
2239 if (data & MSR_IA32_RTIT_STATUS_MASK)
2240 return 1;
2241 vmx->pt_desc.guest.status = data;
2242 break;
2243 case MSR_IA32_RTIT_CR3_MATCH:
2244 if (!pt_can_write_msr(vmx))
2245 return 1;
2246 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2247 PT_CAP_cr3_filtering))
2248 return 1;
2249 vmx->pt_desc.guest.cr3_match = data;
2250 break;
2251 case MSR_IA32_RTIT_OUTPUT_BASE:
2252 if (!pt_can_write_msr(vmx))
2253 return 1;
2254 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2255 PT_CAP_topa_output) &&
2256 !intel_pt_validate_cap(vmx->pt_desc.caps,
2257 PT_CAP_single_range_output))
2258 return 1;
2259 if (!pt_output_base_valid(vcpu, data))
2260 return 1;
2261 vmx->pt_desc.guest.output_base = data;
2262 break;
2263 case MSR_IA32_RTIT_OUTPUT_MASK:
2264 if (!pt_can_write_msr(vmx))
2265 return 1;
2266 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2267 PT_CAP_topa_output) &&
2268 !intel_pt_validate_cap(vmx->pt_desc.caps,
2269 PT_CAP_single_range_output))
2270 return 1;
2271 vmx->pt_desc.guest.output_mask = data;
2272 break;
2273 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2274 if (!pt_can_write_msr(vmx))
2275 return 1;
2276 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2277 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2278 PT_CAP_num_address_ranges))
2279 return 1;
2280 if (is_noncanonical_address(data, vcpu))
2281 return 1;
2282 if (index % 2)
2283 vmx->pt_desc.guest.addr_b[index / 2] = data;
2284 else
2285 vmx->pt_desc.guest.addr_a[index / 2] = data;
2286 break;
2287 case MSR_TSC_AUX:
2288 if (!msr_info->host_initiated &&
2289 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2290 return 1;
2291 /* Check reserved bit, higher 32 bits should be zero */
2292 if ((data >> 32) != 0)
2293 return 1;
2294 goto find_uret_msr;
2295
2296 default:
2297 find_uret_msr:
2298 msr = vmx_find_uret_msr(vmx, msr_index);
2299 if (msr)
2300 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2301 else
2302 ret = kvm_set_msr_common(vcpu, msr_info);
2303 }
2304
2305 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2306 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2307 vmx_update_fb_clear_dis(vcpu, vmx);
2308
2309 return ret;
2310 }
2311
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2312 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2313 {
2314 unsigned long guest_owned_bits;
2315
2316 kvm_register_mark_available(vcpu, reg);
2317
2318 switch (reg) {
2319 case VCPU_REGS_RSP:
2320 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2321 break;
2322 case VCPU_REGS_RIP:
2323 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2324 break;
2325 case VCPU_EXREG_PDPTR:
2326 if (enable_ept)
2327 ept_save_pdptrs(vcpu);
2328 break;
2329 case VCPU_EXREG_CR0:
2330 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2331
2332 vcpu->arch.cr0 &= ~guest_owned_bits;
2333 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2334 break;
2335 case VCPU_EXREG_CR3:
2336 if (is_unrestricted_guest(vcpu) ||
2337 (enable_ept && is_paging(vcpu)))
2338 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2339 break;
2340 case VCPU_EXREG_CR4:
2341 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2342
2343 vcpu->arch.cr4 &= ~guest_owned_bits;
2344 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2345 break;
2346 default:
2347 WARN_ON_ONCE(1);
2348 break;
2349 }
2350 }
2351
cpu_has_kvm_support(void)2352 static __init int cpu_has_kvm_support(void)
2353 {
2354 return cpu_has_vmx();
2355 }
2356
vmx_disabled_by_bios(void)2357 static __init int vmx_disabled_by_bios(void)
2358 {
2359 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2360 !boot_cpu_has(X86_FEATURE_VMX);
2361 }
2362
kvm_cpu_vmxon(u64 vmxon_pointer)2363 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2364 {
2365 u64 msr;
2366
2367 cr4_set_bits(X86_CR4_VMXE);
2368 intel_pt_handle_vmx(1);
2369
2370 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2371 _ASM_EXTABLE(1b, %l[fault])
2372 : : [vmxon_pointer] "m"(vmxon_pointer)
2373 : : fault);
2374 return 0;
2375
2376 fault:
2377 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2378 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2379 intel_pt_handle_vmx(0);
2380 cr4_clear_bits(X86_CR4_VMXE);
2381
2382 return -EFAULT;
2383 }
2384
hardware_enable(void)2385 static int hardware_enable(void)
2386 {
2387 int cpu = raw_smp_processor_id();
2388 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2389 int r;
2390
2391 if (cr4_read_shadow() & X86_CR4_VMXE)
2392 return -EBUSY;
2393
2394 /*
2395 * This can happen if we hot-added a CPU but failed to allocate
2396 * VP assist page for it.
2397 */
2398 if (static_branch_unlikely(&enable_evmcs) &&
2399 !hv_get_vp_assist_page(cpu))
2400 return -EFAULT;
2401
2402 r = kvm_cpu_vmxon(phys_addr);
2403 if (r)
2404 return r;
2405
2406 if (enable_ept)
2407 ept_sync_global();
2408
2409 return 0;
2410 }
2411
vmclear_local_loaded_vmcss(void)2412 static void vmclear_local_loaded_vmcss(void)
2413 {
2414 int cpu = raw_smp_processor_id();
2415 struct loaded_vmcs *v, *n;
2416
2417 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2418 loaded_vmcss_on_cpu_link)
2419 __loaded_vmcs_clear(v);
2420 }
2421
2422
2423 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2424 * tricks.
2425 */
kvm_cpu_vmxoff(void)2426 static void kvm_cpu_vmxoff(void)
2427 {
2428 asm volatile (__ex("vmxoff"));
2429
2430 intel_pt_handle_vmx(0);
2431 cr4_clear_bits(X86_CR4_VMXE);
2432 }
2433
hardware_disable(void)2434 static void hardware_disable(void)
2435 {
2436 vmclear_local_loaded_vmcss();
2437 kvm_cpu_vmxoff();
2438 }
2439
2440 /*
2441 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2442 * directly instead of going through cpu_has(), to ensure KVM is trapping
2443 * ENCLS whenever it's supported in hardware. It does not matter whether
2444 * the host OS supports or has enabled SGX.
2445 */
cpu_has_sgx(void)2446 static bool cpu_has_sgx(void)
2447 {
2448 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2449 }
2450
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2451 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2452 u32 msr, u32 *result)
2453 {
2454 u32 vmx_msr_low, vmx_msr_high;
2455 u32 ctl = ctl_min | ctl_opt;
2456
2457 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2458
2459 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2460 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2461
2462 /* Ensure minimum (required) set of control bits are supported. */
2463 if (ctl_min & ~ctl)
2464 return -EIO;
2465
2466 *result = ctl;
2467 return 0;
2468 }
2469
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2470 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2471 struct vmx_capability *vmx_cap)
2472 {
2473 u32 vmx_msr_low, vmx_msr_high;
2474 u32 min, opt, min2, opt2;
2475 u32 _pin_based_exec_control = 0;
2476 u32 _cpu_based_exec_control = 0;
2477 u32 _cpu_based_2nd_exec_control = 0;
2478 u32 _vmexit_control = 0;
2479 u32 _vmentry_control = 0;
2480
2481 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2482 min = CPU_BASED_HLT_EXITING |
2483 #ifdef CONFIG_X86_64
2484 CPU_BASED_CR8_LOAD_EXITING |
2485 CPU_BASED_CR8_STORE_EXITING |
2486 #endif
2487 CPU_BASED_CR3_LOAD_EXITING |
2488 CPU_BASED_CR3_STORE_EXITING |
2489 CPU_BASED_UNCOND_IO_EXITING |
2490 CPU_BASED_MOV_DR_EXITING |
2491 CPU_BASED_USE_TSC_OFFSETTING |
2492 CPU_BASED_MWAIT_EXITING |
2493 CPU_BASED_MONITOR_EXITING |
2494 CPU_BASED_INVLPG_EXITING |
2495 CPU_BASED_RDPMC_EXITING;
2496
2497 opt = CPU_BASED_TPR_SHADOW |
2498 CPU_BASED_USE_MSR_BITMAPS |
2499 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2500 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2501 &_cpu_based_exec_control) < 0)
2502 return -EIO;
2503 #ifdef CONFIG_X86_64
2504 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2505 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2506 ~CPU_BASED_CR8_STORE_EXITING;
2507 #endif
2508 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2509 min2 = 0;
2510 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2511 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2512 SECONDARY_EXEC_WBINVD_EXITING |
2513 SECONDARY_EXEC_ENABLE_VPID |
2514 SECONDARY_EXEC_ENABLE_EPT |
2515 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2516 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2517 SECONDARY_EXEC_DESC |
2518 SECONDARY_EXEC_ENABLE_RDTSCP |
2519 SECONDARY_EXEC_ENABLE_INVPCID |
2520 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2521 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2522 SECONDARY_EXEC_SHADOW_VMCS |
2523 SECONDARY_EXEC_XSAVES |
2524 SECONDARY_EXEC_RDSEED_EXITING |
2525 SECONDARY_EXEC_RDRAND_EXITING |
2526 SECONDARY_EXEC_ENABLE_PML |
2527 SECONDARY_EXEC_TSC_SCALING |
2528 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2529 SECONDARY_EXEC_PT_USE_GPA |
2530 SECONDARY_EXEC_PT_CONCEAL_VMX |
2531 SECONDARY_EXEC_ENABLE_VMFUNC;
2532 if (cpu_has_sgx())
2533 opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2534 if (adjust_vmx_controls(min2, opt2,
2535 MSR_IA32_VMX_PROCBASED_CTLS2,
2536 &_cpu_based_2nd_exec_control) < 0)
2537 return -EIO;
2538 }
2539 #ifndef CONFIG_X86_64
2540 if (!(_cpu_based_2nd_exec_control &
2541 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2542 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2543 #endif
2544
2545 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2546 _cpu_based_2nd_exec_control &= ~(
2547 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2548 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2549 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2550
2551 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2552 &vmx_cap->ept, &vmx_cap->vpid);
2553
2554 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2555 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2556 enabled */
2557 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2558 CPU_BASED_CR3_STORE_EXITING |
2559 CPU_BASED_INVLPG_EXITING);
2560 } else if (vmx_cap->ept) {
2561 vmx_cap->ept = 0;
2562 pr_warn_once("EPT CAP should not exist if not support "
2563 "1-setting enable EPT VM-execution control\n");
2564 }
2565 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2566 vmx_cap->vpid) {
2567 vmx_cap->vpid = 0;
2568 pr_warn_once("VPID CAP should not exist if not support "
2569 "1-setting enable VPID VM-execution control\n");
2570 }
2571
2572 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2573 #ifdef CONFIG_X86_64
2574 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2575 #endif
2576 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2577 VM_EXIT_LOAD_IA32_PAT |
2578 VM_EXIT_LOAD_IA32_EFER |
2579 VM_EXIT_CLEAR_BNDCFGS |
2580 VM_EXIT_PT_CONCEAL_PIP |
2581 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2582 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2583 &_vmexit_control) < 0)
2584 return -EIO;
2585
2586 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2587 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2588 PIN_BASED_VMX_PREEMPTION_TIMER;
2589 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2590 &_pin_based_exec_control) < 0)
2591 return -EIO;
2592
2593 if (cpu_has_broken_vmx_preemption_timer())
2594 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2595 if (!(_cpu_based_2nd_exec_control &
2596 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2597 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2598
2599 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2600 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2601 VM_ENTRY_LOAD_IA32_PAT |
2602 VM_ENTRY_LOAD_IA32_EFER |
2603 VM_ENTRY_LOAD_BNDCFGS |
2604 VM_ENTRY_PT_CONCEAL_PIP |
2605 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2606 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2607 &_vmentry_control) < 0)
2608 return -EIO;
2609
2610 /*
2611 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2612 * can't be used due to an errata where VM Exit may incorrectly clear
2613 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2614 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2615 */
2616 if (boot_cpu_data.x86 == 0x6) {
2617 switch (boot_cpu_data.x86_model) {
2618 case 26: /* AAK155 */
2619 case 30: /* AAP115 */
2620 case 37: /* AAT100 */
2621 case 44: /* BC86,AAY89,BD102 */
2622 case 46: /* BA97 */
2623 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2624 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2625 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2626 "does not work properly. Using workaround\n");
2627 break;
2628 default:
2629 break;
2630 }
2631 }
2632
2633
2634 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2635
2636 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2637 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2638 return -EIO;
2639
2640 #ifdef CONFIG_X86_64
2641 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2642 if (vmx_msr_high & (1u<<16))
2643 return -EIO;
2644 #endif
2645
2646 /* Require Write-Back (WB) memory type for VMCS accesses. */
2647 if (((vmx_msr_high >> 18) & 15) != 6)
2648 return -EIO;
2649
2650 vmcs_conf->size = vmx_msr_high & 0x1fff;
2651 vmcs_conf->order = get_order(vmcs_conf->size);
2652 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2653
2654 vmcs_conf->revision_id = vmx_msr_low;
2655
2656 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2657 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2658 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2659 vmcs_conf->vmexit_ctrl = _vmexit_control;
2660 vmcs_conf->vmentry_ctrl = _vmentry_control;
2661
2662 #if IS_ENABLED(CONFIG_HYPERV)
2663 if (enlightened_vmcs)
2664 evmcs_sanitize_exec_ctrls(vmcs_conf);
2665 #endif
2666
2667 return 0;
2668 }
2669
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2670 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2671 {
2672 int node = cpu_to_node(cpu);
2673 struct page *pages;
2674 struct vmcs *vmcs;
2675
2676 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2677 if (!pages)
2678 return NULL;
2679 vmcs = page_address(pages);
2680 memset(vmcs, 0, vmcs_config.size);
2681
2682 /* KVM supports Enlightened VMCS v1 only */
2683 if (static_branch_unlikely(&enable_evmcs))
2684 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2685 else
2686 vmcs->hdr.revision_id = vmcs_config.revision_id;
2687
2688 if (shadow)
2689 vmcs->hdr.shadow_vmcs = 1;
2690 return vmcs;
2691 }
2692
free_vmcs(struct vmcs * vmcs)2693 void free_vmcs(struct vmcs *vmcs)
2694 {
2695 free_pages((unsigned long)vmcs, vmcs_config.order);
2696 }
2697
2698 /*
2699 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2700 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2701 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2702 {
2703 if (!loaded_vmcs->vmcs)
2704 return;
2705 loaded_vmcs_clear(loaded_vmcs);
2706 free_vmcs(loaded_vmcs->vmcs);
2707 loaded_vmcs->vmcs = NULL;
2708 if (loaded_vmcs->msr_bitmap)
2709 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2710 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2711 }
2712
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2713 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2714 {
2715 loaded_vmcs->vmcs = alloc_vmcs(false);
2716 if (!loaded_vmcs->vmcs)
2717 return -ENOMEM;
2718
2719 vmcs_clear(loaded_vmcs->vmcs);
2720
2721 loaded_vmcs->shadow_vmcs = NULL;
2722 loaded_vmcs->hv_timer_soft_disabled = false;
2723 loaded_vmcs->cpu = -1;
2724 loaded_vmcs->launched = 0;
2725
2726 if (cpu_has_vmx_msr_bitmap()) {
2727 loaded_vmcs->msr_bitmap = (unsigned long *)
2728 __get_free_page(GFP_KERNEL_ACCOUNT);
2729 if (!loaded_vmcs->msr_bitmap)
2730 goto out_vmcs;
2731 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2732 }
2733
2734 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2735 memset(&loaded_vmcs->controls_shadow, 0,
2736 sizeof(struct vmcs_controls_shadow));
2737
2738 return 0;
2739
2740 out_vmcs:
2741 free_loaded_vmcs(loaded_vmcs);
2742 return -ENOMEM;
2743 }
2744
free_kvm_area(void)2745 static void free_kvm_area(void)
2746 {
2747 int cpu;
2748
2749 for_each_possible_cpu(cpu) {
2750 free_vmcs(per_cpu(vmxarea, cpu));
2751 per_cpu(vmxarea, cpu) = NULL;
2752 }
2753 }
2754
alloc_kvm_area(void)2755 static __init int alloc_kvm_area(void)
2756 {
2757 int cpu;
2758
2759 for_each_possible_cpu(cpu) {
2760 struct vmcs *vmcs;
2761
2762 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2763 if (!vmcs) {
2764 free_kvm_area();
2765 return -ENOMEM;
2766 }
2767
2768 /*
2769 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2770 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2771 * revision_id reported by MSR_IA32_VMX_BASIC.
2772 *
2773 * However, even though not explicitly documented by
2774 * TLFS, VMXArea passed as VMXON argument should
2775 * still be marked with revision_id reported by
2776 * physical CPU.
2777 */
2778 if (static_branch_unlikely(&enable_evmcs))
2779 vmcs->hdr.revision_id = vmcs_config.revision_id;
2780
2781 per_cpu(vmxarea, cpu) = vmcs;
2782 }
2783 return 0;
2784 }
2785
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2786 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2787 struct kvm_segment *save)
2788 {
2789 if (!emulate_invalid_guest_state) {
2790 /*
2791 * CS and SS RPL should be equal during guest entry according
2792 * to VMX spec, but in reality it is not always so. Since vcpu
2793 * is in the middle of the transition from real mode to
2794 * protected mode it is safe to assume that RPL 0 is a good
2795 * default value.
2796 */
2797 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2798 save->selector &= ~SEGMENT_RPL_MASK;
2799 save->dpl = save->selector & SEGMENT_RPL_MASK;
2800 save->s = 1;
2801 }
2802 vmx_set_segment(vcpu, save, seg);
2803 }
2804
enter_pmode(struct kvm_vcpu * vcpu)2805 static void enter_pmode(struct kvm_vcpu *vcpu)
2806 {
2807 unsigned long flags;
2808 struct vcpu_vmx *vmx = to_vmx(vcpu);
2809
2810 /*
2811 * Update real mode segment cache. It may be not up-to-date if sement
2812 * register was written while vcpu was in a guest mode.
2813 */
2814 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2815 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2816 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2817 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2818 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2819 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2820
2821 vmx->rmode.vm86_active = 0;
2822
2823 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2824
2825 flags = vmcs_readl(GUEST_RFLAGS);
2826 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2827 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2828 vmcs_writel(GUEST_RFLAGS, flags);
2829
2830 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2831 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2832
2833 update_exception_bitmap(vcpu);
2834
2835 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2836 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2837 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2838 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2839 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2840 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2841 }
2842
fix_rmode_seg(int seg,struct kvm_segment * save)2843 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2844 {
2845 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2846 struct kvm_segment var = *save;
2847
2848 var.dpl = 0x3;
2849 if (seg == VCPU_SREG_CS)
2850 var.type = 0x3;
2851
2852 if (!emulate_invalid_guest_state) {
2853 var.selector = var.base >> 4;
2854 var.base = var.base & 0xffff0;
2855 var.limit = 0xffff;
2856 var.g = 0;
2857 var.db = 0;
2858 var.present = 1;
2859 var.s = 1;
2860 var.l = 0;
2861 var.unusable = 0;
2862 var.type = 0x3;
2863 var.avl = 0;
2864 if (save->base & 0xf)
2865 printk_once(KERN_WARNING "kvm: segment base is not "
2866 "paragraph aligned when entering "
2867 "protected mode (seg=%d)", seg);
2868 }
2869
2870 vmcs_write16(sf->selector, var.selector);
2871 vmcs_writel(sf->base, var.base);
2872 vmcs_write32(sf->limit, var.limit);
2873 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2874 }
2875
enter_rmode(struct kvm_vcpu * vcpu)2876 static void enter_rmode(struct kvm_vcpu *vcpu)
2877 {
2878 unsigned long flags;
2879 struct vcpu_vmx *vmx = to_vmx(vcpu);
2880 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2881
2882 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2883 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2884 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2885 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2886 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2887 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2888 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2889
2890 vmx->rmode.vm86_active = 1;
2891
2892 /*
2893 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2894 * vcpu. Warn the user that an update is overdue.
2895 */
2896 if (!kvm_vmx->tss_addr)
2897 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2898 "called before entering vcpu\n");
2899
2900 vmx_segment_cache_clear(vmx);
2901
2902 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2903 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2904 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2905
2906 flags = vmcs_readl(GUEST_RFLAGS);
2907 vmx->rmode.save_rflags = flags;
2908
2909 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2910
2911 vmcs_writel(GUEST_RFLAGS, flags);
2912 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2913 update_exception_bitmap(vcpu);
2914
2915 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2916 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2917 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2918 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2919 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2920 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2921
2922 kvm_mmu_reset_context(vcpu);
2923 }
2924
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2925 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2926 {
2927 struct vcpu_vmx *vmx = to_vmx(vcpu);
2928 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2929
2930 /* Nothing to do if hardware doesn't support EFER. */
2931 if (!msr)
2932 return 0;
2933
2934 vcpu->arch.efer = efer;
2935 if (efer & EFER_LMA) {
2936 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2937 msr->data = efer;
2938 } else {
2939 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2940
2941 msr->data = efer & ~EFER_LME;
2942 }
2943 setup_msrs(vmx);
2944 return 0;
2945 }
2946
2947 #ifdef CONFIG_X86_64
2948
enter_lmode(struct kvm_vcpu * vcpu)2949 static void enter_lmode(struct kvm_vcpu *vcpu)
2950 {
2951 u32 guest_tr_ar;
2952
2953 vmx_segment_cache_clear(to_vmx(vcpu));
2954
2955 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2956 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2957 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2958 __func__);
2959 vmcs_write32(GUEST_TR_AR_BYTES,
2960 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2961 | VMX_AR_TYPE_BUSY_64_TSS);
2962 }
2963 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2964 }
2965
exit_lmode(struct kvm_vcpu * vcpu)2966 static void exit_lmode(struct kvm_vcpu *vcpu)
2967 {
2968 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2969 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2970 }
2971
2972 #endif
2973
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)2974 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2975 {
2976 struct vcpu_vmx *vmx = to_vmx(vcpu);
2977
2978 /*
2979 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2980 * the CPU is not required to invalidate guest-physical mappings on
2981 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
2982 * associated with the root EPT structure and not any particular VPID
2983 * (INVVPID also isn't required to invalidate guest-physical mappings).
2984 */
2985 if (enable_ept) {
2986 ept_sync_global();
2987 } else if (enable_vpid) {
2988 if (cpu_has_vmx_invvpid_global()) {
2989 vpid_sync_vcpu_global();
2990 } else {
2991 vpid_sync_vcpu_single(vmx->vpid);
2992 vpid_sync_vcpu_single(vmx->nested.vpid02);
2993 }
2994 }
2995 }
2996
vmx_get_current_vpid(struct kvm_vcpu * vcpu)2997 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
2998 {
2999 if (is_guest_mode(vcpu))
3000 return nested_get_vpid02(vcpu);
3001 return to_vmx(vcpu)->vpid;
3002 }
3003
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3004 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3005 {
3006 struct kvm_mmu *mmu = vcpu->arch.mmu;
3007 u64 root_hpa = mmu->root_hpa;
3008
3009 /* No flush required if the current context is invalid. */
3010 if (!VALID_PAGE(root_hpa))
3011 return;
3012
3013 if (enable_ept)
3014 ept_sync_context(construct_eptp(vcpu, root_hpa,
3015 mmu->shadow_root_level));
3016 else
3017 vpid_sync_context(vmx_get_current_vpid(vcpu));
3018 }
3019
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3020 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3021 {
3022 /*
3023 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3024 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3025 */
3026 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3027 }
3028
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3029 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3030 {
3031 /*
3032 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3033 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3034 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3035 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3036 * i.e. no explicit INVVPID is necessary.
3037 */
3038 vpid_sync_context(vmx_get_current_vpid(vcpu));
3039 }
3040
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3041 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3042 {
3043 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3044
3045 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3046 return;
3047
3048 if (is_pae_paging(vcpu)) {
3049 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3050 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3051 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3052 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3053 }
3054 }
3055
ept_save_pdptrs(struct kvm_vcpu * vcpu)3056 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3057 {
3058 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3059
3060 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3061 return;
3062
3063 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3064 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3065 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3066 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3067
3068 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3069 }
3070
3071 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3072 CPU_BASED_CR3_STORE_EXITING)
3073
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3074 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3075 {
3076 struct vcpu_vmx *vmx = to_vmx(vcpu);
3077 unsigned long hw_cr0;
3078 u32 tmp;
3079
3080 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3081 if (enable_unrestricted_guest)
3082 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3083 else {
3084 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3085 if (!enable_ept)
3086 hw_cr0 |= X86_CR0_WP;
3087
3088 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3089 enter_pmode(vcpu);
3090
3091 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3092 enter_rmode(vcpu);
3093 }
3094
3095 #ifdef CONFIG_X86_64
3096 if (vcpu->arch.efer & EFER_LME) {
3097 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3098 enter_lmode(vcpu);
3099 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3100 exit_lmode(vcpu);
3101 }
3102 #endif
3103
3104 if (enable_ept && !enable_unrestricted_guest) {
3105 /*
3106 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3107 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3108 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3109 * KVM's CR3 is installed.
3110 */
3111 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3112 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3113
3114 /*
3115 * When running with EPT but not unrestricted guest, KVM must
3116 * intercept CR3 accesses when paging is _disabled_. This is
3117 * necessary because restricted guests can't actually run with
3118 * paging disabled, and so KVM stuffs its own CR3 in order to
3119 * run the guest when identity mapped page tables.
3120 *
3121 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3122 * update, it may be stale with respect to CR3 interception,
3123 * e.g. after nested VM-Enter.
3124 *
3125 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3126 * stores to forward them to L1, even if KVM does not need to
3127 * intercept them to preserve its identity mapped page tables.
3128 */
3129 if (!(cr0 & X86_CR0_PG)) {
3130 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3131 } else if (!is_guest_mode(vcpu)) {
3132 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3133 } else {
3134 tmp = exec_controls_get(vmx);
3135 tmp &= ~CR3_EXITING_BITS;
3136 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3137 exec_controls_set(vmx, tmp);
3138 }
3139
3140 if (!is_paging(vcpu) != !(cr0 & X86_CR0_PG)) {
3141 vcpu->arch.cr0 = cr0;
3142 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3143 }
3144 }
3145
3146 vmcs_writel(CR0_READ_SHADOW, cr0);
3147 vmcs_writel(GUEST_CR0, hw_cr0);
3148 vcpu->arch.cr0 = cr0;
3149 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3150
3151 /* depends on vcpu->arch.cr0 to be set to a new value */
3152 vmx->emulation_required = emulation_required(vcpu);
3153 }
3154
vmx_get_max_tdp_level(void)3155 static int vmx_get_max_tdp_level(void)
3156 {
3157 if (cpu_has_vmx_ept_5levels())
3158 return 5;
3159 return 4;
3160 }
3161
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa,int root_level)3162 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3163 int root_level)
3164 {
3165 u64 eptp = VMX_EPTP_MT_WB;
3166
3167 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3168
3169 if (enable_ept_ad_bits &&
3170 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3171 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3172 eptp |= (root_hpa & PAGE_MASK);
3173
3174 return eptp;
3175 }
3176
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,unsigned long pgd,int pgd_level)3177 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3178 int pgd_level)
3179 {
3180 struct kvm *kvm = vcpu->kvm;
3181 bool update_guest_cr3 = true;
3182 unsigned long guest_cr3;
3183 u64 eptp;
3184
3185 if (enable_ept) {
3186 eptp = construct_eptp(vcpu, pgd, pgd_level);
3187 vmcs_write64(EPT_POINTER, eptp);
3188
3189 if (kvm_x86_ops.tlb_remote_flush) {
3190 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3191 to_vmx(vcpu)->ept_pointer = eptp;
3192 to_kvm_vmx(kvm)->ept_pointers_match
3193 = EPT_POINTERS_CHECK;
3194 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3195 }
3196
3197 if (!enable_unrestricted_guest && !is_paging(vcpu))
3198 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3199 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3200 guest_cr3 = vcpu->arch.cr3;
3201 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3202 update_guest_cr3 = false;
3203 vmx_ept_load_pdptrs(vcpu);
3204 } else {
3205 guest_cr3 = pgd;
3206 }
3207
3208 if (update_guest_cr3)
3209 vmcs_writel(GUEST_CR3, guest_cr3);
3210 }
3211
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3212 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3213 {
3214 /*
3215 * We operate under the default treatment of SMM, so VMX cannot be
3216 * enabled under SMM. Note, whether or not VMXE is allowed at all is
3217 * handled by kvm_valid_cr4().
3218 */
3219 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3220 return false;
3221
3222 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3223 return false;
3224
3225 return true;
3226 }
3227
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3228 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3229 {
3230 struct vcpu_vmx *vmx = to_vmx(vcpu);
3231 /*
3232 * Pass through host's Machine Check Enable value to hw_cr4, which
3233 * is in force while we are in guest mode. Do not let guests control
3234 * this bit, even if host CR4.MCE == 0.
3235 */
3236 unsigned long hw_cr4;
3237
3238 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3239 if (enable_unrestricted_guest)
3240 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3241 else if (vmx->rmode.vm86_active)
3242 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3243 else
3244 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3245
3246 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3247 if (cr4 & X86_CR4_UMIP) {
3248 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3249 hw_cr4 &= ~X86_CR4_UMIP;
3250 } else if (!is_guest_mode(vcpu) ||
3251 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3252 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3253 }
3254 }
3255
3256 vcpu->arch.cr4 = cr4;
3257 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3258
3259 if (!enable_unrestricted_guest) {
3260 if (enable_ept) {
3261 if (!is_paging(vcpu)) {
3262 hw_cr4 &= ~X86_CR4_PAE;
3263 hw_cr4 |= X86_CR4_PSE;
3264 } else if (!(cr4 & X86_CR4_PAE)) {
3265 hw_cr4 &= ~X86_CR4_PAE;
3266 }
3267 }
3268
3269 /*
3270 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3271 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3272 * to be manually disabled when guest switches to non-paging
3273 * mode.
3274 *
3275 * If !enable_unrestricted_guest, the CPU is always running
3276 * with CR0.PG=1 and CR4 needs to be modified.
3277 * If enable_unrestricted_guest, the CPU automatically
3278 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3279 */
3280 if (!is_paging(vcpu))
3281 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3282 }
3283
3284 vmcs_writel(CR4_READ_SHADOW, cr4);
3285 vmcs_writel(GUEST_CR4, hw_cr4);
3286 }
3287
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3288 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3289 {
3290 struct vcpu_vmx *vmx = to_vmx(vcpu);
3291 u32 ar;
3292
3293 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3294 *var = vmx->rmode.segs[seg];
3295 if (seg == VCPU_SREG_TR
3296 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3297 return;
3298 var->base = vmx_read_guest_seg_base(vmx, seg);
3299 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3300 return;
3301 }
3302 var->base = vmx_read_guest_seg_base(vmx, seg);
3303 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3304 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3305 ar = vmx_read_guest_seg_ar(vmx, seg);
3306 var->unusable = (ar >> 16) & 1;
3307 var->type = ar & 15;
3308 var->s = (ar >> 4) & 1;
3309 var->dpl = (ar >> 5) & 3;
3310 /*
3311 * Some userspaces do not preserve unusable property. Since usable
3312 * segment has to be present according to VMX spec we can use present
3313 * property to amend userspace bug by making unusable segment always
3314 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3315 * segment as unusable.
3316 */
3317 var->present = !var->unusable;
3318 var->avl = (ar >> 12) & 1;
3319 var->l = (ar >> 13) & 1;
3320 var->db = (ar >> 14) & 1;
3321 var->g = (ar >> 15) & 1;
3322 }
3323
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3324 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3325 {
3326 struct kvm_segment s;
3327
3328 if (to_vmx(vcpu)->rmode.vm86_active) {
3329 vmx_get_segment(vcpu, &s, seg);
3330 return s.base;
3331 }
3332 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3333 }
3334
vmx_get_cpl(struct kvm_vcpu * vcpu)3335 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3336 {
3337 struct vcpu_vmx *vmx = to_vmx(vcpu);
3338
3339 if (unlikely(vmx->rmode.vm86_active))
3340 return 0;
3341 else {
3342 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3343 return VMX_AR_DPL(ar);
3344 }
3345 }
3346
vmx_segment_access_rights(struct kvm_segment * var)3347 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3348 {
3349 u32 ar;
3350
3351 ar = var->type & 15;
3352 ar |= (var->s & 1) << 4;
3353 ar |= (var->dpl & 3) << 5;
3354 ar |= (var->present & 1) << 7;
3355 ar |= (var->avl & 1) << 12;
3356 ar |= (var->l & 1) << 13;
3357 ar |= (var->db & 1) << 14;
3358 ar |= (var->g & 1) << 15;
3359 ar |= (var->unusable || !var->present) << 16;
3360
3361 return ar;
3362 }
3363
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3364 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3365 {
3366 struct vcpu_vmx *vmx = to_vmx(vcpu);
3367 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3368
3369 vmx_segment_cache_clear(vmx);
3370
3371 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3372 vmx->rmode.segs[seg] = *var;
3373 if (seg == VCPU_SREG_TR)
3374 vmcs_write16(sf->selector, var->selector);
3375 else if (var->s)
3376 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3377 goto out;
3378 }
3379
3380 vmcs_writel(sf->base, var->base);
3381 vmcs_write32(sf->limit, var->limit);
3382 vmcs_write16(sf->selector, var->selector);
3383
3384 /*
3385 * Fix the "Accessed" bit in AR field of segment registers for older
3386 * qemu binaries.
3387 * IA32 arch specifies that at the time of processor reset the
3388 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3389 * is setting it to 0 in the userland code. This causes invalid guest
3390 * state vmexit when "unrestricted guest" mode is turned on.
3391 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3392 * tree. Newer qemu binaries with that qemu fix would not need this
3393 * kvm hack.
3394 */
3395 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3396 var->type |= 0x1; /* Accessed */
3397
3398 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3399
3400 out:
3401 vmx->emulation_required = emulation_required(vcpu);
3402 }
3403
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3404 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3405 {
3406 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3407
3408 *db = (ar >> 14) & 1;
3409 *l = (ar >> 13) & 1;
3410 }
3411
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3412 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3413 {
3414 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3415 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3416 }
3417
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3418 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3419 {
3420 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3421 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3422 }
3423
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3424 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3425 {
3426 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3427 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3428 }
3429
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3430 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3431 {
3432 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3433 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3434 }
3435
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3436 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3437 {
3438 struct kvm_segment var;
3439 u32 ar;
3440
3441 vmx_get_segment(vcpu, &var, seg);
3442 var.dpl = 0x3;
3443 if (seg == VCPU_SREG_CS)
3444 var.type = 0x3;
3445 ar = vmx_segment_access_rights(&var);
3446
3447 if (var.base != (var.selector << 4))
3448 return false;
3449 if (var.limit != 0xffff)
3450 return false;
3451 if (ar != 0xf3)
3452 return false;
3453
3454 return true;
3455 }
3456
code_segment_valid(struct kvm_vcpu * vcpu)3457 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3458 {
3459 struct kvm_segment cs;
3460 unsigned int cs_rpl;
3461
3462 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3463 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3464
3465 if (cs.unusable)
3466 return false;
3467 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3468 return false;
3469 if (!cs.s)
3470 return false;
3471 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3472 if (cs.dpl > cs_rpl)
3473 return false;
3474 } else {
3475 if (cs.dpl != cs_rpl)
3476 return false;
3477 }
3478 if (!cs.present)
3479 return false;
3480
3481 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3482 return true;
3483 }
3484
stack_segment_valid(struct kvm_vcpu * vcpu)3485 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3486 {
3487 struct kvm_segment ss;
3488 unsigned int ss_rpl;
3489
3490 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3491 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3492
3493 if (ss.unusable)
3494 return true;
3495 if (ss.type != 3 && ss.type != 7)
3496 return false;
3497 if (!ss.s)
3498 return false;
3499 if (ss.dpl != ss_rpl) /* DPL != RPL */
3500 return false;
3501 if (!ss.present)
3502 return false;
3503
3504 return true;
3505 }
3506
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3507 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3508 {
3509 struct kvm_segment var;
3510 unsigned int rpl;
3511
3512 vmx_get_segment(vcpu, &var, seg);
3513 rpl = var.selector & SEGMENT_RPL_MASK;
3514
3515 if (var.unusable)
3516 return true;
3517 if (!var.s)
3518 return false;
3519 if (!var.present)
3520 return false;
3521 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3522 if (var.dpl < rpl) /* DPL < RPL */
3523 return false;
3524 }
3525
3526 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3527 * rights flags
3528 */
3529 return true;
3530 }
3531
tr_valid(struct kvm_vcpu * vcpu)3532 static bool tr_valid(struct kvm_vcpu *vcpu)
3533 {
3534 struct kvm_segment tr;
3535
3536 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3537
3538 if (tr.unusable)
3539 return false;
3540 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3541 return false;
3542 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3543 return false;
3544 if (!tr.present)
3545 return false;
3546
3547 return true;
3548 }
3549
ldtr_valid(struct kvm_vcpu * vcpu)3550 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3551 {
3552 struct kvm_segment ldtr;
3553
3554 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3555
3556 if (ldtr.unusable)
3557 return true;
3558 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3559 return false;
3560 if (ldtr.type != 2)
3561 return false;
3562 if (!ldtr.present)
3563 return false;
3564
3565 return true;
3566 }
3567
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3568 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3569 {
3570 struct kvm_segment cs, ss;
3571
3572 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3573 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3574
3575 return ((cs.selector & SEGMENT_RPL_MASK) ==
3576 (ss.selector & SEGMENT_RPL_MASK));
3577 }
3578
3579 /*
3580 * Check if guest state is valid. Returns true if valid, false if
3581 * not.
3582 * We assume that registers are always usable
3583 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3584 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3585 {
3586 /* real mode guest state checks */
3587 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3588 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3589 return false;
3590 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3591 return false;
3592 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3593 return false;
3594 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3595 return false;
3596 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3597 return false;
3598 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3599 return false;
3600 } else {
3601 /* protected mode guest state checks */
3602 if (!cs_ss_rpl_check(vcpu))
3603 return false;
3604 if (!code_segment_valid(vcpu))
3605 return false;
3606 if (!stack_segment_valid(vcpu))
3607 return false;
3608 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3609 return false;
3610 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3611 return false;
3612 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3613 return false;
3614 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3615 return false;
3616 if (!tr_valid(vcpu))
3617 return false;
3618 if (!ldtr_valid(vcpu))
3619 return false;
3620 }
3621 /* TODO:
3622 * - Add checks on RIP
3623 * - Add checks on RFLAGS
3624 */
3625
3626 return true;
3627 }
3628
init_rmode_tss(struct kvm * kvm)3629 static int init_rmode_tss(struct kvm *kvm)
3630 {
3631 gfn_t fn;
3632 u16 data = 0;
3633 int idx, r;
3634
3635 idx = srcu_read_lock(&kvm->srcu);
3636 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3637 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3638 if (r < 0)
3639 goto out;
3640 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3641 r = kvm_write_guest_page(kvm, fn++, &data,
3642 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3643 if (r < 0)
3644 goto out;
3645 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3646 if (r < 0)
3647 goto out;
3648 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3649 if (r < 0)
3650 goto out;
3651 data = ~0;
3652 r = kvm_write_guest_page(kvm, fn, &data,
3653 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3654 sizeof(u8));
3655 out:
3656 srcu_read_unlock(&kvm->srcu, idx);
3657 return r;
3658 }
3659
init_rmode_identity_map(struct kvm * kvm)3660 static int init_rmode_identity_map(struct kvm *kvm)
3661 {
3662 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3663 int i, r = 0;
3664 kvm_pfn_t identity_map_pfn;
3665 u32 tmp;
3666
3667 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3668 mutex_lock(&kvm->slots_lock);
3669
3670 if (likely(kvm_vmx->ept_identity_pagetable_done))
3671 goto out;
3672
3673 if (!kvm_vmx->ept_identity_map_addr)
3674 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3675 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3676
3677 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3678 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3679 if (r < 0)
3680 goto out;
3681
3682 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3683 if (r < 0)
3684 goto out;
3685 /* Set up identity-mapping pagetable for EPT in real mode */
3686 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3687 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3688 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3689 r = kvm_write_guest_page(kvm, identity_map_pfn,
3690 &tmp, i * sizeof(tmp), sizeof(tmp));
3691 if (r < 0)
3692 goto out;
3693 }
3694 kvm_vmx->ept_identity_pagetable_done = true;
3695
3696 out:
3697 mutex_unlock(&kvm->slots_lock);
3698 return r;
3699 }
3700
seg_setup(int seg)3701 static void seg_setup(int seg)
3702 {
3703 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3704 unsigned int ar;
3705
3706 vmcs_write16(sf->selector, 0);
3707 vmcs_writel(sf->base, 0);
3708 vmcs_write32(sf->limit, 0xffff);
3709 ar = 0x93;
3710 if (seg == VCPU_SREG_CS)
3711 ar |= 0x08; /* code segment */
3712
3713 vmcs_write32(sf->ar_bytes, ar);
3714 }
3715
alloc_apic_access_page(struct kvm * kvm)3716 static int alloc_apic_access_page(struct kvm *kvm)
3717 {
3718 struct page *page;
3719 int r = 0;
3720
3721 mutex_lock(&kvm->slots_lock);
3722 if (kvm->arch.apic_access_page_done)
3723 goto out;
3724 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3725 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3726 if (r)
3727 goto out;
3728
3729 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3730 if (is_error_page(page)) {
3731 r = -EFAULT;
3732 goto out;
3733 }
3734
3735 /*
3736 * Do not pin the page in memory, so that memory hot-unplug
3737 * is able to migrate it.
3738 */
3739 put_page(page);
3740 kvm->arch.apic_access_page_done = true;
3741 out:
3742 mutex_unlock(&kvm->slots_lock);
3743 return r;
3744 }
3745
allocate_vpid(void)3746 int allocate_vpid(void)
3747 {
3748 int vpid;
3749
3750 if (!enable_vpid)
3751 return 0;
3752 spin_lock(&vmx_vpid_lock);
3753 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3754 if (vpid < VMX_NR_VPIDS)
3755 __set_bit(vpid, vmx_vpid_bitmap);
3756 else
3757 vpid = 0;
3758 spin_unlock(&vmx_vpid_lock);
3759 return vpid;
3760 }
3761
free_vpid(int vpid)3762 void free_vpid(int vpid)
3763 {
3764 if (!enable_vpid || vpid == 0)
3765 return;
3766 spin_lock(&vmx_vpid_lock);
3767 __clear_bit(vpid, vmx_vpid_bitmap);
3768 spin_unlock(&vmx_vpid_lock);
3769 }
3770
vmx_clear_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3771 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3772 {
3773 int f = sizeof(unsigned long);
3774
3775 if (msr <= 0x1fff)
3776 __clear_bit(msr, msr_bitmap + 0x000 / f);
3777 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3778 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3779 }
3780
vmx_clear_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3781 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3782 {
3783 int f = sizeof(unsigned long);
3784
3785 if (msr <= 0x1fff)
3786 __clear_bit(msr, msr_bitmap + 0x800 / f);
3787 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3788 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3789 }
3790
vmx_set_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3791 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3792 {
3793 int f = sizeof(unsigned long);
3794
3795 if (msr <= 0x1fff)
3796 __set_bit(msr, msr_bitmap + 0x000 / f);
3797 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3798 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3799 }
3800
vmx_set_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3801 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3802 {
3803 int f = sizeof(unsigned long);
3804
3805 if (msr <= 0x1fff)
3806 __set_bit(msr, msr_bitmap + 0x800 / f);
3807 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3808 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3809 }
3810
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3811 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3812 {
3813 /*
3814 * When KVM is a nested hypervisor on top of Hyper-V and uses
3815 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3816 * bitmap has changed.
3817 */
3818 if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs)) {
3819 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3820
3821 if (evmcs->hv_enlightenments_control.msr_bitmap)
3822 evmcs->hv_clean_fields &=
3823 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3824 }
3825 }
3826
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3827 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
3828 u32 msr, int type)
3829 {
3830 struct vcpu_vmx *vmx = to_vmx(vcpu);
3831 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3832
3833 if (!cpu_has_vmx_msr_bitmap())
3834 return;
3835
3836 vmx_msr_bitmap_l01_changed(vmx);
3837
3838 /*
3839 * Mark the desired intercept state in shadow bitmap, this is needed
3840 * for resync when the MSR filters change.
3841 */
3842 if (is_valid_passthrough_msr(msr)) {
3843 int idx = possible_passthrough_msr_slot(msr);
3844
3845 if (idx != -ENOENT) {
3846 if (type & MSR_TYPE_R)
3847 clear_bit(idx, vmx->shadow_msr_intercept.read);
3848 if (type & MSR_TYPE_W)
3849 clear_bit(idx, vmx->shadow_msr_intercept.write);
3850 }
3851 }
3852
3853 if ((type & MSR_TYPE_R) &&
3854 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3855 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3856 type &= ~MSR_TYPE_R;
3857 }
3858
3859 if ((type & MSR_TYPE_W) &&
3860 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3861 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3862 type &= ~MSR_TYPE_W;
3863 }
3864
3865 if (type & MSR_TYPE_R)
3866 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3867
3868 if (type & MSR_TYPE_W)
3869 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3870 }
3871
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3872 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
3873 u32 msr, int type)
3874 {
3875 struct vcpu_vmx *vmx = to_vmx(vcpu);
3876 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3877
3878 if (!cpu_has_vmx_msr_bitmap())
3879 return;
3880
3881 vmx_msr_bitmap_l01_changed(vmx);
3882
3883 /*
3884 * Mark the desired intercept state in shadow bitmap, this is needed
3885 * for resync when the MSR filter changes.
3886 */
3887 if (is_valid_passthrough_msr(msr)) {
3888 int idx = possible_passthrough_msr_slot(msr);
3889
3890 if (idx != -ENOENT) {
3891 if (type & MSR_TYPE_R)
3892 set_bit(idx, vmx->shadow_msr_intercept.read);
3893 if (type & MSR_TYPE_W)
3894 set_bit(idx, vmx->shadow_msr_intercept.write);
3895 }
3896 }
3897
3898 if (type & MSR_TYPE_R)
3899 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3900
3901 if (type & MSR_TYPE_W)
3902 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3903 }
3904
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool value)3905 static __always_inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
3906 u32 msr, int type, bool value)
3907 {
3908 if (value)
3909 vmx_enable_intercept_for_msr(vcpu, msr, type);
3910 else
3911 vmx_disable_intercept_for_msr(vcpu, msr, type);
3912 }
3913
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)3914 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3915 {
3916 u8 mode = 0;
3917
3918 if (cpu_has_secondary_exec_ctrls() &&
3919 (secondary_exec_controls_get(to_vmx(vcpu)) &
3920 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3921 mode |= MSR_BITMAP_MODE_X2APIC;
3922 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3923 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3924 }
3925
3926 return mode;
3927 }
3928
vmx_reset_x2apic_msrs(struct kvm_vcpu * vcpu,u8 mode)3929 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3930 {
3931 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3932 unsigned long read_intercept;
3933 int msr;
3934
3935 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3936
3937 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3938 unsigned int read_idx = msr / BITS_PER_LONG;
3939 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3940
3941 msr_bitmap[read_idx] = read_intercept;
3942 msr_bitmap[write_idx] = ~0ul;
3943 }
3944 }
3945
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu,u8 mode)3946 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3947 {
3948 if (!cpu_has_vmx_msr_bitmap())
3949 return;
3950
3951 vmx_reset_x2apic_msrs(vcpu, mode);
3952
3953 /*
3954 * TPR reads and writes can be virtualized even if virtual interrupt
3955 * delivery is not in use.
3956 */
3957 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3958 !(mode & MSR_BITMAP_MODE_X2APIC));
3959
3960 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3961 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3962 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3963 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3964 }
3965 }
3966
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)3967 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3968 {
3969 struct vcpu_vmx *vmx = to_vmx(vcpu);
3970 u8 mode = vmx_msr_bitmap_mode(vcpu);
3971 u8 changed = mode ^ vmx->msr_bitmap_mode;
3972
3973 if (!changed)
3974 return;
3975
3976 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3977 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3978
3979 vmx->msr_bitmap_mode = mode;
3980 }
3981
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)3982 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3983 {
3984 struct vcpu_vmx *vmx = to_vmx(vcpu);
3985 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3986 u32 i;
3987
3988 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3989 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3990 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3991 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3992 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3993 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3994 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3995 }
3996 }
3997
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3998 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3999 {
4000 struct vcpu_vmx *vmx = to_vmx(vcpu);
4001 void *vapic_page;
4002 u32 vppr;
4003 int rvi;
4004
4005 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4006 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4007 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4008 return false;
4009
4010 rvi = vmx_get_rvi();
4011
4012 vapic_page = vmx->nested.virtual_apic_map.hva;
4013 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4014
4015 return ((rvi & 0xf0) > (vppr & 0xf0));
4016 }
4017
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4018 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4019 {
4020 struct vcpu_vmx *vmx = to_vmx(vcpu);
4021 u32 i;
4022
4023 /*
4024 * Set intercept permissions for all potentially passed through MSRs
4025 * again. They will automatically get filtered through the MSR filter,
4026 * so we are back in sync after this.
4027 */
4028 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4029 u32 msr = vmx_possible_passthrough_msrs[i];
4030 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
4031 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
4032
4033 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
4034 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
4035 }
4036
4037 pt_update_intercept_for_msr(vcpu);
4038 vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
4039 }
4040
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)4041 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4042 bool nested)
4043 {
4044 #ifdef CONFIG_SMP
4045 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
4046
4047 if (vcpu->mode == IN_GUEST_MODE) {
4048 /*
4049 * The vector of interrupt to be delivered to vcpu had
4050 * been set in PIR before this function.
4051 *
4052 * Following cases will be reached in this block, and
4053 * we always send a notification event in all cases as
4054 * explained below.
4055 *
4056 * Case 1: vcpu keeps in non-root mode. Sending a
4057 * notification event posts the interrupt to vcpu.
4058 *
4059 * Case 2: vcpu exits to root mode and is still
4060 * runnable. PIR will be synced to vIRR before the
4061 * next vcpu entry. Sending a notification event in
4062 * this case has no effect, as vcpu is not in root
4063 * mode.
4064 *
4065 * Case 3: vcpu exits to root mode and is blocked.
4066 * vcpu_block() has already synced PIR to vIRR and
4067 * never blocks vcpu if vIRR is not cleared. Therefore,
4068 * a blocked vcpu here does not wait for any requested
4069 * interrupts in PIR, and sending a notification event
4070 * which has no effect is safe here.
4071 */
4072
4073 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4074 return true;
4075 }
4076 #endif
4077 return false;
4078 }
4079
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4080 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4081 int vector)
4082 {
4083 struct vcpu_vmx *vmx = to_vmx(vcpu);
4084
4085 if (is_guest_mode(vcpu) &&
4086 vector == vmx->nested.posted_intr_nv) {
4087 /*
4088 * If a posted intr is not recognized by hardware,
4089 * we will accomplish it in the next vmentry.
4090 */
4091 vmx->nested.pi_pending = true;
4092 kvm_make_request(KVM_REQ_EVENT, vcpu);
4093 /* the PIR and ON have been set by L1. */
4094 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
4095 kvm_vcpu_kick(vcpu);
4096 return 0;
4097 }
4098 return -1;
4099 }
4100 /*
4101 * Send interrupt to vcpu via posted interrupt way.
4102 * 1. If target vcpu is running(non-root mode), send posted interrupt
4103 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4104 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4105 * interrupt from PIR in next vmentry.
4106 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4107 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4108 {
4109 struct vcpu_vmx *vmx = to_vmx(vcpu);
4110 int r;
4111
4112 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4113 if (!r)
4114 return 0;
4115
4116 if (!vcpu->arch.apicv_active)
4117 return -1;
4118
4119 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4120 return 0;
4121
4122 /* If a previous notification has sent the IPI, nothing to do. */
4123 if (pi_test_and_set_on(&vmx->pi_desc))
4124 return 0;
4125
4126 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4127 kvm_vcpu_kick(vcpu);
4128
4129 return 0;
4130 }
4131
4132 /*
4133 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4134 * will not change in the lifetime of the guest.
4135 * Note that host-state that does change is set elsewhere. E.g., host-state
4136 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4137 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4138 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4139 {
4140 u32 low32, high32;
4141 unsigned long tmpl;
4142 unsigned long cr0, cr3, cr4;
4143
4144 cr0 = read_cr0();
4145 WARN_ON(cr0 & X86_CR0_TS);
4146 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4147
4148 /*
4149 * Save the most likely value for this task's CR3 in the VMCS.
4150 * We can't use __get_current_cr3_fast() because we're not atomic.
4151 */
4152 cr3 = __read_cr3();
4153 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4154 vmx->loaded_vmcs->host_state.cr3 = cr3;
4155
4156 /* Save the most likely value for this task's CR4 in the VMCS. */
4157 cr4 = cr4_read_shadow();
4158 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4159 vmx->loaded_vmcs->host_state.cr4 = cr4;
4160
4161 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4162 #ifdef CONFIG_X86_64
4163 /*
4164 * Load null selectors, so we can avoid reloading them in
4165 * vmx_prepare_switch_to_host(), in case userspace uses
4166 * the null selectors too (the expected case).
4167 */
4168 vmcs_write16(HOST_DS_SELECTOR, 0);
4169 vmcs_write16(HOST_ES_SELECTOR, 0);
4170 #else
4171 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4172 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4173 #endif
4174 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4175 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4176
4177 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4178
4179 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4180
4181 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4182 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4183 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4184 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4185
4186 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4187 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4188 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4189 }
4190
4191 if (cpu_has_load_ia32_efer())
4192 vmcs_write64(HOST_IA32_EFER, host_efer);
4193 }
4194
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4195 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4196 {
4197 struct kvm_vcpu *vcpu = &vmx->vcpu;
4198
4199 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4200 ~vcpu->arch.cr4_guest_rsvd_bits;
4201 if (!enable_ept)
4202 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4203 if (is_guest_mode(&vmx->vcpu))
4204 vcpu->arch.cr4_guest_owned_bits &=
4205 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4206 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4207 }
4208
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4209 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4210 {
4211 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4212
4213 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4214 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4215
4216 if (!enable_vnmi)
4217 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4218
4219 if (!enable_preemption_timer)
4220 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4221
4222 return pin_based_exec_ctrl;
4223 }
4224
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4225 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4226 {
4227 struct vcpu_vmx *vmx = to_vmx(vcpu);
4228
4229 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4230 if (cpu_has_secondary_exec_ctrls()) {
4231 if (kvm_vcpu_apicv_active(vcpu))
4232 secondary_exec_controls_setbit(vmx,
4233 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4234 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4235 else
4236 secondary_exec_controls_clearbit(vmx,
4237 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4238 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4239 }
4240
4241 if (cpu_has_vmx_msr_bitmap())
4242 vmx_update_msr_bitmap(vcpu);
4243 }
4244
vmx_exec_control(struct vcpu_vmx * vmx)4245 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4246 {
4247 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4248
4249 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4250 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4251
4252 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4253 exec_control &= ~CPU_BASED_TPR_SHADOW;
4254 #ifdef CONFIG_X86_64
4255 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4256 CPU_BASED_CR8_LOAD_EXITING;
4257 #endif
4258 }
4259 if (!enable_ept)
4260 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4261 CPU_BASED_CR3_LOAD_EXITING |
4262 CPU_BASED_INVLPG_EXITING;
4263 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4264 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4265 CPU_BASED_MONITOR_EXITING);
4266 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4267 exec_control &= ~CPU_BASED_HLT_EXITING;
4268 return exec_control;
4269 }
4270
4271 /*
4272 * Adjust a single secondary execution control bit to intercept/allow an
4273 * instruction in the guest. This is usually done based on whether or not a
4274 * feature has been exposed to the guest in order to correctly emulate faults.
4275 */
4276 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4277 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4278 u32 control, bool enabled, bool exiting)
4279 {
4280 /*
4281 * If the control is for an opt-in feature, clear the control if the
4282 * feature is not exposed to the guest, i.e. not enabled. If the
4283 * control is opt-out, i.e. an exiting control, clear the control if
4284 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4285 * disabled for the associated instruction. Note, the caller is
4286 * responsible presetting exec_control to set all supported bits.
4287 */
4288 if (enabled == exiting)
4289 *exec_control &= ~control;
4290
4291 /*
4292 * Update the nested MSR settings so that a nested VMM can/can't set
4293 * controls for features that are/aren't exposed to the guest.
4294 */
4295 if (nested) {
4296 if (enabled)
4297 vmx->nested.msrs.secondary_ctls_high |= control;
4298 else
4299 vmx->nested.msrs.secondary_ctls_high &= ~control;
4300 }
4301 }
4302
4303 /*
4304 * Wrapper macro for the common case of adjusting a secondary execution control
4305 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4306 * verifies that the control is actually supported by KVM and hardware.
4307 */
4308 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4309 ({ \
4310 bool __enabled; \
4311 \
4312 if (cpu_has_vmx_##name()) { \
4313 __enabled = guest_cpuid_has(&(vmx)->vcpu, \
4314 X86_FEATURE_##feat_name); \
4315 vmx_adjust_secondary_exec_control(vmx, exec_control, \
4316 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4317 } \
4318 })
4319
4320 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4321 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4322 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4323
4324 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4325 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4326
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)4327 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4328 {
4329 struct kvm_vcpu *vcpu = &vmx->vcpu;
4330
4331 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4332
4333 if (vmx_pt_mode_is_system())
4334 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4335 if (!cpu_need_virtualize_apic_accesses(vcpu))
4336 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4337 if (vmx->vpid == 0)
4338 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4339 if (!enable_ept) {
4340 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4341 enable_unrestricted_guest = 0;
4342 }
4343 if (!enable_unrestricted_guest)
4344 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4345 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4346 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4347 if (!kvm_vcpu_apicv_active(vcpu))
4348 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4349 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4350 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4351
4352 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4353 * in vmx_set_cr4. */
4354 exec_control &= ~SECONDARY_EXEC_DESC;
4355
4356 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4357 (handle_vmptrld).
4358 We can NOT enable shadow_vmcs here because we don't have yet
4359 a current VMCS12
4360 */
4361 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4362
4363 if (!enable_pml)
4364 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4365
4366 if (cpu_has_vmx_xsaves()) {
4367 /* Exposing XSAVES only when XSAVE is exposed */
4368 bool xsaves_enabled =
4369 boot_cpu_has(X86_FEATURE_XSAVE) &&
4370 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4371 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4372
4373 vcpu->arch.xsaves_enabled = xsaves_enabled;
4374
4375 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4376 SECONDARY_EXEC_XSAVES,
4377 xsaves_enabled, false);
4378 }
4379
4380 vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4381
4382 /*
4383 * Expose INVPCID if and only if PCID is also exposed to the guest.
4384 * INVPCID takes a #UD when it's disabled in the VMCS, but a #GP or #PF
4385 * if CR4.PCIDE=0. Enumerating CPUID.INVPCID=1 would lead to incorrect
4386 * behavior from the guest perspective (it would expect #GP or #PF).
4387 */
4388 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
4389 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4390 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4391
4392
4393 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4394 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4395
4396 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4397 ENABLE_USR_WAIT_PAUSE, false);
4398
4399 vmx->secondary_exec_control = exec_control;
4400 }
4401
ept_set_mmio_spte_mask(void)4402 static void ept_set_mmio_spte_mask(void)
4403 {
4404 /*
4405 * EPT Misconfigurations can be generated if the value of bits 2:0
4406 * of an EPT paging-structure entry is 110b (write/execute).
4407 */
4408 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4409 }
4410
4411 #define VMX_XSS_EXIT_BITMAP 0
4412
4413 /*
4414 * Noting that the initialization of Guest-state Area of VMCS is in
4415 * vmx_vcpu_reset().
4416 */
init_vmcs(struct vcpu_vmx * vmx)4417 static void init_vmcs(struct vcpu_vmx *vmx)
4418 {
4419 if (nested)
4420 nested_vmx_set_vmcs_shadowing_bitmap();
4421
4422 if (cpu_has_vmx_msr_bitmap())
4423 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4424
4425 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4426
4427 /* Control */
4428 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4429
4430 exec_controls_set(vmx, vmx_exec_control(vmx));
4431
4432 if (cpu_has_secondary_exec_ctrls()) {
4433 vmx_compute_secondary_exec_control(vmx);
4434 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4435 }
4436
4437 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4438 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4439 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4440 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4441 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4442
4443 vmcs_write16(GUEST_INTR_STATUS, 0);
4444
4445 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4446 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4447 }
4448
4449 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4450 vmcs_write32(PLE_GAP, ple_gap);
4451 vmx->ple_window = ple_window;
4452 vmx->ple_window_dirty = true;
4453 }
4454
4455 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4456 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4457 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4458
4459 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4460 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4461 vmx_set_constant_host_state(vmx);
4462 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4463 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4464
4465 if (cpu_has_vmx_vmfunc())
4466 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4467
4468 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4469 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4470 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4471 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4472 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4473
4474 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4475 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4476
4477 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4478
4479 /* 22.2.1, 20.8.1 */
4480 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4481
4482 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4483 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4484
4485 set_cr4_guest_host_mask(vmx);
4486
4487 if (vmx->vpid != 0)
4488 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4489
4490 if (cpu_has_vmx_xsaves())
4491 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4492
4493 if (enable_pml) {
4494 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4495 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4496 }
4497
4498 if (cpu_has_vmx_encls_vmexit())
4499 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4500
4501 if (vmx_pt_mode_is_host_guest()) {
4502 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4503 /* Bit[6~0] are forced to 1, writes are ignored. */
4504 vmx->pt_desc.guest.output_mask = 0x7F;
4505 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4506 }
4507 }
4508
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4509 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4510 {
4511 struct vcpu_vmx *vmx = to_vmx(vcpu);
4512 struct msr_data apic_base_msr;
4513 u64 cr0;
4514
4515 vmx->rmode.vm86_active = 0;
4516 vmx->spec_ctrl = 0;
4517
4518 vmx->msr_ia32_umwait_control = 0;
4519
4520 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4521 vmx->hv_deadline_tsc = -1;
4522 kvm_set_cr8(vcpu, 0);
4523
4524 if (!init_event) {
4525 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4526 MSR_IA32_APICBASE_ENABLE;
4527 if (kvm_vcpu_is_reset_bsp(vcpu))
4528 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4529 apic_base_msr.host_initiated = true;
4530 kvm_set_apic_base(vcpu, &apic_base_msr);
4531 }
4532
4533 vmx_segment_cache_clear(vmx);
4534
4535 seg_setup(VCPU_SREG_CS);
4536 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4537 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4538
4539 seg_setup(VCPU_SREG_DS);
4540 seg_setup(VCPU_SREG_ES);
4541 seg_setup(VCPU_SREG_FS);
4542 seg_setup(VCPU_SREG_GS);
4543 seg_setup(VCPU_SREG_SS);
4544
4545 vmcs_write16(GUEST_TR_SELECTOR, 0);
4546 vmcs_writel(GUEST_TR_BASE, 0);
4547 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4548 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4549
4550 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4551 vmcs_writel(GUEST_LDTR_BASE, 0);
4552 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4553 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4554
4555 if (!init_event) {
4556 vmcs_write32(GUEST_SYSENTER_CS, 0);
4557 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4558 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4559 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4560 }
4561
4562 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4563 kvm_rip_write(vcpu, 0xfff0);
4564
4565 vmcs_writel(GUEST_GDTR_BASE, 0);
4566 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4567
4568 vmcs_writel(GUEST_IDTR_BASE, 0);
4569 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4570
4571 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4572 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4573 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4574 if (kvm_mpx_supported())
4575 vmcs_write64(GUEST_BNDCFGS, 0);
4576
4577 setup_msrs(vmx);
4578
4579 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4580
4581 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4582 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4583 if (cpu_need_tpr_shadow(vcpu))
4584 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4585 __pa(vcpu->arch.apic->regs));
4586 vmcs_write32(TPR_THRESHOLD, 0);
4587 }
4588
4589 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4590
4591 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4592 vmx->vcpu.arch.cr0 = cr0;
4593 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4594 vmx_set_cr4(vcpu, 0);
4595 vmx_set_efer(vcpu, 0);
4596
4597 update_exception_bitmap(vcpu);
4598
4599 vpid_sync_context(vmx->vpid);
4600 if (init_event)
4601 vmx_clear_hlt(vcpu);
4602
4603 vmx_update_fb_clear_dis(vcpu, vmx);
4604 }
4605
enable_irq_window(struct kvm_vcpu * vcpu)4606 static void enable_irq_window(struct kvm_vcpu *vcpu)
4607 {
4608 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4609 }
4610
enable_nmi_window(struct kvm_vcpu * vcpu)4611 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4612 {
4613 if (!enable_vnmi ||
4614 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4615 enable_irq_window(vcpu);
4616 return;
4617 }
4618
4619 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4620 }
4621
vmx_inject_irq(struct kvm_vcpu * vcpu)4622 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4623 {
4624 struct vcpu_vmx *vmx = to_vmx(vcpu);
4625 uint32_t intr;
4626 int irq = vcpu->arch.interrupt.nr;
4627
4628 trace_kvm_inj_virq(irq);
4629
4630 ++vcpu->stat.irq_injections;
4631 if (vmx->rmode.vm86_active) {
4632 int inc_eip = 0;
4633 if (vcpu->arch.interrupt.soft)
4634 inc_eip = vcpu->arch.event_exit_inst_len;
4635 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4636 return;
4637 }
4638 intr = irq | INTR_INFO_VALID_MASK;
4639 if (vcpu->arch.interrupt.soft) {
4640 intr |= INTR_TYPE_SOFT_INTR;
4641 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4642 vmx->vcpu.arch.event_exit_inst_len);
4643 } else
4644 intr |= INTR_TYPE_EXT_INTR;
4645 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4646
4647 vmx_clear_hlt(vcpu);
4648 }
4649
vmx_inject_nmi(struct kvm_vcpu * vcpu)4650 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4651 {
4652 struct vcpu_vmx *vmx = to_vmx(vcpu);
4653
4654 if (!enable_vnmi) {
4655 /*
4656 * Tracking the NMI-blocked state in software is built upon
4657 * finding the next open IRQ window. This, in turn, depends on
4658 * well-behaving guests: They have to keep IRQs disabled at
4659 * least as long as the NMI handler runs. Otherwise we may
4660 * cause NMI nesting, maybe breaking the guest. But as this is
4661 * highly unlikely, we can live with the residual risk.
4662 */
4663 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4664 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4665 }
4666
4667 ++vcpu->stat.nmi_injections;
4668 vmx->loaded_vmcs->nmi_known_unmasked = false;
4669
4670 if (vmx->rmode.vm86_active) {
4671 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4672 return;
4673 }
4674
4675 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4676 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4677
4678 vmx_clear_hlt(vcpu);
4679 }
4680
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4681 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4682 {
4683 struct vcpu_vmx *vmx = to_vmx(vcpu);
4684 bool masked;
4685
4686 if (!enable_vnmi)
4687 return vmx->loaded_vmcs->soft_vnmi_blocked;
4688 if (vmx->loaded_vmcs->nmi_known_unmasked)
4689 return false;
4690 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4691 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4692 return masked;
4693 }
4694
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4695 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4696 {
4697 struct vcpu_vmx *vmx = to_vmx(vcpu);
4698
4699 if (!enable_vnmi) {
4700 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4701 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4702 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4703 }
4704 } else {
4705 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4706 if (masked)
4707 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4708 GUEST_INTR_STATE_NMI);
4709 else
4710 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4711 GUEST_INTR_STATE_NMI);
4712 }
4713 }
4714
vmx_nmi_blocked(struct kvm_vcpu * vcpu)4715 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4716 {
4717 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4718 return false;
4719
4720 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4721 return true;
4722
4723 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4724 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4725 GUEST_INTR_STATE_NMI));
4726 }
4727
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4728 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4729 {
4730 if (to_vmx(vcpu)->nested.nested_run_pending)
4731 return -EBUSY;
4732
4733 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4734 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4735 return -EBUSY;
4736
4737 return !vmx_nmi_blocked(vcpu);
4738 }
4739
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4740 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4741 {
4742 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4743 return false;
4744
4745 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4746 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4747 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4748 }
4749
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4750 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4751 {
4752 if (to_vmx(vcpu)->nested.nested_run_pending)
4753 return -EBUSY;
4754
4755 /*
4756 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4757 * e.g. if the IRQ arrived asynchronously after checking nested events.
4758 */
4759 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4760 return -EBUSY;
4761
4762 return !vmx_interrupt_blocked(vcpu);
4763 }
4764
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4765 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4766 {
4767 int ret;
4768
4769 if (enable_unrestricted_guest)
4770 return 0;
4771
4772 mutex_lock(&kvm->slots_lock);
4773 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4774 PAGE_SIZE * 3);
4775 mutex_unlock(&kvm->slots_lock);
4776
4777 if (ret)
4778 return ret;
4779 to_kvm_vmx(kvm)->tss_addr = addr;
4780 return init_rmode_tss(kvm);
4781 }
4782
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4783 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4784 {
4785 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4786 return 0;
4787 }
4788
rmode_exception(struct kvm_vcpu * vcpu,int vec)4789 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4790 {
4791 switch (vec) {
4792 case BP_VECTOR:
4793 /*
4794 * Update instruction length as we may reinject the exception
4795 * from user space while in guest debugging mode.
4796 */
4797 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4798 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4799 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4800 return false;
4801 fallthrough;
4802 case DB_VECTOR:
4803 return !(vcpu->guest_debug &
4804 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4805 case DE_VECTOR:
4806 case OF_VECTOR:
4807 case BR_VECTOR:
4808 case UD_VECTOR:
4809 case DF_VECTOR:
4810 case SS_VECTOR:
4811 case GP_VECTOR:
4812 case MF_VECTOR:
4813 return true;
4814 }
4815 return false;
4816 }
4817
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4818 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4819 int vec, u32 err_code)
4820 {
4821 /*
4822 * Instruction with address size override prefix opcode 0x67
4823 * Cause the #SS fault with 0 error code in VM86 mode.
4824 */
4825 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4826 if (kvm_emulate_instruction(vcpu, 0)) {
4827 if (vcpu->arch.halt_request) {
4828 vcpu->arch.halt_request = 0;
4829 return kvm_vcpu_halt(vcpu);
4830 }
4831 return 1;
4832 }
4833 return 0;
4834 }
4835
4836 /*
4837 * Forward all other exceptions that are valid in real mode.
4838 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4839 * the required debugging infrastructure rework.
4840 */
4841 kvm_queue_exception(vcpu, vec);
4842 return 1;
4843 }
4844
4845 /*
4846 * Trigger machine check on the host. We assume all the MSRs are already set up
4847 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4848 * We pass a fake environment to the machine check handler because we want
4849 * the guest to be always treated like user space, no matter what context
4850 * it used internally.
4851 */
kvm_machine_check(void)4852 static void kvm_machine_check(void)
4853 {
4854 #if defined(CONFIG_X86_MCE)
4855 struct pt_regs regs = {
4856 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4857 .flags = X86_EFLAGS_IF,
4858 };
4859
4860 do_machine_check(®s);
4861 #endif
4862 }
4863
handle_machine_check(struct kvm_vcpu * vcpu)4864 static int handle_machine_check(struct kvm_vcpu *vcpu)
4865 {
4866 /* handled by vmx_vcpu_run() */
4867 return 1;
4868 }
4869
4870 /*
4871 * If the host has split lock detection disabled, then #AC is
4872 * unconditionally injected into the guest, which is the pre split lock
4873 * detection behaviour.
4874 *
4875 * If the host has split lock detection enabled then #AC is
4876 * only injected into the guest when:
4877 * - Guest CPL == 3 (user mode)
4878 * - Guest has #AC detection enabled in CR0
4879 * - Guest EFLAGS has AC bit set
4880 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)4881 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4882 {
4883 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4884 return true;
4885
4886 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4887 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4888 }
4889
handle_exception_nmi(struct kvm_vcpu * vcpu)4890 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4891 {
4892 struct vcpu_vmx *vmx = to_vmx(vcpu);
4893 struct kvm_run *kvm_run = vcpu->run;
4894 u32 intr_info, ex_no, error_code;
4895 unsigned long cr2, rip, dr6;
4896 u32 vect_info;
4897
4898 vect_info = vmx->idt_vectoring_info;
4899 intr_info = vmx_get_intr_info(vcpu);
4900
4901 if (is_machine_check(intr_info) || is_nmi(intr_info))
4902 return 1; /* handled by handle_exception_nmi_irqoff() */
4903
4904 if (is_invalid_opcode(intr_info))
4905 return handle_ud(vcpu);
4906
4907 error_code = 0;
4908 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4909 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4910
4911 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4912 WARN_ON_ONCE(!enable_vmware_backdoor);
4913
4914 /*
4915 * VMware backdoor emulation on #GP interception only handles
4916 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4917 * error code on #GP.
4918 */
4919 if (error_code) {
4920 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4921 return 1;
4922 }
4923 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4924 }
4925
4926 /*
4927 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4928 * MMIO, it is better to report an internal error.
4929 * See the comments in vmx_handle_exit.
4930 */
4931 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4932 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4933 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4934 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4935 vcpu->run->internal.ndata = 4;
4936 vcpu->run->internal.data[0] = vect_info;
4937 vcpu->run->internal.data[1] = intr_info;
4938 vcpu->run->internal.data[2] = error_code;
4939 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4940 return 0;
4941 }
4942
4943 if (is_page_fault(intr_info)) {
4944 cr2 = vmx_get_exit_qual(vcpu);
4945 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4946 /*
4947 * EPT will cause page fault only if we need to
4948 * detect illegal GPAs.
4949 */
4950 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4951 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4952 return 1;
4953 } else
4954 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4955 }
4956
4957 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4958
4959 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4960 return handle_rmode_exception(vcpu, ex_no, error_code);
4961
4962 switch (ex_no) {
4963 case DB_VECTOR:
4964 dr6 = vmx_get_exit_qual(vcpu);
4965 if (!(vcpu->guest_debug &
4966 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4967 /*
4968 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
4969 * instruction. ICEBP generates a trap-like #DB, but
4970 * despite its interception control being tied to #DB,
4971 * is an instruction intercept, i.e. the VM-Exit occurs
4972 * on the ICEBP itself. Note, skipping ICEBP also
4973 * clears STI and MOVSS blocking.
4974 *
4975 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
4976 * if single-step is enabled in RFLAGS and STI or MOVSS
4977 * blocking is active, as the CPU doesn't set the bit
4978 * on VM-Exit due to #DB interception. VM-Entry has a
4979 * consistency check that a single-step #DB is pending
4980 * in this scenario as the previous instruction cannot
4981 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
4982 * don't modify RFLAGS), therefore the one instruction
4983 * delay when activating single-step breakpoints must
4984 * have already expired. Note, the CPU sets/clears BS
4985 * as appropriate for all other VM-Exits types.
4986 */
4987 if (is_icebp(intr_info))
4988 WARN_ON(!skip_emulated_instruction(vcpu));
4989 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
4990 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4991 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
4992 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
4993 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
4994
4995 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4996 return 1;
4997 }
4998 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4999 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5000 fallthrough;
5001 case BP_VECTOR:
5002 /*
5003 * Update instruction length as we may reinject #BP from
5004 * user space while in guest debugging mode. Reading it for
5005 * #DB as well causes no harm, it is not used in that case.
5006 */
5007 vmx->vcpu.arch.event_exit_inst_len =
5008 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5009 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5010 rip = kvm_rip_read(vcpu);
5011 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5012 kvm_run->debug.arch.exception = ex_no;
5013 break;
5014 case AC_VECTOR:
5015 if (vmx_guest_inject_ac(vcpu)) {
5016 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5017 return 1;
5018 }
5019
5020 /*
5021 * Handle split lock. Depending on detection mode this will
5022 * either warn and disable split lock detection for this
5023 * task or force SIGBUS on it.
5024 */
5025 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5026 return 1;
5027 fallthrough;
5028 default:
5029 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5030 kvm_run->ex.exception = ex_no;
5031 kvm_run->ex.error_code = error_code;
5032 break;
5033 }
5034 return 0;
5035 }
5036
handle_external_interrupt(struct kvm_vcpu * vcpu)5037 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5038 {
5039 ++vcpu->stat.irq_exits;
5040 return 1;
5041 }
5042
handle_triple_fault(struct kvm_vcpu * vcpu)5043 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5044 {
5045 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5046 vcpu->mmio_needed = 0;
5047 return 0;
5048 }
5049
handle_io(struct kvm_vcpu * vcpu)5050 static int handle_io(struct kvm_vcpu *vcpu)
5051 {
5052 unsigned long exit_qualification;
5053 int size, in, string;
5054 unsigned port;
5055
5056 exit_qualification = vmx_get_exit_qual(vcpu);
5057 string = (exit_qualification & 16) != 0;
5058
5059 ++vcpu->stat.io_exits;
5060
5061 if (string)
5062 return kvm_emulate_instruction(vcpu, 0);
5063
5064 port = exit_qualification >> 16;
5065 size = (exit_qualification & 7) + 1;
5066 in = (exit_qualification & 8) != 0;
5067
5068 return kvm_fast_pio(vcpu, size, port, in);
5069 }
5070
5071 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5072 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5073 {
5074 /*
5075 * Patch in the VMCALL instruction:
5076 */
5077 hypercall[0] = 0x0f;
5078 hypercall[1] = 0x01;
5079 hypercall[2] = 0xc1;
5080 }
5081
5082 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5083 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5084 {
5085 if (is_guest_mode(vcpu)) {
5086 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5087 unsigned long orig_val = val;
5088
5089 /*
5090 * We get here when L2 changed cr0 in a way that did not change
5091 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5092 * but did change L0 shadowed bits. So we first calculate the
5093 * effective cr0 value that L1 would like to write into the
5094 * hardware. It consists of the L2-owned bits from the new
5095 * value combined with the L1-owned bits from L1's guest_cr0.
5096 */
5097 val = (val & ~vmcs12->cr0_guest_host_mask) |
5098 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5099
5100 if (!nested_guest_cr0_valid(vcpu, val))
5101 return 1;
5102
5103 if (kvm_set_cr0(vcpu, val))
5104 return 1;
5105 vmcs_writel(CR0_READ_SHADOW, orig_val);
5106 return 0;
5107 } else {
5108 if (to_vmx(vcpu)->nested.vmxon &&
5109 !nested_host_cr0_valid(vcpu, val))
5110 return 1;
5111
5112 return kvm_set_cr0(vcpu, val);
5113 }
5114 }
5115
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5116 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5117 {
5118 if (is_guest_mode(vcpu)) {
5119 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5120 unsigned long orig_val = val;
5121
5122 /* analogously to handle_set_cr0 */
5123 val = (val & ~vmcs12->cr4_guest_host_mask) |
5124 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5125 if (kvm_set_cr4(vcpu, val))
5126 return 1;
5127 vmcs_writel(CR4_READ_SHADOW, orig_val);
5128 return 0;
5129 } else
5130 return kvm_set_cr4(vcpu, val);
5131 }
5132
handle_desc(struct kvm_vcpu * vcpu)5133 static int handle_desc(struct kvm_vcpu *vcpu)
5134 {
5135 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5136 return kvm_emulate_instruction(vcpu, 0);
5137 }
5138
handle_cr(struct kvm_vcpu * vcpu)5139 static int handle_cr(struct kvm_vcpu *vcpu)
5140 {
5141 unsigned long exit_qualification, val;
5142 int cr;
5143 int reg;
5144 int err;
5145 int ret;
5146
5147 exit_qualification = vmx_get_exit_qual(vcpu);
5148 cr = exit_qualification & 15;
5149 reg = (exit_qualification >> 8) & 15;
5150 switch ((exit_qualification >> 4) & 3) {
5151 case 0: /* mov to cr */
5152 val = kvm_register_readl(vcpu, reg);
5153 trace_kvm_cr_write(cr, val);
5154 switch (cr) {
5155 case 0:
5156 err = handle_set_cr0(vcpu, val);
5157 return kvm_complete_insn_gp(vcpu, err);
5158 case 3:
5159 WARN_ON_ONCE(enable_unrestricted_guest);
5160 err = kvm_set_cr3(vcpu, val);
5161 return kvm_complete_insn_gp(vcpu, err);
5162 case 4:
5163 err = handle_set_cr4(vcpu, val);
5164 return kvm_complete_insn_gp(vcpu, err);
5165 case 8: {
5166 u8 cr8_prev = kvm_get_cr8(vcpu);
5167 u8 cr8 = (u8)val;
5168 err = kvm_set_cr8(vcpu, cr8);
5169 ret = kvm_complete_insn_gp(vcpu, err);
5170 if (lapic_in_kernel(vcpu))
5171 return ret;
5172 if (cr8_prev <= cr8)
5173 return ret;
5174 /*
5175 * TODO: we might be squashing a
5176 * KVM_GUESTDBG_SINGLESTEP-triggered
5177 * KVM_EXIT_DEBUG here.
5178 */
5179 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5180 return 0;
5181 }
5182 }
5183 break;
5184 case 2: /* clts */
5185 WARN_ONCE(1, "Guest should always own CR0.TS");
5186 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5187 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5188 return kvm_skip_emulated_instruction(vcpu);
5189 case 1: /*mov from cr*/
5190 switch (cr) {
5191 case 3:
5192 WARN_ON_ONCE(enable_unrestricted_guest);
5193 val = kvm_read_cr3(vcpu);
5194 kvm_register_write(vcpu, reg, val);
5195 trace_kvm_cr_read(cr, val);
5196 return kvm_skip_emulated_instruction(vcpu);
5197 case 8:
5198 val = kvm_get_cr8(vcpu);
5199 kvm_register_write(vcpu, reg, val);
5200 trace_kvm_cr_read(cr, val);
5201 return kvm_skip_emulated_instruction(vcpu);
5202 }
5203 break;
5204 case 3: /* lmsw */
5205 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5206 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5207 kvm_lmsw(vcpu, val);
5208
5209 return kvm_skip_emulated_instruction(vcpu);
5210 default:
5211 break;
5212 }
5213 vcpu->run->exit_reason = 0;
5214 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5215 (int)(exit_qualification >> 4) & 3, cr);
5216 return 0;
5217 }
5218
handle_dr(struct kvm_vcpu * vcpu)5219 static int handle_dr(struct kvm_vcpu *vcpu)
5220 {
5221 unsigned long exit_qualification;
5222 int dr, dr7, reg;
5223
5224 exit_qualification = vmx_get_exit_qual(vcpu);
5225 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5226
5227 /* First, if DR does not exist, trigger UD */
5228 if (!kvm_require_dr(vcpu, dr))
5229 return 1;
5230
5231 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5232 if (!kvm_require_cpl(vcpu, 0))
5233 return 1;
5234 dr7 = vmcs_readl(GUEST_DR7);
5235 if (dr7 & DR7_GD) {
5236 /*
5237 * As the vm-exit takes precedence over the debug trap, we
5238 * need to emulate the latter, either for the host or the
5239 * guest debugging itself.
5240 */
5241 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5242 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5243 vcpu->run->debug.arch.dr7 = dr7;
5244 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5245 vcpu->run->debug.arch.exception = DB_VECTOR;
5246 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5247 return 0;
5248 } else {
5249 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5250 return 1;
5251 }
5252 }
5253
5254 if (vcpu->guest_debug == 0) {
5255 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5256
5257 /*
5258 * No more DR vmexits; force a reload of the debug registers
5259 * and reenter on this instruction. The next vmexit will
5260 * retrieve the full state of the debug registers.
5261 */
5262 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5263 return 1;
5264 }
5265
5266 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5267 if (exit_qualification & TYPE_MOV_FROM_DR) {
5268 unsigned long val;
5269
5270 if (kvm_get_dr(vcpu, dr, &val))
5271 return 1;
5272 kvm_register_write(vcpu, reg, val);
5273 } else
5274 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5275 return 1;
5276
5277 return kvm_skip_emulated_instruction(vcpu);
5278 }
5279
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5280 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5281 {
5282 get_debugreg(vcpu->arch.db[0], 0);
5283 get_debugreg(vcpu->arch.db[1], 1);
5284 get_debugreg(vcpu->arch.db[2], 2);
5285 get_debugreg(vcpu->arch.db[3], 3);
5286 get_debugreg(vcpu->arch.dr6, 6);
5287 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5288
5289 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5290 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5291 }
5292
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5293 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5294 {
5295 vmcs_writel(GUEST_DR7, val);
5296 }
5297
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5298 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5299 {
5300 kvm_apic_update_ppr(vcpu);
5301 return 1;
5302 }
5303
handle_interrupt_window(struct kvm_vcpu * vcpu)5304 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5305 {
5306 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5307
5308 kvm_make_request(KVM_REQ_EVENT, vcpu);
5309
5310 ++vcpu->stat.irq_window_exits;
5311 return 1;
5312 }
5313
handle_vmcall(struct kvm_vcpu * vcpu)5314 static int handle_vmcall(struct kvm_vcpu *vcpu)
5315 {
5316 return kvm_emulate_hypercall(vcpu);
5317 }
5318
handle_invd(struct kvm_vcpu * vcpu)5319 static int handle_invd(struct kvm_vcpu *vcpu)
5320 {
5321 /* Treat an INVD instruction as a NOP and just skip it. */
5322 return kvm_skip_emulated_instruction(vcpu);
5323 }
5324
handle_invlpg(struct kvm_vcpu * vcpu)5325 static int handle_invlpg(struct kvm_vcpu *vcpu)
5326 {
5327 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5328
5329 kvm_mmu_invlpg(vcpu, exit_qualification);
5330 return kvm_skip_emulated_instruction(vcpu);
5331 }
5332
handle_rdpmc(struct kvm_vcpu * vcpu)5333 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5334 {
5335 int err;
5336
5337 err = kvm_rdpmc(vcpu);
5338 return kvm_complete_insn_gp(vcpu, err);
5339 }
5340
handle_wbinvd(struct kvm_vcpu * vcpu)5341 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5342 {
5343 return kvm_emulate_wbinvd(vcpu);
5344 }
5345
handle_xsetbv(struct kvm_vcpu * vcpu)5346 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5347 {
5348 u64 new_bv = kvm_read_edx_eax(vcpu);
5349 u32 index = kvm_rcx_read(vcpu);
5350
5351 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5352 return kvm_skip_emulated_instruction(vcpu);
5353 return 1;
5354 }
5355
handle_apic_access(struct kvm_vcpu * vcpu)5356 static int handle_apic_access(struct kvm_vcpu *vcpu)
5357 {
5358 if (likely(fasteoi)) {
5359 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5360 int access_type, offset;
5361
5362 access_type = exit_qualification & APIC_ACCESS_TYPE;
5363 offset = exit_qualification & APIC_ACCESS_OFFSET;
5364 /*
5365 * Sane guest uses MOV to write EOI, with written value
5366 * not cared. So make a short-circuit here by avoiding
5367 * heavy instruction emulation.
5368 */
5369 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5370 (offset == APIC_EOI)) {
5371 kvm_lapic_set_eoi(vcpu);
5372 return kvm_skip_emulated_instruction(vcpu);
5373 }
5374 }
5375 return kvm_emulate_instruction(vcpu, 0);
5376 }
5377
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5378 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5379 {
5380 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5381 int vector = exit_qualification & 0xff;
5382
5383 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5384 kvm_apic_set_eoi_accelerated(vcpu, vector);
5385 return 1;
5386 }
5387
handle_apic_write(struct kvm_vcpu * vcpu)5388 static int handle_apic_write(struct kvm_vcpu *vcpu)
5389 {
5390 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5391 u32 offset = exit_qualification & 0xfff;
5392
5393 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5394 kvm_apic_write_nodecode(vcpu, offset);
5395 return 1;
5396 }
5397
handle_task_switch(struct kvm_vcpu * vcpu)5398 static int handle_task_switch(struct kvm_vcpu *vcpu)
5399 {
5400 struct vcpu_vmx *vmx = to_vmx(vcpu);
5401 unsigned long exit_qualification;
5402 bool has_error_code = false;
5403 u32 error_code = 0;
5404 u16 tss_selector;
5405 int reason, type, idt_v, idt_index;
5406
5407 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5408 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5409 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5410
5411 exit_qualification = vmx_get_exit_qual(vcpu);
5412
5413 reason = (u32)exit_qualification >> 30;
5414 if (reason == TASK_SWITCH_GATE && idt_v) {
5415 switch (type) {
5416 case INTR_TYPE_NMI_INTR:
5417 vcpu->arch.nmi_injected = false;
5418 vmx_set_nmi_mask(vcpu, true);
5419 break;
5420 case INTR_TYPE_EXT_INTR:
5421 case INTR_TYPE_SOFT_INTR:
5422 kvm_clear_interrupt_queue(vcpu);
5423 break;
5424 case INTR_TYPE_HARD_EXCEPTION:
5425 if (vmx->idt_vectoring_info &
5426 VECTORING_INFO_DELIVER_CODE_MASK) {
5427 has_error_code = true;
5428 error_code =
5429 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5430 }
5431 fallthrough;
5432 case INTR_TYPE_SOFT_EXCEPTION:
5433 kvm_clear_exception_queue(vcpu);
5434 break;
5435 default:
5436 break;
5437 }
5438 }
5439 tss_selector = exit_qualification;
5440
5441 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5442 type != INTR_TYPE_EXT_INTR &&
5443 type != INTR_TYPE_NMI_INTR))
5444 WARN_ON(!skip_emulated_instruction(vcpu));
5445
5446 /*
5447 * TODO: What about debug traps on tss switch?
5448 * Are we supposed to inject them and update dr6?
5449 */
5450 return kvm_task_switch(vcpu, tss_selector,
5451 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5452 reason, has_error_code, error_code);
5453 }
5454
handle_ept_violation(struct kvm_vcpu * vcpu)5455 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5456 {
5457 unsigned long exit_qualification;
5458 gpa_t gpa;
5459 u64 error_code;
5460
5461 exit_qualification = vmx_get_exit_qual(vcpu);
5462
5463 /*
5464 * EPT violation happened while executing iret from NMI,
5465 * "blocked by NMI" bit has to be set before next VM entry.
5466 * There are errata that may cause this bit to not be set:
5467 * AAK134, BY25.
5468 */
5469 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5470 enable_vnmi &&
5471 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5472 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5473
5474 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5475 trace_kvm_page_fault(gpa, exit_qualification);
5476
5477 /* Is it a read fault? */
5478 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5479 ? PFERR_USER_MASK : 0;
5480 /* Is it a write fault? */
5481 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5482 ? PFERR_WRITE_MASK : 0;
5483 /* Is it a fetch fault? */
5484 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5485 ? PFERR_FETCH_MASK : 0;
5486 /* ept page table entry is present? */
5487 error_code |= (exit_qualification &
5488 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5489 EPT_VIOLATION_EXECUTABLE))
5490 ? PFERR_PRESENT_MASK : 0;
5491
5492 error_code |= (exit_qualification & 0x100) != 0 ?
5493 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5494
5495 vcpu->arch.exit_qualification = exit_qualification;
5496
5497 /*
5498 * Check that the GPA doesn't exceed physical memory limits, as that is
5499 * a guest page fault. We have to emulate the instruction here, because
5500 * if the illegal address is that of a paging structure, then
5501 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5502 * would also use advanced VM-exit information for EPT violations to
5503 * reconstruct the page fault error code.
5504 */
5505 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5506 return kvm_emulate_instruction(vcpu, 0);
5507
5508 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5509 }
5510
handle_ept_misconfig(struct kvm_vcpu * vcpu)5511 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5512 {
5513 gpa_t gpa;
5514
5515 /*
5516 * A nested guest cannot optimize MMIO vmexits, because we have an
5517 * nGPA here instead of the required GPA.
5518 */
5519 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5520 if (!is_guest_mode(vcpu) &&
5521 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5522 trace_kvm_fast_mmio(gpa);
5523 return kvm_skip_emulated_instruction(vcpu);
5524 }
5525
5526 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5527 }
5528
handle_nmi_window(struct kvm_vcpu * vcpu)5529 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5530 {
5531 WARN_ON_ONCE(!enable_vnmi);
5532 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5533 ++vcpu->stat.nmi_window_exits;
5534 kvm_make_request(KVM_REQ_EVENT, vcpu);
5535
5536 return 1;
5537 }
5538
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5539 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5540 {
5541 struct vcpu_vmx *vmx = to_vmx(vcpu);
5542 bool intr_window_requested;
5543 unsigned count = 130;
5544
5545 intr_window_requested = exec_controls_get(vmx) &
5546 CPU_BASED_INTR_WINDOW_EXITING;
5547
5548 while (vmx->emulation_required && count-- != 0) {
5549 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5550 return handle_interrupt_window(&vmx->vcpu);
5551
5552 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5553 return 1;
5554
5555 if (!kvm_emulate_instruction(vcpu, 0))
5556 return 0;
5557
5558 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5559 vcpu->arch.exception.pending) {
5560 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5561 vcpu->run->internal.suberror =
5562 KVM_INTERNAL_ERROR_EMULATION;
5563 vcpu->run->internal.ndata = 0;
5564 return 0;
5565 }
5566
5567 if (vcpu->arch.halt_request) {
5568 vcpu->arch.halt_request = 0;
5569 return kvm_vcpu_halt(vcpu);
5570 }
5571
5572 /*
5573 * Note, return 1 and not 0, vcpu_run() will invoke
5574 * xfer_to_guest_mode() which will create a proper return
5575 * code.
5576 */
5577 if (__xfer_to_guest_mode_work_pending())
5578 return 1;
5579 }
5580
5581 return 1;
5582 }
5583
grow_ple_window(struct kvm_vcpu * vcpu)5584 static void grow_ple_window(struct kvm_vcpu *vcpu)
5585 {
5586 struct vcpu_vmx *vmx = to_vmx(vcpu);
5587 unsigned int old = vmx->ple_window;
5588
5589 vmx->ple_window = __grow_ple_window(old, ple_window,
5590 ple_window_grow,
5591 ple_window_max);
5592
5593 if (vmx->ple_window != old) {
5594 vmx->ple_window_dirty = true;
5595 trace_kvm_ple_window_update(vcpu->vcpu_id,
5596 vmx->ple_window, old);
5597 }
5598 }
5599
shrink_ple_window(struct kvm_vcpu * vcpu)5600 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5601 {
5602 struct vcpu_vmx *vmx = to_vmx(vcpu);
5603 unsigned int old = vmx->ple_window;
5604
5605 vmx->ple_window = __shrink_ple_window(old, ple_window,
5606 ple_window_shrink,
5607 ple_window);
5608
5609 if (vmx->ple_window != old) {
5610 vmx->ple_window_dirty = true;
5611 trace_kvm_ple_window_update(vcpu->vcpu_id,
5612 vmx->ple_window, old);
5613 }
5614 }
5615
vmx_enable_tdp(void)5616 static void vmx_enable_tdp(void)
5617 {
5618 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5619 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5620 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5621 0ull, VMX_EPT_EXECUTABLE_MASK,
5622 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5623 VMX_EPT_RWX_MASK, 0ull);
5624
5625 ept_set_mmio_spte_mask();
5626 }
5627
5628 /*
5629 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5630 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5631 */
handle_pause(struct kvm_vcpu * vcpu)5632 static int handle_pause(struct kvm_vcpu *vcpu)
5633 {
5634 if (!kvm_pause_in_guest(vcpu->kvm))
5635 grow_ple_window(vcpu);
5636
5637 /*
5638 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5639 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5640 * never set PAUSE_EXITING and just set PLE if supported,
5641 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5642 */
5643 kvm_vcpu_on_spin(vcpu, true);
5644 return kvm_skip_emulated_instruction(vcpu);
5645 }
5646
handle_nop(struct kvm_vcpu * vcpu)5647 static int handle_nop(struct kvm_vcpu *vcpu)
5648 {
5649 return kvm_skip_emulated_instruction(vcpu);
5650 }
5651
handle_mwait(struct kvm_vcpu * vcpu)5652 static int handle_mwait(struct kvm_vcpu *vcpu)
5653 {
5654 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5655 return handle_nop(vcpu);
5656 }
5657
handle_invalid_op(struct kvm_vcpu * vcpu)5658 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5659 {
5660 kvm_queue_exception(vcpu, UD_VECTOR);
5661 return 1;
5662 }
5663
handle_monitor_trap(struct kvm_vcpu * vcpu)5664 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5665 {
5666 return 1;
5667 }
5668
handle_monitor(struct kvm_vcpu * vcpu)5669 static int handle_monitor(struct kvm_vcpu *vcpu)
5670 {
5671 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5672 return handle_nop(vcpu);
5673 }
5674
handle_invpcid(struct kvm_vcpu * vcpu)5675 static int handle_invpcid(struct kvm_vcpu *vcpu)
5676 {
5677 u32 vmx_instruction_info;
5678 unsigned long type;
5679 gva_t gva;
5680 struct {
5681 u64 pcid;
5682 u64 gla;
5683 } operand;
5684
5685 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5686 kvm_queue_exception(vcpu, UD_VECTOR);
5687 return 1;
5688 }
5689
5690 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5691 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5692
5693 if (type > 3) {
5694 kvm_inject_gp(vcpu, 0);
5695 return 1;
5696 }
5697
5698 /* According to the Intel instruction reference, the memory operand
5699 * is read even if it isn't needed (e.g., for type==all)
5700 */
5701 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5702 vmx_instruction_info, false,
5703 sizeof(operand), &gva))
5704 return 1;
5705
5706 return kvm_handle_invpcid(vcpu, type, gva);
5707 }
5708
handle_pml_full(struct kvm_vcpu * vcpu)5709 static int handle_pml_full(struct kvm_vcpu *vcpu)
5710 {
5711 unsigned long exit_qualification;
5712
5713 trace_kvm_pml_full(vcpu->vcpu_id);
5714
5715 exit_qualification = vmx_get_exit_qual(vcpu);
5716
5717 /*
5718 * PML buffer FULL happened while executing iret from NMI,
5719 * "blocked by NMI" bit has to be set before next VM entry.
5720 */
5721 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5722 enable_vnmi &&
5723 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5724 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5725 GUEST_INTR_STATE_NMI);
5726
5727 /*
5728 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5729 * here.., and there's no userspace involvement needed for PML.
5730 */
5731 return 1;
5732 }
5733
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)5734 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5735 {
5736 struct vcpu_vmx *vmx = to_vmx(vcpu);
5737
5738 if (!vmx->req_immediate_exit &&
5739 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5740 kvm_lapic_expired_hv_timer(vcpu);
5741 return EXIT_FASTPATH_REENTER_GUEST;
5742 }
5743
5744 return EXIT_FASTPATH_NONE;
5745 }
5746
handle_preemption_timer(struct kvm_vcpu * vcpu)5747 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5748 {
5749 handle_fastpath_preemption_timer(vcpu);
5750 return 1;
5751 }
5752
5753 /*
5754 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5755 * are overwritten by nested_vmx_setup() when nested=1.
5756 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5757 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5758 {
5759 kvm_queue_exception(vcpu, UD_VECTOR);
5760 return 1;
5761 }
5762
handle_encls(struct kvm_vcpu * vcpu)5763 static int handle_encls(struct kvm_vcpu *vcpu)
5764 {
5765 /*
5766 * SGX virtualization is not yet supported. There is no software
5767 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5768 * to prevent the guest from executing ENCLS.
5769 */
5770 kvm_queue_exception(vcpu, UD_VECTOR);
5771 return 1;
5772 }
5773
5774 /*
5775 * The exit handlers return 1 if the exit was handled fully and guest execution
5776 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5777 * to be done to userspace and return 0.
5778 */
5779 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5780 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5781 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5782 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5783 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5784 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5785 [EXIT_REASON_CR_ACCESS] = handle_cr,
5786 [EXIT_REASON_DR_ACCESS] = handle_dr,
5787 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5788 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5789 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5790 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5791 [EXIT_REASON_HLT] = kvm_emulate_halt,
5792 [EXIT_REASON_INVD] = handle_invd,
5793 [EXIT_REASON_INVLPG] = handle_invlpg,
5794 [EXIT_REASON_RDPMC] = handle_rdpmc,
5795 [EXIT_REASON_VMCALL] = handle_vmcall,
5796 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5797 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5798 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5799 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5800 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5801 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5802 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5803 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5804 [EXIT_REASON_VMON] = handle_vmx_instruction,
5805 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5806 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5807 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5808 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5809 [EXIT_REASON_WBINVD] = handle_wbinvd,
5810 [EXIT_REASON_XSETBV] = handle_xsetbv,
5811 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5812 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5813 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5814 [EXIT_REASON_LDTR_TR] = handle_desc,
5815 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5816 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5817 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5818 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5819 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5820 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5821 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5822 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5823 [EXIT_REASON_RDRAND] = handle_invalid_op,
5824 [EXIT_REASON_RDSEED] = handle_invalid_op,
5825 [EXIT_REASON_PML_FULL] = handle_pml_full,
5826 [EXIT_REASON_INVPCID] = handle_invpcid,
5827 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5828 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5829 [EXIT_REASON_ENCLS] = handle_encls,
5830 };
5831
5832 static const int kvm_vmx_max_exit_handlers =
5833 ARRAY_SIZE(kvm_vmx_exit_handlers);
5834
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)5835 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5836 u32 *intr_info, u32 *error_code)
5837 {
5838 struct vcpu_vmx *vmx = to_vmx(vcpu);
5839
5840 *info1 = vmx_get_exit_qual(vcpu);
5841 if (!(vmx->exit_reason.failed_vmentry)) {
5842 *info2 = vmx->idt_vectoring_info;
5843 *intr_info = vmx_get_intr_info(vcpu);
5844 if (is_exception_with_error_code(*intr_info))
5845 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5846 else
5847 *error_code = 0;
5848 } else {
5849 *info2 = 0;
5850 *intr_info = 0;
5851 *error_code = 0;
5852 }
5853 }
5854
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)5855 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5856 {
5857 if (vmx->pml_pg) {
5858 __free_page(vmx->pml_pg);
5859 vmx->pml_pg = NULL;
5860 }
5861 }
5862
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)5863 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5864 {
5865 struct vcpu_vmx *vmx = to_vmx(vcpu);
5866 u64 *pml_buf;
5867 u16 pml_idx;
5868
5869 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5870
5871 /* Do nothing if PML buffer is empty */
5872 if (pml_idx == (PML_ENTITY_NUM - 1))
5873 return;
5874
5875 /* PML index always points to next available PML buffer entity */
5876 if (pml_idx >= PML_ENTITY_NUM)
5877 pml_idx = 0;
5878 else
5879 pml_idx++;
5880
5881 pml_buf = page_address(vmx->pml_pg);
5882 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5883 u64 gpa;
5884
5885 gpa = pml_buf[pml_idx];
5886 WARN_ON(gpa & (PAGE_SIZE - 1));
5887 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5888 }
5889
5890 /* reset PML index */
5891 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5892 }
5893
5894 /*
5895 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5896 * Called before reporting dirty_bitmap to userspace.
5897 */
kvm_flush_pml_buffers(struct kvm * kvm)5898 static void kvm_flush_pml_buffers(struct kvm *kvm)
5899 {
5900 int i;
5901 struct kvm_vcpu *vcpu;
5902 /*
5903 * We only need to kick vcpu out of guest mode here, as PML buffer
5904 * is flushed at beginning of all VMEXITs, and it's obvious that only
5905 * vcpus running in guest are possible to have unflushed GPAs in PML
5906 * buffer.
5907 */
5908 kvm_for_each_vcpu(i, vcpu, kvm)
5909 kvm_vcpu_kick(vcpu);
5910 }
5911
vmx_dump_sel(char * name,uint32_t sel)5912 static void vmx_dump_sel(char *name, uint32_t sel)
5913 {
5914 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5915 name, vmcs_read16(sel),
5916 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5917 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5918 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5919 }
5920
vmx_dump_dtsel(char * name,uint32_t limit)5921 static void vmx_dump_dtsel(char *name, uint32_t limit)
5922 {
5923 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5924 name, vmcs_read32(limit),
5925 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5926 }
5927
dump_vmcs(void)5928 void dump_vmcs(void)
5929 {
5930 u32 vmentry_ctl, vmexit_ctl;
5931 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5932 unsigned long cr4;
5933
5934 if (!dump_invalid_vmcs) {
5935 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5936 return;
5937 }
5938
5939 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5940 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5941 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5942 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5943 cr4 = vmcs_readl(GUEST_CR4);
5944 secondary_exec_control = 0;
5945 if (cpu_has_secondary_exec_ctrls())
5946 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5947
5948 pr_err("*** Guest State ***\n");
5949 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5950 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5951 vmcs_readl(CR0_GUEST_HOST_MASK));
5952 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5953 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5954 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5955 if (cpu_has_vmx_ept()) {
5956 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5957 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5958 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5959 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5960 }
5961 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5962 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5963 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5964 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5965 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5966 vmcs_readl(GUEST_SYSENTER_ESP),
5967 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5968 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5969 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5970 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5971 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5972 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5973 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5974 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5975 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5976 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5977 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5978 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5979 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5980 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5981 vmcs_read64(GUEST_IA32_EFER),
5982 vmcs_read64(GUEST_IA32_PAT));
5983 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5984 vmcs_read64(GUEST_IA32_DEBUGCTL),
5985 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5986 if (cpu_has_load_perf_global_ctrl() &&
5987 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5988 pr_err("PerfGlobCtl = 0x%016llx\n",
5989 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5990 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5991 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5992 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5993 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5994 vmcs_read32(GUEST_ACTIVITY_STATE));
5995 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5996 pr_err("InterruptStatus = %04x\n",
5997 vmcs_read16(GUEST_INTR_STATUS));
5998
5999 pr_err("*** Host State ***\n");
6000 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6001 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6002 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6003 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6004 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6005 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6006 vmcs_read16(HOST_TR_SELECTOR));
6007 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6008 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6009 vmcs_readl(HOST_TR_BASE));
6010 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6011 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6012 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6013 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6014 vmcs_readl(HOST_CR4));
6015 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6016 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6017 vmcs_read32(HOST_IA32_SYSENTER_CS),
6018 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6019 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
6020 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
6021 vmcs_read64(HOST_IA32_EFER),
6022 vmcs_read64(HOST_IA32_PAT));
6023 if (cpu_has_load_perf_global_ctrl() &&
6024 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6025 pr_err("PerfGlobCtl = 0x%016llx\n",
6026 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6027
6028 pr_err("*** Control State ***\n");
6029 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
6030 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
6031 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
6032 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6033 vmcs_read32(EXCEPTION_BITMAP),
6034 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6035 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6036 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6037 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6038 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6039 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6040 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6041 vmcs_read32(VM_EXIT_INTR_INFO),
6042 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6043 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6044 pr_err(" reason=%08x qualification=%016lx\n",
6045 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6046 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6047 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6048 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6049 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6050 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6051 pr_err("TSC Multiplier = 0x%016llx\n",
6052 vmcs_read64(TSC_MULTIPLIER));
6053 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6054 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6055 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6056 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6057 }
6058 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6059 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6060 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6061 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6062 }
6063 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6064 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6065 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6066 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6067 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6068 pr_err("PLE Gap=%08x Window=%08x\n",
6069 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6070 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6071 pr_err("Virtual processor ID = 0x%04x\n",
6072 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6073 }
6074
6075 /*
6076 * The guest has exited. See if we can fix it or if we need userspace
6077 * assistance.
6078 */
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6079 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6080 {
6081 struct vcpu_vmx *vmx = to_vmx(vcpu);
6082 union vmx_exit_reason exit_reason = vmx->exit_reason;
6083 u32 vectoring_info = vmx->idt_vectoring_info;
6084 u16 exit_handler_index;
6085
6086 /*
6087 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6088 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6089 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6090 * mode as if vcpus is in root mode, the PML buffer must has been
6091 * flushed already.
6092 */
6093 if (enable_pml)
6094 vmx_flush_pml_buffer(vcpu);
6095
6096 /*
6097 * We should never reach this point with a pending nested VM-Enter, and
6098 * more specifically emulation of L2 due to invalid guest state (see
6099 * below) should never happen as that means we incorrectly allowed a
6100 * nested VM-Enter with an invalid vmcs12.
6101 */
6102 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6103
6104 /* If guest state is invalid, start emulating */
6105 if (vmx->emulation_required)
6106 return handle_invalid_guest_state(vcpu);
6107
6108 if (is_guest_mode(vcpu)) {
6109 /*
6110 * The host physical addresses of some pages of guest memory
6111 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6112 * Page). The CPU may write to these pages via their host
6113 * physical address while L2 is running, bypassing any
6114 * address-translation-based dirty tracking (e.g. EPT write
6115 * protection).
6116 *
6117 * Mark them dirty on every exit from L2 to prevent them from
6118 * getting out of sync with dirty tracking.
6119 */
6120 nested_mark_vmcs12_pages_dirty(vcpu);
6121
6122 if (nested_vmx_reflect_vmexit(vcpu))
6123 return 1;
6124 }
6125
6126 if (exit_reason.failed_vmentry) {
6127 dump_vmcs();
6128 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6129 vcpu->run->fail_entry.hardware_entry_failure_reason
6130 = exit_reason.full;
6131 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6132 return 0;
6133 }
6134
6135 if (unlikely(vmx->fail)) {
6136 dump_vmcs();
6137 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6138 vcpu->run->fail_entry.hardware_entry_failure_reason
6139 = vmcs_read32(VM_INSTRUCTION_ERROR);
6140 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6141 return 0;
6142 }
6143
6144 /*
6145 * Note:
6146 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6147 * delivery event since it indicates guest is accessing MMIO.
6148 * The vm-exit can be triggered again after return to guest that
6149 * will cause infinite loop.
6150 */
6151 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6152 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6153 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6154 exit_reason.basic != EXIT_REASON_PML_FULL &&
6155 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6156 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6157 int ndata = 3;
6158
6159 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6160 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6161 vcpu->run->internal.data[0] = vectoring_info;
6162 vcpu->run->internal.data[1] = exit_reason.full;
6163 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6164 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6165 vcpu->run->internal.data[ndata++] =
6166 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6167 }
6168 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6169 vcpu->run->internal.ndata = ndata;
6170 return 0;
6171 }
6172
6173 if (unlikely(!enable_vnmi &&
6174 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6175 if (!vmx_interrupt_blocked(vcpu)) {
6176 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6177 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6178 vcpu->arch.nmi_pending) {
6179 /*
6180 * This CPU don't support us in finding the end of an
6181 * NMI-blocked window if the guest runs with IRQs
6182 * disabled. So we pull the trigger after 1 s of
6183 * futile waiting, but inform the user about this.
6184 */
6185 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6186 "state on VCPU %d after 1 s timeout\n",
6187 __func__, vcpu->vcpu_id);
6188 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6189 }
6190 }
6191
6192 if (exit_fastpath != EXIT_FASTPATH_NONE)
6193 return 1;
6194
6195 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6196 goto unexpected_vmexit;
6197 #ifdef CONFIG_RETPOLINE
6198 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6199 return kvm_emulate_wrmsr(vcpu);
6200 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6201 return handle_preemption_timer(vcpu);
6202 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6203 return handle_interrupt_window(vcpu);
6204 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6205 return handle_external_interrupt(vcpu);
6206 else if (exit_reason.basic == EXIT_REASON_HLT)
6207 return kvm_emulate_halt(vcpu);
6208 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6209 return handle_ept_misconfig(vcpu);
6210 #endif
6211
6212 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6213 kvm_vmx_max_exit_handlers);
6214 if (!kvm_vmx_exit_handlers[exit_handler_index])
6215 goto unexpected_vmexit;
6216
6217 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6218
6219 unexpected_vmexit:
6220 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6221 exit_reason.full);
6222 dump_vmcs();
6223 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6224 vcpu->run->internal.suberror =
6225 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6226 vcpu->run->internal.ndata = 2;
6227 vcpu->run->internal.data[0] = exit_reason.full;
6228 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6229 return 0;
6230 }
6231
6232 /*
6233 * Software based L1D cache flush which is used when microcode providing
6234 * the cache control MSR is not loaded.
6235 *
6236 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6237 * flush it is required to read in 64 KiB because the replacement algorithm
6238 * is not exactly LRU. This could be sized at runtime via topology
6239 * information but as all relevant affected CPUs have 32KiB L1D cache size
6240 * there is no point in doing so.
6241 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6242 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6243 {
6244 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6245
6246 /*
6247 * This code is only executed when the the flush mode is 'cond' or
6248 * 'always'
6249 */
6250 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6251 bool flush_l1d;
6252
6253 /*
6254 * Clear the per-vcpu flush bit, it gets set again
6255 * either from vcpu_run() or from one of the unsafe
6256 * VMEXIT handlers.
6257 */
6258 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6259 vcpu->arch.l1tf_flush_l1d = false;
6260
6261 /*
6262 * Clear the per-cpu flush bit, it gets set again from
6263 * the interrupt handlers.
6264 */
6265 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6266 kvm_clear_cpu_l1tf_flush_l1d();
6267
6268 if (!flush_l1d)
6269 return;
6270 }
6271
6272 vcpu->stat.l1d_flush++;
6273
6274 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6275 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6276 return;
6277 }
6278
6279 asm volatile(
6280 /* First ensure the pages are in the TLB */
6281 "xorl %%eax, %%eax\n"
6282 ".Lpopulate_tlb:\n\t"
6283 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6284 "addl $4096, %%eax\n\t"
6285 "cmpl %%eax, %[size]\n\t"
6286 "jne .Lpopulate_tlb\n\t"
6287 "xorl %%eax, %%eax\n\t"
6288 "cpuid\n\t"
6289 /* Now fill the cache */
6290 "xorl %%eax, %%eax\n"
6291 ".Lfill_cache:\n"
6292 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6293 "addl $64, %%eax\n\t"
6294 "cmpl %%eax, %[size]\n\t"
6295 "jne .Lfill_cache\n\t"
6296 "lfence\n"
6297 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6298 [size] "r" (size)
6299 : "eax", "ebx", "ecx", "edx");
6300 }
6301
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6302 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6303 {
6304 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6305 int tpr_threshold;
6306
6307 if (is_guest_mode(vcpu) &&
6308 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6309 return;
6310
6311 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6312 if (is_guest_mode(vcpu))
6313 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6314 else
6315 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6316 }
6317
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6318 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6319 {
6320 struct vcpu_vmx *vmx = to_vmx(vcpu);
6321 u32 sec_exec_control;
6322
6323 if (!lapic_in_kernel(vcpu))
6324 return;
6325
6326 if (!flexpriority_enabled &&
6327 !cpu_has_vmx_virtualize_x2apic_mode())
6328 return;
6329
6330 /* Postpone execution until vmcs01 is the current VMCS. */
6331 if (is_guest_mode(vcpu)) {
6332 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6333 return;
6334 }
6335
6336 sec_exec_control = secondary_exec_controls_get(vmx);
6337 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6338 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6339
6340 switch (kvm_get_apic_mode(vcpu)) {
6341 case LAPIC_MODE_INVALID:
6342 WARN_ONCE(true, "Invalid local APIC state");
6343 case LAPIC_MODE_DISABLED:
6344 break;
6345 case LAPIC_MODE_XAPIC:
6346 if (flexpriority_enabled) {
6347 sec_exec_control |=
6348 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6349 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6350
6351 /*
6352 * Flush the TLB, reloading the APIC access page will
6353 * only do so if its physical address has changed, but
6354 * the guest may have inserted a non-APIC mapping into
6355 * the TLB while the APIC access page was disabled.
6356 */
6357 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6358 }
6359 break;
6360 case LAPIC_MODE_X2APIC:
6361 if (cpu_has_vmx_virtualize_x2apic_mode())
6362 sec_exec_control |=
6363 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6364 break;
6365 }
6366 secondary_exec_controls_set(vmx, sec_exec_control);
6367
6368 vmx_update_msr_bitmap(vcpu);
6369 }
6370
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6371 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6372 {
6373 struct page *page;
6374
6375 /* Defer reload until vmcs01 is the current VMCS. */
6376 if (is_guest_mode(vcpu)) {
6377 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6378 return;
6379 }
6380
6381 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6382 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6383 return;
6384
6385 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6386 if (is_error_page(page))
6387 return;
6388
6389 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6390 vmx_flush_tlb_current(vcpu);
6391
6392 /*
6393 * Do not pin apic access page in memory, the MMU notifier
6394 * will call us again if it is migrated or swapped out.
6395 */
6396 put_page(page);
6397 }
6398
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6399 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6400 {
6401 u16 status;
6402 u8 old;
6403
6404 if (max_isr == -1)
6405 max_isr = 0;
6406
6407 status = vmcs_read16(GUEST_INTR_STATUS);
6408 old = status >> 8;
6409 if (max_isr != old) {
6410 status &= 0xff;
6411 status |= max_isr << 8;
6412 vmcs_write16(GUEST_INTR_STATUS, status);
6413 }
6414 }
6415
vmx_set_rvi(int vector)6416 static void vmx_set_rvi(int vector)
6417 {
6418 u16 status;
6419 u8 old;
6420
6421 if (vector == -1)
6422 vector = 0;
6423
6424 status = vmcs_read16(GUEST_INTR_STATUS);
6425 old = (u8)status & 0xff;
6426 if ((u8)vector != old) {
6427 status &= ~0xff;
6428 status |= (u8)vector;
6429 vmcs_write16(GUEST_INTR_STATUS, status);
6430 }
6431 }
6432
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6433 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6434 {
6435 /*
6436 * When running L2, updating RVI is only relevant when
6437 * vmcs12 virtual-interrupt-delivery enabled.
6438 * However, it can be enabled only when L1 also
6439 * intercepts external-interrupts and in that case
6440 * we should not update vmcs02 RVI but instead intercept
6441 * interrupt. Therefore, do nothing when running L2.
6442 */
6443 if (!is_guest_mode(vcpu))
6444 vmx_set_rvi(max_irr);
6445 }
6446
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6447 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6448 {
6449 struct vcpu_vmx *vmx = to_vmx(vcpu);
6450 int max_irr;
6451 bool max_irr_updated;
6452
6453 WARN_ON(!vcpu->arch.apicv_active);
6454 if (pi_test_on(&vmx->pi_desc)) {
6455 pi_clear_on(&vmx->pi_desc);
6456 /*
6457 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6458 * But on x86 this is just a compiler barrier anyway.
6459 */
6460 smp_mb__after_atomic();
6461 max_irr_updated =
6462 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6463
6464 /*
6465 * If we are running L2 and L1 has a new pending interrupt
6466 * which can be injected, this may cause a vmexit or it may
6467 * be injected into L2. Either way, this interrupt will be
6468 * processed via KVM_REQ_EVENT, not RVI, because we do not use
6469 * virtual interrupt delivery to inject L1 interrupts into L2.
6470 */
6471 if (is_guest_mode(vcpu) && max_irr_updated)
6472 kvm_make_request(KVM_REQ_EVENT, vcpu);
6473 } else {
6474 max_irr = kvm_lapic_find_highest_irr(vcpu);
6475 }
6476 vmx_hwapic_irr_update(vcpu, max_irr);
6477 return max_irr;
6478 }
6479
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6480 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6481 {
6482 if (!kvm_vcpu_apicv_active(vcpu))
6483 return;
6484
6485 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6486 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6487 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6488 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6489 }
6490
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6491 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6492 {
6493 struct vcpu_vmx *vmx = to_vmx(vcpu);
6494
6495 pi_clear_on(&vmx->pi_desc);
6496 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6497 }
6498
6499 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6500
handle_interrupt_nmi_irqoff(struct kvm_vcpu * vcpu,unsigned long entry)6501 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6502 unsigned long entry)
6503 {
6504 kvm_before_interrupt(vcpu);
6505 vmx_do_interrupt_nmi_irqoff(entry);
6506 kvm_after_interrupt(vcpu);
6507 }
6508
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6509 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6510 {
6511 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6512 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6513
6514 /* if exit due to PF check for async PF */
6515 if (is_page_fault(intr_info))
6516 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6517 /* Handle machine checks before interrupts are enabled */
6518 else if (is_machine_check(intr_info))
6519 kvm_machine_check();
6520 /* We need to handle NMIs before interrupts are enabled */
6521 else if (is_nmi(intr_info))
6522 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6523 }
6524
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6525 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6526 {
6527 u32 intr_info = vmx_get_intr_info(vcpu);
6528 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6529 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6530
6531 if (WARN_ONCE(!is_external_intr(intr_info),
6532 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6533 return;
6534
6535 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6536 vcpu->arch.at_instruction_boundary = true;
6537 }
6538
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6539 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6540 {
6541 struct vcpu_vmx *vmx = to_vmx(vcpu);
6542
6543 if (vmx->emulation_required)
6544 return;
6545
6546 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6547 handle_external_interrupt_irqoff(vcpu);
6548 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6549 handle_exception_nmi_irqoff(vmx);
6550 }
6551
vmx_has_emulated_msr(u32 index)6552 static bool vmx_has_emulated_msr(u32 index)
6553 {
6554 switch (index) {
6555 case MSR_IA32_SMBASE:
6556 /*
6557 * We cannot do SMM unless we can run the guest in big
6558 * real mode.
6559 */
6560 return enable_unrestricted_guest || emulate_invalid_guest_state;
6561 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6562 return nested;
6563 case MSR_AMD64_VIRT_SPEC_CTRL:
6564 /* This is AMD only. */
6565 return false;
6566 default:
6567 return true;
6568 }
6569 }
6570
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6571 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6572 {
6573 u32 exit_intr_info;
6574 bool unblock_nmi;
6575 u8 vector;
6576 bool idtv_info_valid;
6577
6578 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6579
6580 if (enable_vnmi) {
6581 if (vmx->loaded_vmcs->nmi_known_unmasked)
6582 return;
6583
6584 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6585 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6586 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6587 /*
6588 * SDM 3: 27.7.1.2 (September 2008)
6589 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6590 * a guest IRET fault.
6591 * SDM 3: 23.2.2 (September 2008)
6592 * Bit 12 is undefined in any of the following cases:
6593 * If the VM exit sets the valid bit in the IDT-vectoring
6594 * information field.
6595 * If the VM exit is due to a double fault.
6596 */
6597 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6598 vector != DF_VECTOR && !idtv_info_valid)
6599 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6600 GUEST_INTR_STATE_NMI);
6601 else
6602 vmx->loaded_vmcs->nmi_known_unmasked =
6603 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6604 & GUEST_INTR_STATE_NMI);
6605 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6606 vmx->loaded_vmcs->vnmi_blocked_time +=
6607 ktime_to_ns(ktime_sub(ktime_get(),
6608 vmx->loaded_vmcs->entry_time));
6609 }
6610
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6611 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6612 u32 idt_vectoring_info,
6613 int instr_len_field,
6614 int error_code_field)
6615 {
6616 u8 vector;
6617 int type;
6618 bool idtv_info_valid;
6619
6620 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6621
6622 vcpu->arch.nmi_injected = false;
6623 kvm_clear_exception_queue(vcpu);
6624 kvm_clear_interrupt_queue(vcpu);
6625
6626 if (!idtv_info_valid)
6627 return;
6628
6629 kvm_make_request(KVM_REQ_EVENT, vcpu);
6630
6631 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6632 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6633
6634 switch (type) {
6635 case INTR_TYPE_NMI_INTR:
6636 vcpu->arch.nmi_injected = true;
6637 /*
6638 * SDM 3: 27.7.1.2 (September 2008)
6639 * Clear bit "block by NMI" before VM entry if a NMI
6640 * delivery faulted.
6641 */
6642 vmx_set_nmi_mask(vcpu, false);
6643 break;
6644 case INTR_TYPE_SOFT_EXCEPTION:
6645 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6646 fallthrough;
6647 case INTR_TYPE_HARD_EXCEPTION:
6648 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6649 u32 err = vmcs_read32(error_code_field);
6650 kvm_requeue_exception_e(vcpu, vector, err);
6651 } else
6652 kvm_requeue_exception(vcpu, vector);
6653 break;
6654 case INTR_TYPE_SOFT_INTR:
6655 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6656 fallthrough;
6657 case INTR_TYPE_EXT_INTR:
6658 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6659 break;
6660 default:
6661 break;
6662 }
6663 }
6664
vmx_complete_interrupts(struct vcpu_vmx * vmx)6665 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6666 {
6667 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6668 VM_EXIT_INSTRUCTION_LEN,
6669 IDT_VECTORING_ERROR_CODE);
6670 }
6671
vmx_cancel_injection(struct kvm_vcpu * vcpu)6672 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6673 {
6674 __vmx_complete_interrupts(vcpu,
6675 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6676 VM_ENTRY_INSTRUCTION_LEN,
6677 VM_ENTRY_EXCEPTION_ERROR_CODE);
6678
6679 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6680 }
6681
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6682 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6683 {
6684 int i, nr_msrs;
6685 struct perf_guest_switch_msr *msrs;
6686
6687 msrs = perf_guest_get_msrs(&nr_msrs);
6688
6689 if (!msrs)
6690 return;
6691
6692 for (i = 0; i < nr_msrs; i++)
6693 if (msrs[i].host == msrs[i].guest)
6694 clear_atomic_switch_msr(vmx, msrs[i].msr);
6695 else
6696 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6697 msrs[i].host, false);
6698 }
6699
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6700 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6701 {
6702 struct vcpu_vmx *vmx = to_vmx(vcpu);
6703 u64 tscl;
6704 u32 delta_tsc;
6705
6706 if (vmx->req_immediate_exit) {
6707 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6708 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6709 } else if (vmx->hv_deadline_tsc != -1) {
6710 tscl = rdtsc();
6711 if (vmx->hv_deadline_tsc > tscl)
6712 /* set_hv_timer ensures the delta fits in 32-bits */
6713 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6714 cpu_preemption_timer_multi);
6715 else
6716 delta_tsc = 0;
6717
6718 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6719 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6720 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6721 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6722 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6723 }
6724 }
6725
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)6726 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6727 {
6728 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6729 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6730 vmcs_writel(HOST_RSP, host_rsp);
6731 }
6732 }
6733
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)6734 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
6735 unsigned int flags)
6736 {
6737 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
6738
6739 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
6740 return;
6741
6742 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
6743 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
6744
6745 /*
6746 * If the guest/host SPEC_CTRL values differ, restore the host value.
6747 *
6748 * For legacy IBRS, the IBRS bit always needs to be written after
6749 * transitioning from a less privileged predictor mode, regardless of
6750 * whether the guest/host values differ.
6751 */
6752 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
6753 vmx->spec_ctrl != hostval)
6754 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
6755
6756 barrier_nospec();
6757 }
6758
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)6759 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6760 {
6761 switch (to_vmx(vcpu)->exit_reason.basic) {
6762 case EXIT_REASON_MSR_WRITE:
6763 return handle_fastpath_set_msr_irqoff(vcpu);
6764 case EXIT_REASON_PREEMPTION_TIMER:
6765 return handle_fastpath_preemption_timer(vcpu);
6766 default:
6767 return EXIT_FASTPATH_NONE;
6768 }
6769 }
6770
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx,unsigned long flags)6771 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6772 struct vcpu_vmx *vmx,
6773 unsigned long flags)
6774 {
6775 /*
6776 * VMENTER enables interrupts (host state), but the kernel state is
6777 * interrupts disabled when this is invoked. Also tell RCU about
6778 * it. This is the same logic as for exit_to_user_mode().
6779 *
6780 * This ensures that e.g. latency analysis on the host observes
6781 * guest mode as interrupt enabled.
6782 *
6783 * guest_enter_irqoff() informs context tracking about the
6784 * transition to guest mode and if enabled adjusts RCU state
6785 * accordingly.
6786 */
6787 instrumentation_begin();
6788 trace_hardirqs_on_prepare();
6789 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6790 instrumentation_end();
6791
6792 guest_enter_irqoff();
6793 lockdep_hardirqs_on(CALLER_ADDR0);
6794
6795 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6796 if (static_branch_unlikely(&vmx_l1d_should_flush))
6797 vmx_l1d_flush(vcpu);
6798 else if (static_branch_unlikely(&mds_user_clear))
6799 mds_clear_cpu_buffers();
6800 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
6801 kvm_arch_has_assigned_device(vcpu->kvm))
6802 mds_clear_cpu_buffers();
6803
6804 vmx_disable_fb_clear(vmx);
6805
6806 if (vcpu->arch.cr2 != native_read_cr2())
6807 native_write_cr2(vcpu->arch.cr2);
6808
6809 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6810 flags);
6811
6812 vcpu->arch.cr2 = native_read_cr2();
6813
6814 vmx_enable_fb_clear(vmx);
6815
6816 /*
6817 * VMEXIT disables interrupts (host state), but tracing and lockdep
6818 * have them in state 'on' as recorded before entering guest mode.
6819 * Same as enter_from_user_mode().
6820 *
6821 * context_tracking_guest_exit() restores host context and reinstates
6822 * RCU if enabled and required.
6823 *
6824 * This needs to be done before the below as native_read_msr()
6825 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6826 * into world and some more.
6827 */
6828 lockdep_hardirqs_off(CALLER_ADDR0);
6829 context_tracking_guest_exit();
6830
6831 instrumentation_begin();
6832 trace_hardirqs_off_finish();
6833 instrumentation_end();
6834 }
6835
vmx_vcpu_run(struct kvm_vcpu * vcpu)6836 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6837 {
6838 fastpath_t exit_fastpath;
6839 struct vcpu_vmx *vmx = to_vmx(vcpu);
6840 unsigned long cr3, cr4;
6841
6842 reenter_guest:
6843 /* Record the guest's net vcpu time for enforced NMI injections. */
6844 if (unlikely(!enable_vnmi &&
6845 vmx->loaded_vmcs->soft_vnmi_blocked))
6846 vmx->loaded_vmcs->entry_time = ktime_get();
6847
6848 /* Don't enter VMX if guest state is invalid, let the exit handler
6849 start emulation until we arrive back to a valid state */
6850 if (vmx->emulation_required)
6851 return EXIT_FASTPATH_NONE;
6852
6853 if (vmx->ple_window_dirty) {
6854 vmx->ple_window_dirty = false;
6855 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6856 }
6857
6858 /*
6859 * We did this in prepare_switch_to_guest, because it needs to
6860 * be within srcu_read_lock.
6861 */
6862 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6863
6864 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6865 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6866 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6867 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6868
6869 cr3 = __get_current_cr3_fast();
6870 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6871 vmcs_writel(HOST_CR3, cr3);
6872 vmx->loaded_vmcs->host_state.cr3 = cr3;
6873 }
6874
6875 cr4 = cr4_read_shadow();
6876 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6877 vmcs_writel(HOST_CR4, cr4);
6878 vmx->loaded_vmcs->host_state.cr4 = cr4;
6879 }
6880
6881 /* When single-stepping over STI and MOV SS, we must clear the
6882 * corresponding interruptibility bits in the guest state. Otherwise
6883 * vmentry fails as it then expects bit 14 (BS) in pending debug
6884 * exceptions being set, but that's not correct for the guest debugging
6885 * case. */
6886 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6887 vmx_set_interrupt_shadow(vcpu, 0);
6888
6889 kvm_load_guest_xsave_state(vcpu);
6890
6891 pt_guest_enter(vmx);
6892
6893 atomic_switch_perf_msrs(vmx);
6894
6895 if (enable_preemption_timer)
6896 vmx_update_hv_timer(vcpu);
6897
6898 kvm_wait_lapic_expire(vcpu);
6899
6900 /*
6901 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6902 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6903 * is no need to worry about the conditional branch over the wrmsr
6904 * being speculatively taken.
6905 */
6906 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6907
6908 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6909 vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
6910
6911 /* All fields are clean at this point */
6912 if (static_branch_unlikely(&enable_evmcs))
6913 current_evmcs->hv_clean_fields |=
6914 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6915
6916 if (static_branch_unlikely(&enable_evmcs))
6917 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6918
6919 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6920 if (vmx->host_debugctlmsr)
6921 update_debugctlmsr(vmx->host_debugctlmsr);
6922
6923 #ifndef CONFIG_X86_64
6924 /*
6925 * The sysexit path does not restore ds/es, so we must set them to
6926 * a reasonable value ourselves.
6927 *
6928 * We can't defer this to vmx_prepare_switch_to_host() since that
6929 * function may be executed in interrupt context, which saves and
6930 * restore segments around it, nullifying its effect.
6931 */
6932 loadsegment(ds, __USER_DS);
6933 loadsegment(es, __USER_DS);
6934 #endif
6935
6936 vmx_register_cache_reset(vcpu);
6937
6938 pt_guest_exit(vmx);
6939
6940 kvm_load_host_xsave_state(vcpu);
6941
6942 vmx->nested.nested_run_pending = 0;
6943 vmx->idt_vectoring_info = 0;
6944
6945 if (unlikely(vmx->fail)) {
6946 vmx->exit_reason.full = 0xdead;
6947 return EXIT_FASTPATH_NONE;
6948 }
6949
6950 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6951 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6952 kvm_machine_check();
6953
6954 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6955
6956 if (unlikely(vmx->exit_reason.failed_vmentry))
6957 return EXIT_FASTPATH_NONE;
6958
6959 vmx->loaded_vmcs->launched = 1;
6960 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6961
6962 vmx_recover_nmi_blocking(vmx);
6963 vmx_complete_interrupts(vmx);
6964
6965 if (is_guest_mode(vcpu))
6966 return EXIT_FASTPATH_NONE;
6967
6968 exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6969 if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6970 if (!kvm_vcpu_exit_request(vcpu)) {
6971 /*
6972 * FIXME: this goto should be a loop in vcpu_enter_guest,
6973 * but it would incur the cost of a retpoline for now.
6974 * Revisit once static calls are available.
6975 */
6976 if (vcpu->arch.apicv_active)
6977 vmx_sync_pir_to_irr(vcpu);
6978 goto reenter_guest;
6979 }
6980 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6981 }
6982
6983 return exit_fastpath;
6984 }
6985
vmx_free_vcpu(struct kvm_vcpu * vcpu)6986 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6987 {
6988 struct vcpu_vmx *vmx = to_vmx(vcpu);
6989
6990 if (enable_pml)
6991 vmx_destroy_pml_buffer(vmx);
6992 free_vpid(vmx->vpid);
6993 nested_vmx_free_vcpu(vcpu);
6994 free_loaded_vmcs(vmx->loaded_vmcs);
6995 }
6996
vmx_create_vcpu(struct kvm_vcpu * vcpu)6997 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6998 {
6999 struct vcpu_vmx *vmx;
7000 int i, cpu, err;
7001
7002 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7003 vmx = to_vmx(vcpu);
7004
7005 err = -ENOMEM;
7006
7007 vmx->vpid = allocate_vpid();
7008
7009 /*
7010 * If PML is turned on, failure on enabling PML just results in failure
7011 * of creating the vcpu, therefore we can simplify PML logic (by
7012 * avoiding dealing with cases, such as enabling PML partially on vcpus
7013 * for the guest), etc.
7014 */
7015 if (enable_pml) {
7016 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7017 if (!vmx->pml_pg)
7018 goto free_vpid;
7019 }
7020
7021 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7022
7023 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
7024 u32 index = vmx_uret_msrs_list[i];
7025 int j = vmx->nr_uret_msrs;
7026
7027 if (kvm_probe_user_return_msr(index))
7028 continue;
7029
7030 vmx->guest_uret_msrs[j].slot = i;
7031 vmx->guest_uret_msrs[j].data = 0;
7032 switch (index) {
7033 case MSR_IA32_TSX_CTRL:
7034 /*
7035 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID
7036 * interception. Keep the host value unchanged to avoid
7037 * changing CPUID bits under the host kernel's feet.
7038 *
7039 * hle=0, rtm=0, tsx_ctrl=1 can be found with some
7040 * combinations of new kernel and old userspace. If
7041 * those guests run on a tsx=off host, do allow guests
7042 * to use TSX_CTRL, but do not change the value on the
7043 * host so that TSX remains always disabled.
7044 */
7045 if (boot_cpu_has(X86_FEATURE_RTM))
7046 vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7047 else
7048 vmx->guest_uret_msrs[j].mask = 0;
7049 break;
7050 default:
7051 vmx->guest_uret_msrs[j].mask = -1ull;
7052 break;
7053 }
7054 ++vmx->nr_uret_msrs;
7055 }
7056
7057 err = alloc_loaded_vmcs(&vmx->vmcs01);
7058 if (err < 0)
7059 goto free_pml;
7060
7061 /*
7062 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7063 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7064 * feature only for vmcs01, KVM currently isn't equipped to realize any
7065 * performance benefits from enabling it for vmcs02.
7066 */
7067 if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7068 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7069 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7070
7071 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7072 }
7073
7074 /* The MSR bitmap starts with all ones */
7075 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7076 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7077
7078 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7079 #ifdef CONFIG_X86_64
7080 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7081 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7082 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7083 #endif
7084 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7085 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7086 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7087 if (kvm_cstate_in_guest(vcpu->kvm)) {
7088 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7089 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7090 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7091 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7092 }
7093 vmx->msr_bitmap_mode = 0;
7094
7095 vmx->loaded_vmcs = &vmx->vmcs01;
7096 cpu = get_cpu();
7097 vmx_vcpu_load(vcpu, cpu);
7098 vcpu->cpu = cpu;
7099 init_vmcs(vmx);
7100 vmx_vcpu_put(vcpu);
7101 put_cpu();
7102 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7103 err = alloc_apic_access_page(vcpu->kvm);
7104 if (err)
7105 goto free_vmcs;
7106 }
7107
7108 if (enable_ept && !enable_unrestricted_guest) {
7109 err = init_rmode_identity_map(vcpu->kvm);
7110 if (err)
7111 goto free_vmcs;
7112 }
7113
7114 if (nested)
7115 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
7116 else
7117 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
7118
7119 vmx->nested.posted_intr_nv = -1;
7120 vmx->nested.current_vmptr = -1ull;
7121
7122 vcpu->arch.microcode_version = 0x100000000ULL;
7123 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
7124
7125 /*
7126 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
7127 * or POSTED_INTR_WAKEUP_VECTOR.
7128 */
7129 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
7130 vmx->pi_desc.sn = 1;
7131
7132 vmx->ept_pointer = INVALID_PAGE;
7133
7134 return 0;
7135
7136 free_vmcs:
7137 free_loaded_vmcs(vmx->loaded_vmcs);
7138 free_pml:
7139 vmx_destroy_pml_buffer(vmx);
7140 free_vpid:
7141 free_vpid(vmx->vpid);
7142 return err;
7143 }
7144
7145 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7146 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7147
vmx_vm_init(struct kvm * kvm)7148 static int vmx_vm_init(struct kvm *kvm)
7149 {
7150 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
7151
7152 if (!ple_gap)
7153 kvm->arch.pause_in_guest = true;
7154
7155 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7156 switch (l1tf_mitigation) {
7157 case L1TF_MITIGATION_OFF:
7158 case L1TF_MITIGATION_FLUSH_NOWARN:
7159 /* 'I explicitly don't care' is set */
7160 break;
7161 case L1TF_MITIGATION_FLUSH:
7162 case L1TF_MITIGATION_FLUSH_NOSMT:
7163 case L1TF_MITIGATION_FULL:
7164 /*
7165 * Warn upon starting the first VM in a potentially
7166 * insecure environment.
7167 */
7168 if (sched_smt_active())
7169 pr_warn_once(L1TF_MSG_SMT);
7170 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7171 pr_warn_once(L1TF_MSG_L1D);
7172 break;
7173 case L1TF_MITIGATION_FULL_FORCE:
7174 /* Flush is enforced */
7175 break;
7176 }
7177 }
7178 kvm_apicv_init(kvm, enable_apicv);
7179 return 0;
7180 }
7181
vmx_check_processor_compat(void)7182 static int __init vmx_check_processor_compat(void)
7183 {
7184 struct vmcs_config vmcs_conf;
7185 struct vmx_capability vmx_cap;
7186
7187 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7188 !this_cpu_has(X86_FEATURE_VMX)) {
7189 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7190 return -EIO;
7191 }
7192
7193 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7194 return -EIO;
7195 if (nested)
7196 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7197 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7198 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7199 smp_processor_id());
7200 return -EIO;
7201 }
7202 return 0;
7203 }
7204
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7205 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7206 {
7207 u8 cache;
7208 u64 ipat = 0;
7209
7210 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7211 * memory aliases with conflicting memory types and sometimes MCEs.
7212 * We have to be careful as to what are honored and when.
7213 *
7214 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7215 * UC. The effective memory type is UC or WC depending on guest PAT.
7216 * This was historically the source of MCEs and we want to be
7217 * conservative.
7218 *
7219 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7220 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7221 * EPT memory type is set to WB. The effective memory type is forced
7222 * WB.
7223 *
7224 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7225 * EPT memory type is used to emulate guest CD/MTRR.
7226 */
7227
7228 if (is_mmio) {
7229 cache = MTRR_TYPE_UNCACHABLE;
7230 goto exit;
7231 }
7232
7233 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7234 ipat = VMX_EPT_IPAT_BIT;
7235 cache = MTRR_TYPE_WRBACK;
7236 goto exit;
7237 }
7238
7239 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7240 ipat = VMX_EPT_IPAT_BIT;
7241 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7242 cache = MTRR_TYPE_WRBACK;
7243 else
7244 cache = MTRR_TYPE_UNCACHABLE;
7245 goto exit;
7246 }
7247
7248 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7249
7250 exit:
7251 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7252 }
7253
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx)7254 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7255 {
7256 /*
7257 * These bits in the secondary execution controls field
7258 * are dynamic, the others are mostly based on the hypervisor
7259 * architecture and the guest's CPUID. Do not touch the
7260 * dynamic bits.
7261 */
7262 u32 mask =
7263 SECONDARY_EXEC_SHADOW_VMCS |
7264 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7265 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7266 SECONDARY_EXEC_DESC;
7267
7268 u32 new_ctl = vmx->secondary_exec_control;
7269 u32 cur_ctl = secondary_exec_controls_get(vmx);
7270
7271 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7272 }
7273
7274 /*
7275 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7276 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7277 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7278 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7279 {
7280 struct vcpu_vmx *vmx = to_vmx(vcpu);
7281 struct kvm_cpuid_entry2 *entry;
7282
7283 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7284 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7285
7286 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7287 if (entry && (entry->_reg & (_cpuid_mask))) \
7288 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7289 } while (0)
7290
7291 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7292 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7293 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7294 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7295 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7296 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7297 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7298 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7299 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7300 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7301 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7302 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7303 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7304 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7305 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7306
7307 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7308 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7309 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7310 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7311 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7312 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7313 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7314
7315 #undef cr4_fixed1_update
7316 }
7317
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)7318 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7319 {
7320 struct vcpu_vmx *vmx = to_vmx(vcpu);
7321
7322 if (kvm_mpx_supported()) {
7323 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7324
7325 if (mpx_enabled) {
7326 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7327 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7328 } else {
7329 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7330 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7331 }
7332 }
7333 }
7334
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7335 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7336 {
7337 struct vcpu_vmx *vmx = to_vmx(vcpu);
7338 struct kvm_cpuid_entry2 *best = NULL;
7339 int i;
7340
7341 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7342 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7343 if (!best)
7344 return;
7345 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7346 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7347 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7348 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7349 }
7350
7351 /* Get the number of configurable Address Ranges for filtering */
7352 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7353 PT_CAP_num_address_ranges);
7354
7355 /* Initialize and clear the no dependency bits */
7356 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7357 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7358
7359 /*
7360 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7361 * will inject an #GP
7362 */
7363 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7364 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7365
7366 /*
7367 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7368 * PSBFreq can be set
7369 */
7370 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7371 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7372 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7373
7374 /*
7375 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7376 * MTCFreq can be set
7377 */
7378 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7379 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7380 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7381
7382 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7383 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7384 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7385 RTIT_CTL_PTW_EN);
7386
7387 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7388 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7389 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7390
7391 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7392 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7393 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7394
7395 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7396 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7397 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7398
7399 /* unmask address range configure area */
7400 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7401 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7402 }
7403
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7404 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7405 {
7406 struct vcpu_vmx *vmx = to_vmx(vcpu);
7407
7408 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7409 vcpu->arch.xsaves_enabled = false;
7410
7411 if (cpu_has_secondary_exec_ctrls()) {
7412 vmx_compute_secondary_exec_control(vmx);
7413 vmcs_set_secondary_exec_control(vmx);
7414 }
7415
7416 if (nested_vmx_allowed(vcpu))
7417 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7418 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7419 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7420 else
7421 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7422 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7423 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7424
7425 if (nested_vmx_allowed(vcpu)) {
7426 nested_vmx_cr_fixed1_bits_update(vcpu);
7427 nested_vmx_entry_exit_ctls_update(vcpu);
7428 }
7429
7430 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7431 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7432 update_intel_pt_cfg(vcpu);
7433
7434 if (boot_cpu_has(X86_FEATURE_RTM)) {
7435 struct vmx_uret_msr *msr;
7436 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7437 if (msr) {
7438 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7439 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7440 }
7441 }
7442
7443 set_cr4_guest_host_mask(vmx);
7444
7445 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7446 update_exception_bitmap(vcpu);
7447 }
7448
vmx_set_cpu_caps(void)7449 static __init void vmx_set_cpu_caps(void)
7450 {
7451 kvm_set_cpu_caps();
7452
7453 /* CPUID 0x1 */
7454 if (nested)
7455 kvm_cpu_cap_set(X86_FEATURE_VMX);
7456
7457 /* CPUID 0x7 */
7458 if (kvm_mpx_supported())
7459 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7460 if (cpu_has_vmx_invpcid())
7461 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7462 if (vmx_pt_mode_is_host_guest())
7463 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7464
7465 if (vmx_umip_emulated())
7466 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7467
7468 /* CPUID 0xD.1 */
7469 supported_xss = 0;
7470 if (!cpu_has_vmx_xsaves())
7471 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7472
7473 /* CPUID 0x80000001 and 0x7 (RDPID) */
7474 if (!cpu_has_vmx_rdtscp()) {
7475 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7476 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7477 }
7478
7479 if (cpu_has_vmx_waitpkg())
7480 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7481 }
7482
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7483 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7484 {
7485 to_vmx(vcpu)->req_immediate_exit = true;
7486 }
7487
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7488 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7489 struct x86_instruction_info *info)
7490 {
7491 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7492 unsigned short port;
7493 bool intercept;
7494 int size;
7495
7496 if (info->intercept == x86_intercept_in ||
7497 info->intercept == x86_intercept_ins) {
7498 port = info->src_val;
7499 size = info->dst_bytes;
7500 } else {
7501 port = info->dst_val;
7502 size = info->src_bytes;
7503 }
7504
7505 /*
7506 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7507 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7508 * control.
7509 *
7510 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7511 */
7512 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7513 intercept = nested_cpu_has(vmcs12,
7514 CPU_BASED_UNCOND_IO_EXITING);
7515 else
7516 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7517
7518 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7519 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7520 }
7521
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7522 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7523 struct x86_instruction_info *info,
7524 enum x86_intercept_stage stage,
7525 struct x86_exception *exception)
7526 {
7527 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7528
7529 switch (info->intercept) {
7530 /*
7531 * RDPID causes #UD if disabled through secondary execution controls.
7532 * Because it is marked as EmulateOnUD, we need to intercept it here.
7533 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7534 */
7535 case x86_intercept_rdpid:
7536 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7537 exception->vector = UD_VECTOR;
7538 exception->error_code_valid = false;
7539 return X86EMUL_PROPAGATE_FAULT;
7540 }
7541 break;
7542
7543 case x86_intercept_in:
7544 case x86_intercept_ins:
7545 case x86_intercept_out:
7546 case x86_intercept_outs:
7547 return vmx_check_intercept_io(vcpu, info);
7548
7549 case x86_intercept_lgdt:
7550 case x86_intercept_lidt:
7551 case x86_intercept_lldt:
7552 case x86_intercept_ltr:
7553 case x86_intercept_sgdt:
7554 case x86_intercept_sidt:
7555 case x86_intercept_sldt:
7556 case x86_intercept_str:
7557 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7558 return X86EMUL_CONTINUE;
7559
7560 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7561 break;
7562
7563 case x86_intercept_pause:
7564 /*
7565 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
7566 * with vanilla NOPs in the emulator. Apply the interception
7567 * check only to actual PAUSE instructions. Don't check
7568 * PAUSE-loop-exiting, software can't expect a given PAUSE to
7569 * exit, i.e. KVM is within its rights to allow L2 to execute
7570 * the PAUSE.
7571 */
7572 if ((info->rep_prefix != REPE_PREFIX) ||
7573 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
7574 return X86EMUL_CONTINUE;
7575
7576 break;
7577
7578 /* TODO: check more intercepts... */
7579 default:
7580 break;
7581 }
7582
7583 return X86EMUL_UNHANDLEABLE;
7584 }
7585
7586 #ifdef CONFIG_X86_64
7587 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7588 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7589 u64 divisor, u64 *result)
7590 {
7591 u64 low = a << shift, high = a >> (64 - shift);
7592
7593 /* To avoid the overflow on divq */
7594 if (high >= divisor)
7595 return 1;
7596
7597 /* Low hold the result, high hold rem which is discarded */
7598 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7599 "rm" (divisor), "0" (low), "1" (high));
7600 *result = low;
7601
7602 return 0;
7603 }
7604
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7605 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7606 bool *expired)
7607 {
7608 struct vcpu_vmx *vmx;
7609 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7610 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7611
7612 vmx = to_vmx(vcpu);
7613 tscl = rdtsc();
7614 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7615 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7616 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7617 ktimer->timer_advance_ns);
7618
7619 if (delta_tsc > lapic_timer_advance_cycles)
7620 delta_tsc -= lapic_timer_advance_cycles;
7621 else
7622 delta_tsc = 0;
7623
7624 /* Convert to host delta tsc if tsc scaling is enabled */
7625 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7626 delta_tsc && u64_shl_div_u64(delta_tsc,
7627 kvm_tsc_scaling_ratio_frac_bits,
7628 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7629 return -ERANGE;
7630
7631 /*
7632 * If the delta tsc can't fit in the 32 bit after the multi shift,
7633 * we can't use the preemption timer.
7634 * It's possible that it fits on later vmentries, but checking
7635 * on every vmentry is costly so we just use an hrtimer.
7636 */
7637 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7638 return -ERANGE;
7639
7640 vmx->hv_deadline_tsc = tscl + delta_tsc;
7641 *expired = !delta_tsc;
7642 return 0;
7643 }
7644
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7645 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7646 {
7647 to_vmx(vcpu)->hv_deadline_tsc = -1;
7648 }
7649 #endif
7650
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7651 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7652 {
7653 if (!kvm_pause_in_guest(vcpu->kvm))
7654 shrink_ple_window(vcpu);
7655 }
7656
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7657 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7658 struct kvm_memory_slot *slot)
7659 {
7660 if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7661 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7662 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7663 }
7664
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7665 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7666 struct kvm_memory_slot *slot)
7667 {
7668 kvm_mmu_slot_set_dirty(kvm, slot);
7669 }
7670
vmx_flush_log_dirty(struct kvm * kvm)7671 static void vmx_flush_log_dirty(struct kvm *kvm)
7672 {
7673 kvm_flush_pml_buffers(kvm);
7674 }
7675
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)7676 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7677 struct kvm_memory_slot *memslot,
7678 gfn_t offset, unsigned long mask)
7679 {
7680 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7681 }
7682
vmx_pre_block(struct kvm_vcpu * vcpu)7683 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7684 {
7685 if (pi_pre_block(vcpu))
7686 return 1;
7687
7688 if (kvm_lapic_hv_timer_in_use(vcpu))
7689 kvm_lapic_switch_to_sw_timer(vcpu);
7690
7691 return 0;
7692 }
7693
vmx_post_block(struct kvm_vcpu * vcpu)7694 static void vmx_post_block(struct kvm_vcpu *vcpu)
7695 {
7696 if (kvm_x86_ops.set_hv_timer)
7697 kvm_lapic_switch_to_hv_timer(vcpu);
7698
7699 pi_post_block(vcpu);
7700 }
7701
vmx_setup_mce(struct kvm_vcpu * vcpu)7702 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7703 {
7704 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7705 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7706 FEAT_CTL_LMCE_ENABLED;
7707 else
7708 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7709 ~FEAT_CTL_LMCE_ENABLED;
7710 }
7711
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)7712 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7713 {
7714 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7715 if (to_vmx(vcpu)->nested.nested_run_pending)
7716 return -EBUSY;
7717 return !is_smm(vcpu);
7718 }
7719
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7720 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7721 {
7722 struct vcpu_vmx *vmx = to_vmx(vcpu);
7723
7724 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7725 if (vmx->nested.smm.guest_mode)
7726 nested_vmx_vmexit(vcpu, -1, 0, 0);
7727
7728 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7729 vmx->nested.vmxon = false;
7730 vmx_clear_hlt(vcpu);
7731 return 0;
7732 }
7733
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7734 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7735 {
7736 struct vcpu_vmx *vmx = to_vmx(vcpu);
7737 int ret;
7738
7739 if (vmx->nested.smm.vmxon) {
7740 vmx->nested.vmxon = true;
7741 vmx->nested.smm.vmxon = false;
7742 }
7743
7744 if (vmx->nested.smm.guest_mode) {
7745 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7746 if (ret)
7747 return ret;
7748
7749 vmx->nested.smm.guest_mode = false;
7750 }
7751 return 0;
7752 }
7753
enable_smi_window(struct kvm_vcpu * vcpu)7754 static void enable_smi_window(struct kvm_vcpu *vcpu)
7755 {
7756 /* RSM will cause a vmexit anyway. */
7757 }
7758
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7759 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7760 {
7761 return to_vmx(vcpu)->nested.vmxon;
7762 }
7763
vmx_migrate_timers(struct kvm_vcpu * vcpu)7764 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7765 {
7766 if (is_guest_mode(vcpu)) {
7767 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7768
7769 if (hrtimer_try_to_cancel(timer) == 1)
7770 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7771 }
7772 }
7773
hardware_unsetup(void)7774 static void hardware_unsetup(void)
7775 {
7776 kvm_set_posted_intr_wakeup_handler(NULL);
7777
7778 if (nested)
7779 nested_vmx_hardware_unsetup();
7780
7781 free_kvm_area();
7782 }
7783
vmx_check_apicv_inhibit_reasons(ulong bit)7784 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7785 {
7786 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7787 BIT(APICV_INHIBIT_REASON_HYPERV);
7788
7789 return supported & BIT(bit);
7790 }
7791
7792 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7793 .hardware_unsetup = hardware_unsetup,
7794
7795 .hardware_enable = hardware_enable,
7796 .hardware_disable = hardware_disable,
7797 .cpu_has_accelerated_tpr = report_flexpriority,
7798 .has_emulated_msr = vmx_has_emulated_msr,
7799
7800 .vm_size = sizeof(struct kvm_vmx),
7801 .vm_init = vmx_vm_init,
7802
7803 .vcpu_create = vmx_create_vcpu,
7804 .vcpu_free = vmx_free_vcpu,
7805 .vcpu_reset = vmx_vcpu_reset,
7806
7807 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7808 .vcpu_load = vmx_vcpu_load,
7809 .vcpu_put = vmx_vcpu_put,
7810
7811 .update_exception_bitmap = update_exception_bitmap,
7812 .get_msr_feature = vmx_get_msr_feature,
7813 .get_msr = vmx_get_msr,
7814 .set_msr = vmx_set_msr,
7815 .get_segment_base = vmx_get_segment_base,
7816 .get_segment = vmx_get_segment,
7817 .set_segment = vmx_set_segment,
7818 .get_cpl = vmx_get_cpl,
7819 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7820 .set_cr0 = vmx_set_cr0,
7821 .is_valid_cr4 = vmx_is_valid_cr4,
7822 .set_cr4 = vmx_set_cr4,
7823 .set_efer = vmx_set_efer,
7824 .get_idt = vmx_get_idt,
7825 .set_idt = vmx_set_idt,
7826 .get_gdt = vmx_get_gdt,
7827 .set_gdt = vmx_set_gdt,
7828 .set_dr7 = vmx_set_dr7,
7829 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7830 .cache_reg = vmx_cache_reg,
7831 .get_rflags = vmx_get_rflags,
7832 .set_rflags = vmx_set_rflags,
7833
7834 .tlb_flush_all = vmx_flush_tlb_all,
7835 .tlb_flush_current = vmx_flush_tlb_current,
7836 .tlb_flush_gva = vmx_flush_tlb_gva,
7837 .tlb_flush_guest = vmx_flush_tlb_guest,
7838
7839 .run = vmx_vcpu_run,
7840 .handle_exit = vmx_handle_exit,
7841 .skip_emulated_instruction = vmx_skip_emulated_instruction,
7842 .update_emulated_instruction = vmx_update_emulated_instruction,
7843 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7844 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7845 .patch_hypercall = vmx_patch_hypercall,
7846 .set_irq = vmx_inject_irq,
7847 .set_nmi = vmx_inject_nmi,
7848 .queue_exception = vmx_queue_exception,
7849 .cancel_injection = vmx_cancel_injection,
7850 .interrupt_allowed = vmx_interrupt_allowed,
7851 .nmi_allowed = vmx_nmi_allowed,
7852 .get_nmi_mask = vmx_get_nmi_mask,
7853 .set_nmi_mask = vmx_set_nmi_mask,
7854 .enable_nmi_window = enable_nmi_window,
7855 .enable_irq_window = enable_irq_window,
7856 .update_cr8_intercept = update_cr8_intercept,
7857 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7858 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7859 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7860 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7861 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7862 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7863 .hwapic_irr_update = vmx_hwapic_irr_update,
7864 .hwapic_isr_update = vmx_hwapic_isr_update,
7865 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7866 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7867 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7868 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7869
7870 .set_tss_addr = vmx_set_tss_addr,
7871 .set_identity_map_addr = vmx_set_identity_map_addr,
7872 .get_mt_mask = vmx_get_mt_mask,
7873
7874 .get_exit_info = vmx_get_exit_info,
7875
7876 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7877
7878 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7879
7880 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7881
7882 .load_mmu_pgd = vmx_load_mmu_pgd,
7883
7884 .check_intercept = vmx_check_intercept,
7885 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7886
7887 .request_immediate_exit = vmx_request_immediate_exit,
7888
7889 .sched_in = vmx_sched_in,
7890
7891 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7892 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7893 .flush_log_dirty = vmx_flush_log_dirty,
7894 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7895
7896 .pre_block = vmx_pre_block,
7897 .post_block = vmx_post_block,
7898
7899 .pmu_ops = &intel_pmu_ops,
7900 .nested_ops = &vmx_nested_ops,
7901
7902 .update_pi_irte = pi_update_irte,
7903
7904 #ifdef CONFIG_X86_64
7905 .set_hv_timer = vmx_set_hv_timer,
7906 .cancel_hv_timer = vmx_cancel_hv_timer,
7907 #endif
7908
7909 .setup_mce = vmx_setup_mce,
7910
7911 .smi_allowed = vmx_smi_allowed,
7912 .pre_enter_smm = vmx_pre_enter_smm,
7913 .pre_leave_smm = vmx_pre_leave_smm,
7914 .enable_smi_window = enable_smi_window,
7915
7916 .can_emulate_instruction = vmx_can_emulate_instruction,
7917 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7918 .migrate_timers = vmx_migrate_timers,
7919
7920 .msr_filter_changed = vmx_msr_filter_changed,
7921 };
7922
hardware_setup(void)7923 static __init int hardware_setup(void)
7924 {
7925 unsigned long host_bndcfgs;
7926 struct desc_ptr dt;
7927 int r, i, ept_lpage_level;
7928
7929 store_idt(&dt);
7930 host_idt_base = dt.address;
7931
7932 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7933 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7934
7935 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7936 return -EIO;
7937
7938 if (boot_cpu_has(X86_FEATURE_NX))
7939 kvm_enable_efer_bits(EFER_NX);
7940
7941 if (boot_cpu_has(X86_FEATURE_MPX)) {
7942 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7943 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7944 }
7945
7946 if (!cpu_has_vmx_mpx())
7947 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7948 XFEATURE_MASK_BNDCSR);
7949
7950 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7951 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7952 enable_vpid = 0;
7953
7954 if (!cpu_has_vmx_ept() ||
7955 !cpu_has_vmx_ept_4levels() ||
7956 !cpu_has_vmx_ept_mt_wb() ||
7957 !cpu_has_vmx_invept_global())
7958 enable_ept = 0;
7959
7960 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7961 enable_ept_ad_bits = 0;
7962
7963 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7964 enable_unrestricted_guest = 0;
7965
7966 if (!cpu_has_vmx_flexpriority())
7967 flexpriority_enabled = 0;
7968
7969 if (!cpu_has_virtual_nmis())
7970 enable_vnmi = 0;
7971
7972 /*
7973 * set_apic_access_page_addr() is used to reload apic access
7974 * page upon invalidation. No need to do anything if not
7975 * using the APIC_ACCESS_ADDR VMCS field.
7976 */
7977 if (!flexpriority_enabled)
7978 vmx_x86_ops.set_apic_access_page_addr = NULL;
7979
7980 if (!cpu_has_vmx_tpr_shadow())
7981 vmx_x86_ops.update_cr8_intercept = NULL;
7982
7983 #if IS_ENABLED(CONFIG_HYPERV)
7984 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7985 && enable_ept) {
7986 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7987 vmx_x86_ops.tlb_remote_flush_with_range =
7988 hv_remote_flush_tlb_with_range;
7989 }
7990 #endif
7991
7992 if (!cpu_has_vmx_ple()) {
7993 ple_gap = 0;
7994 ple_window = 0;
7995 ple_window_grow = 0;
7996 ple_window_max = 0;
7997 ple_window_shrink = 0;
7998 }
7999
8000 if (!cpu_has_vmx_apicv()) {
8001 enable_apicv = 0;
8002 vmx_x86_ops.sync_pir_to_irr = NULL;
8003 }
8004
8005 if (cpu_has_vmx_tsc_scaling()) {
8006 kvm_has_tsc_control = true;
8007 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8008 kvm_tsc_scaling_ratio_frac_bits = 48;
8009 }
8010
8011 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8012
8013 if (enable_ept)
8014 vmx_enable_tdp();
8015
8016 if (!enable_ept)
8017 ept_lpage_level = 0;
8018 else if (cpu_has_vmx_ept_1g_page())
8019 ept_lpage_level = PG_LEVEL_1G;
8020 else if (cpu_has_vmx_ept_2m_page())
8021 ept_lpage_level = PG_LEVEL_2M;
8022 else
8023 ept_lpage_level = PG_LEVEL_4K;
8024 kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
8025
8026 /*
8027 * Only enable PML when hardware supports PML feature, and both EPT
8028 * and EPT A/D bit features are enabled -- PML depends on them to work.
8029 */
8030 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8031 enable_pml = 0;
8032
8033 if (!enable_pml) {
8034 vmx_x86_ops.slot_enable_log_dirty = NULL;
8035 vmx_x86_ops.slot_disable_log_dirty = NULL;
8036 vmx_x86_ops.flush_log_dirty = NULL;
8037 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
8038 }
8039
8040 if (!cpu_has_vmx_preemption_timer())
8041 enable_preemption_timer = false;
8042
8043 if (enable_preemption_timer) {
8044 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8045 u64 vmx_msr;
8046
8047 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8048 cpu_preemption_timer_multi =
8049 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8050
8051 if (tsc_khz)
8052 use_timer_freq = (u64)tsc_khz * 1000;
8053 use_timer_freq >>= cpu_preemption_timer_multi;
8054
8055 /*
8056 * KVM "disables" the preemption timer by setting it to its max
8057 * value. Don't use the timer if it might cause spurious exits
8058 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8059 */
8060 if (use_timer_freq > 0xffffffffu / 10)
8061 enable_preemption_timer = false;
8062 }
8063
8064 if (!enable_preemption_timer) {
8065 vmx_x86_ops.set_hv_timer = NULL;
8066 vmx_x86_ops.cancel_hv_timer = NULL;
8067 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8068 }
8069
8070 kvm_mce_cap_supported |= MCG_LMCE_P;
8071
8072 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8073 return -EINVAL;
8074 if (!enable_ept || !cpu_has_vmx_intel_pt())
8075 pt_mode = PT_MODE_SYSTEM;
8076
8077 if (nested) {
8078 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8079 vmx_capability.ept);
8080
8081 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8082 if (r)
8083 return r;
8084 }
8085
8086 vmx_set_cpu_caps();
8087
8088 r = alloc_kvm_area();
8089 if (r)
8090 nested_vmx_hardware_unsetup();
8091
8092 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8093
8094 return r;
8095 }
8096
8097 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8098 .cpu_has_kvm_support = cpu_has_kvm_support,
8099 .disabled_by_bios = vmx_disabled_by_bios,
8100 .check_processor_compatibility = vmx_check_processor_compat,
8101 .hardware_setup = hardware_setup,
8102 .intel_pt_intr_in_guest = vmx_pt_mode_is_host_guest,
8103
8104 .runtime_ops = &vmx_x86_ops,
8105 };
8106
vmx_cleanup_l1d_flush(void)8107 static void vmx_cleanup_l1d_flush(void)
8108 {
8109 if (vmx_l1d_flush_pages) {
8110 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8111 vmx_l1d_flush_pages = NULL;
8112 }
8113 /* Restore state so sysfs ignores VMX */
8114 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8115 }
8116
vmx_exit(void)8117 static void vmx_exit(void)
8118 {
8119 #ifdef CONFIG_KEXEC_CORE
8120 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8121 synchronize_rcu();
8122 #endif
8123
8124 kvm_exit();
8125
8126 #if IS_ENABLED(CONFIG_HYPERV)
8127 if (static_branch_unlikely(&enable_evmcs)) {
8128 int cpu;
8129 struct hv_vp_assist_page *vp_ap;
8130 /*
8131 * Reset everything to support using non-enlightened VMCS
8132 * access later (e.g. when we reload the module with
8133 * enlightened_vmcs=0)
8134 */
8135 for_each_online_cpu(cpu) {
8136 vp_ap = hv_get_vp_assist_page(cpu);
8137
8138 if (!vp_ap)
8139 continue;
8140
8141 vp_ap->nested_control.features.directhypercall = 0;
8142 vp_ap->current_nested_vmcs = 0;
8143 vp_ap->enlighten_vmentry = 0;
8144 }
8145
8146 static_branch_disable(&enable_evmcs);
8147 }
8148 #endif
8149 vmx_cleanup_l1d_flush();
8150 }
8151 module_exit(vmx_exit);
8152
vmx_init(void)8153 static int __init vmx_init(void)
8154 {
8155 int r, cpu;
8156
8157 #if IS_ENABLED(CONFIG_HYPERV)
8158 /*
8159 * Enlightened VMCS usage should be recommended and the host needs
8160 * to support eVMCS v1 or above. We can also disable eVMCS support
8161 * with module parameter.
8162 */
8163 if (enlightened_vmcs &&
8164 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8165 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8166 KVM_EVMCS_VERSION) {
8167 int cpu;
8168
8169 /* Check that we have assist pages on all online CPUs */
8170 for_each_online_cpu(cpu) {
8171 if (!hv_get_vp_assist_page(cpu)) {
8172 enlightened_vmcs = false;
8173 break;
8174 }
8175 }
8176
8177 if (enlightened_vmcs) {
8178 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8179 static_branch_enable(&enable_evmcs);
8180 }
8181
8182 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8183 vmx_x86_ops.enable_direct_tlbflush
8184 = hv_enable_direct_tlbflush;
8185
8186 } else {
8187 enlightened_vmcs = false;
8188 }
8189 #endif
8190
8191 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8192 __alignof__(struct vcpu_vmx), THIS_MODULE);
8193 if (r)
8194 return r;
8195
8196 /*
8197 * Must be called after kvm_init() so enable_ept is properly set
8198 * up. Hand the parameter mitigation value in which was stored in
8199 * the pre module init parser. If no parameter was given, it will
8200 * contain 'auto' which will be turned into the default 'cond'
8201 * mitigation mode.
8202 */
8203 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8204 if (r) {
8205 vmx_exit();
8206 return r;
8207 }
8208
8209 vmx_setup_fb_clear_ctrl();
8210
8211 for_each_possible_cpu(cpu) {
8212 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8213
8214 pi_init_cpu(cpu);
8215 }
8216
8217 #ifdef CONFIG_KEXEC_CORE
8218 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8219 crash_vmclear_local_loaded_vmcss);
8220 #endif
8221 vmx_check_vmcs12_offsets();
8222
8223 /*
8224 * Shadow paging doesn't have a (further) performance penalty
8225 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8226 * by default
8227 */
8228 if (!enable_ept)
8229 allow_smaller_maxphyaddr = true;
8230
8231 return 0;
8232 }
8233 module_init(vmx_init);
8234