• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
t4_wait_op_done_val(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay,u32 * valp)57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
t4_wait_op_done(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay)75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
t4_set_reg_field(struct adapter * adapter,unsigned int addr,u32 mask,u32 val)92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
t4_read_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,u32 * vals,unsigned int nregs,unsigned int start_idx)113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
t4_write_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,const u32 * vals,unsigned int nregs,unsigned int start_idx)136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
t4_hw_pci_read_cfg4(struct adapter * adap,int reg,u32 * val)152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
t4_report_fw_error(struct adapter * adap)183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~CXGB4_FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
get_mbox_rpl(struct adapter * adap,__be64 * rpl,int nflit,u32 mbox_addr)208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
fw_asrt(struct adapter * adap,u32 mbox_addr)218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
t4_record_mbox(struct adapter * adapter,const __be64 * cmd,unsigned int size,int access,int execute)237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
t4_wr_mbox_meat_timeout(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok,int timeout)282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rarely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
t4_wr_mbox_meat(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok)442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
t4_edc_err_read(struct adapter * adap,int idx)449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
t4_memory_rw_init(struct adapter * adap,int win,int mtype,u32 * mem_off,u32 * mem_base,u32 * mem_aperture)497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
t4_memory_update_win(struct adapter * adap,int win,u32 addr)551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
t4_memory_rw_residual(struct adapter * adap,u32 off,u32 addr,u8 * buf,int dir)573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boundaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
t4_memory_rw(struct adapter * adap,int win,int mtype,u32 addr,u32 len,void * hbuf,int dir)614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
t4_read_pcie_cfg4(struct adapter * adap,int reg)731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
t4_get_window(struct adapter * adap,u32 pci_base,u64 pci_mask,u32 memwin_base)772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
t4_get_util_window(struct adapter * adap)802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
t4_setup_memwin(struct adapter * adap,u32 memwin_base,u32 window)812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
t4_get_regs_len(struct adapter * adapter)828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
t4_get_regs(struct adapter * adap,void * buf,size_t buf_size)856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9810, 0x9864,
1383 		0x9c00, 0x9c6c,
1384 		0x9c80, 0x9cec,
1385 		0x9d00, 0x9d6c,
1386 		0x9d80, 0x9dec,
1387 		0x9e00, 0x9e6c,
1388 		0x9e80, 0x9eec,
1389 		0x9f00, 0x9f6c,
1390 		0x9f80, 0xa020,
1391 		0xd000, 0xd004,
1392 		0xd010, 0xd03c,
1393 		0xdfc0, 0xdfe0,
1394 		0xe000, 0x1106c,
1395 		0x11074, 0x11088,
1396 		0x1109c, 0x1117c,
1397 		0x11190, 0x11204,
1398 		0x19040, 0x1906c,
1399 		0x19078, 0x19080,
1400 		0x1908c, 0x190e8,
1401 		0x190f0, 0x190f8,
1402 		0x19100, 0x19110,
1403 		0x19120, 0x19124,
1404 		0x19150, 0x19194,
1405 		0x1919c, 0x191b0,
1406 		0x191d0, 0x191e8,
1407 		0x19238, 0x19290,
1408 		0x193f8, 0x19428,
1409 		0x19430, 0x19444,
1410 		0x1944c, 0x1946c,
1411 		0x19474, 0x19474,
1412 		0x19490, 0x194cc,
1413 		0x194f0, 0x194f8,
1414 		0x19c00, 0x19c08,
1415 		0x19c10, 0x19c60,
1416 		0x19c94, 0x19ce4,
1417 		0x19cf0, 0x19d40,
1418 		0x19d50, 0x19d94,
1419 		0x19da0, 0x19de8,
1420 		0x19df0, 0x19e10,
1421 		0x19e50, 0x19e90,
1422 		0x19ea0, 0x19f24,
1423 		0x19f34, 0x19f34,
1424 		0x19f40, 0x19f50,
1425 		0x19f90, 0x19fb4,
1426 		0x19fc4, 0x19fe4,
1427 		0x1a000, 0x1a004,
1428 		0x1a010, 0x1a06c,
1429 		0x1a0b0, 0x1a0e4,
1430 		0x1a0ec, 0x1a0f8,
1431 		0x1a100, 0x1a108,
1432 		0x1a114, 0x1a130,
1433 		0x1a138, 0x1a1c4,
1434 		0x1a1fc, 0x1a1fc,
1435 		0x1e008, 0x1e00c,
1436 		0x1e040, 0x1e044,
1437 		0x1e04c, 0x1e04c,
1438 		0x1e284, 0x1e290,
1439 		0x1e2c0, 0x1e2c0,
1440 		0x1e2e0, 0x1e2e0,
1441 		0x1e300, 0x1e384,
1442 		0x1e3c0, 0x1e3c8,
1443 		0x1e408, 0x1e40c,
1444 		0x1e440, 0x1e444,
1445 		0x1e44c, 0x1e44c,
1446 		0x1e684, 0x1e690,
1447 		0x1e6c0, 0x1e6c0,
1448 		0x1e6e0, 0x1e6e0,
1449 		0x1e700, 0x1e784,
1450 		0x1e7c0, 0x1e7c8,
1451 		0x1e808, 0x1e80c,
1452 		0x1e840, 0x1e844,
1453 		0x1e84c, 0x1e84c,
1454 		0x1ea84, 0x1ea90,
1455 		0x1eac0, 0x1eac0,
1456 		0x1eae0, 0x1eae0,
1457 		0x1eb00, 0x1eb84,
1458 		0x1ebc0, 0x1ebc8,
1459 		0x1ec08, 0x1ec0c,
1460 		0x1ec40, 0x1ec44,
1461 		0x1ec4c, 0x1ec4c,
1462 		0x1ee84, 0x1ee90,
1463 		0x1eec0, 0x1eec0,
1464 		0x1eee0, 0x1eee0,
1465 		0x1ef00, 0x1ef84,
1466 		0x1efc0, 0x1efc8,
1467 		0x1f008, 0x1f00c,
1468 		0x1f040, 0x1f044,
1469 		0x1f04c, 0x1f04c,
1470 		0x1f284, 0x1f290,
1471 		0x1f2c0, 0x1f2c0,
1472 		0x1f2e0, 0x1f2e0,
1473 		0x1f300, 0x1f384,
1474 		0x1f3c0, 0x1f3c8,
1475 		0x1f408, 0x1f40c,
1476 		0x1f440, 0x1f444,
1477 		0x1f44c, 0x1f44c,
1478 		0x1f684, 0x1f690,
1479 		0x1f6c0, 0x1f6c0,
1480 		0x1f6e0, 0x1f6e0,
1481 		0x1f700, 0x1f784,
1482 		0x1f7c0, 0x1f7c8,
1483 		0x1f808, 0x1f80c,
1484 		0x1f840, 0x1f844,
1485 		0x1f84c, 0x1f84c,
1486 		0x1fa84, 0x1fa90,
1487 		0x1fac0, 0x1fac0,
1488 		0x1fae0, 0x1fae0,
1489 		0x1fb00, 0x1fb84,
1490 		0x1fbc0, 0x1fbc8,
1491 		0x1fc08, 0x1fc0c,
1492 		0x1fc40, 0x1fc44,
1493 		0x1fc4c, 0x1fc4c,
1494 		0x1fe84, 0x1fe90,
1495 		0x1fec0, 0x1fec0,
1496 		0x1fee0, 0x1fee0,
1497 		0x1ff00, 0x1ff84,
1498 		0x1ffc0, 0x1ffc8,
1499 		0x30000, 0x30030,
1500 		0x30100, 0x30144,
1501 		0x30190, 0x301a0,
1502 		0x301a8, 0x301b8,
1503 		0x301c4, 0x301c8,
1504 		0x301d0, 0x301d0,
1505 		0x30200, 0x30318,
1506 		0x30400, 0x304b4,
1507 		0x304c0, 0x3052c,
1508 		0x30540, 0x3061c,
1509 		0x30800, 0x30828,
1510 		0x30834, 0x30834,
1511 		0x308c0, 0x30908,
1512 		0x30910, 0x309ac,
1513 		0x30a00, 0x30a14,
1514 		0x30a1c, 0x30a2c,
1515 		0x30a44, 0x30a50,
1516 		0x30a74, 0x30a74,
1517 		0x30a7c, 0x30afc,
1518 		0x30b08, 0x30c24,
1519 		0x30d00, 0x30d00,
1520 		0x30d08, 0x30d14,
1521 		0x30d1c, 0x30d20,
1522 		0x30d3c, 0x30d3c,
1523 		0x30d48, 0x30d50,
1524 		0x31200, 0x3120c,
1525 		0x31220, 0x31220,
1526 		0x31240, 0x31240,
1527 		0x31600, 0x3160c,
1528 		0x31a00, 0x31a1c,
1529 		0x31e00, 0x31e20,
1530 		0x31e38, 0x31e3c,
1531 		0x31e80, 0x31e80,
1532 		0x31e88, 0x31ea8,
1533 		0x31eb0, 0x31eb4,
1534 		0x31ec8, 0x31ed4,
1535 		0x31fb8, 0x32004,
1536 		0x32200, 0x32200,
1537 		0x32208, 0x32240,
1538 		0x32248, 0x32280,
1539 		0x32288, 0x322c0,
1540 		0x322c8, 0x322fc,
1541 		0x32600, 0x32630,
1542 		0x32a00, 0x32abc,
1543 		0x32b00, 0x32b10,
1544 		0x32b20, 0x32b30,
1545 		0x32b40, 0x32b50,
1546 		0x32b60, 0x32b70,
1547 		0x33000, 0x33028,
1548 		0x33030, 0x33048,
1549 		0x33060, 0x33068,
1550 		0x33070, 0x3309c,
1551 		0x330f0, 0x33128,
1552 		0x33130, 0x33148,
1553 		0x33160, 0x33168,
1554 		0x33170, 0x3319c,
1555 		0x331f0, 0x33238,
1556 		0x33240, 0x33240,
1557 		0x33248, 0x33250,
1558 		0x3325c, 0x33264,
1559 		0x33270, 0x332b8,
1560 		0x332c0, 0x332e4,
1561 		0x332f8, 0x33338,
1562 		0x33340, 0x33340,
1563 		0x33348, 0x33350,
1564 		0x3335c, 0x33364,
1565 		0x33370, 0x333b8,
1566 		0x333c0, 0x333e4,
1567 		0x333f8, 0x33428,
1568 		0x33430, 0x33448,
1569 		0x33460, 0x33468,
1570 		0x33470, 0x3349c,
1571 		0x334f0, 0x33528,
1572 		0x33530, 0x33548,
1573 		0x33560, 0x33568,
1574 		0x33570, 0x3359c,
1575 		0x335f0, 0x33638,
1576 		0x33640, 0x33640,
1577 		0x33648, 0x33650,
1578 		0x3365c, 0x33664,
1579 		0x33670, 0x336b8,
1580 		0x336c0, 0x336e4,
1581 		0x336f8, 0x33738,
1582 		0x33740, 0x33740,
1583 		0x33748, 0x33750,
1584 		0x3375c, 0x33764,
1585 		0x33770, 0x337b8,
1586 		0x337c0, 0x337e4,
1587 		0x337f8, 0x337fc,
1588 		0x33814, 0x33814,
1589 		0x3382c, 0x3382c,
1590 		0x33880, 0x3388c,
1591 		0x338e8, 0x338ec,
1592 		0x33900, 0x33928,
1593 		0x33930, 0x33948,
1594 		0x33960, 0x33968,
1595 		0x33970, 0x3399c,
1596 		0x339f0, 0x33a38,
1597 		0x33a40, 0x33a40,
1598 		0x33a48, 0x33a50,
1599 		0x33a5c, 0x33a64,
1600 		0x33a70, 0x33ab8,
1601 		0x33ac0, 0x33ae4,
1602 		0x33af8, 0x33b10,
1603 		0x33b28, 0x33b28,
1604 		0x33b3c, 0x33b50,
1605 		0x33bf0, 0x33c10,
1606 		0x33c28, 0x33c28,
1607 		0x33c3c, 0x33c50,
1608 		0x33cf0, 0x33cfc,
1609 		0x34000, 0x34030,
1610 		0x34100, 0x34144,
1611 		0x34190, 0x341a0,
1612 		0x341a8, 0x341b8,
1613 		0x341c4, 0x341c8,
1614 		0x341d0, 0x341d0,
1615 		0x34200, 0x34318,
1616 		0x34400, 0x344b4,
1617 		0x344c0, 0x3452c,
1618 		0x34540, 0x3461c,
1619 		0x34800, 0x34828,
1620 		0x34834, 0x34834,
1621 		0x348c0, 0x34908,
1622 		0x34910, 0x349ac,
1623 		0x34a00, 0x34a14,
1624 		0x34a1c, 0x34a2c,
1625 		0x34a44, 0x34a50,
1626 		0x34a74, 0x34a74,
1627 		0x34a7c, 0x34afc,
1628 		0x34b08, 0x34c24,
1629 		0x34d00, 0x34d00,
1630 		0x34d08, 0x34d14,
1631 		0x34d1c, 0x34d20,
1632 		0x34d3c, 0x34d3c,
1633 		0x34d48, 0x34d50,
1634 		0x35200, 0x3520c,
1635 		0x35220, 0x35220,
1636 		0x35240, 0x35240,
1637 		0x35600, 0x3560c,
1638 		0x35a00, 0x35a1c,
1639 		0x35e00, 0x35e20,
1640 		0x35e38, 0x35e3c,
1641 		0x35e80, 0x35e80,
1642 		0x35e88, 0x35ea8,
1643 		0x35eb0, 0x35eb4,
1644 		0x35ec8, 0x35ed4,
1645 		0x35fb8, 0x36004,
1646 		0x36200, 0x36200,
1647 		0x36208, 0x36240,
1648 		0x36248, 0x36280,
1649 		0x36288, 0x362c0,
1650 		0x362c8, 0x362fc,
1651 		0x36600, 0x36630,
1652 		0x36a00, 0x36abc,
1653 		0x36b00, 0x36b10,
1654 		0x36b20, 0x36b30,
1655 		0x36b40, 0x36b50,
1656 		0x36b60, 0x36b70,
1657 		0x37000, 0x37028,
1658 		0x37030, 0x37048,
1659 		0x37060, 0x37068,
1660 		0x37070, 0x3709c,
1661 		0x370f0, 0x37128,
1662 		0x37130, 0x37148,
1663 		0x37160, 0x37168,
1664 		0x37170, 0x3719c,
1665 		0x371f0, 0x37238,
1666 		0x37240, 0x37240,
1667 		0x37248, 0x37250,
1668 		0x3725c, 0x37264,
1669 		0x37270, 0x372b8,
1670 		0x372c0, 0x372e4,
1671 		0x372f8, 0x37338,
1672 		0x37340, 0x37340,
1673 		0x37348, 0x37350,
1674 		0x3735c, 0x37364,
1675 		0x37370, 0x373b8,
1676 		0x373c0, 0x373e4,
1677 		0x373f8, 0x37428,
1678 		0x37430, 0x37448,
1679 		0x37460, 0x37468,
1680 		0x37470, 0x3749c,
1681 		0x374f0, 0x37528,
1682 		0x37530, 0x37548,
1683 		0x37560, 0x37568,
1684 		0x37570, 0x3759c,
1685 		0x375f0, 0x37638,
1686 		0x37640, 0x37640,
1687 		0x37648, 0x37650,
1688 		0x3765c, 0x37664,
1689 		0x37670, 0x376b8,
1690 		0x376c0, 0x376e4,
1691 		0x376f8, 0x37738,
1692 		0x37740, 0x37740,
1693 		0x37748, 0x37750,
1694 		0x3775c, 0x37764,
1695 		0x37770, 0x377b8,
1696 		0x377c0, 0x377e4,
1697 		0x377f8, 0x377fc,
1698 		0x37814, 0x37814,
1699 		0x3782c, 0x3782c,
1700 		0x37880, 0x3788c,
1701 		0x378e8, 0x378ec,
1702 		0x37900, 0x37928,
1703 		0x37930, 0x37948,
1704 		0x37960, 0x37968,
1705 		0x37970, 0x3799c,
1706 		0x379f0, 0x37a38,
1707 		0x37a40, 0x37a40,
1708 		0x37a48, 0x37a50,
1709 		0x37a5c, 0x37a64,
1710 		0x37a70, 0x37ab8,
1711 		0x37ac0, 0x37ae4,
1712 		0x37af8, 0x37b10,
1713 		0x37b28, 0x37b28,
1714 		0x37b3c, 0x37b50,
1715 		0x37bf0, 0x37c10,
1716 		0x37c28, 0x37c28,
1717 		0x37c3c, 0x37c50,
1718 		0x37cf0, 0x37cfc,
1719 		0x38000, 0x38030,
1720 		0x38100, 0x38144,
1721 		0x38190, 0x381a0,
1722 		0x381a8, 0x381b8,
1723 		0x381c4, 0x381c8,
1724 		0x381d0, 0x381d0,
1725 		0x38200, 0x38318,
1726 		0x38400, 0x384b4,
1727 		0x384c0, 0x3852c,
1728 		0x38540, 0x3861c,
1729 		0x38800, 0x38828,
1730 		0x38834, 0x38834,
1731 		0x388c0, 0x38908,
1732 		0x38910, 0x389ac,
1733 		0x38a00, 0x38a14,
1734 		0x38a1c, 0x38a2c,
1735 		0x38a44, 0x38a50,
1736 		0x38a74, 0x38a74,
1737 		0x38a7c, 0x38afc,
1738 		0x38b08, 0x38c24,
1739 		0x38d00, 0x38d00,
1740 		0x38d08, 0x38d14,
1741 		0x38d1c, 0x38d20,
1742 		0x38d3c, 0x38d3c,
1743 		0x38d48, 0x38d50,
1744 		0x39200, 0x3920c,
1745 		0x39220, 0x39220,
1746 		0x39240, 0x39240,
1747 		0x39600, 0x3960c,
1748 		0x39a00, 0x39a1c,
1749 		0x39e00, 0x39e20,
1750 		0x39e38, 0x39e3c,
1751 		0x39e80, 0x39e80,
1752 		0x39e88, 0x39ea8,
1753 		0x39eb0, 0x39eb4,
1754 		0x39ec8, 0x39ed4,
1755 		0x39fb8, 0x3a004,
1756 		0x3a200, 0x3a200,
1757 		0x3a208, 0x3a240,
1758 		0x3a248, 0x3a280,
1759 		0x3a288, 0x3a2c0,
1760 		0x3a2c8, 0x3a2fc,
1761 		0x3a600, 0x3a630,
1762 		0x3aa00, 0x3aabc,
1763 		0x3ab00, 0x3ab10,
1764 		0x3ab20, 0x3ab30,
1765 		0x3ab40, 0x3ab50,
1766 		0x3ab60, 0x3ab70,
1767 		0x3b000, 0x3b028,
1768 		0x3b030, 0x3b048,
1769 		0x3b060, 0x3b068,
1770 		0x3b070, 0x3b09c,
1771 		0x3b0f0, 0x3b128,
1772 		0x3b130, 0x3b148,
1773 		0x3b160, 0x3b168,
1774 		0x3b170, 0x3b19c,
1775 		0x3b1f0, 0x3b238,
1776 		0x3b240, 0x3b240,
1777 		0x3b248, 0x3b250,
1778 		0x3b25c, 0x3b264,
1779 		0x3b270, 0x3b2b8,
1780 		0x3b2c0, 0x3b2e4,
1781 		0x3b2f8, 0x3b338,
1782 		0x3b340, 0x3b340,
1783 		0x3b348, 0x3b350,
1784 		0x3b35c, 0x3b364,
1785 		0x3b370, 0x3b3b8,
1786 		0x3b3c0, 0x3b3e4,
1787 		0x3b3f8, 0x3b428,
1788 		0x3b430, 0x3b448,
1789 		0x3b460, 0x3b468,
1790 		0x3b470, 0x3b49c,
1791 		0x3b4f0, 0x3b528,
1792 		0x3b530, 0x3b548,
1793 		0x3b560, 0x3b568,
1794 		0x3b570, 0x3b59c,
1795 		0x3b5f0, 0x3b638,
1796 		0x3b640, 0x3b640,
1797 		0x3b648, 0x3b650,
1798 		0x3b65c, 0x3b664,
1799 		0x3b670, 0x3b6b8,
1800 		0x3b6c0, 0x3b6e4,
1801 		0x3b6f8, 0x3b738,
1802 		0x3b740, 0x3b740,
1803 		0x3b748, 0x3b750,
1804 		0x3b75c, 0x3b764,
1805 		0x3b770, 0x3b7b8,
1806 		0x3b7c0, 0x3b7e4,
1807 		0x3b7f8, 0x3b7fc,
1808 		0x3b814, 0x3b814,
1809 		0x3b82c, 0x3b82c,
1810 		0x3b880, 0x3b88c,
1811 		0x3b8e8, 0x3b8ec,
1812 		0x3b900, 0x3b928,
1813 		0x3b930, 0x3b948,
1814 		0x3b960, 0x3b968,
1815 		0x3b970, 0x3b99c,
1816 		0x3b9f0, 0x3ba38,
1817 		0x3ba40, 0x3ba40,
1818 		0x3ba48, 0x3ba50,
1819 		0x3ba5c, 0x3ba64,
1820 		0x3ba70, 0x3bab8,
1821 		0x3bac0, 0x3bae4,
1822 		0x3baf8, 0x3bb10,
1823 		0x3bb28, 0x3bb28,
1824 		0x3bb3c, 0x3bb50,
1825 		0x3bbf0, 0x3bc10,
1826 		0x3bc28, 0x3bc28,
1827 		0x3bc3c, 0x3bc50,
1828 		0x3bcf0, 0x3bcfc,
1829 		0x3c000, 0x3c030,
1830 		0x3c100, 0x3c144,
1831 		0x3c190, 0x3c1a0,
1832 		0x3c1a8, 0x3c1b8,
1833 		0x3c1c4, 0x3c1c8,
1834 		0x3c1d0, 0x3c1d0,
1835 		0x3c200, 0x3c318,
1836 		0x3c400, 0x3c4b4,
1837 		0x3c4c0, 0x3c52c,
1838 		0x3c540, 0x3c61c,
1839 		0x3c800, 0x3c828,
1840 		0x3c834, 0x3c834,
1841 		0x3c8c0, 0x3c908,
1842 		0x3c910, 0x3c9ac,
1843 		0x3ca00, 0x3ca14,
1844 		0x3ca1c, 0x3ca2c,
1845 		0x3ca44, 0x3ca50,
1846 		0x3ca74, 0x3ca74,
1847 		0x3ca7c, 0x3cafc,
1848 		0x3cb08, 0x3cc24,
1849 		0x3cd00, 0x3cd00,
1850 		0x3cd08, 0x3cd14,
1851 		0x3cd1c, 0x3cd20,
1852 		0x3cd3c, 0x3cd3c,
1853 		0x3cd48, 0x3cd50,
1854 		0x3d200, 0x3d20c,
1855 		0x3d220, 0x3d220,
1856 		0x3d240, 0x3d240,
1857 		0x3d600, 0x3d60c,
1858 		0x3da00, 0x3da1c,
1859 		0x3de00, 0x3de20,
1860 		0x3de38, 0x3de3c,
1861 		0x3de80, 0x3de80,
1862 		0x3de88, 0x3dea8,
1863 		0x3deb0, 0x3deb4,
1864 		0x3dec8, 0x3ded4,
1865 		0x3dfb8, 0x3e004,
1866 		0x3e200, 0x3e200,
1867 		0x3e208, 0x3e240,
1868 		0x3e248, 0x3e280,
1869 		0x3e288, 0x3e2c0,
1870 		0x3e2c8, 0x3e2fc,
1871 		0x3e600, 0x3e630,
1872 		0x3ea00, 0x3eabc,
1873 		0x3eb00, 0x3eb10,
1874 		0x3eb20, 0x3eb30,
1875 		0x3eb40, 0x3eb50,
1876 		0x3eb60, 0x3eb70,
1877 		0x3f000, 0x3f028,
1878 		0x3f030, 0x3f048,
1879 		0x3f060, 0x3f068,
1880 		0x3f070, 0x3f09c,
1881 		0x3f0f0, 0x3f128,
1882 		0x3f130, 0x3f148,
1883 		0x3f160, 0x3f168,
1884 		0x3f170, 0x3f19c,
1885 		0x3f1f0, 0x3f238,
1886 		0x3f240, 0x3f240,
1887 		0x3f248, 0x3f250,
1888 		0x3f25c, 0x3f264,
1889 		0x3f270, 0x3f2b8,
1890 		0x3f2c0, 0x3f2e4,
1891 		0x3f2f8, 0x3f338,
1892 		0x3f340, 0x3f340,
1893 		0x3f348, 0x3f350,
1894 		0x3f35c, 0x3f364,
1895 		0x3f370, 0x3f3b8,
1896 		0x3f3c0, 0x3f3e4,
1897 		0x3f3f8, 0x3f428,
1898 		0x3f430, 0x3f448,
1899 		0x3f460, 0x3f468,
1900 		0x3f470, 0x3f49c,
1901 		0x3f4f0, 0x3f528,
1902 		0x3f530, 0x3f548,
1903 		0x3f560, 0x3f568,
1904 		0x3f570, 0x3f59c,
1905 		0x3f5f0, 0x3f638,
1906 		0x3f640, 0x3f640,
1907 		0x3f648, 0x3f650,
1908 		0x3f65c, 0x3f664,
1909 		0x3f670, 0x3f6b8,
1910 		0x3f6c0, 0x3f6e4,
1911 		0x3f6f8, 0x3f738,
1912 		0x3f740, 0x3f740,
1913 		0x3f748, 0x3f750,
1914 		0x3f75c, 0x3f764,
1915 		0x3f770, 0x3f7b8,
1916 		0x3f7c0, 0x3f7e4,
1917 		0x3f7f8, 0x3f7fc,
1918 		0x3f814, 0x3f814,
1919 		0x3f82c, 0x3f82c,
1920 		0x3f880, 0x3f88c,
1921 		0x3f8e8, 0x3f8ec,
1922 		0x3f900, 0x3f928,
1923 		0x3f930, 0x3f948,
1924 		0x3f960, 0x3f968,
1925 		0x3f970, 0x3f99c,
1926 		0x3f9f0, 0x3fa38,
1927 		0x3fa40, 0x3fa40,
1928 		0x3fa48, 0x3fa50,
1929 		0x3fa5c, 0x3fa64,
1930 		0x3fa70, 0x3fab8,
1931 		0x3fac0, 0x3fae4,
1932 		0x3faf8, 0x3fb10,
1933 		0x3fb28, 0x3fb28,
1934 		0x3fb3c, 0x3fb50,
1935 		0x3fbf0, 0x3fc10,
1936 		0x3fc28, 0x3fc28,
1937 		0x3fc3c, 0x3fc50,
1938 		0x3fcf0, 0x3fcfc,
1939 		0x40000, 0x4000c,
1940 		0x40040, 0x40050,
1941 		0x40060, 0x40068,
1942 		0x4007c, 0x4008c,
1943 		0x40094, 0x400b0,
1944 		0x400c0, 0x40144,
1945 		0x40180, 0x4018c,
1946 		0x40200, 0x40254,
1947 		0x40260, 0x40264,
1948 		0x40270, 0x40288,
1949 		0x40290, 0x40298,
1950 		0x402ac, 0x402c8,
1951 		0x402d0, 0x402e0,
1952 		0x402f0, 0x402f0,
1953 		0x40300, 0x4033c,
1954 		0x403f8, 0x403fc,
1955 		0x41304, 0x413c4,
1956 		0x41400, 0x4140c,
1957 		0x41414, 0x4141c,
1958 		0x41480, 0x414d0,
1959 		0x44000, 0x44054,
1960 		0x4405c, 0x44078,
1961 		0x440c0, 0x44174,
1962 		0x44180, 0x441ac,
1963 		0x441b4, 0x441b8,
1964 		0x441c0, 0x44254,
1965 		0x4425c, 0x44278,
1966 		0x442c0, 0x44374,
1967 		0x44380, 0x443ac,
1968 		0x443b4, 0x443b8,
1969 		0x443c0, 0x44454,
1970 		0x4445c, 0x44478,
1971 		0x444c0, 0x44574,
1972 		0x44580, 0x445ac,
1973 		0x445b4, 0x445b8,
1974 		0x445c0, 0x44654,
1975 		0x4465c, 0x44678,
1976 		0x446c0, 0x44774,
1977 		0x44780, 0x447ac,
1978 		0x447b4, 0x447b8,
1979 		0x447c0, 0x44854,
1980 		0x4485c, 0x44878,
1981 		0x448c0, 0x44974,
1982 		0x44980, 0x449ac,
1983 		0x449b4, 0x449b8,
1984 		0x449c0, 0x449fc,
1985 		0x45000, 0x45004,
1986 		0x45010, 0x45030,
1987 		0x45040, 0x45060,
1988 		0x45068, 0x45068,
1989 		0x45080, 0x45084,
1990 		0x450a0, 0x450b0,
1991 		0x45200, 0x45204,
1992 		0x45210, 0x45230,
1993 		0x45240, 0x45260,
1994 		0x45268, 0x45268,
1995 		0x45280, 0x45284,
1996 		0x452a0, 0x452b0,
1997 		0x460c0, 0x460e4,
1998 		0x47000, 0x4703c,
1999 		0x47044, 0x4708c,
2000 		0x47200, 0x47250,
2001 		0x47400, 0x47408,
2002 		0x47414, 0x47420,
2003 		0x47600, 0x47618,
2004 		0x47800, 0x47814,
2005 		0x48000, 0x4800c,
2006 		0x48040, 0x48050,
2007 		0x48060, 0x48068,
2008 		0x4807c, 0x4808c,
2009 		0x48094, 0x480b0,
2010 		0x480c0, 0x48144,
2011 		0x48180, 0x4818c,
2012 		0x48200, 0x48254,
2013 		0x48260, 0x48264,
2014 		0x48270, 0x48288,
2015 		0x48290, 0x48298,
2016 		0x482ac, 0x482c8,
2017 		0x482d0, 0x482e0,
2018 		0x482f0, 0x482f0,
2019 		0x48300, 0x4833c,
2020 		0x483f8, 0x483fc,
2021 		0x49304, 0x493c4,
2022 		0x49400, 0x4940c,
2023 		0x49414, 0x4941c,
2024 		0x49480, 0x494d0,
2025 		0x4c000, 0x4c054,
2026 		0x4c05c, 0x4c078,
2027 		0x4c0c0, 0x4c174,
2028 		0x4c180, 0x4c1ac,
2029 		0x4c1b4, 0x4c1b8,
2030 		0x4c1c0, 0x4c254,
2031 		0x4c25c, 0x4c278,
2032 		0x4c2c0, 0x4c374,
2033 		0x4c380, 0x4c3ac,
2034 		0x4c3b4, 0x4c3b8,
2035 		0x4c3c0, 0x4c454,
2036 		0x4c45c, 0x4c478,
2037 		0x4c4c0, 0x4c574,
2038 		0x4c580, 0x4c5ac,
2039 		0x4c5b4, 0x4c5b8,
2040 		0x4c5c0, 0x4c654,
2041 		0x4c65c, 0x4c678,
2042 		0x4c6c0, 0x4c774,
2043 		0x4c780, 0x4c7ac,
2044 		0x4c7b4, 0x4c7b8,
2045 		0x4c7c0, 0x4c854,
2046 		0x4c85c, 0x4c878,
2047 		0x4c8c0, 0x4c974,
2048 		0x4c980, 0x4c9ac,
2049 		0x4c9b4, 0x4c9b8,
2050 		0x4c9c0, 0x4c9fc,
2051 		0x4d000, 0x4d004,
2052 		0x4d010, 0x4d030,
2053 		0x4d040, 0x4d060,
2054 		0x4d068, 0x4d068,
2055 		0x4d080, 0x4d084,
2056 		0x4d0a0, 0x4d0b0,
2057 		0x4d200, 0x4d204,
2058 		0x4d210, 0x4d230,
2059 		0x4d240, 0x4d260,
2060 		0x4d268, 0x4d268,
2061 		0x4d280, 0x4d284,
2062 		0x4d2a0, 0x4d2b0,
2063 		0x4e0c0, 0x4e0e4,
2064 		0x4f000, 0x4f03c,
2065 		0x4f044, 0x4f08c,
2066 		0x4f200, 0x4f250,
2067 		0x4f400, 0x4f408,
2068 		0x4f414, 0x4f420,
2069 		0x4f600, 0x4f618,
2070 		0x4f800, 0x4f814,
2071 		0x50000, 0x50084,
2072 		0x50090, 0x500cc,
2073 		0x50400, 0x50400,
2074 		0x50800, 0x50884,
2075 		0x50890, 0x508cc,
2076 		0x50c00, 0x50c00,
2077 		0x51000, 0x5101c,
2078 		0x51300, 0x51308,
2079 	};
2080 
2081 	static const unsigned int t6_reg_ranges[] = {
2082 		0x1008, 0x101c,
2083 		0x1024, 0x10a8,
2084 		0x10b4, 0x10f8,
2085 		0x1100, 0x1114,
2086 		0x111c, 0x112c,
2087 		0x1138, 0x113c,
2088 		0x1144, 0x114c,
2089 		0x1180, 0x1184,
2090 		0x1190, 0x1194,
2091 		0x11a0, 0x11a4,
2092 		0x11b0, 0x11b4,
2093 		0x11fc, 0x123c,
2094 		0x1254, 0x1274,
2095 		0x1280, 0x133c,
2096 		0x1800, 0x18fc,
2097 		0x3000, 0x302c,
2098 		0x3060, 0x30b0,
2099 		0x30b8, 0x30d8,
2100 		0x30e0, 0x30fc,
2101 		0x3140, 0x357c,
2102 		0x35a8, 0x35cc,
2103 		0x35ec, 0x35ec,
2104 		0x3600, 0x5624,
2105 		0x56cc, 0x56ec,
2106 		0x56f4, 0x5720,
2107 		0x5728, 0x575c,
2108 		0x580c, 0x5814,
2109 		0x5890, 0x589c,
2110 		0x58a4, 0x58ac,
2111 		0x58b8, 0x58bc,
2112 		0x5940, 0x595c,
2113 		0x5980, 0x598c,
2114 		0x59b0, 0x59c8,
2115 		0x59d0, 0x59dc,
2116 		0x59fc, 0x5a18,
2117 		0x5a60, 0x5a6c,
2118 		0x5a80, 0x5a8c,
2119 		0x5a94, 0x5a9c,
2120 		0x5b94, 0x5bfc,
2121 		0x5c10, 0x5e48,
2122 		0x5e50, 0x5e94,
2123 		0x5ea0, 0x5eb0,
2124 		0x5ec0, 0x5ec0,
2125 		0x5ec8, 0x5ed0,
2126 		0x5ee0, 0x5ee0,
2127 		0x5ef0, 0x5ef0,
2128 		0x5f00, 0x5f00,
2129 		0x6000, 0x6020,
2130 		0x6028, 0x6040,
2131 		0x6058, 0x609c,
2132 		0x60a8, 0x619c,
2133 		0x7700, 0x7798,
2134 		0x77c0, 0x7880,
2135 		0x78cc, 0x78fc,
2136 		0x7b00, 0x7b58,
2137 		0x7b60, 0x7b84,
2138 		0x7b8c, 0x7c54,
2139 		0x7d00, 0x7d38,
2140 		0x7d40, 0x7d84,
2141 		0x7d8c, 0x7ddc,
2142 		0x7de4, 0x7e04,
2143 		0x7e10, 0x7e1c,
2144 		0x7e24, 0x7e38,
2145 		0x7e40, 0x7e44,
2146 		0x7e4c, 0x7e78,
2147 		0x7e80, 0x7edc,
2148 		0x7ee8, 0x7efc,
2149 		0x8dc0, 0x8de4,
2150 		0x8df8, 0x8e04,
2151 		0x8e10, 0x8e84,
2152 		0x8ea0, 0x8f88,
2153 		0x8fb8, 0x9058,
2154 		0x9060, 0x9060,
2155 		0x9068, 0x90f8,
2156 		0x9100, 0x9124,
2157 		0x9400, 0x9470,
2158 		0x9600, 0x9600,
2159 		0x9608, 0x9638,
2160 		0x9640, 0x9704,
2161 		0x9710, 0x971c,
2162 		0x9800, 0x9808,
2163 		0x9810, 0x9864,
2164 		0x9c00, 0x9c6c,
2165 		0x9c80, 0x9cec,
2166 		0x9d00, 0x9d6c,
2167 		0x9d80, 0x9dec,
2168 		0x9e00, 0x9e6c,
2169 		0x9e80, 0x9eec,
2170 		0x9f00, 0x9f6c,
2171 		0x9f80, 0xa020,
2172 		0xd000, 0xd03c,
2173 		0xd100, 0xd118,
2174 		0xd200, 0xd214,
2175 		0xd220, 0xd234,
2176 		0xd240, 0xd254,
2177 		0xd260, 0xd274,
2178 		0xd280, 0xd294,
2179 		0xd2a0, 0xd2b4,
2180 		0xd2c0, 0xd2d4,
2181 		0xd2e0, 0xd2f4,
2182 		0xd300, 0xd31c,
2183 		0xdfc0, 0xdfe0,
2184 		0xe000, 0xf008,
2185 		0xf010, 0xf018,
2186 		0xf020, 0xf028,
2187 		0x11000, 0x11014,
2188 		0x11048, 0x1106c,
2189 		0x11074, 0x11088,
2190 		0x11098, 0x11120,
2191 		0x1112c, 0x1117c,
2192 		0x11190, 0x112e0,
2193 		0x11300, 0x1130c,
2194 		0x12000, 0x1206c,
2195 		0x19040, 0x1906c,
2196 		0x19078, 0x19080,
2197 		0x1908c, 0x190e8,
2198 		0x190f0, 0x190f8,
2199 		0x19100, 0x19110,
2200 		0x19120, 0x19124,
2201 		0x19150, 0x19194,
2202 		0x1919c, 0x191b0,
2203 		0x191d0, 0x191e8,
2204 		0x19238, 0x19290,
2205 		0x192a4, 0x192b0,
2206 		0x192bc, 0x192bc,
2207 		0x19348, 0x1934c,
2208 		0x193f8, 0x19418,
2209 		0x19420, 0x19428,
2210 		0x19430, 0x19444,
2211 		0x1944c, 0x1946c,
2212 		0x19474, 0x19474,
2213 		0x19490, 0x194cc,
2214 		0x194f0, 0x194f8,
2215 		0x19c00, 0x19c48,
2216 		0x19c50, 0x19c80,
2217 		0x19c94, 0x19c98,
2218 		0x19ca0, 0x19cbc,
2219 		0x19ce4, 0x19ce4,
2220 		0x19cf0, 0x19cf8,
2221 		0x19d00, 0x19d28,
2222 		0x19d50, 0x19d78,
2223 		0x19d94, 0x19d98,
2224 		0x19da0, 0x19dc8,
2225 		0x19df0, 0x19e10,
2226 		0x19e50, 0x19e6c,
2227 		0x19ea0, 0x19ebc,
2228 		0x19ec4, 0x19ef4,
2229 		0x19f04, 0x19f2c,
2230 		0x19f34, 0x19f34,
2231 		0x19f40, 0x19f50,
2232 		0x19f90, 0x19fac,
2233 		0x19fc4, 0x19fc8,
2234 		0x19fd0, 0x19fe4,
2235 		0x1a000, 0x1a004,
2236 		0x1a010, 0x1a06c,
2237 		0x1a0b0, 0x1a0e4,
2238 		0x1a0ec, 0x1a0f8,
2239 		0x1a100, 0x1a108,
2240 		0x1a114, 0x1a130,
2241 		0x1a138, 0x1a1c4,
2242 		0x1a1fc, 0x1a1fc,
2243 		0x1e008, 0x1e00c,
2244 		0x1e040, 0x1e044,
2245 		0x1e04c, 0x1e04c,
2246 		0x1e284, 0x1e290,
2247 		0x1e2c0, 0x1e2c0,
2248 		0x1e2e0, 0x1e2e0,
2249 		0x1e300, 0x1e384,
2250 		0x1e3c0, 0x1e3c8,
2251 		0x1e408, 0x1e40c,
2252 		0x1e440, 0x1e444,
2253 		0x1e44c, 0x1e44c,
2254 		0x1e684, 0x1e690,
2255 		0x1e6c0, 0x1e6c0,
2256 		0x1e6e0, 0x1e6e0,
2257 		0x1e700, 0x1e784,
2258 		0x1e7c0, 0x1e7c8,
2259 		0x1e808, 0x1e80c,
2260 		0x1e840, 0x1e844,
2261 		0x1e84c, 0x1e84c,
2262 		0x1ea84, 0x1ea90,
2263 		0x1eac0, 0x1eac0,
2264 		0x1eae0, 0x1eae0,
2265 		0x1eb00, 0x1eb84,
2266 		0x1ebc0, 0x1ebc8,
2267 		0x1ec08, 0x1ec0c,
2268 		0x1ec40, 0x1ec44,
2269 		0x1ec4c, 0x1ec4c,
2270 		0x1ee84, 0x1ee90,
2271 		0x1eec0, 0x1eec0,
2272 		0x1eee0, 0x1eee0,
2273 		0x1ef00, 0x1ef84,
2274 		0x1efc0, 0x1efc8,
2275 		0x1f008, 0x1f00c,
2276 		0x1f040, 0x1f044,
2277 		0x1f04c, 0x1f04c,
2278 		0x1f284, 0x1f290,
2279 		0x1f2c0, 0x1f2c0,
2280 		0x1f2e0, 0x1f2e0,
2281 		0x1f300, 0x1f384,
2282 		0x1f3c0, 0x1f3c8,
2283 		0x1f408, 0x1f40c,
2284 		0x1f440, 0x1f444,
2285 		0x1f44c, 0x1f44c,
2286 		0x1f684, 0x1f690,
2287 		0x1f6c0, 0x1f6c0,
2288 		0x1f6e0, 0x1f6e0,
2289 		0x1f700, 0x1f784,
2290 		0x1f7c0, 0x1f7c8,
2291 		0x1f808, 0x1f80c,
2292 		0x1f840, 0x1f844,
2293 		0x1f84c, 0x1f84c,
2294 		0x1fa84, 0x1fa90,
2295 		0x1fac0, 0x1fac0,
2296 		0x1fae0, 0x1fae0,
2297 		0x1fb00, 0x1fb84,
2298 		0x1fbc0, 0x1fbc8,
2299 		0x1fc08, 0x1fc0c,
2300 		0x1fc40, 0x1fc44,
2301 		0x1fc4c, 0x1fc4c,
2302 		0x1fe84, 0x1fe90,
2303 		0x1fec0, 0x1fec0,
2304 		0x1fee0, 0x1fee0,
2305 		0x1ff00, 0x1ff84,
2306 		0x1ffc0, 0x1ffc8,
2307 		0x30000, 0x30030,
2308 		0x30100, 0x30168,
2309 		0x30190, 0x301a0,
2310 		0x301a8, 0x301b8,
2311 		0x301c4, 0x301c8,
2312 		0x301d0, 0x301d0,
2313 		0x30200, 0x30320,
2314 		0x30400, 0x304b4,
2315 		0x304c0, 0x3052c,
2316 		0x30540, 0x3061c,
2317 		0x30800, 0x308a0,
2318 		0x308c0, 0x30908,
2319 		0x30910, 0x309b8,
2320 		0x30a00, 0x30a04,
2321 		0x30a0c, 0x30a14,
2322 		0x30a1c, 0x30a2c,
2323 		0x30a44, 0x30a50,
2324 		0x30a74, 0x30a74,
2325 		0x30a7c, 0x30afc,
2326 		0x30b08, 0x30c24,
2327 		0x30d00, 0x30d14,
2328 		0x30d1c, 0x30d3c,
2329 		0x30d44, 0x30d4c,
2330 		0x30d54, 0x30d74,
2331 		0x30d7c, 0x30d7c,
2332 		0x30de0, 0x30de0,
2333 		0x30e00, 0x30ed4,
2334 		0x30f00, 0x30fa4,
2335 		0x30fc0, 0x30fc4,
2336 		0x31000, 0x31004,
2337 		0x31080, 0x310fc,
2338 		0x31208, 0x31220,
2339 		0x3123c, 0x31254,
2340 		0x31300, 0x31300,
2341 		0x31308, 0x3131c,
2342 		0x31338, 0x3133c,
2343 		0x31380, 0x31380,
2344 		0x31388, 0x313a8,
2345 		0x313b4, 0x313b4,
2346 		0x31400, 0x31420,
2347 		0x31438, 0x3143c,
2348 		0x31480, 0x31480,
2349 		0x314a8, 0x314a8,
2350 		0x314b0, 0x314b4,
2351 		0x314c8, 0x314d4,
2352 		0x31a40, 0x31a4c,
2353 		0x31af0, 0x31b20,
2354 		0x31b38, 0x31b3c,
2355 		0x31b80, 0x31b80,
2356 		0x31ba8, 0x31ba8,
2357 		0x31bb0, 0x31bb4,
2358 		0x31bc8, 0x31bd4,
2359 		0x32140, 0x3218c,
2360 		0x321f0, 0x321f4,
2361 		0x32200, 0x32200,
2362 		0x32218, 0x32218,
2363 		0x32400, 0x32400,
2364 		0x32408, 0x3241c,
2365 		0x32618, 0x32620,
2366 		0x32664, 0x32664,
2367 		0x326a8, 0x326a8,
2368 		0x326ec, 0x326ec,
2369 		0x32a00, 0x32abc,
2370 		0x32b00, 0x32b18,
2371 		0x32b20, 0x32b38,
2372 		0x32b40, 0x32b58,
2373 		0x32b60, 0x32b78,
2374 		0x32c00, 0x32c00,
2375 		0x32c08, 0x32c3c,
2376 		0x33000, 0x3302c,
2377 		0x33034, 0x33050,
2378 		0x33058, 0x33058,
2379 		0x33060, 0x3308c,
2380 		0x3309c, 0x330ac,
2381 		0x330c0, 0x330c0,
2382 		0x330c8, 0x330d0,
2383 		0x330d8, 0x330e0,
2384 		0x330ec, 0x3312c,
2385 		0x33134, 0x33150,
2386 		0x33158, 0x33158,
2387 		0x33160, 0x3318c,
2388 		0x3319c, 0x331ac,
2389 		0x331c0, 0x331c0,
2390 		0x331c8, 0x331d0,
2391 		0x331d8, 0x331e0,
2392 		0x331ec, 0x33290,
2393 		0x33298, 0x332c4,
2394 		0x332e4, 0x33390,
2395 		0x33398, 0x333c4,
2396 		0x333e4, 0x3342c,
2397 		0x33434, 0x33450,
2398 		0x33458, 0x33458,
2399 		0x33460, 0x3348c,
2400 		0x3349c, 0x334ac,
2401 		0x334c0, 0x334c0,
2402 		0x334c8, 0x334d0,
2403 		0x334d8, 0x334e0,
2404 		0x334ec, 0x3352c,
2405 		0x33534, 0x33550,
2406 		0x33558, 0x33558,
2407 		0x33560, 0x3358c,
2408 		0x3359c, 0x335ac,
2409 		0x335c0, 0x335c0,
2410 		0x335c8, 0x335d0,
2411 		0x335d8, 0x335e0,
2412 		0x335ec, 0x33690,
2413 		0x33698, 0x336c4,
2414 		0x336e4, 0x33790,
2415 		0x33798, 0x337c4,
2416 		0x337e4, 0x337fc,
2417 		0x33814, 0x33814,
2418 		0x33854, 0x33868,
2419 		0x33880, 0x3388c,
2420 		0x338c0, 0x338d0,
2421 		0x338e8, 0x338ec,
2422 		0x33900, 0x3392c,
2423 		0x33934, 0x33950,
2424 		0x33958, 0x33958,
2425 		0x33960, 0x3398c,
2426 		0x3399c, 0x339ac,
2427 		0x339c0, 0x339c0,
2428 		0x339c8, 0x339d0,
2429 		0x339d8, 0x339e0,
2430 		0x339ec, 0x33a90,
2431 		0x33a98, 0x33ac4,
2432 		0x33ae4, 0x33b10,
2433 		0x33b24, 0x33b28,
2434 		0x33b38, 0x33b50,
2435 		0x33bf0, 0x33c10,
2436 		0x33c24, 0x33c28,
2437 		0x33c38, 0x33c50,
2438 		0x33cf0, 0x33cfc,
2439 		0x34000, 0x34030,
2440 		0x34100, 0x34168,
2441 		0x34190, 0x341a0,
2442 		0x341a8, 0x341b8,
2443 		0x341c4, 0x341c8,
2444 		0x341d0, 0x341d0,
2445 		0x34200, 0x34320,
2446 		0x34400, 0x344b4,
2447 		0x344c0, 0x3452c,
2448 		0x34540, 0x3461c,
2449 		0x34800, 0x348a0,
2450 		0x348c0, 0x34908,
2451 		0x34910, 0x349b8,
2452 		0x34a00, 0x34a04,
2453 		0x34a0c, 0x34a14,
2454 		0x34a1c, 0x34a2c,
2455 		0x34a44, 0x34a50,
2456 		0x34a74, 0x34a74,
2457 		0x34a7c, 0x34afc,
2458 		0x34b08, 0x34c24,
2459 		0x34d00, 0x34d14,
2460 		0x34d1c, 0x34d3c,
2461 		0x34d44, 0x34d4c,
2462 		0x34d54, 0x34d74,
2463 		0x34d7c, 0x34d7c,
2464 		0x34de0, 0x34de0,
2465 		0x34e00, 0x34ed4,
2466 		0x34f00, 0x34fa4,
2467 		0x34fc0, 0x34fc4,
2468 		0x35000, 0x35004,
2469 		0x35080, 0x350fc,
2470 		0x35208, 0x35220,
2471 		0x3523c, 0x35254,
2472 		0x35300, 0x35300,
2473 		0x35308, 0x3531c,
2474 		0x35338, 0x3533c,
2475 		0x35380, 0x35380,
2476 		0x35388, 0x353a8,
2477 		0x353b4, 0x353b4,
2478 		0x35400, 0x35420,
2479 		0x35438, 0x3543c,
2480 		0x35480, 0x35480,
2481 		0x354a8, 0x354a8,
2482 		0x354b0, 0x354b4,
2483 		0x354c8, 0x354d4,
2484 		0x35a40, 0x35a4c,
2485 		0x35af0, 0x35b20,
2486 		0x35b38, 0x35b3c,
2487 		0x35b80, 0x35b80,
2488 		0x35ba8, 0x35ba8,
2489 		0x35bb0, 0x35bb4,
2490 		0x35bc8, 0x35bd4,
2491 		0x36140, 0x3618c,
2492 		0x361f0, 0x361f4,
2493 		0x36200, 0x36200,
2494 		0x36218, 0x36218,
2495 		0x36400, 0x36400,
2496 		0x36408, 0x3641c,
2497 		0x36618, 0x36620,
2498 		0x36664, 0x36664,
2499 		0x366a8, 0x366a8,
2500 		0x366ec, 0x366ec,
2501 		0x36a00, 0x36abc,
2502 		0x36b00, 0x36b18,
2503 		0x36b20, 0x36b38,
2504 		0x36b40, 0x36b58,
2505 		0x36b60, 0x36b78,
2506 		0x36c00, 0x36c00,
2507 		0x36c08, 0x36c3c,
2508 		0x37000, 0x3702c,
2509 		0x37034, 0x37050,
2510 		0x37058, 0x37058,
2511 		0x37060, 0x3708c,
2512 		0x3709c, 0x370ac,
2513 		0x370c0, 0x370c0,
2514 		0x370c8, 0x370d0,
2515 		0x370d8, 0x370e0,
2516 		0x370ec, 0x3712c,
2517 		0x37134, 0x37150,
2518 		0x37158, 0x37158,
2519 		0x37160, 0x3718c,
2520 		0x3719c, 0x371ac,
2521 		0x371c0, 0x371c0,
2522 		0x371c8, 0x371d0,
2523 		0x371d8, 0x371e0,
2524 		0x371ec, 0x37290,
2525 		0x37298, 0x372c4,
2526 		0x372e4, 0x37390,
2527 		0x37398, 0x373c4,
2528 		0x373e4, 0x3742c,
2529 		0x37434, 0x37450,
2530 		0x37458, 0x37458,
2531 		0x37460, 0x3748c,
2532 		0x3749c, 0x374ac,
2533 		0x374c0, 0x374c0,
2534 		0x374c8, 0x374d0,
2535 		0x374d8, 0x374e0,
2536 		0x374ec, 0x3752c,
2537 		0x37534, 0x37550,
2538 		0x37558, 0x37558,
2539 		0x37560, 0x3758c,
2540 		0x3759c, 0x375ac,
2541 		0x375c0, 0x375c0,
2542 		0x375c8, 0x375d0,
2543 		0x375d8, 0x375e0,
2544 		0x375ec, 0x37690,
2545 		0x37698, 0x376c4,
2546 		0x376e4, 0x37790,
2547 		0x37798, 0x377c4,
2548 		0x377e4, 0x377fc,
2549 		0x37814, 0x37814,
2550 		0x37854, 0x37868,
2551 		0x37880, 0x3788c,
2552 		0x378c0, 0x378d0,
2553 		0x378e8, 0x378ec,
2554 		0x37900, 0x3792c,
2555 		0x37934, 0x37950,
2556 		0x37958, 0x37958,
2557 		0x37960, 0x3798c,
2558 		0x3799c, 0x379ac,
2559 		0x379c0, 0x379c0,
2560 		0x379c8, 0x379d0,
2561 		0x379d8, 0x379e0,
2562 		0x379ec, 0x37a90,
2563 		0x37a98, 0x37ac4,
2564 		0x37ae4, 0x37b10,
2565 		0x37b24, 0x37b28,
2566 		0x37b38, 0x37b50,
2567 		0x37bf0, 0x37c10,
2568 		0x37c24, 0x37c28,
2569 		0x37c38, 0x37c50,
2570 		0x37cf0, 0x37cfc,
2571 		0x40040, 0x40040,
2572 		0x40080, 0x40084,
2573 		0x40100, 0x40100,
2574 		0x40140, 0x401bc,
2575 		0x40200, 0x40214,
2576 		0x40228, 0x40228,
2577 		0x40240, 0x40258,
2578 		0x40280, 0x40280,
2579 		0x40304, 0x40304,
2580 		0x40330, 0x4033c,
2581 		0x41304, 0x413c8,
2582 		0x413d0, 0x413dc,
2583 		0x413f0, 0x413f0,
2584 		0x41400, 0x4140c,
2585 		0x41414, 0x4141c,
2586 		0x41480, 0x414d0,
2587 		0x44000, 0x4407c,
2588 		0x440c0, 0x441ac,
2589 		0x441b4, 0x4427c,
2590 		0x442c0, 0x443ac,
2591 		0x443b4, 0x4447c,
2592 		0x444c0, 0x445ac,
2593 		0x445b4, 0x4467c,
2594 		0x446c0, 0x447ac,
2595 		0x447b4, 0x4487c,
2596 		0x448c0, 0x449ac,
2597 		0x449b4, 0x44a7c,
2598 		0x44ac0, 0x44bac,
2599 		0x44bb4, 0x44c7c,
2600 		0x44cc0, 0x44dac,
2601 		0x44db4, 0x44e7c,
2602 		0x44ec0, 0x44fac,
2603 		0x44fb4, 0x4507c,
2604 		0x450c0, 0x451ac,
2605 		0x451b4, 0x451fc,
2606 		0x45800, 0x45804,
2607 		0x45810, 0x45830,
2608 		0x45840, 0x45860,
2609 		0x45868, 0x45868,
2610 		0x45880, 0x45884,
2611 		0x458a0, 0x458b0,
2612 		0x45a00, 0x45a04,
2613 		0x45a10, 0x45a30,
2614 		0x45a40, 0x45a60,
2615 		0x45a68, 0x45a68,
2616 		0x45a80, 0x45a84,
2617 		0x45aa0, 0x45ab0,
2618 		0x460c0, 0x460e4,
2619 		0x47000, 0x4703c,
2620 		0x47044, 0x4708c,
2621 		0x47200, 0x47250,
2622 		0x47400, 0x47408,
2623 		0x47414, 0x47420,
2624 		0x47600, 0x47618,
2625 		0x47800, 0x47814,
2626 		0x47820, 0x4782c,
2627 		0x50000, 0x50084,
2628 		0x50090, 0x500cc,
2629 		0x50300, 0x50384,
2630 		0x50400, 0x50400,
2631 		0x50800, 0x50884,
2632 		0x50890, 0x508cc,
2633 		0x50b00, 0x50b84,
2634 		0x50c00, 0x50c00,
2635 		0x51000, 0x51020,
2636 		0x51028, 0x510b0,
2637 		0x51300, 0x51324,
2638 	};
2639 
2640 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641 	const unsigned int *reg_ranges;
2642 	int reg_ranges_size, range;
2643 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644 
2645 	/* Select the right set of register ranges to dump depending on the
2646 	 * adapter chip type.
2647 	 */
2648 	switch (chip_version) {
2649 	case CHELSIO_T4:
2650 		reg_ranges = t4_reg_ranges;
2651 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652 		break;
2653 
2654 	case CHELSIO_T5:
2655 		reg_ranges = t5_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T6:
2660 		reg_ranges = t6_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662 		break;
2663 
2664 	default:
2665 		dev_err(adap->pdev_dev,
2666 			"Unsupported chip version %d\n", chip_version);
2667 		return;
2668 	}
2669 
2670 	/* Clear the register buffer and insert the appropriate register
2671 	 * values selected by the above register ranges.
2672 	 */
2673 	memset(buf, 0, buf_size);
2674 	for (range = 0; range < reg_ranges_size; range += 2) {
2675 		unsigned int reg = reg_ranges[range];
2676 		unsigned int last_reg = reg_ranges[range + 1];
2677 		u32 *bufp = (u32 *)((char *)buf + reg);
2678 
2679 		/* Iterate across the register range filling in the register
2680 		 * buffer but don't write past the end of the register buffer.
2681 		 */
2682 		while (reg <= last_reg && bufp < buf_end) {
2683 			*bufp++ = t4_read_reg(adap, reg);
2684 			reg += sizeof(u32);
2685 		}
2686 	}
2687 }
2688 
2689 #define EEPROM_STAT_ADDR   0x7bfc
2690 #define VPD_BASE           0x400
2691 #define VPD_BASE_OLD       0
2692 #define VPD_LEN            1024
2693 #define CHELSIO_VPD_UNIQUE_ID 0x82
2694 
2695 /**
2696  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2697  * @phys_addr: the physical EEPROM address
2698  * @fn: the PCI function number
2699  * @sz: size of function-specific area
2700  *
2701  * Translate a physical EEPROM address to virtual.  The first 1K is
2702  * accessed through virtual addresses starting at 31K, the rest is
2703  * accessed through virtual addresses starting at 0.
2704  *
2705  * The mapping is as follows:
2706  * [0..1K) -> [31K..32K)
2707  * [1K..1K+A) -> [31K-A..31K)
2708  * [1K+A..ES) -> [0..ES-A-1K)
2709  *
2710  * where A = @fn * @sz, and ES = EEPROM size.
2711  */
t4_eeprom_ptov(unsigned int phys_addr,unsigned int fn,unsigned int sz)2712 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2713 {
2714 	fn *= sz;
2715 	if (phys_addr < 1024)
2716 		return phys_addr + (31 << 10);
2717 	if (phys_addr < 1024 + fn)
2718 		return 31744 - fn + phys_addr - 1024;
2719 	if (phys_addr < EEPROMSIZE)
2720 		return phys_addr - 1024 - fn;
2721 	return -EINVAL;
2722 }
2723 
2724 /**
2725  *	t4_seeprom_wp - enable/disable EEPROM write protection
2726  *	@adapter: the adapter
2727  *	@enable: whether to enable or disable write protection
2728  *
2729  *	Enables or disables write protection on the serial EEPROM.
2730  */
t4_seeprom_wp(struct adapter * adapter,bool enable)2731 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2732 {
2733 	unsigned int v = enable ? 0xc : 0;
2734 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2735 	return ret < 0 ? ret : 0;
2736 }
2737 
2738 /**
2739  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2740  *	@adapter: adapter to read
2741  *	@p: where to store the parameters
2742  *
2743  *	Reads card parameters stored in VPD EEPROM.
2744  */
t4_get_raw_vpd_params(struct adapter * adapter,struct vpd_params * p)2745 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2746 {
2747 	int i, ret = 0, addr;
2748 	int ec, sn, pn, na;
2749 	u8 *vpd, csum;
2750 	unsigned int vpdr_len, kw_offset, id_len;
2751 
2752 	vpd = vmalloc(VPD_LEN);
2753 	if (!vpd)
2754 		return -ENOMEM;
2755 
2756 	/* Card information normally starts at VPD_BASE but early cards had
2757 	 * it at 0.
2758 	 */
2759 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2760 	if (ret < 0)
2761 		goto out;
2762 
2763 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2764 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2765 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2766 	 * is expected to automatically put this entry at the
2767 	 * beginning of the VPD.
2768 	 */
2769 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2770 
2771 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2772 	if (ret < 0)
2773 		goto out;
2774 
2775 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2776 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2777 		ret = -EINVAL;
2778 		goto out;
2779 	}
2780 
2781 	id_len = pci_vpd_lrdt_size(vpd);
2782 	if (id_len > ID_LEN)
2783 		id_len = ID_LEN;
2784 
2785 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2786 	if (i < 0) {
2787 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2788 		ret = -EINVAL;
2789 		goto out;
2790 	}
2791 
2792 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2793 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2794 	if (vpdr_len + kw_offset > VPD_LEN) {
2795 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2796 		ret = -EINVAL;
2797 		goto out;
2798 	}
2799 
2800 #define FIND_VPD_KW(var, name) do { \
2801 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2802 	if (var < 0) { \
2803 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2804 		ret = -EINVAL; \
2805 		goto out; \
2806 	} \
2807 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2808 } while (0)
2809 
2810 	FIND_VPD_KW(i, "RV");
2811 	for (csum = 0; i >= 0; i--)
2812 		csum += vpd[i];
2813 
2814 	if (csum) {
2815 		dev_err(adapter->pdev_dev,
2816 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2817 		ret = -EINVAL;
2818 		goto out;
2819 	}
2820 
2821 	FIND_VPD_KW(ec, "EC");
2822 	FIND_VPD_KW(sn, "SN");
2823 	FIND_VPD_KW(pn, "PN");
2824 	FIND_VPD_KW(na, "NA");
2825 #undef FIND_VPD_KW
2826 
2827 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2828 	strim(p->id);
2829 	memcpy(p->ec, vpd + ec, EC_LEN);
2830 	strim(p->ec);
2831 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2832 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2833 	strim(p->sn);
2834 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2835 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2836 	strim(p->pn);
2837 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2838 	strim((char *)p->na);
2839 
2840 out:
2841 	vfree(vpd);
2842 	return ret < 0 ? ret : 0;
2843 }
2844 
2845 /**
2846  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2847  *	@adapter: adapter to read
2848  *	@p: where to store the parameters
2849  *
2850  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2851  *	Clock.  This can only be called after a connection to the firmware
2852  *	is established.
2853  */
t4_get_vpd_params(struct adapter * adapter,struct vpd_params * p)2854 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2855 {
2856 	u32 cclk_param, cclk_val;
2857 	int ret;
2858 
2859 	/* Grab the raw VPD parameters.
2860 	 */
2861 	ret = t4_get_raw_vpd_params(adapter, p);
2862 	if (ret)
2863 		return ret;
2864 
2865 	/* Ask firmware for the Core Clock since it knows how to translate the
2866 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2867 	 */
2868 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2869 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2870 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2871 			      1, &cclk_param, &cclk_val);
2872 
2873 	if (ret)
2874 		return ret;
2875 	p->cclk = cclk_val;
2876 
2877 	return 0;
2878 }
2879 
2880 /**
2881  *	t4_get_pfres - retrieve VF resource limits
2882  *	@adapter: the adapter
2883  *
2884  *	Retrieves configured resource limits and capabilities for a physical
2885  *	function.  The results are stored in @adapter->pfres.
2886  */
t4_get_pfres(struct adapter * adapter)2887 int t4_get_pfres(struct adapter *adapter)
2888 {
2889 	struct pf_resources *pfres = &adapter->params.pfres;
2890 	struct fw_pfvf_cmd cmd, rpl;
2891 	int v;
2892 	u32 word;
2893 
2894 	/* Execute PFVF Read command to get VF resource limits; bail out early
2895 	 * with error on command failure.
2896 	 */
2897 	memset(&cmd, 0, sizeof(cmd));
2898 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2899 				    FW_CMD_REQUEST_F |
2900 				    FW_CMD_READ_F |
2901 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2902 				    FW_PFVF_CMD_VFN_V(0));
2903 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2904 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2905 	if (v != FW_SUCCESS)
2906 		return v;
2907 
2908 	/* Extract PF resource limits and return success.
2909 	 */
2910 	word = be32_to_cpu(rpl.niqflint_niq);
2911 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2912 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2913 
2914 	word = be32_to_cpu(rpl.type_to_neq);
2915 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2916 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2917 
2918 	word = be32_to_cpu(rpl.tc_to_nexactf);
2919 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2920 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2921 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2922 
2923 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2924 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2925 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2926 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2927 
2928 	return 0;
2929 }
2930 
2931 /* serial flash and firmware constants */
2932 enum {
2933 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2934 
2935 	/* flash command opcodes */
2936 	SF_PROG_PAGE    = 2,          /* program page */
2937 	SF_WR_DISABLE   = 4,          /* disable writes */
2938 	SF_RD_STATUS    = 5,          /* read status register */
2939 	SF_WR_ENABLE    = 6,          /* enable writes */
2940 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2941 	SF_RD_ID        = 0x9f,       /* read ID */
2942 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2943 };
2944 
2945 /**
2946  *	sf1_read - read data from the serial flash
2947  *	@adapter: the adapter
2948  *	@byte_cnt: number of bytes to read
2949  *	@cont: whether another operation will be chained
2950  *	@lock: whether to lock SF for PL access only
2951  *	@valp: where to store the read data
2952  *
2953  *	Reads up to 4 bytes of data from the serial flash.  The location of
2954  *	the read needs to be specified prior to calling this by issuing the
2955  *	appropriate commands to the serial flash.
2956  */
sf1_read(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 * valp)2957 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2958 		    int lock, u32 *valp)
2959 {
2960 	int ret;
2961 
2962 	if (!byte_cnt || byte_cnt > 4)
2963 		return -EINVAL;
2964 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2965 		return -EBUSY;
2966 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2967 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2968 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2969 	if (!ret)
2970 		*valp = t4_read_reg(adapter, SF_DATA_A);
2971 	return ret;
2972 }
2973 
2974 /**
2975  *	sf1_write - write data to the serial flash
2976  *	@adapter: the adapter
2977  *	@byte_cnt: number of bytes to write
2978  *	@cont: whether another operation will be chained
2979  *	@lock: whether to lock SF for PL access only
2980  *	@val: value to write
2981  *
2982  *	Writes up to 4 bytes of data to the serial flash.  The location of
2983  *	the write needs to be specified prior to calling this by issuing the
2984  *	appropriate commands to the serial flash.
2985  */
sf1_write(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 val)2986 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2987 		     int lock, u32 val)
2988 {
2989 	if (!byte_cnt || byte_cnt > 4)
2990 		return -EINVAL;
2991 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2992 		return -EBUSY;
2993 	t4_write_reg(adapter, SF_DATA_A, val);
2994 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2995 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2996 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2997 }
2998 
2999 /**
3000  *	flash_wait_op - wait for a flash operation to complete
3001  *	@adapter: the adapter
3002  *	@attempts: max number of polls of the status register
3003  *	@delay: delay between polls in ms
3004  *
3005  *	Wait for a flash operation to complete by polling the status register.
3006  */
flash_wait_op(struct adapter * adapter,int attempts,int delay)3007 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3008 {
3009 	int ret;
3010 	u32 status;
3011 
3012 	while (1) {
3013 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3014 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3015 			return ret;
3016 		if (!(status & 1))
3017 			return 0;
3018 		if (--attempts == 0)
3019 			return -EAGAIN;
3020 		if (delay)
3021 			msleep(delay);
3022 	}
3023 }
3024 
3025 /**
3026  *	t4_read_flash - read words from serial flash
3027  *	@adapter: the adapter
3028  *	@addr: the start address for the read
3029  *	@nwords: how many 32-bit words to read
3030  *	@data: where to store the read data
3031  *	@byte_oriented: whether to store data as bytes or as words
3032  *
3033  *	Read the specified number of 32-bit words from the serial flash.
3034  *	If @byte_oriented is set the read data is stored as a byte array
3035  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3036  *	natural endianness.
3037  */
t4_read_flash(struct adapter * adapter,unsigned int addr,unsigned int nwords,u32 * data,int byte_oriented)3038 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3039 		  unsigned int nwords, u32 *data, int byte_oriented)
3040 {
3041 	int ret;
3042 
3043 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3044 		return -EINVAL;
3045 
3046 	addr = swab32(addr) | SF_RD_DATA_FAST;
3047 
3048 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3049 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3050 		return ret;
3051 
3052 	for ( ; nwords; nwords--, data++) {
3053 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3054 		if (nwords == 1)
3055 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3056 		if (ret)
3057 			return ret;
3058 		if (byte_oriented)
3059 			*data = (__force __u32)(cpu_to_be32(*data));
3060 	}
3061 	return 0;
3062 }
3063 
3064 /**
3065  *	t4_write_flash - write up to a page of data to the serial flash
3066  *	@adapter: the adapter
3067  *	@addr: the start address to write
3068  *	@n: length of data to write in bytes
3069  *	@data: the data to write
3070  *	@byte_oriented: whether to store data as bytes or as words
3071  *
3072  *	Writes up to a page of data (256 bytes) to the serial flash starting
3073  *	at the given address.  All the data must be written to the same page.
3074  *	If @byte_oriented is set the write data is stored as byte stream
3075  *	(i.e. matches what on disk), otherwise in big-endian.
3076  */
t4_write_flash(struct adapter * adapter,unsigned int addr,unsigned int n,const u8 * data,bool byte_oriented)3077 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3078 			  unsigned int n, const u8 *data, bool byte_oriented)
3079 {
3080 	unsigned int i, c, left, val, offset = addr & 0xff;
3081 	u32 buf[64];
3082 	int ret;
3083 
3084 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3085 		return -EINVAL;
3086 
3087 	val = swab32(addr) | SF_PROG_PAGE;
3088 
3089 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3090 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3091 		goto unlock;
3092 
3093 	for (left = n; left; left -= c, data += c) {
3094 		c = min(left, 4U);
3095 		for (val = 0, i = 0; i < c; ++i) {
3096 			if (byte_oriented)
3097 				val = (val << 8) + data[i];
3098 			else
3099 				val = (val << 8) + data[c - i - 1];
3100 		}
3101 
3102 		ret = sf1_write(adapter, c, c != left, 1, val);
3103 		if (ret)
3104 			goto unlock;
3105 	}
3106 	ret = flash_wait_op(adapter, 8, 1);
3107 	if (ret)
3108 		goto unlock;
3109 
3110 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3111 
3112 	/* Read the page to verify the write succeeded */
3113 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3114 			    byte_oriented);
3115 	if (ret)
3116 		return ret;
3117 
3118 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3119 		dev_err(adapter->pdev_dev,
3120 			"failed to correctly write the flash page at %#x\n",
3121 			addr);
3122 		return -EIO;
3123 	}
3124 	return 0;
3125 
3126 unlock:
3127 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3128 	return ret;
3129 }
3130 
3131 /**
3132  *	t4_get_fw_version - read the firmware version
3133  *	@adapter: the adapter
3134  *	@vers: where to place the version
3135  *
3136  *	Reads the FW version from flash.
3137  */
t4_get_fw_version(struct adapter * adapter,u32 * vers)3138 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3139 {
3140 	return t4_read_flash(adapter, FLASH_FW_START +
3141 			     offsetof(struct fw_hdr, fw_ver), 1,
3142 			     vers, 0);
3143 }
3144 
3145 /**
3146  *	t4_get_bs_version - read the firmware bootstrap version
3147  *	@adapter: the adapter
3148  *	@vers: where to place the version
3149  *
3150  *	Reads the FW Bootstrap version from flash.
3151  */
t4_get_bs_version(struct adapter * adapter,u32 * vers)3152 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3153 {
3154 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3155 			     offsetof(struct fw_hdr, fw_ver), 1,
3156 			     vers, 0);
3157 }
3158 
3159 /**
3160  *	t4_get_tp_version - read the TP microcode version
3161  *	@adapter: the adapter
3162  *	@vers: where to place the version
3163  *
3164  *	Reads the TP microcode version from flash.
3165  */
t4_get_tp_version(struct adapter * adapter,u32 * vers)3166 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3167 {
3168 	return t4_read_flash(adapter, FLASH_FW_START +
3169 			     offsetof(struct fw_hdr, tp_microcode_ver),
3170 			     1, vers, 0);
3171 }
3172 
3173 /**
3174  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3175  *	@adap: the adapter
3176  *	@vers: where to place the version
3177  *
3178  *	Reads the Expansion ROM header from FLASH and returns the version
3179  *	number (if present) through the @vers return value pointer.  We return
3180  *	this in the Firmware Version Format since it's convenient.  Return
3181  *	0 on success, -ENOENT if no Expansion ROM is present.
3182  */
t4_get_exprom_version(struct adapter * adap,u32 * vers)3183 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3184 {
3185 	struct exprom_header {
3186 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3187 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3188 	} *hdr;
3189 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3190 					   sizeof(u32))];
3191 	int ret;
3192 
3193 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3194 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3195 			    0);
3196 	if (ret)
3197 		return ret;
3198 
3199 	hdr = (struct exprom_header *)exprom_header_buf;
3200 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3201 		return -ENOENT;
3202 
3203 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3204 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3205 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3206 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3207 	return 0;
3208 }
3209 
3210 /**
3211  *      t4_get_vpd_version - return the VPD version
3212  *      @adapter: the adapter
3213  *      @vers: where to place the version
3214  *
3215  *      Reads the VPD via the Firmware interface (thus this can only be called
3216  *      once we're ready to issue Firmware commands).  The format of the
3217  *      VPD version is adapter specific.  Returns 0 on success, an error on
3218  *      failure.
3219  *
3220  *      Note that early versions of the Firmware didn't include the ability
3221  *      to retrieve the VPD version, so we zero-out the return-value parameter
3222  *      in that case to avoid leaving it with garbage in it.
3223  *
3224  *      Also note that the Firmware will return its cached copy of the VPD
3225  *      Revision ID, not the actual Revision ID as written in the Serial
3226  *      EEPROM.  This is only an issue if a new VPD has been written and the
3227  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3228  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3229  *      if the Host Driver will be performing a full adapter initialization.
3230  */
t4_get_vpd_version(struct adapter * adapter,u32 * vers)3231 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3232 {
3233 	u32 vpdrev_param;
3234 	int ret;
3235 
3236 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3237 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3238 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3239 			      1, &vpdrev_param, vers);
3240 	if (ret)
3241 		*vers = 0;
3242 	return ret;
3243 }
3244 
3245 /**
3246  *      t4_get_scfg_version - return the Serial Configuration version
3247  *      @adapter: the adapter
3248  *      @vers: where to place the version
3249  *
3250  *      Reads the Serial Configuration Version via the Firmware interface
3251  *      (thus this can only be called once we're ready to issue Firmware
3252  *      commands).  The format of the Serial Configuration version is
3253  *      adapter specific.  Returns 0 on success, an error on failure.
3254  *
3255  *      Note that early versions of the Firmware didn't include the ability
3256  *      to retrieve the Serial Configuration version, so we zero-out the
3257  *      return-value parameter in that case to avoid leaving it with
3258  *      garbage in it.
3259  *
3260  *      Also note that the Firmware will return its cached copy of the Serial
3261  *      Initialization Revision ID, not the actual Revision ID as written in
3262  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3263  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3264  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3265  *      been issued if the Host Driver will be performing a full adapter
3266  *      initialization.
3267  */
t4_get_scfg_version(struct adapter * adapter,u32 * vers)3268 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3269 {
3270 	u32 scfgrev_param;
3271 	int ret;
3272 
3273 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3274 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3275 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3276 			      1, &scfgrev_param, vers);
3277 	if (ret)
3278 		*vers = 0;
3279 	return ret;
3280 }
3281 
3282 /**
3283  *      t4_get_version_info - extract various chip/firmware version information
3284  *      @adapter: the adapter
3285  *
3286  *      Reads various chip/firmware version numbers and stores them into the
3287  *      adapter Adapter Parameters structure.  If any of the efforts fails
3288  *      the first failure will be returned, but all of the version numbers
3289  *      will be read.
3290  */
t4_get_version_info(struct adapter * adapter)3291 int t4_get_version_info(struct adapter *adapter)
3292 {
3293 	int ret = 0;
3294 
3295 	#define FIRST_RET(__getvinfo) \
3296 	do { \
3297 		int __ret = __getvinfo; \
3298 		if (__ret && !ret) \
3299 			ret = __ret; \
3300 	} while (0)
3301 
3302 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3303 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3304 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3305 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3306 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3307 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3308 
3309 	#undef FIRST_RET
3310 	return ret;
3311 }
3312 
3313 /**
3314  *      t4_dump_version_info - dump all of the adapter configuration IDs
3315  *      @adapter: the adapter
3316  *
3317  *      Dumps all of the various bits of adapter configuration version/revision
3318  *      IDs information.  This is typically called at some point after
3319  *      t4_get_version_info() has been called.
3320  */
t4_dump_version_info(struct adapter * adapter)3321 void t4_dump_version_info(struct adapter *adapter)
3322 {
3323 	/* Device information */
3324 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3325 		 adapter->params.vpd.id,
3326 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3327 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3328 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3329 
3330 	/* Firmware Version */
3331 	if (!adapter->params.fw_vers)
3332 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3333 	else
3334 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3335 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3336 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3337 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3338 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3339 
3340 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3341 	 * Firmware, so dev_info() is more appropriate here.)
3342 	 */
3343 	if (!adapter->params.bs_vers)
3344 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3345 	else
3346 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3347 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3348 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3349 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3350 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3351 
3352 	/* TP Microcode Version */
3353 	if (!adapter->params.tp_vers)
3354 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3355 	else
3356 		dev_info(adapter->pdev_dev,
3357 			 "TP Microcode version: %u.%u.%u.%u\n",
3358 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3359 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3360 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3361 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3362 
3363 	/* Expansion ROM version */
3364 	if (!adapter->params.er_vers)
3365 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3366 	else
3367 		dev_info(adapter->pdev_dev,
3368 			 "Expansion ROM version: %u.%u.%u.%u\n",
3369 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3370 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3371 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3372 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3373 
3374 	/* Serial Configuration version */
3375 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3376 		 adapter->params.scfg_vers);
3377 
3378 	/* VPD Version */
3379 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3380 		 adapter->params.vpd_vers);
3381 }
3382 
3383 /**
3384  *	t4_check_fw_version - check if the FW is supported with this driver
3385  *	@adap: the adapter
3386  *
3387  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3388  *	if there's exact match, a negative error if the version could not be
3389  *	read or there's a major version mismatch
3390  */
t4_check_fw_version(struct adapter * adap)3391 int t4_check_fw_version(struct adapter *adap)
3392 {
3393 	int i, ret, major, minor, micro;
3394 	int exp_major, exp_minor, exp_micro;
3395 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3396 
3397 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3398 	/* Try multiple times before returning error */
3399 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3400 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3401 
3402 	if (ret)
3403 		return ret;
3404 
3405 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3406 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3407 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3408 
3409 	switch (chip_version) {
3410 	case CHELSIO_T4:
3411 		exp_major = T4FW_MIN_VERSION_MAJOR;
3412 		exp_minor = T4FW_MIN_VERSION_MINOR;
3413 		exp_micro = T4FW_MIN_VERSION_MICRO;
3414 		break;
3415 	case CHELSIO_T5:
3416 		exp_major = T5FW_MIN_VERSION_MAJOR;
3417 		exp_minor = T5FW_MIN_VERSION_MINOR;
3418 		exp_micro = T5FW_MIN_VERSION_MICRO;
3419 		break;
3420 	case CHELSIO_T6:
3421 		exp_major = T6FW_MIN_VERSION_MAJOR;
3422 		exp_minor = T6FW_MIN_VERSION_MINOR;
3423 		exp_micro = T6FW_MIN_VERSION_MICRO;
3424 		break;
3425 	default:
3426 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3427 			adap->chip);
3428 		return -EINVAL;
3429 	}
3430 
3431 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3432 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3433 		dev_err(adap->pdev_dev,
3434 			"Card has firmware version %u.%u.%u, minimum "
3435 			"supported firmware is %u.%u.%u.\n", major, minor,
3436 			micro, exp_major, exp_minor, exp_micro);
3437 		return -EFAULT;
3438 	}
3439 	return 0;
3440 }
3441 
3442 /* Is the given firmware API compatible with the one the driver was compiled
3443  * with?
3444  */
fw_compatible(const struct fw_hdr * hdr1,const struct fw_hdr * hdr2)3445 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3446 {
3447 
3448 	/* short circuit if it's the exact same firmware version */
3449 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3450 		return 1;
3451 
3452 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3453 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3454 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3455 		return 1;
3456 #undef SAME_INTF
3457 
3458 	return 0;
3459 }
3460 
3461 /* The firmware in the filesystem is usable, but should it be installed?
3462  * This routine explains itself in detail if it indicates the filesystem
3463  * firmware should be installed.
3464  */
should_install_fs_fw(struct adapter * adap,int card_fw_usable,int k,int c)3465 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3466 				int k, int c)
3467 {
3468 	const char *reason;
3469 
3470 	if (!card_fw_usable) {
3471 		reason = "incompatible or unusable";
3472 		goto install;
3473 	}
3474 
3475 	if (k > c) {
3476 		reason = "older than the version supported with this driver";
3477 		goto install;
3478 	}
3479 
3480 	return 0;
3481 
3482 install:
3483 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3484 		"installing firmware %u.%u.%u.%u on card.\n",
3485 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3486 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3487 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3488 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3489 
3490 	return 1;
3491 }
3492 
t4_prep_fw(struct adapter * adap,struct fw_info * fw_info,const u8 * fw_data,unsigned int fw_size,struct fw_hdr * card_fw,enum dev_state state,int * reset)3493 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3494 	       const u8 *fw_data, unsigned int fw_size,
3495 	       struct fw_hdr *card_fw, enum dev_state state,
3496 	       int *reset)
3497 {
3498 	int ret, card_fw_usable, fs_fw_usable;
3499 	const struct fw_hdr *fs_fw;
3500 	const struct fw_hdr *drv_fw;
3501 
3502 	drv_fw = &fw_info->fw_hdr;
3503 
3504 	/* Read the header of the firmware on the card */
3505 	ret = t4_read_flash(adap, FLASH_FW_START,
3506 			    sizeof(*card_fw) / sizeof(uint32_t),
3507 			    (uint32_t *)card_fw, 1);
3508 	if (ret == 0) {
3509 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3510 	} else {
3511 		dev_err(adap->pdev_dev,
3512 			"Unable to read card's firmware header: %d\n", ret);
3513 		card_fw_usable = 0;
3514 	}
3515 
3516 	if (fw_data != NULL) {
3517 		fs_fw = (const void *)fw_data;
3518 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3519 	} else {
3520 		fs_fw = NULL;
3521 		fs_fw_usable = 0;
3522 	}
3523 
3524 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3525 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3526 		/* Common case: the firmware on the card is an exact match and
3527 		 * the filesystem one is an exact match too, or the filesystem
3528 		 * one is absent/incompatible.
3529 		 */
3530 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3531 		   should_install_fs_fw(adap, card_fw_usable,
3532 					be32_to_cpu(fs_fw->fw_ver),
3533 					be32_to_cpu(card_fw->fw_ver))) {
3534 		ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3535 				    fw_size, 0);
3536 		if (ret != 0) {
3537 			dev_err(adap->pdev_dev,
3538 				"failed to install firmware: %d\n", ret);
3539 			goto bye;
3540 		}
3541 
3542 		/* Installed successfully, update the cached header too. */
3543 		*card_fw = *fs_fw;
3544 		card_fw_usable = 1;
3545 		*reset = 0;	/* already reset as part of load_fw */
3546 	}
3547 
3548 	if (!card_fw_usable) {
3549 		uint32_t d, c, k;
3550 
3551 		d = be32_to_cpu(drv_fw->fw_ver);
3552 		c = be32_to_cpu(card_fw->fw_ver);
3553 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3554 
3555 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3556 			"chip state %d, "
3557 			"driver compiled with %d.%d.%d.%d, "
3558 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3559 			state,
3560 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3561 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3562 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3563 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3564 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3565 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3566 		ret = -EINVAL;
3567 		goto bye;
3568 	}
3569 
3570 	/* We're using whatever's on the card and it's known to be good. */
3571 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3572 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3573 
3574 bye:
3575 	return ret;
3576 }
3577 
3578 /**
3579  *	t4_flash_erase_sectors - erase a range of flash sectors
3580  *	@adapter: the adapter
3581  *	@start: the first sector to erase
3582  *	@end: the last sector to erase
3583  *
3584  *	Erases the sectors in the given inclusive range.
3585  */
t4_flash_erase_sectors(struct adapter * adapter,int start,int end)3586 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3587 {
3588 	int ret = 0;
3589 
3590 	if (end >= adapter->params.sf_nsec)
3591 		return -EINVAL;
3592 
3593 	while (start <= end) {
3594 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3595 		    (ret = sf1_write(adapter, 4, 0, 1,
3596 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3597 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3598 			dev_err(adapter->pdev_dev,
3599 				"erase of flash sector %d failed, error %d\n",
3600 				start, ret);
3601 			break;
3602 		}
3603 		start++;
3604 	}
3605 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3606 	return ret;
3607 }
3608 
3609 /**
3610  *	t4_flash_cfg_addr - return the address of the flash configuration file
3611  *	@adapter: the adapter
3612  *
3613  *	Return the address within the flash where the Firmware Configuration
3614  *	File is stored.
3615  */
t4_flash_cfg_addr(struct adapter * adapter)3616 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3617 {
3618 	if (adapter->params.sf_size == 0x100000)
3619 		return FLASH_FPGA_CFG_START;
3620 	else
3621 		return FLASH_CFG_START;
3622 }
3623 
3624 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3625  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3626  * and emit an error message for mismatched firmware to save our caller the
3627  * effort ...
3628  */
t4_fw_matches_chip(const struct adapter * adap,const struct fw_hdr * hdr)3629 static bool t4_fw_matches_chip(const struct adapter *adap,
3630 			       const struct fw_hdr *hdr)
3631 {
3632 	/* The expression below will return FALSE for any unsupported adapter
3633 	 * which will keep us "honest" in the future ...
3634 	 */
3635 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3636 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3637 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3638 		return true;
3639 
3640 	dev_err(adap->pdev_dev,
3641 		"FW image (%d) is not suitable for this adapter (%d)\n",
3642 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3643 	return false;
3644 }
3645 
3646 /**
3647  *	t4_load_fw - download firmware
3648  *	@adap: the adapter
3649  *	@fw_data: the firmware image to write
3650  *	@size: image size
3651  *
3652  *	Write the supplied firmware image to the card's serial flash.
3653  */
t4_load_fw(struct adapter * adap,const u8 * fw_data,unsigned int size)3654 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3655 {
3656 	u32 csum;
3657 	int ret, addr;
3658 	unsigned int i;
3659 	u8 first_page[SF_PAGE_SIZE];
3660 	const __be32 *p = (const __be32 *)fw_data;
3661 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3662 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3663 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3664 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3665 	unsigned int fw_start = FLASH_FW_START;
3666 
3667 	if (!size) {
3668 		dev_err(adap->pdev_dev, "FW image has no data\n");
3669 		return -EINVAL;
3670 	}
3671 	if (size & 511) {
3672 		dev_err(adap->pdev_dev,
3673 			"FW image size not multiple of 512 bytes\n");
3674 		return -EINVAL;
3675 	}
3676 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3677 		dev_err(adap->pdev_dev,
3678 			"FW image size differs from size in FW header\n");
3679 		return -EINVAL;
3680 	}
3681 	if (size > fw_size) {
3682 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3683 			fw_size);
3684 		return -EFBIG;
3685 	}
3686 	if (!t4_fw_matches_chip(adap, hdr))
3687 		return -EINVAL;
3688 
3689 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3690 		csum += be32_to_cpu(p[i]);
3691 
3692 	if (csum != 0xffffffff) {
3693 		dev_err(adap->pdev_dev,
3694 			"corrupted firmware image, checksum %#x\n", csum);
3695 		return -EINVAL;
3696 	}
3697 
3698 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3699 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3700 	if (ret)
3701 		goto out;
3702 
3703 	/*
3704 	 * We write the correct version at the end so the driver can see a bad
3705 	 * version if the FW write fails.  Start by writing a copy of the
3706 	 * first page with a bad version.
3707 	 */
3708 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3709 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3710 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true);
3711 	if (ret)
3712 		goto out;
3713 
3714 	addr = fw_start;
3715 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3716 		addr += SF_PAGE_SIZE;
3717 		fw_data += SF_PAGE_SIZE;
3718 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true);
3719 		if (ret)
3720 			goto out;
3721 	}
3722 
3723 	ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver),
3724 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver,
3725 			     true);
3726 out:
3727 	if (ret)
3728 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3729 			ret);
3730 	else
3731 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3732 	return ret;
3733 }
3734 
3735 /**
3736  *	t4_phy_fw_ver - return current PHY firmware version
3737  *	@adap: the adapter
3738  *	@phy_fw_ver: return value buffer for PHY firmware version
3739  *
3740  *	Returns the current version of external PHY firmware on the
3741  *	adapter.
3742  */
t4_phy_fw_ver(struct adapter * adap,int * phy_fw_ver)3743 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3744 {
3745 	u32 param, val;
3746 	int ret;
3747 
3748 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3749 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3750 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3751 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3752 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3753 			      &param, &val);
3754 	if (ret)
3755 		return ret;
3756 	*phy_fw_ver = val;
3757 	return 0;
3758 }
3759 
3760 /**
3761  *	t4_load_phy_fw - download port PHY firmware
3762  *	@adap: the adapter
3763  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3764  *	@phy_fw_version: function to check PHY firmware versions
3765  *	@phy_fw_data: the PHY firmware image to write
3766  *	@phy_fw_size: image size
3767  *
3768  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3769  *	@phy_fw_version is supplied, then it will be used to determine if
3770  *	it's necessary to perform the transfer by comparing the version
3771  *	of any existing adapter PHY firmware with that of the passed in
3772  *	PHY firmware image.
3773  *
3774  *	A negative error number will be returned if an error occurs.  If
3775  *	version number support is available and there's no need to upgrade
3776  *	the firmware, 0 will be returned.  If firmware is successfully
3777  *	transferred to the adapter, 1 will be returned.
3778  *
3779  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3780  *	a result, a RESET of the adapter would cause that RAM to lose its
3781  *	contents.  Thus, loading PHY firmware on such adapters must happen
3782  *	after any FW_RESET_CMDs ...
3783  */
t4_load_phy_fw(struct adapter * adap,int win,int (* phy_fw_version)(const u8 *,size_t),const u8 * phy_fw_data,size_t phy_fw_size)3784 int t4_load_phy_fw(struct adapter *adap, int win,
3785 		   int (*phy_fw_version)(const u8 *, size_t),
3786 		   const u8 *phy_fw_data, size_t phy_fw_size)
3787 {
3788 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3789 	unsigned long mtype = 0, maddr = 0;
3790 	u32 param, val;
3791 	int ret;
3792 
3793 	/* If we have version number support, then check to see if the adapter
3794 	 * already has up-to-date PHY firmware loaded.
3795 	 */
3796 	if (phy_fw_version) {
3797 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3798 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3799 		if (ret < 0)
3800 			return ret;
3801 
3802 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3803 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3804 				"version %#x\n", cur_phy_fw_ver);
3805 			return 0;
3806 		}
3807 	}
3808 
3809 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3810 	 * The size of the file requires a special version of the READ command
3811 	 * which will pass the file size via the values field in PARAMS_CMD and
3812 	 * retrieve the return value from firmware and place it in the same
3813 	 * buffer values
3814 	 */
3815 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3816 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3817 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3818 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3819 	val = phy_fw_size;
3820 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3821 				 &param, &val, 1, true);
3822 	if (ret < 0)
3823 		return ret;
3824 	mtype = val >> 8;
3825 	maddr = (val & 0xff) << 16;
3826 
3827 	/* Copy the supplied PHY Firmware image to the adapter memory location
3828 	 * allocated by the adapter firmware.
3829 	 */
3830 	spin_lock_bh(&adap->win0_lock);
3831 	ret = t4_memory_rw(adap, win, mtype, maddr,
3832 			   phy_fw_size, (__be32 *)phy_fw_data,
3833 			   T4_MEMORY_WRITE);
3834 	spin_unlock_bh(&adap->win0_lock);
3835 	if (ret)
3836 		return ret;
3837 
3838 	/* Tell the firmware that the PHY firmware image has been written to
3839 	 * RAM and it can now start copying it over to the PHYs.  The chip
3840 	 * firmware will RESET the affected PHYs as part of this operation
3841 	 * leaving them running the new PHY firmware image.
3842 	 */
3843 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3844 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3845 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3846 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3847 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3848 				    &param, &val, 30000);
3849 	if (ret)
3850 		return ret;
3851 
3852 	/* If we have version number support, then check to see that the new
3853 	 * firmware got loaded properly.
3854 	 */
3855 	if (phy_fw_version) {
3856 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3857 		if (ret < 0)
3858 			return ret;
3859 
3860 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3861 			CH_WARN(adap, "PHY Firmware did not update: "
3862 				"version on adapter %#x, "
3863 				"version flashed %#x\n",
3864 				cur_phy_fw_ver, new_phy_fw_vers);
3865 			return -ENXIO;
3866 		}
3867 	}
3868 
3869 	return 1;
3870 }
3871 
3872 /**
3873  *	t4_fwcache - firmware cache operation
3874  *	@adap: the adapter
3875  *	@op  : the operation (flush or flush and invalidate)
3876  */
t4_fwcache(struct adapter * adap,enum fw_params_param_dev_fwcache op)3877 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3878 {
3879 	struct fw_params_cmd c;
3880 
3881 	memset(&c, 0, sizeof(c));
3882 	c.op_to_vfn =
3883 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3884 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3885 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3886 			    FW_PARAMS_CMD_VFN_V(0));
3887 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3888 	c.param[0].mnem =
3889 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3890 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3891 	c.param[0].val = cpu_to_be32(op);
3892 
3893 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3894 }
3895 
t4_cim_read_pif_la(struct adapter * adap,u32 * pif_req,u32 * pif_rsp,unsigned int * pif_req_wrptr,unsigned int * pif_rsp_wrptr)3896 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3897 			unsigned int *pif_req_wrptr,
3898 			unsigned int *pif_rsp_wrptr)
3899 {
3900 	int i, j;
3901 	u32 cfg, val, req, rsp;
3902 
3903 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3904 	if (cfg & LADBGEN_F)
3905 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3906 
3907 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3908 	req = POLADBGWRPTR_G(val);
3909 	rsp = PILADBGWRPTR_G(val);
3910 	if (pif_req_wrptr)
3911 		*pif_req_wrptr = req;
3912 	if (pif_rsp_wrptr)
3913 		*pif_rsp_wrptr = rsp;
3914 
3915 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3916 		for (j = 0; j < 6; j++) {
3917 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3918 				     PILADBGRDPTR_V(rsp));
3919 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3920 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3921 			req++;
3922 			rsp++;
3923 		}
3924 		req = (req + 2) & POLADBGRDPTR_M;
3925 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3926 	}
3927 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3928 }
3929 
t4_cim_read_ma_la(struct adapter * adap,u32 * ma_req,u32 * ma_rsp)3930 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3931 {
3932 	u32 cfg;
3933 	int i, j, idx;
3934 
3935 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3936 	if (cfg & LADBGEN_F)
3937 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3938 
3939 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3940 		for (j = 0; j < 5; j++) {
3941 			idx = 8 * i + j;
3942 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3943 				     PILADBGRDPTR_V(idx));
3944 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3945 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3946 		}
3947 	}
3948 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3949 }
3950 
t4_ulprx_read_la(struct adapter * adap,u32 * la_buf)3951 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3952 {
3953 	unsigned int i, j;
3954 
3955 	for (i = 0; i < 8; i++) {
3956 		u32 *p = la_buf + i;
3957 
3958 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3959 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3960 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3961 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3962 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3963 	}
3964 }
3965 
3966 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3967  * Capabilities which we control with separate controls -- see, for instance,
3968  * Pause Frames and Forward Error Correction.  In order to determine what the
3969  * full set of Advertised Port Capabilities are, the base Advertised Port
3970  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3971  * Port Capabilities associated with those other controls.  See
3972  * t4_link_acaps() for how this is done.
3973  */
3974 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3975 		     FW_PORT_CAP32_ANEG)
3976 
3977 /**
3978  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3979  *	@caps16: a 16-bit Port Capabilities value
3980  *
3981  *	Returns the equivalent 32-bit Port Capabilities value.
3982  */
fwcaps16_to_caps32(fw_port_cap16_t caps16)3983 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3984 {
3985 	fw_port_cap32_t caps32 = 0;
3986 
3987 	#define CAP16_TO_CAP32(__cap) \
3988 		do { \
3989 			if (caps16 & FW_PORT_CAP_##__cap) \
3990 				caps32 |= FW_PORT_CAP32_##__cap; \
3991 		} while (0)
3992 
3993 	CAP16_TO_CAP32(SPEED_100M);
3994 	CAP16_TO_CAP32(SPEED_1G);
3995 	CAP16_TO_CAP32(SPEED_25G);
3996 	CAP16_TO_CAP32(SPEED_10G);
3997 	CAP16_TO_CAP32(SPEED_40G);
3998 	CAP16_TO_CAP32(SPEED_100G);
3999 	CAP16_TO_CAP32(FC_RX);
4000 	CAP16_TO_CAP32(FC_TX);
4001 	CAP16_TO_CAP32(ANEG);
4002 	CAP16_TO_CAP32(FORCE_PAUSE);
4003 	CAP16_TO_CAP32(MDIAUTO);
4004 	CAP16_TO_CAP32(MDISTRAIGHT);
4005 	CAP16_TO_CAP32(FEC_RS);
4006 	CAP16_TO_CAP32(FEC_BASER_RS);
4007 	CAP16_TO_CAP32(802_3_PAUSE);
4008 	CAP16_TO_CAP32(802_3_ASM_DIR);
4009 
4010 	#undef CAP16_TO_CAP32
4011 
4012 	return caps32;
4013 }
4014 
4015 /**
4016  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4017  *	@caps32: a 32-bit Port Capabilities value
4018  *
4019  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4020  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4021  *	Port Capabilities and some fields/values may not make it.
4022  */
fwcaps32_to_caps16(fw_port_cap32_t caps32)4023 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4024 {
4025 	fw_port_cap16_t caps16 = 0;
4026 
4027 	#define CAP32_TO_CAP16(__cap) \
4028 		do { \
4029 			if (caps32 & FW_PORT_CAP32_##__cap) \
4030 				caps16 |= FW_PORT_CAP_##__cap; \
4031 		} while (0)
4032 
4033 	CAP32_TO_CAP16(SPEED_100M);
4034 	CAP32_TO_CAP16(SPEED_1G);
4035 	CAP32_TO_CAP16(SPEED_10G);
4036 	CAP32_TO_CAP16(SPEED_25G);
4037 	CAP32_TO_CAP16(SPEED_40G);
4038 	CAP32_TO_CAP16(SPEED_100G);
4039 	CAP32_TO_CAP16(FC_RX);
4040 	CAP32_TO_CAP16(FC_TX);
4041 	CAP32_TO_CAP16(802_3_PAUSE);
4042 	CAP32_TO_CAP16(802_3_ASM_DIR);
4043 	CAP32_TO_CAP16(ANEG);
4044 	CAP32_TO_CAP16(FORCE_PAUSE);
4045 	CAP32_TO_CAP16(MDIAUTO);
4046 	CAP32_TO_CAP16(MDISTRAIGHT);
4047 	CAP32_TO_CAP16(FEC_RS);
4048 	CAP32_TO_CAP16(FEC_BASER_RS);
4049 
4050 	#undef CAP32_TO_CAP16
4051 
4052 	return caps16;
4053 }
4054 
4055 /* Translate Firmware Port Capabilities Pause specification to Common Code */
fwcap_to_cc_pause(fw_port_cap32_t fw_pause)4056 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4057 {
4058 	enum cc_pause cc_pause = 0;
4059 
4060 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4061 		cc_pause |= PAUSE_RX;
4062 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4063 		cc_pause |= PAUSE_TX;
4064 
4065 	return cc_pause;
4066 }
4067 
4068 /* Translate Common Code Pause specification into Firmware Port Capabilities */
cc_to_fwcap_pause(enum cc_pause cc_pause)4069 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4070 {
4071 	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4072 	 * commands, etc.
4073 	 */
4074 	fw_port_cap32_t fw_pause = 0;
4075 
4076 	if (cc_pause & PAUSE_RX)
4077 		fw_pause |= FW_PORT_CAP32_FC_RX;
4078 	if (cc_pause & PAUSE_TX)
4079 		fw_pause |= FW_PORT_CAP32_FC_TX;
4080 	if (!(cc_pause & PAUSE_AUTONEG))
4081 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4082 
4083 	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4084 	 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4085 	 * Note that these bits are ignored in L1 Configure commands.
4086 	 */
4087 	if (cc_pause & PAUSE_RX) {
4088 		if (cc_pause & PAUSE_TX)
4089 			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4090 		else
4091 			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4092 				    FW_PORT_CAP32_802_3_PAUSE;
4093 	} else if (cc_pause & PAUSE_TX) {
4094 		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4095 	}
4096 
4097 	return fw_pause;
4098 }
4099 
4100 /* Translate Firmware Forward Error Correction specification to Common Code */
fwcap_to_cc_fec(fw_port_cap32_t fw_fec)4101 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4102 {
4103 	enum cc_fec cc_fec = 0;
4104 
4105 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4106 		cc_fec |= FEC_RS;
4107 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4108 		cc_fec |= FEC_BASER_RS;
4109 
4110 	return cc_fec;
4111 }
4112 
4113 /* Translate Common Code Forward Error Correction specification to Firmware */
cc_to_fwcap_fec(enum cc_fec cc_fec)4114 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4115 {
4116 	fw_port_cap32_t fw_fec = 0;
4117 
4118 	if (cc_fec & FEC_RS)
4119 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4120 	if (cc_fec & FEC_BASER_RS)
4121 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4122 
4123 	return fw_fec;
4124 }
4125 
4126 /**
4127  *	t4_link_acaps - compute Link Advertised Port Capabilities
4128  *	@adapter: the adapter
4129  *	@port: the Port ID
4130  *	@lc: the Port's Link Configuration
4131  *
4132  *	Synthesize the Advertised Port Capabilities we'll be using based on
4133  *	the base Advertised Port Capabilities (which have been filtered by
4134  *	ADVERT_MASK) plus the individual controls for things like Pause
4135  *	Frames, Forward Error Correction, MDI, etc.
4136  */
t4_link_acaps(struct adapter * adapter,unsigned int port,struct link_config * lc)4137 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4138 			      struct link_config *lc)
4139 {
4140 	fw_port_cap32_t fw_fc, fw_fec, acaps;
4141 	unsigned int fw_mdi;
4142 	char cc_fec;
4143 
4144 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4145 
4146 	/* Convert driver coding of Pause Frame Flow Control settings into the
4147 	 * Firmware's API.
4148 	 */
4149 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4150 
4151 	/* Convert Common Code Forward Error Control settings into the
4152 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4153 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4154 	 * sent us as part of its IEEE 802.3-based interpretation of
4155 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4156 	 * use whatever is in the current Requested FEC settings.
4157 	 */
4158 	if (lc->requested_fec & FEC_AUTO)
4159 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4160 	else
4161 		cc_fec = lc->requested_fec;
4162 	fw_fec = cc_to_fwcap_fec(cc_fec);
4163 
4164 	/* Figure out what our Requested Port Capabilities are going to be.
4165 	 * Note parallel structure in t4_handle_get_port_info() and
4166 	 * init_link_config().
4167 	 */
4168 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4169 		acaps = lc->acaps | fw_fc | fw_fec;
4170 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4171 		lc->fec = cc_fec;
4172 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4173 		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4174 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4175 		lc->fec = cc_fec;
4176 	} else {
4177 		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4178 	}
4179 
4180 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4181 	 * the Physical Port Capabilities.  We can check that here and provide
4182 	 * moderately useful feedback in the system log.
4183 	 *
4184 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4185 	 * we need to exclude this from this check in order to maintain
4186 	 * compatibility ...
4187 	 */
4188 	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4189 		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4190 			acaps, lc->pcaps);
4191 		return -EINVAL;
4192 	}
4193 
4194 	return acaps;
4195 }
4196 
4197 /**
4198  *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4199  *	@adapter: the adapter
4200  *	@mbox: the Firmware Mailbox to use
4201  *	@port: the Port ID
4202  *	@lc: the Port's Link Configuration
4203  *	@sleep_ok: if true we may sleep while awaiting command completion
4204  *	@timeout: time to wait for command to finish before timing out
4205  *		(negative implies @sleep_ok=false)
4206  *
4207  *	Set up a port's MAC and PHY according to a desired link configuration.
4208  *	- If the PHY can auto-negotiate first decide what to advertise, then
4209  *	  enable/disable auto-negotiation as desired, and reset.
4210  *	- If the PHY does not auto-negotiate just reset it.
4211  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4212  *	  otherwise do it later based on the outcome of auto-negotiation.
4213  */
t4_link_l1cfg_core(struct adapter * adapter,unsigned int mbox,unsigned int port,struct link_config * lc,u8 sleep_ok,int timeout)4214 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4215 		       unsigned int port, struct link_config *lc,
4216 		       u8 sleep_ok, int timeout)
4217 {
4218 	unsigned int fw_caps = adapter->params.fw_caps_support;
4219 	struct fw_port_cmd cmd;
4220 	fw_port_cap32_t rcap;
4221 	int ret;
4222 
4223 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4224 	    lc->autoneg == AUTONEG_ENABLE) {
4225 		return -EINVAL;
4226 	}
4227 
4228 	/* Compute our Requested Port Capabilities and send that on to the
4229 	 * Firmware.
4230 	 */
4231 	rcap = t4_link_acaps(adapter, port, lc);
4232 	memset(&cmd, 0, sizeof(cmd));
4233 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4234 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4235 				       FW_PORT_CMD_PORTID_V(port));
4236 	cmd.action_to_len16 =
4237 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4238 						 ? FW_PORT_ACTION_L1_CFG
4239 						 : FW_PORT_ACTION_L1_CFG32) |
4240 						 FW_LEN16(cmd));
4241 	if (fw_caps == FW_CAPS16)
4242 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4243 	else
4244 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4245 
4246 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4247 				      sleep_ok, timeout);
4248 
4249 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4250 	 * the Physical Port Capabilities, some combinations of features may
4251 	 * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4252 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4253 	 * request, flag that here.
4254 	 */
4255 	if (ret) {
4256 		dev_err(adapter->pdev_dev,
4257 			"Requested Port Capabilities %#x rejected, error %d\n",
4258 			rcap, -ret);
4259 		return ret;
4260 	}
4261 	return 0;
4262 }
4263 
4264 /**
4265  *	t4_restart_aneg - restart autonegotiation
4266  *	@adap: the adapter
4267  *	@mbox: mbox to use for the FW command
4268  *	@port: the port id
4269  *
4270  *	Restarts autonegotiation for the selected port.
4271  */
t4_restart_aneg(struct adapter * adap,unsigned int mbox,unsigned int port)4272 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4273 {
4274 	unsigned int fw_caps = adap->params.fw_caps_support;
4275 	struct fw_port_cmd c;
4276 
4277 	memset(&c, 0, sizeof(c));
4278 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4279 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4280 				     FW_PORT_CMD_PORTID_V(port));
4281 	c.action_to_len16 =
4282 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4283 						 ? FW_PORT_ACTION_L1_CFG
4284 						 : FW_PORT_ACTION_L1_CFG32) |
4285 			    FW_LEN16(c));
4286 	if (fw_caps == FW_CAPS16)
4287 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4288 	else
4289 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4290 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4291 }
4292 
4293 typedef void (*int_handler_t)(struct adapter *adap);
4294 
4295 struct intr_info {
4296 	unsigned int mask;       /* bits to check in interrupt status */
4297 	const char *msg;         /* message to print or NULL */
4298 	short stat_idx;          /* stat counter to increment or -1 */
4299 	unsigned short fatal;    /* whether the condition reported is fatal */
4300 	int_handler_t int_handler; /* platform-specific int handler */
4301 };
4302 
4303 /**
4304  *	t4_handle_intr_status - table driven interrupt handler
4305  *	@adapter: the adapter that generated the interrupt
4306  *	@reg: the interrupt status register to process
4307  *	@acts: table of interrupt actions
4308  *
4309  *	A table driven interrupt handler that applies a set of masks to an
4310  *	interrupt status word and performs the corresponding actions if the
4311  *	interrupts described by the mask have occurred.  The actions include
4312  *	optionally emitting a warning or alert message.  The table is terminated
4313  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4314  *	conditions.
4315  */
t4_handle_intr_status(struct adapter * adapter,unsigned int reg,const struct intr_info * acts)4316 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4317 				 const struct intr_info *acts)
4318 {
4319 	int fatal = 0;
4320 	unsigned int mask = 0;
4321 	unsigned int status = t4_read_reg(adapter, reg);
4322 
4323 	for ( ; acts->mask; ++acts) {
4324 		if (!(status & acts->mask))
4325 			continue;
4326 		if (acts->fatal) {
4327 			fatal++;
4328 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4329 				  status & acts->mask);
4330 		} else if (acts->msg && printk_ratelimit())
4331 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4332 				 status & acts->mask);
4333 		if (acts->int_handler)
4334 			acts->int_handler(adapter);
4335 		mask |= acts->mask;
4336 	}
4337 	status &= mask;
4338 	if (status)                           /* clear processed interrupts */
4339 		t4_write_reg(adapter, reg, status);
4340 	return fatal;
4341 }
4342 
4343 /*
4344  * Interrupt handler for the PCIE module.
4345  */
pcie_intr_handler(struct adapter * adapter)4346 static void pcie_intr_handler(struct adapter *adapter)
4347 {
4348 	static const struct intr_info sysbus_intr_info[] = {
4349 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4350 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4351 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4352 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4353 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4354 		{ 0 }
4355 	};
4356 	static const struct intr_info pcie_port_intr_info[] = {
4357 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4358 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4359 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4360 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4361 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4362 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4363 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4364 		{ RDPE_F, "Rx data parity error", -1, 1 },
4365 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4366 		{ 0 }
4367 	};
4368 	static const struct intr_info pcie_intr_info[] = {
4369 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4370 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4371 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4372 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4373 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4374 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4375 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4376 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4377 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4378 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4379 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4380 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4381 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4382 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4383 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4384 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4385 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4386 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4387 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4388 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4389 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4390 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4391 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4392 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4393 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4394 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4395 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4396 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4397 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4398 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4399 		  -1, 0 },
4400 		{ 0 }
4401 	};
4402 
4403 	static struct intr_info t5_pcie_intr_info[] = {
4404 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4405 		  -1, 1 },
4406 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4407 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4408 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4409 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4410 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4411 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4412 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4413 		  -1, 1 },
4414 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4415 		  -1, 1 },
4416 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4417 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4418 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4419 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4420 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4421 		  -1, 1 },
4422 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4423 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4424 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4425 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4426 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4427 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4428 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4429 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4430 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4431 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4432 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4433 		  -1, 1 },
4434 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4435 		  -1, 1 },
4436 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4437 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4438 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4439 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4440 		{ 0 }
4441 	};
4442 
4443 	int fat;
4444 
4445 	if (is_t4(adapter->params.chip))
4446 		fat = t4_handle_intr_status(adapter,
4447 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4448 				sysbus_intr_info) +
4449 			t4_handle_intr_status(adapter,
4450 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4451 					pcie_port_intr_info) +
4452 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4453 					      pcie_intr_info);
4454 	else
4455 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4456 					    t5_pcie_intr_info);
4457 
4458 	if (fat)
4459 		t4_fatal_err(adapter);
4460 }
4461 
4462 /*
4463  * TP interrupt handler.
4464  */
tp_intr_handler(struct adapter * adapter)4465 static void tp_intr_handler(struct adapter *adapter)
4466 {
4467 	static const struct intr_info tp_intr_info[] = {
4468 		{ 0x3fffffff, "TP parity error", -1, 1 },
4469 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4470 		{ 0 }
4471 	};
4472 
4473 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4474 		t4_fatal_err(adapter);
4475 }
4476 
4477 /*
4478  * SGE interrupt handler.
4479  */
sge_intr_handler(struct adapter * adapter)4480 static void sge_intr_handler(struct adapter *adapter)
4481 {
4482 	u32 v = 0, perr;
4483 	u32 err;
4484 
4485 	static const struct intr_info sge_intr_info[] = {
4486 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4487 		  "SGE received CPL exceeding IQE size", -1, 1 },
4488 		{ ERR_INVALID_CIDX_INC_F,
4489 		  "SGE GTS CIDX increment too large", -1, 0 },
4490 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4491 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4492 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4493 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4494 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4495 		  0 },
4496 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4497 		  0 },
4498 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4499 		  0 },
4500 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4501 		  0 },
4502 		{ ERR_ING_CTXT_PRIO_F,
4503 		  "SGE too many priority ingress contexts", -1, 0 },
4504 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4505 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4506 		{ 0 }
4507 	};
4508 
4509 	static struct intr_info t4t5_sge_intr_info[] = {
4510 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4511 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4512 		{ ERR_EGR_CTXT_PRIO_F,
4513 		  "SGE too many priority egress contexts", -1, 0 },
4514 		{ 0 }
4515 	};
4516 
4517 	perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4518 	if (perr) {
4519 		v |= perr;
4520 		dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4521 			  perr);
4522 	}
4523 
4524 	perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4525 	if (perr) {
4526 		v |= perr;
4527 		dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4528 			  perr);
4529 	}
4530 
4531 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4532 		perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4533 		/* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4534 		perr &= ~ERR_T_RXCRC_F;
4535 		if (perr) {
4536 			v |= perr;
4537 			dev_alert(adapter->pdev_dev,
4538 				  "SGE Cause5 Parity Error %#x\n", perr);
4539 		}
4540 	}
4541 
4542 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4543 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4544 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4545 					   t4t5_sge_intr_info);
4546 
4547 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4548 	if (err & ERROR_QID_VALID_F) {
4549 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4550 			ERROR_QID_G(err));
4551 		if (err & UNCAPTURED_ERROR_F)
4552 			dev_err(adapter->pdev_dev,
4553 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4554 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4555 			     UNCAPTURED_ERROR_F);
4556 	}
4557 
4558 	if (v != 0)
4559 		t4_fatal_err(adapter);
4560 }
4561 
4562 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4563 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4564 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4565 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4566 
4567 /*
4568  * CIM interrupt handler.
4569  */
cim_intr_handler(struct adapter * adapter)4570 static void cim_intr_handler(struct adapter *adapter)
4571 {
4572 	static const struct intr_info cim_intr_info[] = {
4573 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4574 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4575 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4576 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4577 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4578 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4579 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4580 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4581 		{ 0 }
4582 	};
4583 	static const struct intr_info cim_upintr_info[] = {
4584 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4585 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4586 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4587 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4588 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4589 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4590 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4591 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4592 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4593 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4594 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4595 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4596 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4597 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4598 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4599 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4600 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4601 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4602 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4603 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4604 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4605 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4606 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4607 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4608 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4609 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4610 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4611 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4612 		{ 0 }
4613 	};
4614 
4615 	u32 val, fw_err;
4616 	int fat;
4617 
4618 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4619 	if (fw_err & PCIE_FW_ERR_F)
4620 		t4_report_fw_error(adapter);
4621 
4622 	/* When the Firmware detects an internal error which normally
4623 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4624 	 * in order to make sure the Host sees the Firmware Crash.  So
4625 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4626 	 * ignore the Timer0 interrupt.
4627 	 */
4628 
4629 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4630 	if (val & TIMER0INT_F)
4631 		if (!(fw_err & PCIE_FW_ERR_F) ||
4632 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4633 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4634 				     TIMER0INT_F);
4635 
4636 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4637 				    cim_intr_info) +
4638 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4639 				    cim_upintr_info);
4640 	if (fat)
4641 		t4_fatal_err(adapter);
4642 }
4643 
4644 /*
4645  * ULP RX interrupt handler.
4646  */
ulprx_intr_handler(struct adapter * adapter)4647 static void ulprx_intr_handler(struct adapter *adapter)
4648 {
4649 	static const struct intr_info ulprx_intr_info[] = {
4650 		{ 0x1800000, "ULPRX context error", -1, 1 },
4651 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4652 		{ 0 }
4653 	};
4654 
4655 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4656 		t4_fatal_err(adapter);
4657 }
4658 
4659 /*
4660  * ULP TX interrupt handler.
4661  */
ulptx_intr_handler(struct adapter * adapter)4662 static void ulptx_intr_handler(struct adapter *adapter)
4663 {
4664 	static const struct intr_info ulptx_intr_info[] = {
4665 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4666 		  0 },
4667 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4668 		  0 },
4669 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4670 		  0 },
4671 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4672 		  0 },
4673 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4674 		{ 0 }
4675 	};
4676 
4677 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4678 		t4_fatal_err(adapter);
4679 }
4680 
4681 /*
4682  * PM TX interrupt handler.
4683  */
pmtx_intr_handler(struct adapter * adapter)4684 static void pmtx_intr_handler(struct adapter *adapter)
4685 {
4686 	static const struct intr_info pmtx_intr_info[] = {
4687 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4688 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4689 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4690 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4691 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4692 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4693 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4694 		  -1, 1 },
4695 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4696 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4697 		{ 0 }
4698 	};
4699 
4700 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4701 		t4_fatal_err(adapter);
4702 }
4703 
4704 /*
4705  * PM RX interrupt handler.
4706  */
pmrx_intr_handler(struct adapter * adapter)4707 static void pmrx_intr_handler(struct adapter *adapter)
4708 {
4709 	static const struct intr_info pmrx_intr_info[] = {
4710 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4711 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4712 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4713 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4714 		  -1, 1 },
4715 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4716 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4717 		{ 0 }
4718 	};
4719 
4720 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4721 		t4_fatal_err(adapter);
4722 }
4723 
4724 /*
4725  * CPL switch interrupt handler.
4726  */
cplsw_intr_handler(struct adapter * adapter)4727 static void cplsw_intr_handler(struct adapter *adapter)
4728 {
4729 	static const struct intr_info cplsw_intr_info[] = {
4730 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4731 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4732 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4733 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4734 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4735 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4736 		{ 0 }
4737 	};
4738 
4739 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4740 		t4_fatal_err(adapter);
4741 }
4742 
4743 /*
4744  * LE interrupt handler.
4745  */
le_intr_handler(struct adapter * adap)4746 static void le_intr_handler(struct adapter *adap)
4747 {
4748 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4749 	static const struct intr_info le_intr_info[] = {
4750 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4751 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4752 		{ PARITYERR_F, "LE parity error", -1, 1 },
4753 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4754 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4755 		{ 0 }
4756 	};
4757 
4758 	static struct intr_info t6_le_intr_info[] = {
4759 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4760 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4761 		{ CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4762 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4763 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4764 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4765 		{ HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4766 		{ 0 }
4767 	};
4768 
4769 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4770 				  (chip <= CHELSIO_T5) ?
4771 				  le_intr_info : t6_le_intr_info))
4772 		t4_fatal_err(adap);
4773 }
4774 
4775 /*
4776  * MPS interrupt handler.
4777  */
mps_intr_handler(struct adapter * adapter)4778 static void mps_intr_handler(struct adapter *adapter)
4779 {
4780 	static const struct intr_info mps_rx_intr_info[] = {
4781 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4782 		{ 0 }
4783 	};
4784 	static const struct intr_info mps_tx_intr_info[] = {
4785 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4786 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4787 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4788 		  -1, 1 },
4789 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4790 		  -1, 1 },
4791 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4792 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4793 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4794 		{ 0 }
4795 	};
4796 	static const struct intr_info t6_mps_tx_intr_info[] = {
4797 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4798 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4799 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4800 		  -1, 1 },
4801 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4802 		  -1, 1 },
4803 		/* MPS Tx Bubble is normal for T6 */
4804 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4805 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4806 		{ 0 }
4807 	};
4808 	static const struct intr_info mps_trc_intr_info[] = {
4809 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4810 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4811 		  -1, 1 },
4812 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4813 		{ 0 }
4814 	};
4815 	static const struct intr_info mps_stat_sram_intr_info[] = {
4816 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4817 		{ 0 }
4818 	};
4819 	static const struct intr_info mps_stat_tx_intr_info[] = {
4820 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4821 		{ 0 }
4822 	};
4823 	static const struct intr_info mps_stat_rx_intr_info[] = {
4824 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4825 		{ 0 }
4826 	};
4827 	static const struct intr_info mps_cls_intr_info[] = {
4828 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4829 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4830 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4831 		{ 0 }
4832 	};
4833 
4834 	int fat;
4835 
4836 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4837 				    mps_rx_intr_info) +
4838 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4839 				    is_t6(adapter->params.chip)
4840 				    ? t6_mps_tx_intr_info
4841 				    : mps_tx_intr_info) +
4842 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4843 				    mps_trc_intr_info) +
4844 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4845 				    mps_stat_sram_intr_info) +
4846 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4847 				    mps_stat_tx_intr_info) +
4848 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4849 				    mps_stat_rx_intr_info) +
4850 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4851 				    mps_cls_intr_info);
4852 
4853 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4854 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4855 	if (fat)
4856 		t4_fatal_err(adapter);
4857 }
4858 
4859 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4860 		      ECC_UE_INT_CAUSE_F)
4861 
4862 /*
4863  * EDC/MC interrupt handler.
4864  */
mem_intr_handler(struct adapter * adapter,int idx)4865 static void mem_intr_handler(struct adapter *adapter, int idx)
4866 {
4867 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4868 
4869 	unsigned int addr, cnt_addr, v;
4870 
4871 	if (idx <= MEM_EDC1) {
4872 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4873 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4874 	} else if (idx == MEM_MC) {
4875 		if (is_t4(adapter->params.chip)) {
4876 			addr = MC_INT_CAUSE_A;
4877 			cnt_addr = MC_ECC_STATUS_A;
4878 		} else {
4879 			addr = MC_P_INT_CAUSE_A;
4880 			cnt_addr = MC_P_ECC_STATUS_A;
4881 		}
4882 	} else {
4883 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4884 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4885 	}
4886 
4887 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4888 	if (v & PERR_INT_CAUSE_F)
4889 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4890 			  name[idx]);
4891 	if (v & ECC_CE_INT_CAUSE_F) {
4892 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4893 
4894 		t4_edc_err_read(adapter, idx);
4895 
4896 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4897 		if (printk_ratelimit())
4898 			dev_warn(adapter->pdev_dev,
4899 				 "%u %s correctable ECC data error%s\n",
4900 				 cnt, name[idx], cnt > 1 ? "s" : "");
4901 	}
4902 	if (v & ECC_UE_INT_CAUSE_F)
4903 		dev_alert(adapter->pdev_dev,
4904 			  "%s uncorrectable ECC data error\n", name[idx]);
4905 
4906 	t4_write_reg(adapter, addr, v);
4907 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4908 		t4_fatal_err(adapter);
4909 }
4910 
4911 /*
4912  * MA interrupt handler.
4913  */
ma_intr_handler(struct adapter * adap)4914 static void ma_intr_handler(struct adapter *adap)
4915 {
4916 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4917 
4918 	if (status & MEM_PERR_INT_CAUSE_F) {
4919 		dev_alert(adap->pdev_dev,
4920 			  "MA parity error, parity status %#x\n",
4921 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4922 		if (is_t5(adap->params.chip))
4923 			dev_alert(adap->pdev_dev,
4924 				  "MA parity error, parity status %#x\n",
4925 				  t4_read_reg(adap,
4926 					      MA_PARITY_ERROR_STATUS2_A));
4927 	}
4928 	if (status & MEM_WRAP_INT_CAUSE_F) {
4929 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4930 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4931 			  "client %u to address %#x\n",
4932 			  MEM_WRAP_CLIENT_NUM_G(v),
4933 			  MEM_WRAP_ADDRESS_G(v) << 4);
4934 	}
4935 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4936 	t4_fatal_err(adap);
4937 }
4938 
4939 /*
4940  * SMB interrupt handler.
4941  */
smb_intr_handler(struct adapter * adap)4942 static void smb_intr_handler(struct adapter *adap)
4943 {
4944 	static const struct intr_info smb_intr_info[] = {
4945 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4946 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4947 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4948 		{ 0 }
4949 	};
4950 
4951 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4952 		t4_fatal_err(adap);
4953 }
4954 
4955 /*
4956  * NC-SI interrupt handler.
4957  */
ncsi_intr_handler(struct adapter * adap)4958 static void ncsi_intr_handler(struct adapter *adap)
4959 {
4960 	static const struct intr_info ncsi_intr_info[] = {
4961 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4962 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4963 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4964 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4965 		{ 0 }
4966 	};
4967 
4968 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4969 		t4_fatal_err(adap);
4970 }
4971 
4972 /*
4973  * XGMAC interrupt handler.
4974  */
xgmac_intr_handler(struct adapter * adap,int port)4975 static void xgmac_intr_handler(struct adapter *adap, int port)
4976 {
4977 	u32 v, int_cause_reg;
4978 
4979 	if (is_t4(adap->params.chip))
4980 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4981 	else
4982 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4983 
4984 	v = t4_read_reg(adap, int_cause_reg);
4985 
4986 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4987 	if (!v)
4988 		return;
4989 
4990 	if (v & TXFIFO_PRTY_ERR_F)
4991 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4992 			  port);
4993 	if (v & RXFIFO_PRTY_ERR_F)
4994 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4995 			  port);
4996 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4997 	t4_fatal_err(adap);
4998 }
4999 
5000 /*
5001  * PL interrupt handler.
5002  */
pl_intr_handler(struct adapter * adap)5003 static void pl_intr_handler(struct adapter *adap)
5004 {
5005 	static const struct intr_info pl_intr_info[] = {
5006 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
5007 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
5008 		{ 0 }
5009 	};
5010 
5011 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
5012 		t4_fatal_err(adap);
5013 }
5014 
5015 #define PF_INTR_MASK (PFSW_F)
5016 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5017 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5018 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5019 
5020 /**
5021  *	t4_slow_intr_handler - control path interrupt handler
5022  *	@adapter: the adapter
5023  *
5024  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5025  *	The designation 'slow' is because it involves register reads, while
5026  *	data interrupts typically don't involve any MMIOs.
5027  */
t4_slow_intr_handler(struct adapter * adapter)5028 int t4_slow_intr_handler(struct adapter *adapter)
5029 {
5030 	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
5031 	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5032 	 * easiest just to mask that case here.
5033 	 */
5034 	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5035 	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5036 	u32 cause = raw_cause & enable;
5037 
5038 	if (!(cause & GLBL_INTR_MASK))
5039 		return 0;
5040 	if (cause & CIM_F)
5041 		cim_intr_handler(adapter);
5042 	if (cause & MPS_F)
5043 		mps_intr_handler(adapter);
5044 	if (cause & NCSI_F)
5045 		ncsi_intr_handler(adapter);
5046 	if (cause & PL_F)
5047 		pl_intr_handler(adapter);
5048 	if (cause & SMB_F)
5049 		smb_intr_handler(adapter);
5050 	if (cause & XGMAC0_F)
5051 		xgmac_intr_handler(adapter, 0);
5052 	if (cause & XGMAC1_F)
5053 		xgmac_intr_handler(adapter, 1);
5054 	if (cause & XGMAC_KR0_F)
5055 		xgmac_intr_handler(adapter, 2);
5056 	if (cause & XGMAC_KR1_F)
5057 		xgmac_intr_handler(adapter, 3);
5058 	if (cause & PCIE_F)
5059 		pcie_intr_handler(adapter);
5060 	if (cause & MC_F)
5061 		mem_intr_handler(adapter, MEM_MC);
5062 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5063 		mem_intr_handler(adapter, MEM_MC1);
5064 	if (cause & EDC0_F)
5065 		mem_intr_handler(adapter, MEM_EDC0);
5066 	if (cause & EDC1_F)
5067 		mem_intr_handler(adapter, MEM_EDC1);
5068 	if (cause & LE_F)
5069 		le_intr_handler(adapter);
5070 	if (cause & TP_F)
5071 		tp_intr_handler(adapter);
5072 	if (cause & MA_F)
5073 		ma_intr_handler(adapter);
5074 	if (cause & PM_TX_F)
5075 		pmtx_intr_handler(adapter);
5076 	if (cause & PM_RX_F)
5077 		pmrx_intr_handler(adapter);
5078 	if (cause & ULP_RX_F)
5079 		ulprx_intr_handler(adapter);
5080 	if (cause & CPL_SWITCH_F)
5081 		cplsw_intr_handler(adapter);
5082 	if (cause & SGE_F)
5083 		sge_intr_handler(adapter);
5084 	if (cause & ULP_TX_F)
5085 		ulptx_intr_handler(adapter);
5086 
5087 	/* Clear the interrupts just processed for which we are the master. */
5088 	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5089 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5090 	return 1;
5091 }
5092 
5093 /**
5094  *	t4_intr_enable - enable interrupts
5095  *	@adapter: the adapter whose interrupts should be enabled
5096  *
5097  *	Enable PF-specific interrupts for the calling function and the top-level
5098  *	interrupt concentrator for global interrupts.  Interrupts are already
5099  *	enabled at each module,	here we just enable the roots of the interrupt
5100  *	hierarchies.
5101  *
5102  *	Note: this function should be called only when the driver manages
5103  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5104  *	function at a time should be doing this.
5105  */
t4_intr_enable(struct adapter * adapter)5106 void t4_intr_enable(struct adapter *adapter)
5107 {
5108 	u32 val = 0;
5109 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5110 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5111 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5112 
5113 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5114 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5115 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5116 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5117 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5118 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5119 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5120 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5121 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5122 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5123 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5124 }
5125 
5126 /**
5127  *	t4_intr_disable - disable interrupts
5128  *	@adapter: the adapter whose interrupts should be disabled
5129  *
5130  *	Disable interrupts.  We only disable the top-level interrupt
5131  *	concentrators.  The caller must be a PCI function managing global
5132  *	interrupts.
5133  */
t4_intr_disable(struct adapter * adapter)5134 void t4_intr_disable(struct adapter *adapter)
5135 {
5136 	u32 whoami, pf;
5137 
5138 	if (pci_channel_offline(adapter->pdev))
5139 		return;
5140 
5141 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5142 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5143 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5144 
5145 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5146 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5147 }
5148 
t4_chip_rss_size(struct adapter * adap)5149 unsigned int t4_chip_rss_size(struct adapter *adap)
5150 {
5151 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5152 		return RSS_NENTRIES;
5153 	else
5154 		return T6_RSS_NENTRIES;
5155 }
5156 
5157 /**
5158  *	t4_config_rss_range - configure a portion of the RSS mapping table
5159  *	@adapter: the adapter
5160  *	@mbox: mbox to use for the FW command
5161  *	@viid: virtual interface whose RSS subtable is to be written
5162  *	@start: start entry in the table to write
5163  *	@n: how many table entries to write
5164  *	@rspq: values for the response queue lookup table
5165  *	@nrspq: number of values in @rspq
5166  *
5167  *	Programs the selected part of the VI's RSS mapping table with the
5168  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5169  *	until the full table range is populated.
5170  *
5171  *	The caller must ensure the values in @rspq are in the range allowed for
5172  *	@viid.
5173  */
t4_config_rss_range(struct adapter * adapter,int mbox,unsigned int viid,int start,int n,const u16 * rspq,unsigned int nrspq)5174 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5175 			int start, int n, const u16 *rspq, unsigned int nrspq)
5176 {
5177 	int ret;
5178 	const u16 *rsp = rspq;
5179 	const u16 *rsp_end = rspq + nrspq;
5180 	struct fw_rss_ind_tbl_cmd cmd;
5181 
5182 	memset(&cmd, 0, sizeof(cmd));
5183 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5184 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5185 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5186 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5187 
5188 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5189 	while (n > 0) {
5190 		int nq = min(n, 32);
5191 		__be32 *qp = &cmd.iq0_to_iq2;
5192 
5193 		cmd.niqid = cpu_to_be16(nq);
5194 		cmd.startidx = cpu_to_be16(start);
5195 
5196 		start += nq;
5197 		n -= nq;
5198 
5199 		while (nq > 0) {
5200 			unsigned int v;
5201 
5202 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5203 			if (++rsp >= rsp_end)
5204 				rsp = rspq;
5205 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5206 			if (++rsp >= rsp_end)
5207 				rsp = rspq;
5208 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5209 			if (++rsp >= rsp_end)
5210 				rsp = rspq;
5211 
5212 			*qp++ = cpu_to_be32(v);
5213 			nq -= 3;
5214 		}
5215 
5216 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5217 		if (ret)
5218 			return ret;
5219 	}
5220 	return 0;
5221 }
5222 
5223 /**
5224  *	t4_config_glbl_rss - configure the global RSS mode
5225  *	@adapter: the adapter
5226  *	@mbox: mbox to use for the FW command
5227  *	@mode: global RSS mode
5228  *	@flags: mode-specific flags
5229  *
5230  *	Sets the global RSS mode.
5231  */
t4_config_glbl_rss(struct adapter * adapter,int mbox,unsigned int mode,unsigned int flags)5232 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5233 		       unsigned int flags)
5234 {
5235 	struct fw_rss_glb_config_cmd c;
5236 
5237 	memset(&c, 0, sizeof(c));
5238 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5239 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5240 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5241 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5242 		c.u.manual.mode_pkd =
5243 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5244 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5245 		c.u.basicvirtual.mode_pkd =
5246 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5247 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5248 	} else
5249 		return -EINVAL;
5250 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5251 }
5252 
5253 /**
5254  *	t4_config_vi_rss - configure per VI RSS settings
5255  *	@adapter: the adapter
5256  *	@mbox: mbox to use for the FW command
5257  *	@viid: the VI id
5258  *	@flags: RSS flags
5259  *	@defq: id of the default RSS queue for the VI.
5260  *
5261  *	Configures VI-specific RSS properties.
5262  */
t4_config_vi_rss(struct adapter * adapter,int mbox,unsigned int viid,unsigned int flags,unsigned int defq)5263 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5264 		     unsigned int flags, unsigned int defq)
5265 {
5266 	struct fw_rss_vi_config_cmd c;
5267 
5268 	memset(&c, 0, sizeof(c));
5269 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5270 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5271 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5272 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5273 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5274 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5275 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5276 }
5277 
5278 /* Read an RSS table row */
rd_rss_row(struct adapter * adap,int row,u32 * val)5279 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5280 {
5281 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5282 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5283 				   5, 0, val);
5284 }
5285 
5286 /**
5287  *	t4_read_rss - read the contents of the RSS mapping table
5288  *	@adapter: the adapter
5289  *	@map: holds the contents of the RSS mapping table
5290  *
5291  *	Reads the contents of the RSS hash->queue mapping table.
5292  */
t4_read_rss(struct adapter * adapter,u16 * map)5293 int t4_read_rss(struct adapter *adapter, u16 *map)
5294 {
5295 	int i, ret, nentries;
5296 	u32 val;
5297 
5298 	nentries = t4_chip_rss_size(adapter);
5299 	for (i = 0; i < nentries / 2; ++i) {
5300 		ret = rd_rss_row(adapter, i, &val);
5301 		if (ret)
5302 			return ret;
5303 		*map++ = LKPTBLQUEUE0_G(val);
5304 		*map++ = LKPTBLQUEUE1_G(val);
5305 	}
5306 	return 0;
5307 }
5308 
t4_use_ldst(struct adapter * adap)5309 static unsigned int t4_use_ldst(struct adapter *adap)
5310 {
5311 	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5312 }
5313 
5314 /**
5315  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5316  * @adap: the adapter
5317  * @cmd: TP fw ldst address space type
5318  * @vals: where the indirect register values are stored/written
5319  * @nregs: how many indirect registers to read/write
5320  * @start_index: index of first indirect register to read/write
5321  * @rw: Read (1) or Write (0)
5322  * @sleep_ok: if true we may sleep while awaiting command completion
5323  *
5324  * Access TP indirect registers through LDST
5325  */
t4_tp_fw_ldst_rw(struct adapter * adap,int cmd,u32 * vals,unsigned int nregs,unsigned int start_index,unsigned int rw,bool sleep_ok)5326 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5327 			    unsigned int nregs, unsigned int start_index,
5328 			    unsigned int rw, bool sleep_ok)
5329 {
5330 	int ret = 0;
5331 	unsigned int i;
5332 	struct fw_ldst_cmd c;
5333 
5334 	for (i = 0; i < nregs; i++) {
5335 		memset(&c, 0, sizeof(c));
5336 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5337 						FW_CMD_REQUEST_F |
5338 						(rw ? FW_CMD_READ_F :
5339 						      FW_CMD_WRITE_F) |
5340 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5341 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5342 
5343 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5344 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5345 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5346 				      sleep_ok);
5347 		if (ret)
5348 			return ret;
5349 
5350 		if (rw)
5351 			vals[i] = be32_to_cpu(c.u.addrval.val);
5352 	}
5353 	return 0;
5354 }
5355 
5356 /**
5357  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5358  * @adap: the adapter
5359  * @reg_addr: Address Register
5360  * @reg_data: Data register
5361  * @buff: where the indirect register values are stored/written
5362  * @nregs: how many indirect registers to read/write
5363  * @start_index: index of first indirect register to read/write
5364  * @rw: READ(1) or WRITE(0)
5365  * @sleep_ok: if true we may sleep while awaiting command completion
5366  *
5367  * Read/Write TP indirect registers through LDST if possible.
5368  * Else, use backdoor access
5369  **/
t4_tp_indirect_rw(struct adapter * adap,u32 reg_addr,u32 reg_data,u32 * buff,u32 nregs,u32 start_index,int rw,bool sleep_ok)5370 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5371 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5372 			      bool sleep_ok)
5373 {
5374 	int rc = -EINVAL;
5375 	int cmd;
5376 
5377 	switch (reg_addr) {
5378 	case TP_PIO_ADDR_A:
5379 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5380 		break;
5381 	case TP_TM_PIO_ADDR_A:
5382 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5383 		break;
5384 	case TP_MIB_INDEX_A:
5385 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5386 		break;
5387 	default:
5388 		goto indirect_access;
5389 	}
5390 
5391 	if (t4_use_ldst(adap))
5392 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5393 				      sleep_ok);
5394 
5395 indirect_access:
5396 
5397 	if (rc) {
5398 		if (rw)
5399 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5400 					 start_index);
5401 		else
5402 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5403 					  start_index);
5404 	}
5405 }
5406 
5407 /**
5408  * t4_tp_pio_read - Read TP PIO registers
5409  * @adap: the adapter
5410  * @buff: where the indirect register values are written
5411  * @nregs: how many indirect registers to read
5412  * @start_index: index of first indirect register to read
5413  * @sleep_ok: if true we may sleep while awaiting command completion
5414  *
5415  * Read TP PIO Registers
5416  **/
t4_tp_pio_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)5417 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5418 		    u32 start_index, bool sleep_ok)
5419 {
5420 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5421 			  start_index, 1, sleep_ok);
5422 }
5423 
5424 /**
5425  * t4_tp_pio_write - Write TP PIO registers
5426  * @adap: the adapter
5427  * @buff: where the indirect register values are stored
5428  * @nregs: how many indirect registers to write
5429  * @start_index: index of first indirect register to write
5430  * @sleep_ok: if true we may sleep while awaiting command completion
5431  *
5432  * Write TP PIO Registers
5433  **/
t4_tp_pio_write(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)5434 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5435 			    u32 start_index, bool sleep_ok)
5436 {
5437 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5438 			  start_index, 0, sleep_ok);
5439 }
5440 
5441 /**
5442  * t4_tp_tm_pio_read - Read TP TM PIO registers
5443  * @adap: the adapter
5444  * @buff: where the indirect register values are written
5445  * @nregs: how many indirect registers to read
5446  * @start_index: index of first indirect register to read
5447  * @sleep_ok: if true we may sleep while awaiting command completion
5448  *
5449  * Read TP TM PIO Registers
5450  **/
t4_tp_tm_pio_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)5451 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5452 		       u32 start_index, bool sleep_ok)
5453 {
5454 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5455 			  nregs, start_index, 1, sleep_ok);
5456 }
5457 
5458 /**
5459  * t4_tp_mib_read - Read TP MIB registers
5460  * @adap: the adapter
5461  * @buff: where the indirect register values are written
5462  * @nregs: how many indirect registers to read
5463  * @start_index: index of first indirect register to read
5464  * @sleep_ok: if true we may sleep while awaiting command completion
5465  *
5466  * Read TP MIB Registers
5467  **/
t4_tp_mib_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)5468 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5469 		    bool sleep_ok)
5470 {
5471 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5472 			  start_index, 1, sleep_ok);
5473 }
5474 
5475 /**
5476  *	t4_read_rss_key - read the global RSS key
5477  *	@adap: the adapter
5478  *	@key: 10-entry array holding the 320-bit RSS key
5479  *      @sleep_ok: if true we may sleep while awaiting command completion
5480  *
5481  *	Reads the global 320-bit RSS key.
5482  */
t4_read_rss_key(struct adapter * adap,u32 * key,bool sleep_ok)5483 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5484 {
5485 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5486 }
5487 
5488 /**
5489  *	t4_write_rss_key - program one of the RSS keys
5490  *	@adap: the adapter
5491  *	@key: 10-entry array holding the 320-bit RSS key
5492  *	@idx: which RSS key to write
5493  *      @sleep_ok: if true we may sleep while awaiting command completion
5494  *
5495  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5496  *	0..15 the corresponding entry in the RSS key table is written,
5497  *	otherwise the global RSS key is written.
5498  */
t4_write_rss_key(struct adapter * adap,const u32 * key,int idx,bool sleep_ok)5499 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5500 		      bool sleep_ok)
5501 {
5502 	u8 rss_key_addr_cnt = 16;
5503 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5504 
5505 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5506 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5507 	 * as index[5:4](upper 2) into key table
5508 	 */
5509 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5510 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5511 		rss_key_addr_cnt = 32;
5512 
5513 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5514 
5515 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5516 		if (rss_key_addr_cnt > 16)
5517 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5518 				     KEYWRADDRX_V(idx >> 4) |
5519 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5520 		else
5521 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5522 				     KEYWRADDR_V(idx) | KEYWREN_F);
5523 	}
5524 }
5525 
5526 /**
5527  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5528  *	@adapter: the adapter
5529  *	@index: the entry in the PF RSS table to read
5530  *	@valp: where to store the returned value
5531  *      @sleep_ok: if true we may sleep while awaiting command completion
5532  *
5533  *	Reads the PF RSS Configuration Table at the specified index and returns
5534  *	the value found there.
5535  */
t4_read_rss_pf_config(struct adapter * adapter,unsigned int index,u32 * valp,bool sleep_ok)5536 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5537 			   u32 *valp, bool sleep_ok)
5538 {
5539 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5540 }
5541 
5542 /**
5543  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5544  *	@adapter: the adapter
5545  *	@index: the entry in the VF RSS table to read
5546  *	@vfl: where to store the returned VFL
5547  *	@vfh: where to store the returned VFH
5548  *      @sleep_ok: if true we may sleep while awaiting command completion
5549  *
5550  *	Reads the VF RSS Configuration Table at the specified index and returns
5551  *	the (VFL, VFH) values found there.
5552  */
t4_read_rss_vf_config(struct adapter * adapter,unsigned int index,u32 * vfl,u32 * vfh,bool sleep_ok)5553 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5554 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5555 {
5556 	u32 vrt, mask, data;
5557 
5558 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5559 		mask = VFWRADDR_V(VFWRADDR_M);
5560 		data = VFWRADDR_V(index);
5561 	} else {
5562 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5563 		 data = T6_VFWRADDR_V(index);
5564 	}
5565 
5566 	/* Request that the index'th VF Table values be read into VFL/VFH.
5567 	 */
5568 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5569 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5570 	vrt |= data | VFRDEN_F;
5571 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5572 
5573 	/* Grab the VFL/VFH values ...
5574 	 */
5575 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5576 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5577 }
5578 
5579 /**
5580  *	t4_read_rss_pf_map - read PF RSS Map
5581  *	@adapter: the adapter
5582  *      @sleep_ok: if true we may sleep while awaiting command completion
5583  *
5584  *	Reads the PF RSS Map register and returns its value.
5585  */
t4_read_rss_pf_map(struct adapter * adapter,bool sleep_ok)5586 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5587 {
5588 	u32 pfmap;
5589 
5590 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5591 	return pfmap;
5592 }
5593 
5594 /**
5595  *	t4_read_rss_pf_mask - read PF RSS Mask
5596  *	@adapter: the adapter
5597  *      @sleep_ok: if true we may sleep while awaiting command completion
5598  *
5599  *	Reads the PF RSS Mask register and returns its value.
5600  */
t4_read_rss_pf_mask(struct adapter * adapter,bool sleep_ok)5601 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5602 {
5603 	u32 pfmask;
5604 
5605 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5606 	return pfmask;
5607 }
5608 
5609 /**
5610  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5611  *	@adap: the adapter
5612  *	@v4: holds the TCP/IP counter values
5613  *	@v6: holds the TCP/IPv6 counter values
5614  *      @sleep_ok: if true we may sleep while awaiting command completion
5615  *
5616  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5617  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5618  */
t4_tp_get_tcp_stats(struct adapter * adap,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6,bool sleep_ok)5619 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5620 			 struct tp_tcp_stats *v6, bool sleep_ok)
5621 {
5622 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5623 
5624 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5625 #define STAT(x)     val[STAT_IDX(x)]
5626 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5627 
5628 	if (v4) {
5629 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5630 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5631 		v4->tcp_out_rsts = STAT(OUT_RST);
5632 		v4->tcp_in_segs  = STAT64(IN_SEG);
5633 		v4->tcp_out_segs = STAT64(OUT_SEG);
5634 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5635 	}
5636 	if (v6) {
5637 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5638 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5639 		v6->tcp_out_rsts = STAT(OUT_RST);
5640 		v6->tcp_in_segs  = STAT64(IN_SEG);
5641 		v6->tcp_out_segs = STAT64(OUT_SEG);
5642 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5643 	}
5644 #undef STAT64
5645 #undef STAT
5646 #undef STAT_IDX
5647 }
5648 
5649 /**
5650  *	t4_tp_get_err_stats - read TP's error MIB counters
5651  *	@adap: the adapter
5652  *	@st: holds the counter values
5653  *      @sleep_ok: if true we may sleep while awaiting command completion
5654  *
5655  *	Returns the values of TP's error counters.
5656  */
t4_tp_get_err_stats(struct adapter * adap,struct tp_err_stats * st,bool sleep_ok)5657 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5658 			 bool sleep_ok)
5659 {
5660 	int nchan = adap->params.arch.nchan;
5661 
5662 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5663 		       sleep_ok);
5664 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5665 		       sleep_ok);
5666 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5667 		       sleep_ok);
5668 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5669 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5670 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5671 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5672 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5673 		       sleep_ok);
5674 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5675 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5676 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5677 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5678 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5679 		       sleep_ok);
5680 }
5681 
5682 /**
5683  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5684  *	@adap: the adapter
5685  *	@st: holds the counter values
5686  *      @sleep_ok: if true we may sleep while awaiting command completion
5687  *
5688  *	Returns the values of TP's CPL counters.
5689  */
t4_tp_get_cpl_stats(struct adapter * adap,struct tp_cpl_stats * st,bool sleep_ok)5690 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5691 			 bool sleep_ok)
5692 {
5693 	int nchan = adap->params.arch.nchan;
5694 
5695 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5696 
5697 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5698 }
5699 
5700 /**
5701  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5702  *	@adap: the adapter
5703  *	@st: holds the counter values
5704  *      @sleep_ok: if true we may sleep while awaiting command completion
5705  *
5706  *	Returns the values of TP's RDMA counters.
5707  */
t4_tp_get_rdma_stats(struct adapter * adap,struct tp_rdma_stats * st,bool sleep_ok)5708 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5709 			  bool sleep_ok)
5710 {
5711 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5712 		       sleep_ok);
5713 }
5714 
5715 /**
5716  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5717  *	@adap: the adapter
5718  *	@idx: the port index
5719  *	@st: holds the counter values
5720  *      @sleep_ok: if true we may sleep while awaiting command completion
5721  *
5722  *	Returns the values of TP's FCoE counters for the selected port.
5723  */
t4_get_fcoe_stats(struct adapter * adap,unsigned int idx,struct tp_fcoe_stats * st,bool sleep_ok)5724 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5725 		       struct tp_fcoe_stats *st, bool sleep_ok)
5726 {
5727 	u32 val[2];
5728 
5729 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5730 		       sleep_ok);
5731 
5732 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5733 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5734 
5735 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5736 		       sleep_ok);
5737 
5738 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5739 }
5740 
5741 /**
5742  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5743  *	@adap: the adapter
5744  *	@st: holds the counter values
5745  *      @sleep_ok: if true we may sleep while awaiting command completion
5746  *
5747  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5748  */
t4_get_usm_stats(struct adapter * adap,struct tp_usm_stats * st,bool sleep_ok)5749 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5750 		      bool sleep_ok)
5751 {
5752 	u32 val[4];
5753 
5754 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5755 	st->frames = val[0];
5756 	st->drops = val[1];
5757 	st->octets = ((u64)val[2] << 32) | val[3];
5758 }
5759 
5760 /**
5761  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5762  *	@adap: the adapter
5763  *	@mtus: where to store the MTU values
5764  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5765  *
5766  *	Reads the HW path MTU table.
5767  */
t4_read_mtu_tbl(struct adapter * adap,u16 * mtus,u8 * mtu_log)5768 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5769 {
5770 	u32 v;
5771 	int i;
5772 
5773 	for (i = 0; i < NMTUS; ++i) {
5774 		t4_write_reg(adap, TP_MTU_TABLE_A,
5775 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5776 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5777 		mtus[i] = MTUVALUE_G(v);
5778 		if (mtu_log)
5779 			mtu_log[i] = MTUWIDTH_G(v);
5780 	}
5781 }
5782 
5783 /**
5784  *	t4_read_cong_tbl - reads the congestion control table
5785  *	@adap: the adapter
5786  *	@incr: where to store the alpha values
5787  *
5788  *	Reads the additive increments programmed into the HW congestion
5789  *	control table.
5790  */
t4_read_cong_tbl(struct adapter * adap,u16 incr[NMTUS][NCCTRL_WIN])5791 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5792 {
5793 	unsigned int mtu, w;
5794 
5795 	for (mtu = 0; mtu < NMTUS; ++mtu)
5796 		for (w = 0; w < NCCTRL_WIN; ++w) {
5797 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5798 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5799 			incr[mtu][w] = (u16)t4_read_reg(adap,
5800 						TP_CCTRL_TABLE_A) & 0x1fff;
5801 		}
5802 }
5803 
5804 /**
5805  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5806  *	@adap: the adapter
5807  *	@addr: the indirect TP register address
5808  *	@mask: specifies the field within the register to modify
5809  *	@val: new value for the field
5810  *
5811  *	Sets a field of an indirect TP register to the given value.
5812  */
t4_tp_wr_bits_indirect(struct adapter * adap,unsigned int addr,unsigned int mask,unsigned int val)5813 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5814 			    unsigned int mask, unsigned int val)
5815 {
5816 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5817 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5818 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5819 }
5820 
5821 /**
5822  *	init_cong_ctrl - initialize congestion control parameters
5823  *	@a: the alpha values for congestion control
5824  *	@b: the beta values for congestion control
5825  *
5826  *	Initialize the congestion control parameters.
5827  */
init_cong_ctrl(unsigned short * a,unsigned short * b)5828 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5829 {
5830 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5831 	a[9] = 2;
5832 	a[10] = 3;
5833 	a[11] = 4;
5834 	a[12] = 5;
5835 	a[13] = 6;
5836 	a[14] = 7;
5837 	a[15] = 8;
5838 	a[16] = 9;
5839 	a[17] = 10;
5840 	a[18] = 14;
5841 	a[19] = 17;
5842 	a[20] = 21;
5843 	a[21] = 25;
5844 	a[22] = 30;
5845 	a[23] = 35;
5846 	a[24] = 45;
5847 	a[25] = 60;
5848 	a[26] = 80;
5849 	a[27] = 100;
5850 	a[28] = 200;
5851 	a[29] = 300;
5852 	a[30] = 400;
5853 	a[31] = 500;
5854 
5855 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5856 	b[9] = b[10] = 1;
5857 	b[11] = b[12] = 2;
5858 	b[13] = b[14] = b[15] = b[16] = 3;
5859 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5860 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5861 	b[28] = b[29] = 6;
5862 	b[30] = b[31] = 7;
5863 }
5864 
5865 /* The minimum additive increment value for the congestion control table */
5866 #define CC_MIN_INCR 2U
5867 
5868 /**
5869  *	t4_load_mtus - write the MTU and congestion control HW tables
5870  *	@adap: the adapter
5871  *	@mtus: the values for the MTU table
5872  *	@alpha: the values for the congestion control alpha parameter
5873  *	@beta: the values for the congestion control beta parameter
5874  *
5875  *	Write the HW MTU table with the supplied MTUs and the high-speed
5876  *	congestion control table with the supplied alpha, beta, and MTUs.
5877  *	We write the two tables together because the additive increments
5878  *	depend on the MTUs.
5879  */
t4_load_mtus(struct adapter * adap,const unsigned short * mtus,const unsigned short * alpha,const unsigned short * beta)5880 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5881 		  const unsigned short *alpha, const unsigned short *beta)
5882 {
5883 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5884 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5885 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5886 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5887 	};
5888 
5889 	unsigned int i, w;
5890 
5891 	for (i = 0; i < NMTUS; ++i) {
5892 		unsigned int mtu = mtus[i];
5893 		unsigned int log2 = fls(mtu);
5894 
5895 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5896 			log2--;
5897 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5898 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5899 
5900 		for (w = 0; w < NCCTRL_WIN; ++w) {
5901 			unsigned int inc;
5902 
5903 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5904 				  CC_MIN_INCR);
5905 
5906 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5907 				     (w << 16) | (beta[w] << 13) | inc);
5908 		}
5909 	}
5910 }
5911 
5912 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5913  * clocks.  The formula is
5914  *
5915  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5916  *
5917  * which is equivalent to
5918  *
5919  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5920  */
chan_rate(struct adapter * adap,unsigned int bytes256)5921 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5922 {
5923 	u64 v = bytes256 * adap->params.vpd.cclk;
5924 
5925 	return v * 62 + v / 2;
5926 }
5927 
5928 /**
5929  *	t4_get_chan_txrate - get the current per channel Tx rates
5930  *	@adap: the adapter
5931  *	@nic_rate: rates for NIC traffic
5932  *	@ofld_rate: rates for offloaded traffic
5933  *
5934  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5935  *	for each channel.
5936  */
t4_get_chan_txrate(struct adapter * adap,u64 * nic_rate,u64 * ofld_rate)5937 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5938 {
5939 	u32 v;
5940 
5941 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5942 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5943 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5944 	if (adap->params.arch.nchan == NCHAN) {
5945 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5946 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5947 	}
5948 
5949 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5950 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5951 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5952 	if (adap->params.arch.nchan == NCHAN) {
5953 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5954 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5955 	}
5956 }
5957 
5958 /**
5959  *	t4_set_trace_filter - configure one of the tracing filters
5960  *	@adap: the adapter
5961  *	@tp: the desired trace filter parameters
5962  *	@idx: which filter to configure
5963  *	@enable: whether to enable or disable the filter
5964  *
5965  *	Configures one of the tracing filters available in HW.  If @enable is
5966  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5967  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5968  */
t4_set_trace_filter(struct adapter * adap,const struct trace_params * tp,int idx,int enable)5969 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5970 			int idx, int enable)
5971 {
5972 	int i, ofst = idx * 4;
5973 	u32 data_reg, mask_reg, cfg;
5974 
5975 	if (!enable) {
5976 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5977 		return 0;
5978 	}
5979 
5980 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5981 	if (cfg & TRCMULTIFILTER_F) {
5982 		/* If multiple tracers are enabled, then maximum
5983 		 * capture size is 2.5KB (FIFO size of a single channel)
5984 		 * minus 2 flits for CPL_TRACE_PKT header.
5985 		 */
5986 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5987 			return -EINVAL;
5988 	} else {
5989 		/* If multiple tracers are disabled, to avoid deadlocks
5990 		 * maximum packet capture size of 9600 bytes is recommended.
5991 		 * Also in this mode, only trace0 can be enabled and running.
5992 		 */
5993 		if (tp->snap_len > 9600 || idx)
5994 			return -EINVAL;
5995 	}
5996 
5997 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5998 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5999 	    tp->min_len > TFMINPKTSIZE_M)
6000 		return -EINVAL;
6001 
6002 	/* stop the tracer we'll be changing */
6003 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
6004 
6005 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
6006 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
6007 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
6008 
6009 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6010 		t4_write_reg(adap, data_reg, tp->data[i]);
6011 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6012 	}
6013 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
6014 		     TFCAPTUREMAX_V(tp->snap_len) |
6015 		     TFMINPKTSIZE_V(tp->min_len));
6016 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
6017 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6018 		     (is_t4(adap->params.chip) ?
6019 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6020 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
6021 		     T5_TFINVERTMATCH_V(tp->invert)));
6022 
6023 	return 0;
6024 }
6025 
6026 /**
6027  *	t4_get_trace_filter - query one of the tracing filters
6028  *	@adap: the adapter
6029  *	@tp: the current trace filter parameters
6030  *	@idx: which trace filter to query
6031  *	@enabled: non-zero if the filter is enabled
6032  *
6033  *	Returns the current settings of one of the HW tracing filters.
6034  */
t4_get_trace_filter(struct adapter * adap,struct trace_params * tp,int idx,int * enabled)6035 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6036 			 int *enabled)
6037 {
6038 	u32 ctla, ctlb;
6039 	int i, ofst = idx * 4;
6040 	u32 data_reg, mask_reg;
6041 
6042 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6043 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6044 
6045 	if (is_t4(adap->params.chip)) {
6046 		*enabled = !!(ctla & TFEN_F);
6047 		tp->port =  TFPORT_G(ctla);
6048 		tp->invert = !!(ctla & TFINVERTMATCH_F);
6049 	} else {
6050 		*enabled = !!(ctla & T5_TFEN_F);
6051 		tp->port = T5_TFPORT_G(ctla);
6052 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6053 	}
6054 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6055 	tp->min_len = TFMINPKTSIZE_G(ctlb);
6056 	tp->skip_ofst = TFOFFSET_G(ctla);
6057 	tp->skip_len = TFLENGTH_G(ctla);
6058 
6059 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6060 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6061 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6062 
6063 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6064 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6065 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6066 	}
6067 }
6068 
6069 /**
6070  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6071  *	@adap: the adapter
6072  *	@cnt: where to store the count statistics
6073  *	@cycles: where to store the cycle statistics
6074  *
6075  *	Returns performance statistics from PMTX.
6076  */
t4_pmtx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])6077 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6078 {
6079 	int i;
6080 	u32 data[2];
6081 
6082 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6083 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6084 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6085 		if (is_t4(adap->params.chip)) {
6086 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6087 		} else {
6088 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6089 					 PM_TX_DBG_DATA_A, data, 2,
6090 					 PM_TX_DBG_STAT_MSB_A);
6091 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6092 		}
6093 	}
6094 }
6095 
6096 /**
6097  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6098  *	@adap: the adapter
6099  *	@cnt: where to store the count statistics
6100  *	@cycles: where to store the cycle statistics
6101  *
6102  *	Returns performance statistics from PMRX.
6103  */
t4_pmrx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])6104 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6105 {
6106 	int i;
6107 	u32 data[2];
6108 
6109 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6110 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6111 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6112 		if (is_t4(adap->params.chip)) {
6113 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6114 		} else {
6115 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6116 					 PM_RX_DBG_DATA_A, data, 2,
6117 					 PM_RX_DBG_STAT_MSB_A);
6118 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6119 		}
6120 	}
6121 }
6122 
6123 /**
6124  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6125  *	@adapter: the adapter
6126  *	@pidx: the port index
6127  *
6128  *	Computes and returns a bitmap indicating which MPS buffer groups are
6129  *	associated with the given Port.  Bit i is set if buffer group i is
6130  *	used by the Port.
6131  */
compute_mps_bg_map(struct adapter * adapter,int pidx)6132 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6133 					      int pidx)
6134 {
6135 	unsigned int chip_version, nports;
6136 
6137 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6138 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6139 
6140 	switch (chip_version) {
6141 	case CHELSIO_T4:
6142 	case CHELSIO_T5:
6143 		switch (nports) {
6144 		case 1: return 0xf;
6145 		case 2: return 3 << (2 * pidx);
6146 		case 4: return 1 << pidx;
6147 		}
6148 		break;
6149 
6150 	case CHELSIO_T6:
6151 		switch (nports) {
6152 		case 2: return 1 << (2 * pidx);
6153 		}
6154 		break;
6155 	}
6156 
6157 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6158 		chip_version, nports);
6159 
6160 	return 0;
6161 }
6162 
6163 /**
6164  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6165  *	@adapter: the adapter
6166  *	@pidx: the port index
6167  *
6168  *	Returns a bitmap indicating which MPS buffer groups are associated
6169  *	with the given Port.  Bit i is set if buffer group i is used by the
6170  *	Port.
6171  */
t4_get_mps_bg_map(struct adapter * adapter,int pidx)6172 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6173 {
6174 	u8 *mps_bg_map;
6175 	unsigned int nports;
6176 
6177 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6178 	if (pidx >= nports) {
6179 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6180 			pidx, nports);
6181 		return 0;
6182 	}
6183 
6184 	/* If we've already retrieved/computed this, just return the result.
6185 	 */
6186 	mps_bg_map = adapter->params.mps_bg_map;
6187 	if (mps_bg_map[pidx])
6188 		return mps_bg_map[pidx];
6189 
6190 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6191 	 * If we're talking to such Firmware, let it tell us.  If the new
6192 	 * API isn't supported, revert back to old hardcoded way.  The value
6193 	 * obtained from Firmware is encoded in below format:
6194 	 *
6195 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6196 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6197 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6198 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6199 	 */
6200 	if (adapter->flags & CXGB4_FW_OK) {
6201 		u32 param, val;
6202 		int ret;
6203 
6204 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6205 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6206 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6207 					 0, 1, &param, &val);
6208 		if (!ret) {
6209 			int p;
6210 
6211 			/* Store the BG Map for all of the Ports in order to
6212 			 * avoid more calls to the Firmware in the future.
6213 			 */
6214 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6215 				mps_bg_map[p] = val & 0xff;
6216 
6217 			return mps_bg_map[pidx];
6218 		}
6219 	}
6220 
6221 	/* Either we're not talking to the Firmware or we're dealing with
6222 	 * older Firmware which doesn't support the new API to get the MPS
6223 	 * Buffer Group Map.  Fall back to computing it ourselves.
6224 	 */
6225 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6226 	return mps_bg_map[pidx];
6227 }
6228 
6229 /**
6230  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6231  *      @adapter: the adapter
6232  *      @pidx: the port index
6233  */
t4_get_tp_e2c_map(struct adapter * adapter,int pidx)6234 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6235 {
6236 	unsigned int nports;
6237 	u32 param, val = 0;
6238 	int ret;
6239 
6240 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6241 	if (pidx >= nports) {
6242 		CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6243 			pidx, nports);
6244 		return 0;
6245 	}
6246 
6247 	/* FW version >= 1.16.44.0 can determine E2C channel map using
6248 	 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6249 	 */
6250 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6251 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6252 	ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6253 				 0, 1, &param, &val);
6254 	if (!ret)
6255 		return (val >> (8 * pidx)) & 0xff;
6256 
6257 	return 0;
6258 }
6259 
6260 /**
6261  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6262  *	@adap: the adapter
6263  *	@pidx: the port index
6264  *
6265  *	Returns a bitmap indicating which TP Ingress Channels are associated
6266  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6267  *	the Port.
6268  */
t4_get_tp_ch_map(struct adapter * adap,int pidx)6269 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6270 {
6271 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6272 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6273 
6274 	if (pidx >= nports) {
6275 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6276 			 pidx, nports);
6277 		return 0;
6278 	}
6279 
6280 	switch (chip_version) {
6281 	case CHELSIO_T4:
6282 	case CHELSIO_T5:
6283 		/* Note that this happens to be the same values as the MPS
6284 		 * Buffer Group Map for these Chips.  But we replicate the code
6285 		 * here because they're really separate concepts.
6286 		 */
6287 		switch (nports) {
6288 		case 1: return 0xf;
6289 		case 2: return 3 << (2 * pidx);
6290 		case 4: return 1 << pidx;
6291 		}
6292 		break;
6293 
6294 	case CHELSIO_T6:
6295 		switch (nports) {
6296 		case 1:
6297 		case 2: return 1 << pidx;
6298 		}
6299 		break;
6300 	}
6301 
6302 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6303 		chip_version, nports);
6304 	return 0;
6305 }
6306 
6307 /**
6308  *      t4_get_port_type_description - return Port Type string description
6309  *      @port_type: firmware Port Type enumeration
6310  */
t4_get_port_type_description(enum fw_port_type port_type)6311 const char *t4_get_port_type_description(enum fw_port_type port_type)
6312 {
6313 	static const char *const port_type_description[] = {
6314 		"Fiber_XFI",
6315 		"Fiber_XAUI",
6316 		"BT_SGMII",
6317 		"BT_XFI",
6318 		"BT_XAUI",
6319 		"KX4",
6320 		"CX4",
6321 		"KX",
6322 		"KR",
6323 		"SFP",
6324 		"BP_AP",
6325 		"BP4_AP",
6326 		"QSFP_10G",
6327 		"QSA",
6328 		"QSFP",
6329 		"BP40_BA",
6330 		"KR4_100G",
6331 		"CR4_QSFP",
6332 		"CR_QSFP",
6333 		"CR2_QSFP",
6334 		"SFP28",
6335 		"KR_SFP28",
6336 		"KR_XLAUI"
6337 	};
6338 
6339 	if (port_type < ARRAY_SIZE(port_type_description))
6340 		return port_type_description[port_type];
6341 	return "UNKNOWN";
6342 }
6343 
6344 /**
6345  *      t4_get_port_stats_offset - collect port stats relative to a previous
6346  *                                 snapshot
6347  *      @adap: The adapter
6348  *      @idx: The port
6349  *      @stats: Current stats to fill
6350  *      @offset: Previous stats snapshot
6351  */
t4_get_port_stats_offset(struct adapter * adap,int idx,struct port_stats * stats,struct port_stats * offset)6352 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6353 			      struct port_stats *stats,
6354 			      struct port_stats *offset)
6355 {
6356 	u64 *s, *o;
6357 	int i;
6358 
6359 	t4_get_port_stats(adap, idx, stats);
6360 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6361 			i < (sizeof(struct port_stats) / sizeof(u64));
6362 			i++, s++, o++)
6363 		*s -= *o;
6364 }
6365 
6366 /**
6367  *	t4_get_port_stats - collect port statistics
6368  *	@adap: the adapter
6369  *	@idx: the port index
6370  *	@p: the stats structure to fill
6371  *
6372  *	Collect statistics related to the given port from HW.
6373  */
t4_get_port_stats(struct adapter * adap,int idx,struct port_stats * p)6374 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6375 {
6376 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6377 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6378 
6379 #define GET_STAT(name) \
6380 	t4_read_reg64(adap, \
6381 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6382 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6383 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6384 
6385 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6386 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6387 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6388 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6389 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6390 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6391 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6392 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6393 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6394 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6395 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6396 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6397 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6398 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6399 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6400 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6401 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6402 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6403 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6404 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6405 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6406 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6407 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6408 
6409 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6410 		if (stat_ctl & COUNTPAUSESTATTX_F)
6411 			p->tx_frames_64 -= p->tx_pause;
6412 		if (stat_ctl & COUNTPAUSEMCTX_F)
6413 			p->tx_mcast_frames -= p->tx_pause;
6414 	}
6415 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6416 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6417 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6418 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6419 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6420 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6421 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6422 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6423 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6424 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6425 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6426 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6427 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6428 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6429 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6430 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6431 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6432 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6433 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6434 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6435 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6436 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6437 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6438 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6439 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6440 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6441 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6442 
6443 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6444 		if (stat_ctl & COUNTPAUSESTATRX_F)
6445 			p->rx_frames_64 -= p->rx_pause;
6446 		if (stat_ctl & COUNTPAUSEMCRX_F)
6447 			p->rx_mcast_frames -= p->rx_pause;
6448 	}
6449 
6450 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6451 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6452 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6453 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6454 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6455 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6456 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6457 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6458 
6459 #undef GET_STAT
6460 #undef GET_STAT_COM
6461 }
6462 
6463 /**
6464  *	t4_get_lb_stats - collect loopback port statistics
6465  *	@adap: the adapter
6466  *	@idx: the loopback port index
6467  *	@p: the stats structure to fill
6468  *
6469  *	Return HW statistics for the given loopback port.
6470  */
t4_get_lb_stats(struct adapter * adap,int idx,struct lb_port_stats * p)6471 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6472 {
6473 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6474 
6475 #define GET_STAT(name) \
6476 	t4_read_reg64(adap, \
6477 	(is_t4(adap->params.chip) ? \
6478 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6479 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6480 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6481 
6482 	p->octets           = GET_STAT(BYTES);
6483 	p->frames           = GET_STAT(FRAMES);
6484 	p->bcast_frames     = GET_STAT(BCAST);
6485 	p->mcast_frames     = GET_STAT(MCAST);
6486 	p->ucast_frames     = GET_STAT(UCAST);
6487 	p->error_frames     = GET_STAT(ERROR);
6488 
6489 	p->frames_64        = GET_STAT(64B);
6490 	p->frames_65_127    = GET_STAT(65B_127B);
6491 	p->frames_128_255   = GET_STAT(128B_255B);
6492 	p->frames_256_511   = GET_STAT(256B_511B);
6493 	p->frames_512_1023  = GET_STAT(512B_1023B);
6494 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6495 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6496 	p->drop             = GET_STAT(DROP_FRAMES);
6497 
6498 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6499 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6500 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6501 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6502 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6503 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6504 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6505 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6506 
6507 #undef GET_STAT
6508 #undef GET_STAT_COM
6509 }
6510 
6511 /*     t4_mk_filtdelwr - create a delete filter WR
6512  *     @ftid: the filter ID
6513  *     @wr: the filter work request to populate
6514  *     @qid: ingress queue to receive the delete notification
6515  *
6516  *     Creates a filter work request to delete the supplied filter.  If @qid is
6517  *     negative the delete notification is suppressed.
6518  */
t4_mk_filtdelwr(unsigned int ftid,struct fw_filter_wr * wr,int qid)6519 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6520 {
6521 	memset(wr, 0, sizeof(*wr));
6522 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6523 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6524 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6525 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6526 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6527 	if (qid >= 0)
6528 		wr->rx_chan_rx_rpl_iq =
6529 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6530 }
6531 
6532 #define INIT_CMD(var, cmd, rd_wr) do { \
6533 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6534 					FW_CMD_REQUEST_F | \
6535 					FW_CMD_##rd_wr##_F); \
6536 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6537 } while (0)
6538 
t4_fwaddrspace_write(struct adapter * adap,unsigned int mbox,u32 addr,u32 val)6539 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6540 			  u32 addr, u32 val)
6541 {
6542 	u32 ldst_addrspace;
6543 	struct fw_ldst_cmd c;
6544 
6545 	memset(&c, 0, sizeof(c));
6546 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6547 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6548 					FW_CMD_REQUEST_F |
6549 					FW_CMD_WRITE_F |
6550 					ldst_addrspace);
6551 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6552 	c.u.addrval.addr = cpu_to_be32(addr);
6553 	c.u.addrval.val = cpu_to_be32(val);
6554 
6555 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6556 }
6557 
6558 /**
6559  *	t4_mdio_rd - read a PHY register through MDIO
6560  *	@adap: the adapter
6561  *	@mbox: mailbox to use for the FW command
6562  *	@phy_addr: the PHY address
6563  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6564  *	@reg: the register to read
6565  *	@valp: where to store the value
6566  *
6567  *	Issues a FW command through the given mailbox to read a PHY register.
6568  */
t4_mdio_rd(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 * valp)6569 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6570 	       unsigned int mmd, unsigned int reg, u16 *valp)
6571 {
6572 	int ret;
6573 	u32 ldst_addrspace;
6574 	struct fw_ldst_cmd c;
6575 
6576 	memset(&c, 0, sizeof(c));
6577 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6578 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6579 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6580 					ldst_addrspace);
6581 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6582 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6583 					 FW_LDST_CMD_MMD_V(mmd));
6584 	c.u.mdio.raddr = cpu_to_be16(reg);
6585 
6586 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6587 	if (ret == 0)
6588 		*valp = be16_to_cpu(c.u.mdio.rval);
6589 	return ret;
6590 }
6591 
6592 /**
6593  *	t4_mdio_wr - write a PHY register through MDIO
6594  *	@adap: the adapter
6595  *	@mbox: mailbox to use for the FW command
6596  *	@phy_addr: the PHY address
6597  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6598  *	@reg: the register to write
6599  *	@val: value to write
6600  *
6601  *	Issues a FW command through the given mailbox to write a PHY register.
6602  */
t4_mdio_wr(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 val)6603 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6604 	       unsigned int mmd, unsigned int reg, u16 val)
6605 {
6606 	u32 ldst_addrspace;
6607 	struct fw_ldst_cmd c;
6608 
6609 	memset(&c, 0, sizeof(c));
6610 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6611 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6612 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6613 					ldst_addrspace);
6614 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6615 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6616 					 FW_LDST_CMD_MMD_V(mmd));
6617 	c.u.mdio.raddr = cpu_to_be16(reg);
6618 	c.u.mdio.rval = cpu_to_be16(val);
6619 
6620 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6621 }
6622 
6623 /**
6624  *	t4_sge_decode_idma_state - decode the idma state
6625  *	@adapter: the adapter
6626  *	@state: the state idma is stuck in
6627  */
t4_sge_decode_idma_state(struct adapter * adapter,int state)6628 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6629 {
6630 	static const char * const t4_decode[] = {
6631 		"IDMA_IDLE",
6632 		"IDMA_PUSH_MORE_CPL_FIFO",
6633 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6634 		"Not used",
6635 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6636 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6637 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6638 		"IDMA_SEND_FIFO_TO_IMSG",
6639 		"IDMA_FL_REQ_DATA_FL_PREP",
6640 		"IDMA_FL_REQ_DATA_FL",
6641 		"IDMA_FL_DROP",
6642 		"IDMA_FL_H_REQ_HEADER_FL",
6643 		"IDMA_FL_H_SEND_PCIEHDR",
6644 		"IDMA_FL_H_PUSH_CPL_FIFO",
6645 		"IDMA_FL_H_SEND_CPL",
6646 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6647 		"IDMA_FL_H_SEND_IP_HDR",
6648 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6649 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6650 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6651 		"IDMA_FL_D_SEND_PCIEHDR",
6652 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6653 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6654 		"IDMA_FL_SEND_PCIEHDR",
6655 		"IDMA_FL_PUSH_CPL_FIFO",
6656 		"IDMA_FL_SEND_CPL",
6657 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6658 		"IDMA_FL_SEND_PAYLOAD",
6659 		"IDMA_FL_REQ_NEXT_DATA_FL",
6660 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6661 		"IDMA_FL_SEND_PADDING",
6662 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6663 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6664 		"IDMA_FL_REQ_DATAFL_DONE",
6665 		"IDMA_FL_REQ_HEADERFL_DONE",
6666 	};
6667 	static const char * const t5_decode[] = {
6668 		"IDMA_IDLE",
6669 		"IDMA_ALMOST_IDLE",
6670 		"IDMA_PUSH_MORE_CPL_FIFO",
6671 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6672 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6673 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6674 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6675 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6676 		"IDMA_SEND_FIFO_TO_IMSG",
6677 		"IDMA_FL_REQ_DATA_FL",
6678 		"IDMA_FL_DROP",
6679 		"IDMA_FL_DROP_SEND_INC",
6680 		"IDMA_FL_H_REQ_HEADER_FL",
6681 		"IDMA_FL_H_SEND_PCIEHDR",
6682 		"IDMA_FL_H_PUSH_CPL_FIFO",
6683 		"IDMA_FL_H_SEND_CPL",
6684 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6685 		"IDMA_FL_H_SEND_IP_HDR",
6686 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6687 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6688 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6689 		"IDMA_FL_D_SEND_PCIEHDR",
6690 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6691 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6692 		"IDMA_FL_SEND_PCIEHDR",
6693 		"IDMA_FL_PUSH_CPL_FIFO",
6694 		"IDMA_FL_SEND_CPL",
6695 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6696 		"IDMA_FL_SEND_PAYLOAD",
6697 		"IDMA_FL_REQ_NEXT_DATA_FL",
6698 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6699 		"IDMA_FL_SEND_PADDING",
6700 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6701 	};
6702 	static const char * const t6_decode[] = {
6703 		"IDMA_IDLE",
6704 		"IDMA_PUSH_MORE_CPL_FIFO",
6705 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6706 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6707 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6708 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6709 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6710 		"IDMA_FL_REQ_DATA_FL",
6711 		"IDMA_FL_DROP",
6712 		"IDMA_FL_DROP_SEND_INC",
6713 		"IDMA_FL_H_REQ_HEADER_FL",
6714 		"IDMA_FL_H_SEND_PCIEHDR",
6715 		"IDMA_FL_H_PUSH_CPL_FIFO",
6716 		"IDMA_FL_H_SEND_CPL",
6717 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6718 		"IDMA_FL_H_SEND_IP_HDR",
6719 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6720 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6721 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6722 		"IDMA_FL_D_SEND_PCIEHDR",
6723 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6724 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6725 		"IDMA_FL_SEND_PCIEHDR",
6726 		"IDMA_FL_PUSH_CPL_FIFO",
6727 		"IDMA_FL_SEND_CPL",
6728 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6729 		"IDMA_FL_SEND_PAYLOAD",
6730 		"IDMA_FL_REQ_NEXT_DATA_FL",
6731 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6732 		"IDMA_FL_SEND_PADDING",
6733 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6734 	};
6735 	static const u32 sge_regs[] = {
6736 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6737 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6738 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6739 	};
6740 	const char **sge_idma_decode;
6741 	int sge_idma_decode_nstates;
6742 	int i;
6743 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6744 
6745 	/* Select the right set of decode strings to dump depending on the
6746 	 * adapter chip type.
6747 	 */
6748 	switch (chip_version) {
6749 	case CHELSIO_T4:
6750 		sge_idma_decode = (const char **)t4_decode;
6751 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6752 		break;
6753 
6754 	case CHELSIO_T5:
6755 		sge_idma_decode = (const char **)t5_decode;
6756 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6757 		break;
6758 
6759 	case CHELSIO_T6:
6760 		sge_idma_decode = (const char **)t6_decode;
6761 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6762 		break;
6763 
6764 	default:
6765 		dev_err(adapter->pdev_dev,
6766 			"Unsupported chip version %d\n", chip_version);
6767 		return;
6768 	}
6769 
6770 	if (is_t4(adapter->params.chip)) {
6771 		sge_idma_decode = (const char **)t4_decode;
6772 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6773 	} else {
6774 		sge_idma_decode = (const char **)t5_decode;
6775 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6776 	}
6777 
6778 	if (state < sge_idma_decode_nstates)
6779 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6780 	else
6781 		CH_WARN(adapter, "idma state %d unknown\n", state);
6782 
6783 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6784 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6785 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6786 }
6787 
6788 /**
6789  *      t4_sge_ctxt_flush - flush the SGE context cache
6790  *      @adap: the adapter
6791  *      @mbox: mailbox to use for the FW command
6792  *      @ctxt_type: Egress or Ingress
6793  *
6794  *      Issues a FW command through the given mailbox to flush the
6795  *      SGE context cache.
6796  */
t4_sge_ctxt_flush(struct adapter * adap,unsigned int mbox,int ctxt_type)6797 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6798 {
6799 	int ret;
6800 	u32 ldst_addrspace;
6801 	struct fw_ldst_cmd c;
6802 
6803 	memset(&c, 0, sizeof(c));
6804 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6805 						 FW_LDST_ADDRSPC_SGE_EGRC :
6806 						 FW_LDST_ADDRSPC_SGE_INGC);
6807 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6808 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6809 					ldst_addrspace);
6810 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6811 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6812 
6813 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6814 	return ret;
6815 }
6816 
6817 /**
6818  *	t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6819  *	@adap: the adapter
6820  *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6821  *	@dbqtimers: SGE Doorbell Queue Timer table
6822  *
6823  *	Reads the SGE Doorbell Queue Timer values into the provided table.
6824  *	Returns 0 on success (Firmware and Hardware support this feature),
6825  *	an error on failure.
6826  */
t4_read_sge_dbqtimers(struct adapter * adap,unsigned int ndbqtimers,u16 * dbqtimers)6827 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6828 			  u16 *dbqtimers)
6829 {
6830 	int ret, dbqtimerix;
6831 
6832 	ret = 0;
6833 	dbqtimerix = 0;
6834 	while (dbqtimerix < ndbqtimers) {
6835 		int nparams, param;
6836 		u32 params[7], vals[7];
6837 
6838 		nparams = ndbqtimers - dbqtimerix;
6839 		if (nparams > ARRAY_SIZE(params))
6840 			nparams = ARRAY_SIZE(params);
6841 
6842 		for (param = 0; param < nparams; param++)
6843 			params[param] =
6844 			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6845 			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6846 			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6847 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6848 				      nparams, params, vals);
6849 		if (ret)
6850 			break;
6851 
6852 		for (param = 0; param < nparams; param++)
6853 			dbqtimers[dbqtimerix++] = vals[param];
6854 	}
6855 	return ret;
6856 }
6857 
6858 /**
6859  *      t4_fw_hello - establish communication with FW
6860  *      @adap: the adapter
6861  *      @mbox: mailbox to use for the FW command
6862  *      @evt_mbox: mailbox to receive async FW events
6863  *      @master: specifies the caller's willingness to be the device master
6864  *	@state: returns the current device state (if non-NULL)
6865  *
6866  *	Issues a command to establish communication with FW.  Returns either
6867  *	an error (negative integer) or the mailbox of the Master PF.
6868  */
t4_fw_hello(struct adapter * adap,unsigned int mbox,unsigned int evt_mbox,enum dev_master master,enum dev_state * state)6869 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6870 		enum dev_master master, enum dev_state *state)
6871 {
6872 	int ret;
6873 	struct fw_hello_cmd c;
6874 	u32 v;
6875 	unsigned int master_mbox;
6876 	int retries = FW_CMD_HELLO_RETRIES;
6877 
6878 retry:
6879 	memset(&c, 0, sizeof(c));
6880 	INIT_CMD(c, HELLO, WRITE);
6881 	c.err_to_clearinit = cpu_to_be32(
6882 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6883 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6884 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6885 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6886 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6887 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6888 		FW_HELLO_CMD_CLEARINIT_F);
6889 
6890 	/*
6891 	 * Issue the HELLO command to the firmware.  If it's not successful
6892 	 * but indicates that we got a "busy" or "timeout" condition, retry
6893 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6894 	 * retry limit, check to see if the firmware left us any error
6895 	 * information and report that if so.
6896 	 */
6897 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6898 	if (ret < 0) {
6899 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6900 			goto retry;
6901 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6902 			t4_report_fw_error(adap);
6903 		return ret;
6904 	}
6905 
6906 	v = be32_to_cpu(c.err_to_clearinit);
6907 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6908 	if (state) {
6909 		if (v & FW_HELLO_CMD_ERR_F)
6910 			*state = DEV_STATE_ERR;
6911 		else if (v & FW_HELLO_CMD_INIT_F)
6912 			*state = DEV_STATE_INIT;
6913 		else
6914 			*state = DEV_STATE_UNINIT;
6915 	}
6916 
6917 	/*
6918 	 * If we're not the Master PF then we need to wait around for the
6919 	 * Master PF Driver to finish setting up the adapter.
6920 	 *
6921 	 * Note that we also do this wait if we're a non-Master-capable PF and
6922 	 * there is no current Master PF; a Master PF may show up momentarily
6923 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6924 	 * OS loads lots of different drivers rapidly at the same time).  In
6925 	 * this case, the Master PF returned by the firmware will be
6926 	 * PCIE_FW_MASTER_M so the test below will work ...
6927 	 */
6928 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6929 	    master_mbox != mbox) {
6930 		int waiting = FW_CMD_HELLO_TIMEOUT;
6931 
6932 		/*
6933 		 * Wait for the firmware to either indicate an error or
6934 		 * initialized state.  If we see either of these we bail out
6935 		 * and report the issue to the caller.  If we exhaust the
6936 		 * "hello timeout" and we haven't exhausted our retries, try
6937 		 * again.  Otherwise bail with a timeout error.
6938 		 */
6939 		for (;;) {
6940 			u32 pcie_fw;
6941 
6942 			msleep(50);
6943 			waiting -= 50;
6944 
6945 			/*
6946 			 * If neither Error nor Initialized are indicated
6947 			 * by the firmware keep waiting till we exhaust our
6948 			 * timeout ... and then retry if we haven't exhausted
6949 			 * our retries ...
6950 			 */
6951 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6952 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6953 				if (waiting <= 0) {
6954 					if (retries-- > 0)
6955 						goto retry;
6956 
6957 					return -ETIMEDOUT;
6958 				}
6959 				continue;
6960 			}
6961 
6962 			/*
6963 			 * We either have an Error or Initialized condition
6964 			 * report errors preferentially.
6965 			 */
6966 			if (state) {
6967 				if (pcie_fw & PCIE_FW_ERR_F)
6968 					*state = DEV_STATE_ERR;
6969 				else if (pcie_fw & PCIE_FW_INIT_F)
6970 					*state = DEV_STATE_INIT;
6971 			}
6972 
6973 			/*
6974 			 * If we arrived before a Master PF was selected and
6975 			 * there's not a valid Master PF, grab its identity
6976 			 * for our caller.
6977 			 */
6978 			if (master_mbox == PCIE_FW_MASTER_M &&
6979 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6980 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6981 			break;
6982 		}
6983 	}
6984 
6985 	return master_mbox;
6986 }
6987 
6988 /**
6989  *	t4_fw_bye - end communication with FW
6990  *	@adap: the adapter
6991  *	@mbox: mailbox to use for the FW command
6992  *
6993  *	Issues a command to terminate communication with FW.
6994  */
t4_fw_bye(struct adapter * adap,unsigned int mbox)6995 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6996 {
6997 	struct fw_bye_cmd c;
6998 
6999 	memset(&c, 0, sizeof(c));
7000 	INIT_CMD(c, BYE, WRITE);
7001 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7002 }
7003 
7004 /**
7005  *	t4_init_cmd - ask FW to initialize the device
7006  *	@adap: the adapter
7007  *	@mbox: mailbox to use for the FW command
7008  *
7009  *	Issues a command to FW to partially initialize the device.  This
7010  *	performs initialization that generally doesn't depend on user input.
7011  */
t4_early_init(struct adapter * adap,unsigned int mbox)7012 int t4_early_init(struct adapter *adap, unsigned int mbox)
7013 {
7014 	struct fw_initialize_cmd c;
7015 
7016 	memset(&c, 0, sizeof(c));
7017 	INIT_CMD(c, INITIALIZE, WRITE);
7018 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7019 }
7020 
7021 /**
7022  *	t4_fw_reset - issue a reset to FW
7023  *	@adap: the adapter
7024  *	@mbox: mailbox to use for the FW command
7025  *	@reset: specifies the type of reset to perform
7026  *
7027  *	Issues a reset command of the specified type to FW.
7028  */
t4_fw_reset(struct adapter * adap,unsigned int mbox,int reset)7029 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7030 {
7031 	struct fw_reset_cmd c;
7032 
7033 	memset(&c, 0, sizeof(c));
7034 	INIT_CMD(c, RESET, WRITE);
7035 	c.val = cpu_to_be32(reset);
7036 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7037 }
7038 
7039 /**
7040  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7041  *	@adap: the adapter
7042  *	@mbox: mailbox to use for the FW RESET command (if desired)
7043  *	@force: force uP into RESET even if FW RESET command fails
7044  *
7045  *	Issues a RESET command to firmware (if desired) with a HALT indication
7046  *	and then puts the microprocessor into RESET state.  The RESET command
7047  *	will only be issued if a legitimate mailbox is provided (mbox <=
7048  *	PCIE_FW_MASTER_M).
7049  *
7050  *	This is generally used in order for the host to safely manipulate the
7051  *	adapter without fear of conflicting with whatever the firmware might
7052  *	be doing.  The only way out of this state is to RESTART the firmware
7053  *	...
7054  */
t4_fw_halt(struct adapter * adap,unsigned int mbox,int force)7055 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7056 {
7057 	int ret = 0;
7058 
7059 	/*
7060 	 * If a legitimate mailbox is provided, issue a RESET command
7061 	 * with a HALT indication.
7062 	 */
7063 	if (mbox <= PCIE_FW_MASTER_M) {
7064 		struct fw_reset_cmd c;
7065 
7066 		memset(&c, 0, sizeof(c));
7067 		INIT_CMD(c, RESET, WRITE);
7068 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7069 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7070 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7071 	}
7072 
7073 	/*
7074 	 * Normally we won't complete the operation if the firmware RESET
7075 	 * command fails but if our caller insists we'll go ahead and put the
7076 	 * uP into RESET.  This can be useful if the firmware is hung or even
7077 	 * missing ...  We'll have to take the risk of putting the uP into
7078 	 * RESET without the cooperation of firmware in that case.
7079 	 *
7080 	 * We also force the firmware's HALT flag to be on in case we bypassed
7081 	 * the firmware RESET command above or we're dealing with old firmware
7082 	 * which doesn't have the HALT capability.  This will serve as a flag
7083 	 * for the incoming firmware to know that it's coming out of a HALT
7084 	 * rather than a RESET ... if it's new enough to understand that ...
7085 	 */
7086 	if (ret == 0 || force) {
7087 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7088 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7089 				 PCIE_FW_HALT_F);
7090 	}
7091 
7092 	/*
7093 	 * And we always return the result of the firmware RESET command
7094 	 * even when we force the uP into RESET ...
7095 	 */
7096 	return ret;
7097 }
7098 
7099 /**
7100  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7101  *	@adap: the adapter
7102  *	@mbox: mailbox to use for the FW command
7103  *	@reset: if we want to do a RESET to restart things
7104  *
7105  *	Restart firmware previously halted by t4_fw_halt().  On successful
7106  *	return the previous PF Master remains as the new PF Master and there
7107  *	is no need to issue a new HELLO command, etc.
7108  *
7109  *	We do this in two ways:
7110  *
7111  *	 1. If we're dealing with newer firmware we'll simply want to take
7112  *	    the chip's microprocessor out of RESET.  This will cause the
7113  *	    firmware to start up from its start vector.  And then we'll loop
7114  *	    until the firmware indicates it's started again (PCIE_FW.HALT
7115  *	    reset to 0) or we timeout.
7116  *
7117  *	 2. If we're dealing with older firmware then we'll need to RESET
7118  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7119  *	    flag and automatically RESET itself on startup.
7120  */
t4_fw_restart(struct adapter * adap,unsigned int mbox,int reset)7121 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7122 {
7123 	if (reset) {
7124 		/*
7125 		 * Since we're directing the RESET instead of the firmware
7126 		 * doing it automatically, we need to clear the PCIE_FW.HALT
7127 		 * bit.
7128 		 */
7129 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7130 
7131 		/*
7132 		 * If we've been given a valid mailbox, first try to get the
7133 		 * firmware to do the RESET.  If that works, great and we can
7134 		 * return success.  Otherwise, if we haven't been given a
7135 		 * valid mailbox or the RESET command failed, fall back to
7136 		 * hitting the chip with a hammer.
7137 		 */
7138 		if (mbox <= PCIE_FW_MASTER_M) {
7139 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7140 			msleep(100);
7141 			if (t4_fw_reset(adap, mbox,
7142 					PIORST_F | PIORSTMODE_F) == 0)
7143 				return 0;
7144 		}
7145 
7146 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7147 		msleep(2000);
7148 	} else {
7149 		int ms;
7150 
7151 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7152 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7153 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7154 				return 0;
7155 			msleep(100);
7156 			ms += 100;
7157 		}
7158 		return -ETIMEDOUT;
7159 	}
7160 	return 0;
7161 }
7162 
7163 /**
7164  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7165  *	@adap: the adapter
7166  *	@mbox: mailbox to use for the FW RESET command (if desired)
7167  *	@fw_data: the firmware image to write
7168  *	@size: image size
7169  *	@force: force upgrade even if firmware doesn't cooperate
7170  *
7171  *	Perform all of the steps necessary for upgrading an adapter's
7172  *	firmware image.  Normally this requires the cooperation of the
7173  *	existing firmware in order to halt all existing activities
7174  *	but if an invalid mailbox token is passed in we skip that step
7175  *	(though we'll still put the adapter microprocessor into RESET in
7176  *	that case).
7177  *
7178  *	On successful return the new firmware will have been loaded and
7179  *	the adapter will have been fully RESET losing all previous setup
7180  *	state.  On unsuccessful return the adapter may be completely hosed ...
7181  *	positive errno indicates that the adapter is ~probably~ intact, a
7182  *	negative errno indicates that things are looking bad ...
7183  */
t4_fw_upgrade(struct adapter * adap,unsigned int mbox,const u8 * fw_data,unsigned int size,int force)7184 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7185 		  const u8 *fw_data, unsigned int size, int force)
7186 {
7187 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7188 	int reset, ret;
7189 
7190 	if (!t4_fw_matches_chip(adap, fw_hdr))
7191 		return -EINVAL;
7192 
7193 	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7194 	 * set wont be sent when we are flashing FW.
7195 	 */
7196 	adap->flags &= ~CXGB4_FW_OK;
7197 
7198 	ret = t4_fw_halt(adap, mbox, force);
7199 	if (ret < 0 && !force)
7200 		goto out;
7201 
7202 	ret = t4_load_fw(adap, fw_data, size);
7203 	if (ret < 0)
7204 		goto out;
7205 
7206 	/*
7207 	 * If there was a Firmware Configuration File stored in FLASH,
7208 	 * there's a good chance that it won't be compatible with the new
7209 	 * Firmware.  In order to prevent difficult to diagnose adapter
7210 	 * initialization issues, we clear out the Firmware Configuration File
7211 	 * portion of the FLASH .  The user will need to re-FLASH a new
7212 	 * Firmware Configuration File which is compatible with the new
7213 	 * Firmware if that's desired.
7214 	 */
7215 	(void)t4_load_cfg(adap, NULL, 0);
7216 
7217 	/*
7218 	 * Older versions of the firmware don't understand the new
7219 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7220 	 * restart.  So for newly loaded older firmware we'll have to do the
7221 	 * RESET for it so it starts up on a clean slate.  We can tell if
7222 	 * the newly loaded firmware will handle this right by checking
7223 	 * its header flags to see if it advertises the capability.
7224 	 */
7225 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7226 	ret = t4_fw_restart(adap, mbox, reset);
7227 
7228 	/* Grab potentially new Firmware Device Log parameters so we can see
7229 	 * how healthy the new Firmware is.  It's okay to contact the new
7230 	 * Firmware for these parameters even though, as far as it's
7231 	 * concerned, we've never said "HELLO" to it ...
7232 	 */
7233 	(void)t4_init_devlog_params(adap);
7234 out:
7235 	adap->flags |= CXGB4_FW_OK;
7236 	return ret;
7237 }
7238 
7239 /**
7240  *	t4_fl_pkt_align - return the fl packet alignment
7241  *	@adap: the adapter
7242  *
7243  *	T4 has a single field to specify the packing and padding boundary.
7244  *	T5 onwards has separate fields for this and hence the alignment for
7245  *	next packet offset is maximum of these two.
7246  *
7247  */
t4_fl_pkt_align(struct adapter * adap)7248 int t4_fl_pkt_align(struct adapter *adap)
7249 {
7250 	u32 sge_control, sge_control2;
7251 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7252 
7253 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7254 
7255 	/* T4 uses a single control field to specify both the PCIe Padding and
7256 	 * Packing Boundary.  T5 introduced the ability to specify these
7257 	 * separately.  The actual Ingress Packet Data alignment boundary
7258 	 * within Packed Buffer Mode is the maximum of these two
7259 	 * specifications.  (Note that it makes no real practical sense to
7260 	 * have the Padding Boundary be larger than the Packing Boundary but you
7261 	 * could set the chip up that way and, in fact, legacy T4 code would
7262 	 * end doing this because it would initialize the Padding Boundary and
7263 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7264 	 * Padding Boundary values in T6 starts from 8B,
7265 	 * where as it is 32B for T4 and T5.
7266 	 */
7267 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7268 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7269 	else
7270 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7271 
7272 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7273 
7274 	fl_align = ingpadboundary;
7275 	if (!is_t4(adap->params.chip)) {
7276 		/* T5 has a weird interpretation of one of the PCIe Packing
7277 		 * Boundary values.  No idea why ...
7278 		 */
7279 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7280 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7281 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7282 			ingpackboundary = 16;
7283 		else
7284 			ingpackboundary = 1 << (ingpackboundary +
7285 						INGPACKBOUNDARY_SHIFT_X);
7286 
7287 		fl_align = max(ingpadboundary, ingpackboundary);
7288 	}
7289 	return fl_align;
7290 }
7291 
7292 /**
7293  *	t4_fixup_host_params - fix up host-dependent parameters
7294  *	@adap: the adapter
7295  *	@page_size: the host's Base Page Size
7296  *	@cache_line_size: the host's Cache Line Size
7297  *
7298  *	Various registers in T4 contain values which are dependent on the
7299  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7300  *	those registers with the appropriate values as passed in ...
7301  */
t4_fixup_host_params(struct adapter * adap,unsigned int page_size,unsigned int cache_line_size)7302 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7303 			 unsigned int cache_line_size)
7304 {
7305 	unsigned int page_shift = fls(page_size) - 1;
7306 	unsigned int sge_hps = page_shift - 10;
7307 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7308 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7309 	unsigned int fl_align_log = fls(fl_align) - 1;
7310 
7311 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7312 		     HOSTPAGESIZEPF0_V(sge_hps) |
7313 		     HOSTPAGESIZEPF1_V(sge_hps) |
7314 		     HOSTPAGESIZEPF2_V(sge_hps) |
7315 		     HOSTPAGESIZEPF3_V(sge_hps) |
7316 		     HOSTPAGESIZEPF4_V(sge_hps) |
7317 		     HOSTPAGESIZEPF5_V(sge_hps) |
7318 		     HOSTPAGESIZEPF6_V(sge_hps) |
7319 		     HOSTPAGESIZEPF7_V(sge_hps));
7320 
7321 	if (is_t4(adap->params.chip)) {
7322 		t4_set_reg_field(adap, SGE_CONTROL_A,
7323 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7324 				 EGRSTATUSPAGESIZE_F,
7325 				 INGPADBOUNDARY_V(fl_align_log -
7326 						  INGPADBOUNDARY_SHIFT_X) |
7327 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7328 	} else {
7329 		unsigned int pack_align;
7330 		unsigned int ingpad, ingpack;
7331 
7332 		/* T5 introduced the separation of the Free List Padding and
7333 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7334 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7335 		 * Bandwidth, and use a Packing Boundary which is large enough
7336 		 * to avoid false sharing between CPUs, etc.
7337 		 *
7338 		 * For the PCI Link, the smaller the Padding Boundary the
7339 		 * better.  For the Memory Controller, a smaller Padding
7340 		 * Boundary is better until we cross under the Memory Line
7341 		 * Size (the minimum unit of transfer to/from Memory).  If we
7342 		 * have a Padding Boundary which is smaller than the Memory
7343 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7344 		 * Memory Controller which is never good.
7345 		 */
7346 
7347 		/* We want the Packing Boundary to be based on the Cache Line
7348 		 * Size in order to help avoid False Sharing performance
7349 		 * issues between CPUs, etc.  We also want the Packing
7350 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7351 		 * get best performance when the Packing Boundary is a
7352 		 * multiple of the Maximum Payload Size.
7353 		 */
7354 		pack_align = fl_align;
7355 		if (pci_is_pcie(adap->pdev)) {
7356 			unsigned int mps, mps_log;
7357 			u16 devctl;
7358 
7359 			/* The PCIe Device Control Maximum Payload Size field
7360 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7361 			 * 128 bytes.
7362 			 */
7363 			pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7364 						  &devctl);
7365 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7366 			mps = 1 << mps_log;
7367 			if (mps > pack_align)
7368 				pack_align = mps;
7369 		}
7370 
7371 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7372 		 * value for the Packing Boundary.  This corresponds to 16
7373 		 * bytes instead of the expected 32 bytes.  So if we want 32
7374 		 * bytes, the best we can really do is 64 bytes ...
7375 		 */
7376 		if (pack_align <= 16) {
7377 			ingpack = INGPACKBOUNDARY_16B_X;
7378 			fl_align = 16;
7379 		} else if (pack_align == 32) {
7380 			ingpack = INGPACKBOUNDARY_64B_X;
7381 			fl_align = 64;
7382 		} else {
7383 			unsigned int pack_align_log = fls(pack_align) - 1;
7384 
7385 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7386 			fl_align = pack_align;
7387 		}
7388 
7389 		/* Use the smallest Ingress Padding which isn't smaller than
7390 		 * the Memory Controller Read/Write Size.  We'll take that as
7391 		 * being 8 bytes since we don't know of any system with a
7392 		 * wider Memory Controller Bus Width.
7393 		 */
7394 		if (is_t5(adap->params.chip))
7395 			ingpad = INGPADBOUNDARY_32B_X;
7396 		else
7397 			ingpad = T6_INGPADBOUNDARY_8B_X;
7398 
7399 		t4_set_reg_field(adap, SGE_CONTROL_A,
7400 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7401 				 EGRSTATUSPAGESIZE_F,
7402 				 INGPADBOUNDARY_V(ingpad) |
7403 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7404 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7405 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7406 				 INGPACKBOUNDARY_V(ingpack));
7407 	}
7408 	/*
7409 	 * Adjust various SGE Free List Host Buffer Sizes.
7410 	 *
7411 	 * This is something of a crock since we're using fixed indices into
7412 	 * the array which are also known by the sge.c code and the T4
7413 	 * Firmware Configuration File.  We need to come up with a much better
7414 	 * approach to managing this array.  For now, the first four entries
7415 	 * are:
7416 	 *
7417 	 *   0: Host Page Size
7418 	 *   1: 64KB
7419 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7420 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7421 	 *
7422 	 * For the single-MTU buffers in unpacked mode we need to include
7423 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7424 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7425 	 * Padding boundary.  All of these are accommodated in the Factory
7426 	 * Default Firmware Configuration File but we need to adjust it for
7427 	 * this host's cache line size.
7428 	 */
7429 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7430 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7431 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7432 		     & ~(fl_align-1));
7433 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7434 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7435 		     & ~(fl_align-1));
7436 
7437 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7438 
7439 	return 0;
7440 }
7441 
7442 /**
7443  *	t4_fw_initialize - ask FW to initialize the device
7444  *	@adap: the adapter
7445  *	@mbox: mailbox to use for the FW command
7446  *
7447  *	Issues a command to FW to partially initialize the device.  This
7448  *	performs initialization that generally doesn't depend on user input.
7449  */
t4_fw_initialize(struct adapter * adap,unsigned int mbox)7450 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7451 {
7452 	struct fw_initialize_cmd c;
7453 
7454 	memset(&c, 0, sizeof(c));
7455 	INIT_CMD(c, INITIALIZE, WRITE);
7456 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7457 }
7458 
7459 /**
7460  *	t4_query_params_rw - query FW or device parameters
7461  *	@adap: the adapter
7462  *	@mbox: mailbox to use for the FW command
7463  *	@pf: the PF
7464  *	@vf: the VF
7465  *	@nparams: the number of parameters
7466  *	@params: the parameter names
7467  *	@val: the parameter values
7468  *	@rw: Write and read flag
7469  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7470  *
7471  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7472  *	queried at once.
7473  */
t4_query_params_rw(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val,int rw,bool sleep_ok)7474 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7475 		       unsigned int vf, unsigned int nparams, const u32 *params,
7476 		       u32 *val, int rw, bool sleep_ok)
7477 {
7478 	int i, ret;
7479 	struct fw_params_cmd c;
7480 	__be32 *p = &c.param[0].mnem;
7481 
7482 	if (nparams > 7)
7483 		return -EINVAL;
7484 
7485 	memset(&c, 0, sizeof(c));
7486 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7487 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7488 				  FW_PARAMS_CMD_PFN_V(pf) |
7489 				  FW_PARAMS_CMD_VFN_V(vf));
7490 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7491 
7492 	for (i = 0; i < nparams; i++) {
7493 		*p++ = cpu_to_be32(*params++);
7494 		if (rw)
7495 			*p = cpu_to_be32(*(val + i));
7496 		p++;
7497 	}
7498 
7499 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7500 	if (ret == 0)
7501 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7502 			*val++ = be32_to_cpu(*p);
7503 	return ret;
7504 }
7505 
t4_query_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)7506 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7507 		    unsigned int vf, unsigned int nparams, const u32 *params,
7508 		    u32 *val)
7509 {
7510 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7511 				  true);
7512 }
7513 
t4_query_params_ns(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)7514 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7515 		       unsigned int vf, unsigned int nparams, const u32 *params,
7516 		       u32 *val)
7517 {
7518 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7519 				  false);
7520 }
7521 
7522 /**
7523  *      t4_set_params_timeout - sets FW or device parameters
7524  *      @adap: the adapter
7525  *      @mbox: mailbox to use for the FW command
7526  *      @pf: the PF
7527  *      @vf: the VF
7528  *      @nparams: the number of parameters
7529  *      @params: the parameter names
7530  *      @val: the parameter values
7531  *      @timeout: the timeout time
7532  *
7533  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7534  *      specified at once.
7535  */
t4_set_params_timeout(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val,int timeout)7536 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7537 			  unsigned int pf, unsigned int vf,
7538 			  unsigned int nparams, const u32 *params,
7539 			  const u32 *val, int timeout)
7540 {
7541 	struct fw_params_cmd c;
7542 	__be32 *p = &c.param[0].mnem;
7543 
7544 	if (nparams > 7)
7545 		return -EINVAL;
7546 
7547 	memset(&c, 0, sizeof(c));
7548 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7549 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7550 				  FW_PARAMS_CMD_PFN_V(pf) |
7551 				  FW_PARAMS_CMD_VFN_V(vf));
7552 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7553 
7554 	while (nparams--) {
7555 		*p++ = cpu_to_be32(*params++);
7556 		*p++ = cpu_to_be32(*val++);
7557 	}
7558 
7559 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7560 }
7561 
7562 /**
7563  *	t4_set_params - sets FW or device parameters
7564  *	@adap: the adapter
7565  *	@mbox: mailbox to use for the FW command
7566  *	@pf: the PF
7567  *	@vf: the VF
7568  *	@nparams: the number of parameters
7569  *	@params: the parameter names
7570  *	@val: the parameter values
7571  *
7572  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7573  *	specified at once.
7574  */
t4_set_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val)7575 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7576 		  unsigned int vf, unsigned int nparams, const u32 *params,
7577 		  const u32 *val)
7578 {
7579 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7580 				     FW_CMD_MAX_TIMEOUT);
7581 }
7582 
7583 /**
7584  *	t4_cfg_pfvf - configure PF/VF resource limits
7585  *	@adap: the adapter
7586  *	@mbox: mailbox to use for the FW command
7587  *	@pf: the PF being configured
7588  *	@vf: the VF being configured
7589  *	@txq: the max number of egress queues
7590  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7591  *	@rxqi: the max number of interrupt-capable ingress queues
7592  *	@rxq: the max number of interruptless ingress queues
7593  *	@tc: the PCI traffic class
7594  *	@vi: the max number of virtual interfaces
7595  *	@cmask: the channel access rights mask for the PF/VF
7596  *	@pmask: the port access rights mask for the PF/VF
7597  *	@nexact: the maximum number of exact MPS filters
7598  *	@rcaps: read capabilities
7599  *	@wxcaps: write/execute capabilities
7600  *
7601  *	Configures resource limits and capabilities for a physical or virtual
7602  *	function.
7603  */
t4_cfg_pfvf(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int txq,unsigned int txq_eth_ctrl,unsigned int rxqi,unsigned int rxq,unsigned int tc,unsigned int vi,unsigned int cmask,unsigned int pmask,unsigned int nexact,unsigned int rcaps,unsigned int wxcaps)7604 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7605 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7606 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7607 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7608 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7609 {
7610 	struct fw_pfvf_cmd c;
7611 
7612 	memset(&c, 0, sizeof(c));
7613 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7614 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7615 				  FW_PFVF_CMD_VFN_V(vf));
7616 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7617 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7618 				     FW_PFVF_CMD_NIQ_V(rxq));
7619 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7620 				    FW_PFVF_CMD_PMASK_V(pmask) |
7621 				    FW_PFVF_CMD_NEQ_V(txq));
7622 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7623 				      FW_PFVF_CMD_NVI_V(vi) |
7624 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7625 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7626 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7627 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7628 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7629 }
7630 
7631 /**
7632  *	t4_alloc_vi - allocate a virtual interface
7633  *	@adap: the adapter
7634  *	@mbox: mailbox to use for the FW command
7635  *	@port: physical port associated with the VI
7636  *	@pf: the PF owning the VI
7637  *	@vf: the VF owning the VI
7638  *	@nmac: number of MAC addresses needed (1 to 5)
7639  *	@mac: the MAC addresses of the VI
7640  *	@rss_size: size of RSS table slice associated with this VI
7641  *	@vivld: the destination to store the VI Valid value.
7642  *	@vin: the destination to store the VIN value.
7643  *
7644  *	Allocates a virtual interface for the given physical port.  If @mac is
7645  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7646  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7647  *	stored consecutively so the space needed is @nmac * 6 bytes.
7648  *	Returns a negative error number or the non-negative VI id.
7649  */
t4_alloc_vi(struct adapter * adap,unsigned int mbox,unsigned int port,unsigned int pf,unsigned int vf,unsigned int nmac,u8 * mac,unsigned int * rss_size,u8 * vivld,u8 * vin)7650 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7651 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7652 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7653 {
7654 	int ret;
7655 	struct fw_vi_cmd c;
7656 
7657 	memset(&c, 0, sizeof(c));
7658 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7659 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7660 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7661 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7662 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7663 	c.nmac = nmac - 1;
7664 
7665 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7666 	if (ret)
7667 		return ret;
7668 
7669 	if (mac) {
7670 		memcpy(mac, c.mac, sizeof(c.mac));
7671 		switch (nmac) {
7672 		case 5:
7673 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7674 			fallthrough;
7675 		case 4:
7676 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7677 			fallthrough;
7678 		case 3:
7679 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7680 			fallthrough;
7681 		case 2:
7682 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7683 		}
7684 	}
7685 	if (rss_size)
7686 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7687 
7688 	if (vivld)
7689 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7690 
7691 	if (vin)
7692 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7693 
7694 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7695 }
7696 
7697 /**
7698  *	t4_free_vi - free a virtual interface
7699  *	@adap: the adapter
7700  *	@mbox: mailbox to use for the FW command
7701  *	@pf: the PF owning the VI
7702  *	@vf: the VF owning the VI
7703  *	@viid: virtual interface identifiler
7704  *
7705  *	Free a previously allocated virtual interface.
7706  */
t4_free_vi(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int viid)7707 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7708 	       unsigned int vf, unsigned int viid)
7709 {
7710 	struct fw_vi_cmd c;
7711 
7712 	memset(&c, 0, sizeof(c));
7713 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7714 				  FW_CMD_REQUEST_F |
7715 				  FW_CMD_EXEC_F |
7716 				  FW_VI_CMD_PFN_V(pf) |
7717 				  FW_VI_CMD_VFN_V(vf));
7718 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7719 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7720 
7721 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7722 }
7723 
7724 /**
7725  *	t4_set_rxmode - set Rx properties of a virtual interface
7726  *	@adap: the adapter
7727  *	@mbox: mailbox to use for the FW command
7728  *	@viid: the VI id
7729  *	@viid_mirror: the mirror VI id
7730  *	@mtu: the new MTU or -1
7731  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7732  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7733  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7734  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7735  *	@sleep_ok: if true we may sleep while awaiting command completion
7736  *
7737  *	Sets Rx properties of a virtual interface.
7738  */
t4_set_rxmode(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int viid_mirror,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)7739 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7740 		  unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7741 		  int bcast, int vlanex, bool sleep_ok)
7742 {
7743 	struct fw_vi_rxmode_cmd c, c_mirror;
7744 	int ret;
7745 
7746 	/* convert to FW values */
7747 	if (mtu < 0)
7748 		mtu = FW_RXMODE_MTU_NO_CHG;
7749 	if (promisc < 0)
7750 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7751 	if (all_multi < 0)
7752 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7753 	if (bcast < 0)
7754 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7755 	if (vlanex < 0)
7756 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7757 
7758 	memset(&c, 0, sizeof(c));
7759 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7760 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7761 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7762 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7763 	c.mtu_to_vlanexen =
7764 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7765 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7766 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7767 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7768 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7769 
7770 	if (viid_mirror) {
7771 		memcpy(&c_mirror, &c, sizeof(c_mirror));
7772 		c_mirror.op_to_viid =
7773 			cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7774 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7775 				    FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7776 	}
7777 
7778 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7779 	if (ret)
7780 		return ret;
7781 
7782 	if (viid_mirror)
7783 		ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7784 				      NULL, sleep_ok);
7785 
7786 	return ret;
7787 }
7788 
7789 /**
7790  *      t4_free_encap_mac_filt - frees MPS entry at given index
7791  *      @adap: the adapter
7792  *      @viid: the VI id
7793  *      @idx: index of MPS entry to be freed
7794  *      @sleep_ok: call is allowed to sleep
7795  *
7796  *      Frees the MPS entry at supplied index
7797  *
7798  *      Returns a negative error number or zero on success
7799  */
t4_free_encap_mac_filt(struct adapter * adap,unsigned int viid,int idx,bool sleep_ok)7800 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7801 			   int idx, bool sleep_ok)
7802 {
7803 	struct fw_vi_mac_exact *p;
7804 	u8 addr[] = {0, 0, 0, 0, 0, 0};
7805 	struct fw_vi_mac_cmd c;
7806 	int ret = 0;
7807 	u32 exact;
7808 
7809 	memset(&c, 0, sizeof(c));
7810 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7811 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7812 				   FW_CMD_EXEC_V(0) |
7813 				   FW_VI_MAC_CMD_VIID_V(viid));
7814 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7815 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7816 					  exact |
7817 					  FW_CMD_LEN16_V(1));
7818 	p = c.u.exact;
7819 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7820 				      FW_VI_MAC_CMD_IDX_V(idx));
7821 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7822 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7823 	return ret;
7824 }
7825 
7826 /**
7827  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7828  *	@adap: the adapter
7829  *	@viid: the VI id
7830  *	@addr: the MAC address
7831  *	@mask: the mask
7832  *	@idx: index of the entry in mps tcam
7833  *	@lookup_type: MAC address for inner (1) or outer (0) header
7834  *	@port_id: the port index
7835  *	@sleep_ok: call is allowed to sleep
7836  *
7837  *	Removes the mac entry at the specified index using raw mac interface.
7838  *
7839  *	Returns a negative error number on failure.
7840  */
t4_free_raw_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int idx,u8 lookup_type,u8 port_id,bool sleep_ok)7841 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7842 			 const u8 *addr, const u8 *mask, unsigned int idx,
7843 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7844 {
7845 	struct fw_vi_mac_cmd c;
7846 	struct fw_vi_mac_raw *p = &c.u.raw;
7847 	u32 val;
7848 
7849 	memset(&c, 0, sizeof(c));
7850 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7851 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7852 				   FW_CMD_EXEC_V(0) |
7853 				   FW_VI_MAC_CMD_VIID_V(viid));
7854 	val = FW_CMD_LEN16_V(1) |
7855 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7856 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7857 					  FW_CMD_LEN16_V(val));
7858 
7859 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7860 				     FW_VI_MAC_ID_BASED_FREE);
7861 
7862 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7863 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7864 				   DATAPORTNUM_V(port_id));
7865 	/* Lookup mask and port mask */
7866 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7867 				    DATAPORTNUM_V(DATAPORTNUM_M));
7868 
7869 	/* Copy the address and the mask */
7870 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7871 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7872 
7873 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7874 }
7875 
7876 /**
7877  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7878  *      @adap: the adapter
7879  *      @viid: the VI id
7880  *      @addr: the MAC address
7881  *      @mask: the mask
7882  *      @vni: the VNI id for the tunnel protocol
7883  *      @vni_mask: mask for the VNI id
7884  *      @dip_hit: to enable DIP match for the MPS entry
7885  *      @lookup_type: MAC address for inner (1) or outer (0) header
7886  *      @sleep_ok: call is allowed to sleep
7887  *
7888  *      Allocates an MPS entry with specified MAC address and VNI value.
7889  *
7890  *      Returns a negative error number or the allocated index for this mac.
7891  */
t4_alloc_encap_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int vni,unsigned int vni_mask,u8 dip_hit,u8 lookup_type,bool sleep_ok)7892 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7893 			    const u8 *addr, const u8 *mask, unsigned int vni,
7894 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7895 			    bool sleep_ok)
7896 {
7897 	struct fw_vi_mac_cmd c;
7898 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7899 	int ret = 0;
7900 	u32 val;
7901 
7902 	memset(&c, 0, sizeof(c));
7903 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7904 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7905 				   FW_VI_MAC_CMD_VIID_V(viid));
7906 	val = FW_CMD_LEN16_V(1) |
7907 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7908 	c.freemacs_to_len16 = cpu_to_be32(val);
7909 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7910 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7911 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7912 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7913 
7914 	p->lookup_type_to_vni =
7915 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7916 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7917 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7918 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7919 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7920 	if (ret == 0)
7921 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7922 	return ret;
7923 }
7924 
7925 /**
7926  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7927  *	@adap: the adapter
7928  *	@viid: the VI id
7929  *	@addr: the MAC address
7930  *	@mask: the mask
7931  *	@idx: index at which to add this entry
7932  *	@lookup_type: MAC address for inner (1) or outer (0) header
7933  *	@port_id: the port index
7934  *	@sleep_ok: call is allowed to sleep
7935  *
7936  *	Adds the mac entry at the specified index using raw mac interface.
7937  *
7938  *	Returns a negative error number or the allocated index for this mac.
7939  */
t4_alloc_raw_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int idx,u8 lookup_type,u8 port_id,bool sleep_ok)7940 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7941 			  const u8 *addr, const u8 *mask, unsigned int idx,
7942 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7943 {
7944 	int ret = 0;
7945 	struct fw_vi_mac_cmd c;
7946 	struct fw_vi_mac_raw *p = &c.u.raw;
7947 	u32 val;
7948 
7949 	memset(&c, 0, sizeof(c));
7950 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7951 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7952 				   FW_VI_MAC_CMD_VIID_V(viid));
7953 	val = FW_CMD_LEN16_V(1) |
7954 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7955 	c.freemacs_to_len16 = cpu_to_be32(val);
7956 
7957 	/* Specify that this is an inner mac address */
7958 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7959 
7960 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7961 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7962 				   DATAPORTNUM_V(port_id));
7963 	/* Lookup mask and port mask */
7964 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7965 				    DATAPORTNUM_V(DATAPORTNUM_M));
7966 
7967 	/* Copy the address and the mask */
7968 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7969 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7970 
7971 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7972 	if (ret == 0) {
7973 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7974 		if (ret != idx)
7975 			ret = -ENOMEM;
7976 	}
7977 
7978 	return ret;
7979 }
7980 
7981 /**
7982  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7983  *	@adap: the adapter
7984  *	@mbox: mailbox to use for the FW command
7985  *	@viid: the VI id
7986  *	@free: if true any existing filters for this VI id are first removed
7987  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7988  *	@addr: the MAC address(es)
7989  *	@idx: where to store the index of each allocated filter
7990  *	@hash: pointer to hash address filter bitmap
7991  *	@sleep_ok: call is allowed to sleep
7992  *
7993  *	Allocates an exact-match filter for each of the supplied addresses and
7994  *	sets it to the corresponding address.  If @idx is not %NULL it should
7995  *	have at least @naddr entries, each of which will be set to the index of
7996  *	the filter allocated for the corresponding MAC address.  If a filter
7997  *	could not be allocated for an address its index is set to 0xffff.
7998  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7999  *	are hashed and update the hash filter bitmap pointed at by @hash.
8000  *
8001  *	Returns a negative error number or the number of filters allocated.
8002  */
t4_alloc_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,bool free,unsigned int naddr,const u8 ** addr,u16 * idx,u64 * hash,bool sleep_ok)8003 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8004 		      unsigned int viid, bool free, unsigned int naddr,
8005 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8006 {
8007 	int offset, ret = 0;
8008 	struct fw_vi_mac_cmd c;
8009 	unsigned int nfilters = 0;
8010 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
8011 	unsigned int rem = naddr;
8012 
8013 	if (naddr > max_naddr)
8014 		return -EINVAL;
8015 
8016 	for (offset = 0; offset < naddr ; /**/) {
8017 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
8018 					 rem : ARRAY_SIZE(c.u.exact));
8019 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8020 						     u.exact[fw_naddr]), 16);
8021 		struct fw_vi_mac_exact *p;
8022 		int i;
8023 
8024 		memset(&c, 0, sizeof(c));
8025 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8026 					   FW_CMD_REQUEST_F |
8027 					   FW_CMD_WRITE_F |
8028 					   FW_CMD_EXEC_V(free) |
8029 					   FW_VI_MAC_CMD_VIID_V(viid));
8030 		c.freemacs_to_len16 =
8031 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8032 				    FW_CMD_LEN16_V(len16));
8033 
8034 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8035 			p->valid_to_idx =
8036 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8037 					    FW_VI_MAC_CMD_IDX_V(
8038 						    FW_VI_MAC_ADD_MAC));
8039 			memcpy(p->macaddr, addr[offset + i],
8040 			       sizeof(p->macaddr));
8041 		}
8042 
8043 		/* It's okay if we run out of space in our MAC address arena.
8044 		 * Some of the addresses we submit may get stored so we need
8045 		 * to run through the reply to see what the results were ...
8046 		 */
8047 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8048 		if (ret && ret != -FW_ENOMEM)
8049 			break;
8050 
8051 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8052 			u16 index = FW_VI_MAC_CMD_IDX_G(
8053 					be16_to_cpu(p->valid_to_idx));
8054 
8055 			if (idx)
8056 				idx[offset + i] = (index >= max_naddr ?
8057 						   0xffff : index);
8058 			if (index < max_naddr)
8059 				nfilters++;
8060 			else if (hash)
8061 				*hash |= (1ULL <<
8062 					  hash_mac_addr(addr[offset + i]));
8063 		}
8064 
8065 		free = false;
8066 		offset += fw_naddr;
8067 		rem -= fw_naddr;
8068 	}
8069 
8070 	if (ret == 0 || ret == -FW_ENOMEM)
8071 		ret = nfilters;
8072 	return ret;
8073 }
8074 
8075 /**
8076  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8077  *	@adap: the adapter
8078  *	@mbox: mailbox to use for the FW command
8079  *	@viid: the VI id
8080  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8081  *	@addr: the MAC address(es)
8082  *	@sleep_ok: call is allowed to sleep
8083  *
8084  *	Frees the exact-match filter for each of the supplied addresses
8085  *
8086  *	Returns a negative error number or the number of filters freed.
8087  */
t4_free_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int naddr,const u8 ** addr,bool sleep_ok)8088 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8089 		     unsigned int viid, unsigned int naddr,
8090 		     const u8 **addr, bool sleep_ok)
8091 {
8092 	int offset, ret = 0;
8093 	struct fw_vi_mac_cmd c;
8094 	unsigned int nfilters = 0;
8095 	unsigned int max_naddr = is_t4(adap->params.chip) ?
8096 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8097 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8098 	unsigned int rem = naddr;
8099 
8100 	if (naddr > max_naddr)
8101 		return -EINVAL;
8102 
8103 	for (offset = 0; offset < (int)naddr ; /**/) {
8104 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8105 					 ? rem
8106 					 : ARRAY_SIZE(c.u.exact));
8107 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8108 						     u.exact[fw_naddr]), 16);
8109 		struct fw_vi_mac_exact *p;
8110 		int i;
8111 
8112 		memset(&c, 0, sizeof(c));
8113 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8114 				     FW_CMD_REQUEST_F |
8115 				     FW_CMD_WRITE_F |
8116 				     FW_CMD_EXEC_V(0) |
8117 				     FW_VI_MAC_CMD_VIID_V(viid));
8118 		c.freemacs_to_len16 =
8119 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8120 					    FW_CMD_LEN16_V(len16));
8121 
8122 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8123 			p->valid_to_idx = cpu_to_be16(
8124 				FW_VI_MAC_CMD_VALID_F |
8125 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8126 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8127 		}
8128 
8129 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8130 		if (ret)
8131 			break;
8132 
8133 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8134 			u16 index = FW_VI_MAC_CMD_IDX_G(
8135 						be16_to_cpu(p->valid_to_idx));
8136 
8137 			if (index < max_naddr)
8138 				nfilters++;
8139 		}
8140 
8141 		offset += fw_naddr;
8142 		rem -= fw_naddr;
8143 	}
8144 
8145 	if (ret == 0)
8146 		ret = nfilters;
8147 	return ret;
8148 }
8149 
8150 /**
8151  *	t4_change_mac - modifies the exact-match filter for a MAC address
8152  *	@adap: the adapter
8153  *	@mbox: mailbox to use for the FW command
8154  *	@viid: the VI id
8155  *	@idx: index of existing filter for old value of MAC address, or -1
8156  *	@addr: the new MAC address value
8157  *	@persist: whether a new MAC allocation should be persistent
8158  *	@smt_idx: the destination to store the new SMT index.
8159  *
8160  *	Modifies an exact-match filter and sets it to the new MAC address.
8161  *	Note that in general it is not possible to modify the value of a given
8162  *	filter so the generic way to modify an address filter is to free the one
8163  *	being used by the old address value and allocate a new filter for the
8164  *	new address value.  @idx can be -1 if the address is a new addition.
8165  *
8166  *	Returns a negative error number or the index of the filter with the new
8167  *	MAC value.
8168  */
t4_change_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,int idx,const u8 * addr,bool persist,u8 * smt_idx)8169 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8170 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8171 {
8172 	int ret, mode;
8173 	struct fw_vi_mac_cmd c;
8174 	struct fw_vi_mac_exact *p = c.u.exact;
8175 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8176 
8177 	if (idx < 0)                             /* new allocation */
8178 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8179 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8180 
8181 	memset(&c, 0, sizeof(c));
8182 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8183 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8184 				   FW_VI_MAC_CMD_VIID_V(viid));
8185 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8186 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8187 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8188 				      FW_VI_MAC_CMD_IDX_V(idx));
8189 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8190 
8191 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8192 	if (ret == 0) {
8193 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8194 		if (ret >= max_mac_addr)
8195 			ret = -ENOMEM;
8196 		if (smt_idx) {
8197 			if (adap->params.viid_smt_extn_support) {
8198 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8199 						    (be32_to_cpu(c.op_to_viid));
8200 			} else {
8201 				/* In T4/T5, SMT contains 256 SMAC entries
8202 				 * organized in 128 rows of 2 entries each.
8203 				 * In T6, SMT contains 256 SMAC entries in
8204 				 * 256 rows.
8205 				 */
8206 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8207 								     CHELSIO_T5)
8208 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8209 				else
8210 					*smt_idx = (viid & FW_VIID_VIN_M);
8211 			}
8212 		}
8213 	}
8214 	return ret;
8215 }
8216 
8217 /**
8218  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8219  *	@adap: the adapter
8220  *	@mbox: mailbox to use for the FW command
8221  *	@viid: the VI id
8222  *	@ucast: whether the hash filter should also match unicast addresses
8223  *	@vec: the value to be written to the hash filter
8224  *	@sleep_ok: call is allowed to sleep
8225  *
8226  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8227  */
t4_set_addr_hash(struct adapter * adap,unsigned int mbox,unsigned int viid,bool ucast,u64 vec,bool sleep_ok)8228 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8229 		     bool ucast, u64 vec, bool sleep_ok)
8230 {
8231 	struct fw_vi_mac_cmd c;
8232 
8233 	memset(&c, 0, sizeof(c));
8234 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8235 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8236 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8237 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8238 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8239 					  FW_CMD_LEN16_V(1));
8240 	c.u.hash.hashvec = cpu_to_be64(vec);
8241 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8242 }
8243 
8244 /**
8245  *      t4_enable_vi_params - enable/disable a virtual interface
8246  *      @adap: the adapter
8247  *      @mbox: mailbox to use for the FW command
8248  *      @viid: the VI id
8249  *      @rx_en: 1=enable Rx, 0=disable Rx
8250  *      @tx_en: 1=enable Tx, 0=disable Tx
8251  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8252  *
8253  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8254  *      only makes sense when enabling a Virtual Interface ...
8255  */
t4_enable_vi_params(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en,bool dcb_en)8256 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8257 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8258 {
8259 	struct fw_vi_enable_cmd c;
8260 
8261 	memset(&c, 0, sizeof(c));
8262 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8263 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8264 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8265 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8266 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8267 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8268 				     FW_LEN16(c));
8269 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8270 }
8271 
8272 /**
8273  *	t4_enable_vi - enable/disable a virtual interface
8274  *	@adap: the adapter
8275  *	@mbox: mailbox to use for the FW command
8276  *	@viid: the VI id
8277  *	@rx_en: 1=enable Rx, 0=disable Rx
8278  *	@tx_en: 1=enable Tx, 0=disable Tx
8279  *
8280  *	Enables/disables a virtual interface.
8281  */
t4_enable_vi(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en)8282 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8283 		 bool rx_en, bool tx_en)
8284 {
8285 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8286 }
8287 
8288 /**
8289  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8290  *      @adap: the adapter
8291  *      @mbox: mailbox to use for the FW command
8292  *      @pi: the Port Information structure
8293  *      @rx_en: 1=enable Rx, 0=disable Rx
8294  *      @tx_en: 1=enable Tx, 0=disable Tx
8295  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8296  *
8297  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8298  *	Enable only makes sense when enabling a Virtual Interface ...
8299  *	If the Virtual Interface enable/disable operation is successful,
8300  *	we notify the OS-specific code of a potential Link Status change
8301  *	via the OS Contract API t4_os_link_changed().
8302  */
t4_enable_pi_params(struct adapter * adap,unsigned int mbox,struct port_info * pi,bool rx_en,bool tx_en,bool dcb_en)8303 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8304 			struct port_info *pi,
8305 			bool rx_en, bool tx_en, bool dcb_en)
8306 {
8307 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8308 				      rx_en, tx_en, dcb_en);
8309 	if (ret)
8310 		return ret;
8311 	t4_os_link_changed(adap, pi->port_id,
8312 			   rx_en && tx_en && pi->link_cfg.link_ok);
8313 	return 0;
8314 }
8315 
8316 /**
8317  *	t4_identify_port - identify a VI's port by blinking its LED
8318  *	@adap: the adapter
8319  *	@mbox: mailbox to use for the FW command
8320  *	@viid: the VI id
8321  *	@nblinks: how many times to blink LED at 2.5 Hz
8322  *
8323  *	Identifies a VI's port by blinking its LED.
8324  */
t4_identify_port(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int nblinks)8325 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8326 		     unsigned int nblinks)
8327 {
8328 	struct fw_vi_enable_cmd c;
8329 
8330 	memset(&c, 0, sizeof(c));
8331 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8332 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8333 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8334 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8335 	c.blinkdur = cpu_to_be16(nblinks);
8336 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8337 }
8338 
8339 /**
8340  *	t4_iq_stop - stop an ingress queue and its FLs
8341  *	@adap: the adapter
8342  *	@mbox: mailbox to use for the FW command
8343  *	@pf: the PF owning the queues
8344  *	@vf: the VF owning the queues
8345  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8346  *	@iqid: ingress queue id
8347  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8348  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8349  *
8350  *	Stops an ingress queue and its associated FLs, if any.  This causes
8351  *	any current or future data/messages destined for these queues to be
8352  *	tossed.
8353  */
t4_iq_stop(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)8354 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8355 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8356 	       unsigned int fl0id, unsigned int fl1id)
8357 {
8358 	struct fw_iq_cmd c;
8359 
8360 	memset(&c, 0, sizeof(c));
8361 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8362 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8363 				  FW_IQ_CMD_VFN_V(vf));
8364 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8365 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8366 	c.iqid = cpu_to_be16(iqid);
8367 	c.fl0id = cpu_to_be16(fl0id);
8368 	c.fl1id = cpu_to_be16(fl1id);
8369 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8370 }
8371 
8372 /**
8373  *	t4_iq_free - free an ingress queue and its FLs
8374  *	@adap: the adapter
8375  *	@mbox: mailbox to use for the FW command
8376  *	@pf: the PF owning the queues
8377  *	@vf: the VF owning the queues
8378  *	@iqtype: the ingress queue type
8379  *	@iqid: ingress queue id
8380  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8381  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8382  *
8383  *	Frees an ingress queue and its associated FLs, if any.
8384  */
t4_iq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)8385 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8386 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8387 	       unsigned int fl0id, unsigned int fl1id)
8388 {
8389 	struct fw_iq_cmd c;
8390 
8391 	memset(&c, 0, sizeof(c));
8392 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8393 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8394 				  FW_IQ_CMD_VFN_V(vf));
8395 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8396 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8397 	c.iqid = cpu_to_be16(iqid);
8398 	c.fl0id = cpu_to_be16(fl0id);
8399 	c.fl1id = cpu_to_be16(fl1id);
8400 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8401 }
8402 
8403 /**
8404  *	t4_eth_eq_free - free an Ethernet egress queue
8405  *	@adap: the adapter
8406  *	@mbox: mailbox to use for the FW command
8407  *	@pf: the PF owning the queue
8408  *	@vf: the VF owning the queue
8409  *	@eqid: egress queue id
8410  *
8411  *	Frees an Ethernet egress queue.
8412  */
t4_eth_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)8413 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8414 		   unsigned int vf, unsigned int eqid)
8415 {
8416 	struct fw_eq_eth_cmd c;
8417 
8418 	memset(&c, 0, sizeof(c));
8419 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8420 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8421 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8422 				  FW_EQ_ETH_CMD_VFN_V(vf));
8423 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8424 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8425 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8426 }
8427 
8428 /**
8429  *	t4_ctrl_eq_free - free a control egress queue
8430  *	@adap: the adapter
8431  *	@mbox: mailbox to use for the FW command
8432  *	@pf: the PF owning the queue
8433  *	@vf: the VF owning the queue
8434  *	@eqid: egress queue id
8435  *
8436  *	Frees a control egress queue.
8437  */
t4_ctrl_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)8438 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8439 		    unsigned int vf, unsigned int eqid)
8440 {
8441 	struct fw_eq_ctrl_cmd c;
8442 
8443 	memset(&c, 0, sizeof(c));
8444 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8445 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8446 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8447 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8448 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8449 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8450 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8451 }
8452 
8453 /**
8454  *	t4_ofld_eq_free - free an offload egress queue
8455  *	@adap: the adapter
8456  *	@mbox: mailbox to use for the FW command
8457  *	@pf: the PF owning the queue
8458  *	@vf: the VF owning the queue
8459  *	@eqid: egress queue id
8460  *
8461  *	Frees a control egress queue.
8462  */
t4_ofld_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)8463 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8464 		    unsigned int vf, unsigned int eqid)
8465 {
8466 	struct fw_eq_ofld_cmd c;
8467 
8468 	memset(&c, 0, sizeof(c));
8469 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8470 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8471 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8472 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8473 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8474 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8475 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8476 }
8477 
8478 /**
8479  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8480  *	@link_down_rc: Link Down Reason Code
8481  *
8482  *	Returns a string representation of the Link Down Reason Code.
8483  */
t4_link_down_rc_str(unsigned char link_down_rc)8484 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8485 {
8486 	static const char * const reason[] = {
8487 		"Link Down",
8488 		"Remote Fault",
8489 		"Auto-negotiation Failure",
8490 		"Reserved",
8491 		"Insufficient Airflow",
8492 		"Unable To Determine Reason",
8493 		"No RX Signal Detected",
8494 		"Reserved",
8495 	};
8496 
8497 	if (link_down_rc >= ARRAY_SIZE(reason))
8498 		return "Bad Reason Code";
8499 
8500 	return reason[link_down_rc];
8501 }
8502 
8503 /* Return the highest speed set in the port capabilities, in Mb/s. */
fwcap_to_speed(fw_port_cap32_t caps)8504 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8505 {
8506 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8507 		do { \
8508 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8509 				return __speed; \
8510 		} while (0)
8511 
8512 	TEST_SPEED_RETURN(400G, 400000);
8513 	TEST_SPEED_RETURN(200G, 200000);
8514 	TEST_SPEED_RETURN(100G, 100000);
8515 	TEST_SPEED_RETURN(50G,   50000);
8516 	TEST_SPEED_RETURN(40G,   40000);
8517 	TEST_SPEED_RETURN(25G,   25000);
8518 	TEST_SPEED_RETURN(10G,   10000);
8519 	TEST_SPEED_RETURN(1G,     1000);
8520 	TEST_SPEED_RETURN(100M,    100);
8521 
8522 	#undef TEST_SPEED_RETURN
8523 
8524 	return 0;
8525 }
8526 
8527 /**
8528  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8529  *	@acaps: advertised Port Capabilities
8530  *
8531  *	Get the highest speed for the port from the advertised Port
8532  *	Capabilities.  It will be either the highest speed from the list of
8533  *	speeds or whatever user has set using ethtool.
8534  */
fwcap_to_fwspeed(fw_port_cap32_t acaps)8535 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8536 {
8537 	#define TEST_SPEED_RETURN(__caps_speed) \
8538 		do { \
8539 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8540 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8541 		} while (0)
8542 
8543 	TEST_SPEED_RETURN(400G);
8544 	TEST_SPEED_RETURN(200G);
8545 	TEST_SPEED_RETURN(100G);
8546 	TEST_SPEED_RETURN(50G);
8547 	TEST_SPEED_RETURN(40G);
8548 	TEST_SPEED_RETURN(25G);
8549 	TEST_SPEED_RETURN(10G);
8550 	TEST_SPEED_RETURN(1G);
8551 	TEST_SPEED_RETURN(100M);
8552 
8553 	#undef TEST_SPEED_RETURN
8554 
8555 	return 0;
8556 }
8557 
8558 /**
8559  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8560  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8561  *
8562  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8563  *	32-bit Port Capabilities value.
8564  */
lstatus_to_fwcap(u32 lstatus)8565 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8566 {
8567 	fw_port_cap32_t linkattr = 0;
8568 
8569 	/* Unfortunately the format of the Link Status in the old
8570 	 * 16-bit Port Information message isn't the same as the
8571 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8572 	 */
8573 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8574 		linkattr |= FW_PORT_CAP32_FC_RX;
8575 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8576 		linkattr |= FW_PORT_CAP32_FC_TX;
8577 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8578 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8579 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8580 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8581 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8582 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8583 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8584 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8585 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8586 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8587 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8588 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8589 
8590 	return linkattr;
8591 }
8592 
8593 /**
8594  *	t4_handle_get_port_info - process a FW reply message
8595  *	@pi: the port info
8596  *	@rpl: start of the FW message
8597  *
8598  *	Processes a GET_PORT_INFO FW reply message.
8599  */
t4_handle_get_port_info(struct port_info * pi,const __be64 * rpl)8600 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8601 {
8602 	const struct fw_port_cmd *cmd = (const void *)rpl;
8603 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8604 	struct link_config *lc = &pi->link_cfg;
8605 	struct adapter *adapter = pi->adapter;
8606 	unsigned int speed, fc, fec, adv_fc;
8607 	enum fw_port_module_type mod_type;
8608 	int action, link_ok, linkdnrc;
8609 	enum fw_port_type port_type;
8610 
8611 	/* Extract the various fields from the Port Information message.
8612 	 */
8613 	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8614 	switch (action) {
8615 	case FW_PORT_ACTION_GET_PORT_INFO: {
8616 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8617 
8618 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8619 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8620 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8621 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8622 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8623 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8624 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8625 		linkattr = lstatus_to_fwcap(lstatus);
8626 		break;
8627 	}
8628 
8629 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8630 		u32 lstatus32;
8631 
8632 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8633 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8634 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8635 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8636 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8637 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8638 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8639 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8640 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8641 		break;
8642 	}
8643 
8644 	default:
8645 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8646 			be32_to_cpu(cmd->action_to_len16));
8647 		return;
8648 	}
8649 
8650 	fec = fwcap_to_cc_fec(acaps);
8651 	adv_fc = fwcap_to_cc_pause(acaps);
8652 	fc = fwcap_to_cc_pause(linkattr);
8653 	speed = fwcap_to_speed(linkattr);
8654 
8655 	/* Reset state for communicating new Transceiver Module status and
8656 	 * whether the OS-dependent layer wants us to redo the current
8657 	 * "sticky" L1 Configure Link Parameters.
8658 	 */
8659 	lc->new_module = false;
8660 	lc->redo_l1cfg = false;
8661 
8662 	if (mod_type != pi->mod_type) {
8663 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8664 		 * various fundamental Port Capabilities which used to be
8665 		 * immutable can now change radically.  We can now have
8666 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8667 		 * all change based on what Transceiver Module is inserted.
8668 		 * So we need to record the Physical "Port" Capabilities on
8669 		 * every Transceiver Module change.
8670 		 */
8671 		lc->pcaps = pcaps;
8672 
8673 		/* When a new Transceiver Module is inserted, the Firmware
8674 		 * will examine its i2c EPROM to determine its type and
8675 		 * general operating parameters including things like Forward
8676 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8677 		 * how to interpret these i2c values to determine default
8678 		 * "sutomatic" settings.  We record these for future use when
8679 		 * the user explicitly requests these standards-based values.
8680 		 */
8681 		lc->def_acaps = acaps;
8682 
8683 		/* Some versions of the early T6 Firmware "cheated" when
8684 		 * handling different Transceiver Modules by changing the
8685 		 * underlaying Port Type reported to the Host Drivers.  As
8686 		 * such we need to capture whatever Port Type the Firmware
8687 		 * sends us and record it in case it's different from what we
8688 		 * were told earlier.  Unfortunately, since Firmware is
8689 		 * forever, we'll need to keep this code here forever, but in
8690 		 * later T6 Firmware it should just be an assignment of the
8691 		 * same value already recorded.
8692 		 */
8693 		pi->port_type = port_type;
8694 
8695 		/* Record new Module Type information.
8696 		 */
8697 		pi->mod_type = mod_type;
8698 
8699 		/* Let the OS-dependent layer know if we have a new
8700 		 * Transceiver Module inserted.
8701 		 */
8702 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8703 
8704 		t4_os_portmod_changed(adapter, pi->port_id);
8705 	}
8706 
8707 	if (link_ok != lc->link_ok || speed != lc->speed ||
8708 	    fc != lc->fc || adv_fc != lc->advertised_fc ||
8709 	    fec != lc->fec) {
8710 		/* something changed */
8711 		if (!link_ok && lc->link_ok) {
8712 			lc->link_down_rc = linkdnrc;
8713 			dev_warn_ratelimited(adapter->pdev_dev,
8714 					     "Port %d link down, reason: %s\n",
8715 					     pi->tx_chan,
8716 					     t4_link_down_rc_str(linkdnrc));
8717 		}
8718 		lc->link_ok = link_ok;
8719 		lc->speed = speed;
8720 		lc->advertised_fc = adv_fc;
8721 		lc->fc = fc;
8722 		lc->fec = fec;
8723 
8724 		lc->lpacaps = lpacaps;
8725 		lc->acaps = acaps & ADVERT_MASK;
8726 
8727 		/* If we're not physically capable of Auto-Negotiation, note
8728 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8729 		 * what Auto-Negotiation settings we have.  Note parallel
8730 		 * structure in t4_link_l1cfg_core() and init_link_config().
8731 		 */
8732 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8733 			lc->autoneg = AUTONEG_DISABLE;
8734 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8735 			lc->autoneg = AUTONEG_ENABLE;
8736 		} else {
8737 			/* When Autoneg is disabled, user needs to set
8738 			 * single speed.
8739 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8740 			 */
8741 			lc->acaps = 0;
8742 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8743 			lc->autoneg = AUTONEG_DISABLE;
8744 		}
8745 
8746 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8747 	}
8748 
8749 	/* If we have a new Transceiver Module and the OS-dependent code has
8750 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8751 	 * Link Parameters are set, do that now.
8752 	 */
8753 	if (lc->new_module && lc->redo_l1cfg) {
8754 		struct link_config old_lc;
8755 		int ret;
8756 
8757 		/* Save the current L1 Configuration and restore it if an
8758 		 * error occurs.  We probably should fix the l1_cfg*()
8759 		 * routines not to change the link_config when an error
8760 		 * occurs ...
8761 		 */
8762 		old_lc = *lc;
8763 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8764 		if (ret) {
8765 			*lc = old_lc;
8766 			dev_warn(adapter->pdev_dev,
8767 				 "Attempt to update new Transceiver Module settings failed\n");
8768 		}
8769 	}
8770 	lc->new_module = false;
8771 	lc->redo_l1cfg = false;
8772 }
8773 
8774 /**
8775  *	t4_update_port_info - retrieve and update port information if changed
8776  *	@pi: the port_info
8777  *
8778  *	We issue a Get Port Information Command to the Firmware and, if
8779  *	successful, we check to see if anything is different from what we
8780  *	last recorded and update things accordingly.
8781  */
t4_update_port_info(struct port_info * pi)8782 int t4_update_port_info(struct port_info *pi)
8783 {
8784 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8785 	struct fw_port_cmd port_cmd;
8786 	int ret;
8787 
8788 	memset(&port_cmd, 0, sizeof(port_cmd));
8789 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8790 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8791 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8792 	port_cmd.action_to_len16 = cpu_to_be32(
8793 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8794 				     ? FW_PORT_ACTION_GET_PORT_INFO
8795 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8796 		FW_LEN16(port_cmd));
8797 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8798 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8799 	if (ret)
8800 		return ret;
8801 
8802 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8803 	return 0;
8804 }
8805 
8806 /**
8807  *	t4_get_link_params - retrieve basic link parameters for given port
8808  *	@pi: the port
8809  *	@link_okp: value return pointer for link up/down
8810  *	@speedp: value return pointer for speed (Mb/s)
8811  *	@mtup: value return pointer for mtu
8812  *
8813  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8814  *	and MTU for a specified port.  A negative error is returned on
8815  *	failure; 0 on success.
8816  */
t4_get_link_params(struct port_info * pi,unsigned int * link_okp,unsigned int * speedp,unsigned int * mtup)8817 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8818 		       unsigned int *speedp, unsigned int *mtup)
8819 {
8820 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8821 	unsigned int action, link_ok, mtu;
8822 	struct fw_port_cmd port_cmd;
8823 	fw_port_cap32_t linkattr;
8824 	int ret;
8825 
8826 	memset(&port_cmd, 0, sizeof(port_cmd));
8827 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8828 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8829 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8830 	action = (fw_caps == FW_CAPS16
8831 		  ? FW_PORT_ACTION_GET_PORT_INFO
8832 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8833 	port_cmd.action_to_len16 = cpu_to_be32(
8834 		FW_PORT_CMD_ACTION_V(action) |
8835 		FW_LEN16(port_cmd));
8836 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8837 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8838 	if (ret)
8839 		return ret;
8840 
8841 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8842 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8843 
8844 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8845 		linkattr = lstatus_to_fwcap(lstatus);
8846 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8847 	} else {
8848 		u32 lstatus32 =
8849 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8850 
8851 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8852 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8853 		mtu = FW_PORT_CMD_MTU32_G(
8854 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8855 	}
8856 
8857 	if (link_okp)
8858 		*link_okp = link_ok;
8859 	if (speedp)
8860 		*speedp = fwcap_to_speed(linkattr);
8861 	if (mtup)
8862 		*mtup = mtu;
8863 
8864 	return 0;
8865 }
8866 
8867 /**
8868  *      t4_handle_fw_rpl - process a FW reply message
8869  *      @adap: the adapter
8870  *      @rpl: start of the FW message
8871  *
8872  *      Processes a FW message, such as link state change messages.
8873  */
t4_handle_fw_rpl(struct adapter * adap,const __be64 * rpl)8874 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8875 {
8876 	u8 opcode = *(const u8 *)rpl;
8877 
8878 	/* This might be a port command ... this simplifies the following
8879 	 * conditionals ...  We can get away with pre-dereferencing
8880 	 * action_to_len16 because it's in the first 16 bytes and all messages
8881 	 * will be at least that long.
8882 	 */
8883 	const struct fw_port_cmd *p = (const void *)rpl;
8884 	unsigned int action =
8885 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8886 
8887 	if (opcode == FW_PORT_CMD &&
8888 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8889 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8890 		int i;
8891 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8892 		struct port_info *pi = NULL;
8893 
8894 		for_each_port(adap, i) {
8895 			pi = adap2pinfo(adap, i);
8896 			if (pi->tx_chan == chan)
8897 				break;
8898 		}
8899 
8900 		t4_handle_get_port_info(pi, rpl);
8901 	} else {
8902 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8903 			 opcode);
8904 		return -EINVAL;
8905 	}
8906 	return 0;
8907 }
8908 
get_pci_mode(struct adapter * adapter,struct pci_params * p)8909 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8910 {
8911 	u16 val;
8912 
8913 	if (pci_is_pcie(adapter->pdev)) {
8914 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8915 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8916 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8917 	}
8918 }
8919 
8920 /**
8921  *	init_link_config - initialize a link's SW state
8922  *	@lc: pointer to structure holding the link state
8923  *	@pcaps: link Port Capabilities
8924  *	@acaps: link current Advertised Port Capabilities
8925  *
8926  *	Initializes the SW state maintained for each link, including the link's
8927  *	capabilities and default speed/flow-control/autonegotiation settings.
8928  */
init_link_config(struct link_config * lc,fw_port_cap32_t pcaps,fw_port_cap32_t acaps)8929 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8930 			     fw_port_cap32_t acaps)
8931 {
8932 	lc->pcaps = pcaps;
8933 	lc->def_acaps = acaps;
8934 	lc->lpacaps = 0;
8935 	lc->speed_caps = 0;
8936 	lc->speed = 0;
8937 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8938 
8939 	/* For Forward Error Control, we default to whatever the Firmware
8940 	 * tells us the Link is currently advertising.
8941 	 */
8942 	lc->requested_fec = FEC_AUTO;
8943 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8944 
8945 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8946 	 * "enabled" and copy over all of the Physical Port Capabilities
8947 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8948 	 * Auto-Negotiate disabled and select the highest supported speed
8949 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8950 	 * and t4_handle_get_port_info().
8951 	 */
8952 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8953 		lc->acaps = lc->pcaps & ADVERT_MASK;
8954 		lc->autoneg = AUTONEG_ENABLE;
8955 		lc->requested_fc |= PAUSE_AUTONEG;
8956 	} else {
8957 		lc->acaps = 0;
8958 		lc->autoneg = AUTONEG_DISABLE;
8959 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8960 	}
8961 }
8962 
8963 #define CIM_PF_NOACCESS 0xeeeeeeee
8964 
t4_wait_dev_ready(void __iomem * regs)8965 int t4_wait_dev_ready(void __iomem *regs)
8966 {
8967 	u32 whoami;
8968 
8969 	whoami = readl(regs + PL_WHOAMI_A);
8970 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8971 		return 0;
8972 
8973 	msleep(500);
8974 	whoami = readl(regs + PL_WHOAMI_A);
8975 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8976 }
8977 
8978 struct flash_desc {
8979 	u32 vendor_and_model_id;
8980 	u32 size_mb;
8981 };
8982 
t4_get_flash_params(struct adapter * adap)8983 static int t4_get_flash_params(struct adapter *adap)
8984 {
8985 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8986 	 * to the preexisting code.  All flash parts have 64KB sectors.
8987 	 */
8988 	static struct flash_desc supported_flash[] = {
8989 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8990 	};
8991 
8992 	unsigned int part, manufacturer;
8993 	unsigned int density, size = 0;
8994 	u32 flashid = 0;
8995 	int ret;
8996 
8997 	/* Issue a Read ID Command to the Flash part.  We decode supported
8998 	 * Flash parts and their sizes from this.  There's a newer Query
8999 	 * Command which can retrieve detailed geometry information but many
9000 	 * Flash parts don't support it.
9001 	 */
9002 
9003 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
9004 	if (!ret)
9005 		ret = sf1_read(adap, 3, 0, 1, &flashid);
9006 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
9007 	if (ret)
9008 		return ret;
9009 
9010 	/* Check to see if it's one of our non-standard supported Flash parts.
9011 	 */
9012 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9013 		if (supported_flash[part].vendor_and_model_id == flashid) {
9014 			adap->params.sf_size = supported_flash[part].size_mb;
9015 			adap->params.sf_nsec =
9016 				adap->params.sf_size / SF_SEC_SIZE;
9017 			goto found;
9018 		}
9019 
9020 	/* Decode Flash part size.  The code below looks repetitive with
9021 	 * common encodings, but that's not guaranteed in the JEDEC
9022 	 * specification for the Read JEDEC ID command.  The only thing that
9023 	 * we're guaranteed by the JEDEC specification is where the
9024 	 * Manufacturer ID is in the returned result.  After that each
9025 	 * Manufacturer ~could~ encode things completely differently.
9026 	 * Note, all Flash parts must have 64KB sectors.
9027 	 */
9028 	manufacturer = flashid & 0xff;
9029 	switch (manufacturer) {
9030 	case 0x20: { /* Micron/Numonix */
9031 		/* This Density -> Size decoding table is taken from Micron
9032 		 * Data Sheets.
9033 		 */
9034 		density = (flashid >> 16) & 0xff;
9035 		switch (density) {
9036 		case 0x14: /* 1MB */
9037 			size = 1 << 20;
9038 			break;
9039 		case 0x15: /* 2MB */
9040 			size = 1 << 21;
9041 			break;
9042 		case 0x16: /* 4MB */
9043 			size = 1 << 22;
9044 			break;
9045 		case 0x17: /* 8MB */
9046 			size = 1 << 23;
9047 			break;
9048 		case 0x18: /* 16MB */
9049 			size = 1 << 24;
9050 			break;
9051 		case 0x19: /* 32MB */
9052 			size = 1 << 25;
9053 			break;
9054 		case 0x20: /* 64MB */
9055 			size = 1 << 26;
9056 			break;
9057 		case 0x21: /* 128MB */
9058 			size = 1 << 27;
9059 			break;
9060 		case 0x22: /* 256MB */
9061 			size = 1 << 28;
9062 			break;
9063 		}
9064 		break;
9065 	}
9066 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9067 		/* This Density -> Size decoding table is taken from ISSI
9068 		 * Data Sheets.
9069 		 */
9070 		density = (flashid >> 16) & 0xff;
9071 		switch (density) {
9072 		case 0x16: /* 32 MB */
9073 			size = 1 << 25;
9074 			break;
9075 		case 0x17: /* 64MB */
9076 			size = 1 << 26;
9077 			break;
9078 		}
9079 		break;
9080 	}
9081 	case 0xc2: { /* Macronix */
9082 		/* This Density -> Size decoding table is taken from Macronix
9083 		 * Data Sheets.
9084 		 */
9085 		density = (flashid >> 16) & 0xff;
9086 		switch (density) {
9087 		case 0x17: /* 8MB */
9088 			size = 1 << 23;
9089 			break;
9090 		case 0x18: /* 16MB */
9091 			size = 1 << 24;
9092 			break;
9093 		}
9094 		break;
9095 	}
9096 	case 0xef: { /* Winbond */
9097 		/* This Density -> Size decoding table is taken from Winbond
9098 		 * Data Sheets.
9099 		 */
9100 		density = (flashid >> 16) & 0xff;
9101 		switch (density) {
9102 		case 0x17: /* 8MB */
9103 			size = 1 << 23;
9104 			break;
9105 		case 0x18: /* 16MB */
9106 			size = 1 << 24;
9107 			break;
9108 		}
9109 		break;
9110 	}
9111 	}
9112 
9113 	/* If we didn't recognize the FLASH part, that's no real issue: the
9114 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9115 	 * use a FLASH part which is at least 4MB in size and has 64KB
9116 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9117 	 * than 4MB, but that's all we really need.
9118 	 */
9119 	if (size == 0) {
9120 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9121 			 flashid);
9122 		size = 1 << 22;
9123 	}
9124 
9125 	/* Store decoded Flash size and fall through into vetting code. */
9126 	adap->params.sf_size = size;
9127 	adap->params.sf_nsec = size / SF_SEC_SIZE;
9128 
9129 found:
9130 	if (adap->params.sf_size < FLASH_MIN_SIZE)
9131 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9132 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9133 	return 0;
9134 }
9135 
9136 /**
9137  *	t4_prep_adapter - prepare SW and HW for operation
9138  *	@adapter: the adapter
9139  *
9140  *	Initialize adapter SW state for the various HW modules, set initial
9141  *	values for some adapter tunables, take PHYs out of reset, and
9142  *	initialize the MDIO interface.
9143  */
t4_prep_adapter(struct adapter * adapter)9144 int t4_prep_adapter(struct adapter *adapter)
9145 {
9146 	int ret, ver;
9147 	uint16_t device_id;
9148 	u32 pl_rev;
9149 
9150 	get_pci_mode(adapter, &adapter->params.pci);
9151 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9152 
9153 	ret = t4_get_flash_params(adapter);
9154 	if (ret < 0) {
9155 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9156 		return ret;
9157 	}
9158 
9159 	/* Retrieve adapter's device ID
9160 	 */
9161 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9162 	ver = device_id >> 12;
9163 	adapter->params.chip = 0;
9164 	switch (ver) {
9165 	case CHELSIO_T4:
9166 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9167 		adapter->params.arch.sge_fl_db = DBPRIO_F;
9168 		adapter->params.arch.mps_tcam_size =
9169 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9170 		adapter->params.arch.mps_rplc_size = 128;
9171 		adapter->params.arch.nchan = NCHAN;
9172 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9173 		adapter->params.arch.vfcount = 128;
9174 		/* Congestion map is for 4 channels so that
9175 		 * MPS can have 4 priority per port.
9176 		 */
9177 		adapter->params.arch.cng_ch_bits_log = 2;
9178 		break;
9179 	case CHELSIO_T5:
9180 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9181 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9182 		adapter->params.arch.mps_tcam_size =
9183 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9184 		adapter->params.arch.mps_rplc_size = 128;
9185 		adapter->params.arch.nchan = NCHAN;
9186 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9187 		adapter->params.arch.vfcount = 128;
9188 		adapter->params.arch.cng_ch_bits_log = 2;
9189 		break;
9190 	case CHELSIO_T6:
9191 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9192 		adapter->params.arch.sge_fl_db = 0;
9193 		adapter->params.arch.mps_tcam_size =
9194 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9195 		adapter->params.arch.mps_rplc_size = 256;
9196 		adapter->params.arch.nchan = 2;
9197 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9198 		adapter->params.arch.vfcount = 256;
9199 		/* Congestion map will be for 2 channels so that
9200 		 * MPS can have 8 priority per port.
9201 		 */
9202 		adapter->params.arch.cng_ch_bits_log = 3;
9203 		break;
9204 	default:
9205 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9206 			device_id);
9207 		return -EINVAL;
9208 	}
9209 
9210 	adapter->params.cim_la_size = CIMLA_SIZE;
9211 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9212 
9213 	/*
9214 	 * Default port for debugging in case we can't reach FW.
9215 	 */
9216 	adapter->params.nports = 1;
9217 	adapter->params.portvec = 1;
9218 	adapter->params.vpd.cclk = 50000;
9219 
9220 	/* Set PCIe completion timeout to 4 seconds. */
9221 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9222 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9223 	return 0;
9224 }
9225 
9226 /**
9227  *	t4_shutdown_adapter - shut down adapter, host & wire
9228  *	@adapter: the adapter
9229  *
9230  *	Perform an emergency shutdown of the adapter and stop it from
9231  *	continuing any further communication on the ports or DMA to the
9232  *	host.  This is typically used when the adapter and/or firmware
9233  *	have crashed and we want to prevent any further accidental
9234  *	communication with the rest of the world.  This will also force
9235  *	the port Link Status to go down -- if register writes work --
9236  *	which should help our peers figure out that we're down.
9237  */
t4_shutdown_adapter(struct adapter * adapter)9238 int t4_shutdown_adapter(struct adapter *adapter)
9239 {
9240 	int port;
9241 
9242 	t4_intr_disable(adapter);
9243 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9244 	for_each_port(adapter, port) {
9245 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9246 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9247 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9248 
9249 		t4_write_reg(adapter, a_port_cfg,
9250 			     t4_read_reg(adapter, a_port_cfg)
9251 			     & ~SIGNAL_DET_V(1));
9252 	}
9253 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9254 
9255 	return 0;
9256 }
9257 
9258 /**
9259  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9260  *	@adapter: the adapter
9261  *	@qid: the Queue ID
9262  *	@qtype: the Ingress or Egress type for @qid
9263  *	@user: true if this request is for a user mode queue
9264  *	@pbar2_qoffset: BAR2 Queue Offset
9265  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9266  *
9267  *	Returns the BAR2 SGE Queue Registers information associated with the
9268  *	indicated Absolute Queue ID.  These are passed back in return value
9269  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9270  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9271  *
9272  *	This may return an error which indicates that BAR2 SGE Queue
9273  *	registers aren't available.  If an error is not returned, then the
9274  *	following values are returned:
9275  *
9276  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9277  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9278  *
9279  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9280  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9281  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9282  *	then these "Inferred Queue ID" register may not be used.
9283  */
t4_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)9284 int t4_bar2_sge_qregs(struct adapter *adapter,
9285 		      unsigned int qid,
9286 		      enum t4_bar2_qtype qtype,
9287 		      int user,
9288 		      u64 *pbar2_qoffset,
9289 		      unsigned int *pbar2_qid)
9290 {
9291 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9292 	u64 bar2_page_offset, bar2_qoffset;
9293 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9294 
9295 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9296 	if (!user && is_t4(adapter->params.chip))
9297 		return -EINVAL;
9298 
9299 	/* Get our SGE Page Size parameters.
9300 	 */
9301 	page_shift = adapter->params.sge.hps + 10;
9302 	page_size = 1 << page_shift;
9303 
9304 	/* Get the right Queues per Page parameters for our Queue.
9305 	 */
9306 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9307 		     ? adapter->params.sge.eq_qpp
9308 		     : adapter->params.sge.iq_qpp);
9309 	qpp_mask = (1 << qpp_shift) - 1;
9310 
9311 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9312 	 *  o The BAR2 page the Queue registers will be in.
9313 	 *  o The BAR2 Queue ID.
9314 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9315 	 */
9316 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9317 	bar2_qid = qid & qpp_mask;
9318 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9319 
9320 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9321 	 * hardware will infer the Absolute Queue ID simply from the writes to
9322 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9323 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9324 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9325 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9326 	 * from the BAR2 Page and BAR2 Queue ID.
9327 	 *
9328 	 * One important censequence of this is that some BAR2 SGE registers
9329 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9330 	 * there.  But other registers synthesize the SGE Queue ID purely
9331 	 * from the writes to the registers -- the Write Combined Doorbell
9332 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9333 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9334 	 * Queue ID can be inferred from simple writes.
9335 	 */
9336 	bar2_qoffset = bar2_page_offset;
9337 	bar2_qinferred = (bar2_qid_offset < page_size);
9338 	if (bar2_qinferred) {
9339 		bar2_qoffset += bar2_qid_offset;
9340 		bar2_qid = 0;
9341 	}
9342 
9343 	*pbar2_qoffset = bar2_qoffset;
9344 	*pbar2_qid = bar2_qid;
9345 	return 0;
9346 }
9347 
9348 /**
9349  *	t4_init_devlog_params - initialize adapter->params.devlog
9350  *	@adap: the adapter
9351  *
9352  *	Initialize various fields of the adapter's Firmware Device Log
9353  *	Parameters structure.
9354  */
t4_init_devlog_params(struct adapter * adap)9355 int t4_init_devlog_params(struct adapter *adap)
9356 {
9357 	struct devlog_params *dparams = &adap->params.devlog;
9358 	u32 pf_dparams;
9359 	unsigned int devlog_meminfo;
9360 	struct fw_devlog_cmd devlog_cmd;
9361 	int ret;
9362 
9363 	/* If we're dealing with newer firmware, the Device Log Parameters
9364 	 * are stored in a designated register which allows us to access the
9365 	 * Device Log even if we can't talk to the firmware.
9366 	 */
9367 	pf_dparams =
9368 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9369 	if (pf_dparams) {
9370 		unsigned int nentries, nentries128;
9371 
9372 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9373 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9374 
9375 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9376 		nentries = (nentries128 + 1) * 128;
9377 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9378 
9379 		return 0;
9380 	}
9381 
9382 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9383 	 */
9384 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9385 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9386 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9387 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9388 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9389 			 &devlog_cmd);
9390 	if (ret)
9391 		return ret;
9392 
9393 	devlog_meminfo =
9394 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9395 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9396 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9397 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9398 
9399 	return 0;
9400 }
9401 
9402 /**
9403  *	t4_init_sge_params - initialize adap->params.sge
9404  *	@adapter: the adapter
9405  *
9406  *	Initialize various fields of the adapter's SGE Parameters structure.
9407  */
t4_init_sge_params(struct adapter * adapter)9408 int t4_init_sge_params(struct adapter *adapter)
9409 {
9410 	struct sge_params *sge_params = &adapter->params.sge;
9411 	u32 hps, qpp;
9412 	unsigned int s_hps, s_qpp;
9413 
9414 	/* Extract the SGE Page Size for our PF.
9415 	 */
9416 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9417 	s_hps = (HOSTPAGESIZEPF0_S +
9418 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9419 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9420 
9421 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9422 	 */
9423 	s_qpp = (QUEUESPERPAGEPF0_S +
9424 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9425 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9426 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9427 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9428 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9429 
9430 	return 0;
9431 }
9432 
9433 /**
9434  *      t4_init_tp_params - initialize adap->params.tp
9435  *      @adap: the adapter
9436  *      @sleep_ok: if true we may sleep while awaiting command completion
9437  *
9438  *      Initialize various fields of the adapter's TP Parameters structure.
9439  */
t4_init_tp_params(struct adapter * adap,bool sleep_ok)9440 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9441 {
9442 	u32 param, val, v;
9443 	int chan, ret;
9444 
9445 
9446 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9447 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9448 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9449 
9450 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9451 	for (chan = 0; chan < NCHAN; chan++)
9452 		adap->params.tp.tx_modq[chan] = chan;
9453 
9454 	/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9455 	 * Configuration.
9456 	 */
9457 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9458 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9459 		 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9460 
9461 	/* Read current value */
9462 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9463 			      &param, &val);
9464 	if (ret == 0) {
9465 		dev_info(adap->pdev_dev,
9466 			 "Current filter mode/mask 0x%x:0x%x\n",
9467 			 FW_PARAMS_PARAM_FILTER_MODE_G(val),
9468 			 FW_PARAMS_PARAM_FILTER_MASK_G(val));
9469 		adap->params.tp.vlan_pri_map =
9470 			FW_PARAMS_PARAM_FILTER_MODE_G(val);
9471 		adap->params.tp.filter_mask =
9472 			FW_PARAMS_PARAM_FILTER_MASK_G(val);
9473 	} else {
9474 		dev_info(adap->pdev_dev,
9475 			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9476 
9477 		/* Incase of older-fw (which doesn't expose the api
9478 		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9479 		 * the fw api) combination, fall-back to older method of reading
9480 		 * the filter mode from indirect-register
9481 		 */
9482 		t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9483 			       TP_VLAN_PRI_MAP_A, sleep_ok);
9484 
9485 		/* With the older-fw and newer-driver combination we might run
9486 		 * into an issue when user wants to use hash filter region but
9487 		 * the filter_mask is zero, in this case filter_mask validation
9488 		 * is tough. To avoid that we set the filter_mask same as filter
9489 		 * mode, which will behave exactly as the older way of ignoring
9490 		 * the filter mask validation.
9491 		 */
9492 		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9493 	}
9494 
9495 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9496 		       TP_INGRESS_CONFIG_A, sleep_ok);
9497 
9498 	/* For T6, cache the adapter's compressed error vector
9499 	 * and passing outer header info for encapsulated packets.
9500 	 */
9501 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9502 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9503 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9504 	}
9505 
9506 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9507 	 * shift positions of several elements of the Compressed Filter Tuple
9508 	 * for this adapter which we need frequently ...
9509 	 */
9510 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9511 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9512 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9513 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9514 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9515 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9516 							       PROTOCOL_F);
9517 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9518 								ETHERTYPE_F);
9519 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9520 							       MACMATCH_F);
9521 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9522 								MPSHITTYPE_F);
9523 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9524 							   FRAGMENTATION_F);
9525 
9526 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9527 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9528 	 */
9529 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9530 		adap->params.tp.vnic_shift = -1;
9531 
9532 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9533 	adap->params.tp.hash_filter_mask = v;
9534 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9535 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9536 	return 0;
9537 }
9538 
9539 /**
9540  *      t4_filter_field_shift - calculate filter field shift
9541  *      @adap: the adapter
9542  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9543  *
9544  *      Return the shift position of a filter field within the Compressed
9545  *      Filter Tuple.  The filter field is specified via its selection bit
9546  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9547  */
t4_filter_field_shift(const struct adapter * adap,int filter_sel)9548 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9549 {
9550 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9551 	unsigned int sel;
9552 	int field_shift;
9553 
9554 	if ((filter_mode & filter_sel) == 0)
9555 		return -1;
9556 
9557 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9558 		switch (filter_mode & sel) {
9559 		case FCOE_F:
9560 			field_shift += FT_FCOE_W;
9561 			break;
9562 		case PORT_F:
9563 			field_shift += FT_PORT_W;
9564 			break;
9565 		case VNIC_ID_F:
9566 			field_shift += FT_VNIC_ID_W;
9567 			break;
9568 		case VLAN_F:
9569 			field_shift += FT_VLAN_W;
9570 			break;
9571 		case TOS_F:
9572 			field_shift += FT_TOS_W;
9573 			break;
9574 		case PROTOCOL_F:
9575 			field_shift += FT_PROTOCOL_W;
9576 			break;
9577 		case ETHERTYPE_F:
9578 			field_shift += FT_ETHERTYPE_W;
9579 			break;
9580 		case MACMATCH_F:
9581 			field_shift += FT_MACMATCH_W;
9582 			break;
9583 		case MPSHITTYPE_F:
9584 			field_shift += FT_MPSHITTYPE_W;
9585 			break;
9586 		case FRAGMENTATION_F:
9587 			field_shift += FT_FRAGMENTATION_W;
9588 			break;
9589 		}
9590 	}
9591 	return field_shift;
9592 }
9593 
t4_init_rss_mode(struct adapter * adap,int mbox)9594 int t4_init_rss_mode(struct adapter *adap, int mbox)
9595 {
9596 	int i, ret;
9597 	struct fw_rss_vi_config_cmd rvc;
9598 
9599 	memset(&rvc, 0, sizeof(rvc));
9600 
9601 	for_each_port(adap, i) {
9602 		struct port_info *p = adap2pinfo(adap, i);
9603 
9604 		rvc.op_to_viid =
9605 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9606 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9607 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9608 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9609 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9610 		if (ret)
9611 			return ret;
9612 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9613 	}
9614 	return 0;
9615 }
9616 
9617 /**
9618  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9619  *	@pi: the port_info
9620  *	@mbox: mailbox to use for the FW command
9621  *	@port: physical port associated with the VI
9622  *	@pf: the PF owning the VI
9623  *	@vf: the VF owning the VI
9624  *	@mac: the MAC address of the VI
9625  *
9626  *	Allocates a virtual interface for the given physical port.  If @mac is
9627  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9628  *	@mac should be large enough to hold an Ethernet address.
9629  *	Returns < 0 on error.
9630  */
t4_init_portinfo(struct port_info * pi,int mbox,int port,int pf,int vf,u8 mac[])9631 int t4_init_portinfo(struct port_info *pi, int mbox,
9632 		     int port, int pf, int vf, u8 mac[])
9633 {
9634 	struct adapter *adapter = pi->adapter;
9635 	unsigned int fw_caps = adapter->params.fw_caps_support;
9636 	struct fw_port_cmd cmd;
9637 	unsigned int rss_size;
9638 	enum fw_port_type port_type;
9639 	int mdio_addr;
9640 	fw_port_cap32_t pcaps, acaps;
9641 	u8 vivld = 0, vin = 0;
9642 	int ret;
9643 
9644 	/* If we haven't yet determined whether we're talking to Firmware
9645 	 * which knows the new 32-bit Port Capabilities, it's time to find
9646 	 * out now.  This will also tell new Firmware to send us Port Status
9647 	 * Updates using the new 32-bit Port Capabilities version of the
9648 	 * Port Information message.
9649 	 */
9650 	if (fw_caps == FW_CAPS_UNKNOWN) {
9651 		u32 param, val;
9652 
9653 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9654 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9655 		val = 1;
9656 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9657 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9658 		adapter->params.fw_caps_support = fw_caps;
9659 	}
9660 
9661 	memset(&cmd, 0, sizeof(cmd));
9662 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9663 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9664 				       FW_PORT_CMD_PORTID_V(port));
9665 	cmd.action_to_len16 = cpu_to_be32(
9666 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9667 				     ? FW_PORT_ACTION_GET_PORT_INFO
9668 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9669 		FW_LEN16(cmd));
9670 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9671 	if (ret)
9672 		return ret;
9673 
9674 	/* Extract the various fields from the Port Information message.
9675 	 */
9676 	if (fw_caps == FW_CAPS16) {
9677 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9678 
9679 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9680 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9681 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9682 			     : -1);
9683 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9684 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9685 	} else {
9686 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9687 
9688 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9689 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9690 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9691 			     : -1);
9692 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9693 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9694 	}
9695 
9696 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9697 			  &vivld, &vin);
9698 	if (ret < 0)
9699 		return ret;
9700 
9701 	pi->viid = ret;
9702 	pi->tx_chan = port;
9703 	pi->lport = port;
9704 	pi->rss_size = rss_size;
9705 	pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9706 
9707 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9708 	 * save the returned values.
9709 	 */
9710 	if (adapter->params.viid_smt_extn_support) {
9711 		pi->vivld = vivld;
9712 		pi->vin = vin;
9713 	} else {
9714 		/* Retrieve the values from VIID */
9715 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9716 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9717 	}
9718 
9719 	pi->port_type = port_type;
9720 	pi->mdio_addr = mdio_addr;
9721 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9722 
9723 	init_link_config(&pi->link_cfg, pcaps, acaps);
9724 	return 0;
9725 }
9726 
t4_port_init(struct adapter * adap,int mbox,int pf,int vf)9727 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9728 {
9729 	u8 addr[6];
9730 	int ret, i, j = 0;
9731 
9732 	for_each_port(adap, i) {
9733 		struct port_info *pi = adap2pinfo(adap, i);
9734 
9735 		while ((adap->params.portvec & (1 << j)) == 0)
9736 			j++;
9737 
9738 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9739 		if (ret)
9740 			return ret;
9741 
9742 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9743 		j++;
9744 	}
9745 	return 0;
9746 }
9747 
t4_init_port_mirror(struct port_info * pi,u8 mbox,u8 port,u8 pf,u8 vf,u16 * mirror_viid)9748 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9749 			u16 *mirror_viid)
9750 {
9751 	int ret;
9752 
9753 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9754 			  NULL, NULL);
9755 	if (ret < 0)
9756 		return ret;
9757 
9758 	if (mirror_viid)
9759 		*mirror_viid = ret;
9760 
9761 	return 0;
9762 }
9763 
9764 /**
9765  *	t4_read_cimq_cfg - read CIM queue configuration
9766  *	@adap: the adapter
9767  *	@base: holds the queue base addresses in bytes
9768  *	@size: holds the queue sizes in bytes
9769  *	@thres: holds the queue full thresholds in bytes
9770  *
9771  *	Returns the current configuration of the CIM queues, starting with
9772  *	the IBQs, then the OBQs.
9773  */
t4_read_cimq_cfg(struct adapter * adap,u16 * base,u16 * size,u16 * thres)9774 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9775 {
9776 	unsigned int i, v;
9777 	int cim_num_obq = is_t4(adap->params.chip) ?
9778 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9779 
9780 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9781 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9782 			     QUENUMSELECT_V(i));
9783 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9784 		/* value is in 256-byte units */
9785 		*base++ = CIMQBASE_G(v) * 256;
9786 		*size++ = CIMQSIZE_G(v) * 256;
9787 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9788 	}
9789 	for (i = 0; i < cim_num_obq; i++) {
9790 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9791 			     QUENUMSELECT_V(i));
9792 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9793 		/* value is in 256-byte units */
9794 		*base++ = CIMQBASE_G(v) * 256;
9795 		*size++ = CIMQSIZE_G(v) * 256;
9796 	}
9797 }
9798 
9799 /**
9800  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9801  *	@adap: the adapter
9802  *	@qid: the queue index
9803  *	@data: where to store the queue contents
9804  *	@n: capacity of @data in 32-bit words
9805  *
9806  *	Reads the contents of the selected CIM queue starting at address 0 up
9807  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9808  *	error and the number of 32-bit words actually read on success.
9809  */
t4_read_cim_ibq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)9810 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9811 {
9812 	int i, err, attempts;
9813 	unsigned int addr;
9814 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9815 
9816 	if (qid > 5 || (n & 3))
9817 		return -EINVAL;
9818 
9819 	addr = qid * nwords;
9820 	if (n > nwords)
9821 		n = nwords;
9822 
9823 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9824 	 * Wait for 1 Sec with a delay of 1 usec.
9825 	 */
9826 	attempts = 1000000;
9827 
9828 	for (i = 0; i < n; i++, addr++) {
9829 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9830 			     IBQDBGEN_F);
9831 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9832 				      attempts, 1);
9833 		if (err)
9834 			return err;
9835 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9836 	}
9837 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9838 	return i;
9839 }
9840 
9841 /**
9842  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9843  *	@adap: the adapter
9844  *	@qid: the queue index
9845  *	@data: where to store the queue contents
9846  *	@n: capacity of @data in 32-bit words
9847  *
9848  *	Reads the contents of the selected CIM queue starting at address 0 up
9849  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9850  *	error and the number of 32-bit words actually read on success.
9851  */
t4_read_cim_obq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)9852 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9853 {
9854 	int i, err;
9855 	unsigned int addr, v, nwords;
9856 	int cim_num_obq = is_t4(adap->params.chip) ?
9857 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9858 
9859 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9860 		return -EINVAL;
9861 
9862 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9863 		     QUENUMSELECT_V(qid));
9864 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9865 
9866 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9867 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9868 	if (n > nwords)
9869 		n = nwords;
9870 
9871 	for (i = 0; i < n; i++, addr++) {
9872 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9873 			     OBQDBGEN_F);
9874 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9875 				      2, 1);
9876 		if (err)
9877 			return err;
9878 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9879 	}
9880 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9881 	return i;
9882 }
9883 
9884 /**
9885  *	t4_cim_read - read a block from CIM internal address space
9886  *	@adap: the adapter
9887  *	@addr: the start address within the CIM address space
9888  *	@n: number of words to read
9889  *	@valp: where to store the result
9890  *
9891  *	Reads a block of 4-byte words from the CIM intenal address space.
9892  */
t4_cim_read(struct adapter * adap,unsigned int addr,unsigned int n,unsigned int * valp)9893 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9894 		unsigned int *valp)
9895 {
9896 	int ret = 0;
9897 
9898 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9899 		return -EBUSY;
9900 
9901 	for ( ; !ret && n--; addr += 4) {
9902 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9903 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9904 				      0, 5, 2);
9905 		if (!ret)
9906 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9907 	}
9908 	return ret;
9909 }
9910 
9911 /**
9912  *	t4_cim_write - write a block into CIM internal address space
9913  *	@adap: the adapter
9914  *	@addr: the start address within the CIM address space
9915  *	@n: number of words to write
9916  *	@valp: set of values to write
9917  *
9918  *	Writes a block of 4-byte words into the CIM intenal address space.
9919  */
t4_cim_write(struct adapter * adap,unsigned int addr,unsigned int n,const unsigned int * valp)9920 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9921 		 const unsigned int *valp)
9922 {
9923 	int ret = 0;
9924 
9925 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9926 		return -EBUSY;
9927 
9928 	for ( ; !ret && n--; addr += 4) {
9929 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9930 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9931 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9932 				      0, 5, 2);
9933 	}
9934 	return ret;
9935 }
9936 
t4_cim_write1(struct adapter * adap,unsigned int addr,unsigned int val)9937 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9938 			 unsigned int val)
9939 {
9940 	return t4_cim_write(adap, addr, 1, &val);
9941 }
9942 
9943 /**
9944  *	t4_cim_read_la - read CIM LA capture buffer
9945  *	@adap: the adapter
9946  *	@la_buf: where to store the LA data
9947  *	@wrptr: the HW write pointer within the capture buffer
9948  *
9949  *	Reads the contents of the CIM LA buffer with the most recent entry at
9950  *	the end	of the returned data and with the entry at @wrptr first.
9951  *	We try to leave the LA in the running state we find it in.
9952  */
t4_cim_read_la(struct adapter * adap,u32 * la_buf,unsigned int * wrptr)9953 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9954 {
9955 	int i, ret;
9956 	unsigned int cfg, val, idx;
9957 
9958 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9959 	if (ret)
9960 		return ret;
9961 
9962 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9963 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9964 		if (ret)
9965 			return ret;
9966 	}
9967 
9968 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9969 	if (ret)
9970 		goto restart;
9971 
9972 	idx = UPDBGLAWRPTR_G(val);
9973 	if (wrptr)
9974 		*wrptr = idx;
9975 
9976 	for (i = 0; i < adap->params.cim_la_size; i++) {
9977 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9978 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9979 		if (ret)
9980 			break;
9981 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9982 		if (ret)
9983 			break;
9984 		if (val & UPDBGLARDEN_F) {
9985 			ret = -ETIMEDOUT;
9986 			break;
9987 		}
9988 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9989 		if (ret)
9990 			break;
9991 
9992 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9993 		 * identify the 32-bit portion of the full 312-bit data
9994 		 */
9995 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9996 			idx = (idx & 0xff0) + 0x10;
9997 		else
9998 			idx++;
9999 		/* address can't exceed 0xfff */
10000 		idx &= UPDBGLARDPTR_M;
10001 	}
10002 restart:
10003 	if (cfg & UPDBGLAEN_F) {
10004 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
10005 				      cfg & ~UPDBGLARDEN_F);
10006 		if (!ret)
10007 			ret = r;
10008 	}
10009 	return ret;
10010 }
10011 
10012 /**
10013  *	t4_tp_read_la - read TP LA capture buffer
10014  *	@adap: the adapter
10015  *	@la_buf: where to store the LA data
10016  *	@wrptr: the HW write pointer within the capture buffer
10017  *
10018  *	Reads the contents of the TP LA buffer with the most recent entry at
10019  *	the end	of the returned data and with the entry at @wrptr first.
10020  *	We leave the LA in the running state we find it in.
10021  */
t4_tp_read_la(struct adapter * adap,u64 * la_buf,unsigned int * wrptr)10022 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10023 {
10024 	bool last_incomplete;
10025 	unsigned int i, cfg, val, idx;
10026 
10027 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
10028 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
10029 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10030 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10031 
10032 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10033 	idx = DBGLAWPTR_G(val);
10034 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10035 	if (last_incomplete)
10036 		idx = (idx + 1) & DBGLARPTR_M;
10037 	if (wrptr)
10038 		*wrptr = idx;
10039 
10040 	val &= 0xffff;
10041 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
10042 	val |= adap->params.tp.la_mask;
10043 
10044 	for (i = 0; i < TPLA_SIZE; i++) {
10045 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10046 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10047 		idx = (idx + 1) & DBGLARPTR_M;
10048 	}
10049 
10050 	/* Wipe out last entry if it isn't valid */
10051 	if (last_incomplete)
10052 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10053 
10054 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
10055 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10056 			     cfg | adap->params.tp.la_mask);
10057 }
10058 
10059 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10060  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10061  * state for more than the Warning Threshold then we'll issue a warning about
10062  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10063  * appears to be hung every Warning Repeat second till the situation clears.
10064  * If the situation clears, we'll note that as well.
10065  */
10066 #define SGE_IDMA_WARN_THRESH 1
10067 #define SGE_IDMA_WARN_REPEAT 300
10068 
10069 /**
10070  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10071  *	@adapter: the adapter
10072  *	@idma: the adapter IDMA Monitor state
10073  *
10074  *	Initialize the state of an SGE Ingress DMA Monitor.
10075  */
t4_idma_monitor_init(struct adapter * adapter,struct sge_idma_monitor_state * idma)10076 void t4_idma_monitor_init(struct adapter *adapter,
10077 			  struct sge_idma_monitor_state *idma)
10078 {
10079 	/* Initialize the state variables for detecting an SGE Ingress DMA
10080 	 * hang.  The SGE has internal counters which count up on each clock
10081 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10082 	 * same state they were on the previous clock tick.  The clock used is
10083 	 * the Core Clock so we have a limit on the maximum "time" they can
10084 	 * record; typically a very small number of seconds.  For instance,
10085 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10086 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10087 	 * risk of having the "timers" overflow and give us the flexibility to
10088 	 * maintain a Hung SGE State Machine of our own which operates across
10089 	 * a longer time frame.
10090 	 */
10091 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10092 	idma->idma_stalled[0] = 0;
10093 	idma->idma_stalled[1] = 0;
10094 }
10095 
10096 /**
10097  *	t4_idma_monitor - monitor SGE Ingress DMA state
10098  *	@adapter: the adapter
10099  *	@idma: the adapter IDMA Monitor state
10100  *	@hz: number of ticks/second
10101  *	@ticks: number of ticks since the last IDMA Monitor call
10102  */
t4_idma_monitor(struct adapter * adapter,struct sge_idma_monitor_state * idma,int hz,int ticks)10103 void t4_idma_monitor(struct adapter *adapter,
10104 		     struct sge_idma_monitor_state *idma,
10105 		     int hz, int ticks)
10106 {
10107 	int i, idma_same_state_cnt[2];
10108 
10109 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10110 	  * are counters inside the SGE which count up on each clock when the
10111 	  * SGE finds its Ingress DMA State Engines in the same states they
10112 	  * were in the previous clock.  The counters will peg out at
10113 	  * 0xffffffff without wrapping around so once they pass the 1s
10114 	  * threshold they'll stay above that till the IDMA state changes.
10115 	  */
10116 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10117 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10118 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10119 
10120 	for (i = 0; i < 2; i++) {
10121 		u32 debug0, debug11;
10122 
10123 		/* If the Ingress DMA Same State Counter ("timer") is less
10124 		 * than 1s, then we can reset our synthesized Stall Timer and
10125 		 * continue.  If we have previously emitted warnings about a
10126 		 * potential stalled Ingress Queue, issue a note indicating
10127 		 * that the Ingress Queue has resumed forward progress.
10128 		 */
10129 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10130 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10131 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10132 					 "resumed after %d seconds\n",
10133 					 i, idma->idma_qid[i],
10134 					 idma->idma_stalled[i] / hz);
10135 			idma->idma_stalled[i] = 0;
10136 			continue;
10137 		}
10138 
10139 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10140 		 * domain.  The first time we get here it'll be because we
10141 		 * passed the 1s Threshold; each additional time it'll be
10142 		 * because the RX Timer Callback is being fired on its regular
10143 		 * schedule.
10144 		 *
10145 		 * If the stall is below our Potential Hung Ingress Queue
10146 		 * Warning Threshold, continue.
10147 		 */
10148 		if (idma->idma_stalled[i] == 0) {
10149 			idma->idma_stalled[i] = hz;
10150 			idma->idma_warn[i] = 0;
10151 		} else {
10152 			idma->idma_stalled[i] += ticks;
10153 			idma->idma_warn[i] -= ticks;
10154 		}
10155 
10156 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10157 			continue;
10158 
10159 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10160 		 */
10161 		if (idma->idma_warn[i] > 0)
10162 			continue;
10163 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10164 
10165 		/* Read and save the SGE IDMA State and Queue ID information.
10166 		 * We do this every time in case it changes across time ...
10167 		 * can't be too careful ...
10168 		 */
10169 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10170 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10171 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10172 
10173 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10174 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10175 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10176 
10177 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10178 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10179 			 i, idma->idma_qid[i], idma->idma_state[i],
10180 			 idma->idma_stalled[i] / hz,
10181 			 debug0, debug11);
10182 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10183 	}
10184 }
10185 
10186 /**
10187  *	t4_load_cfg - download config file
10188  *	@adap: the adapter
10189  *	@cfg_data: the cfg text file to write
10190  *	@size: text file size
10191  *
10192  *	Write the supplied config text file to the card's serial flash.
10193  */
t4_load_cfg(struct adapter * adap,const u8 * cfg_data,unsigned int size)10194 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10195 {
10196 	int ret, i, n, cfg_addr;
10197 	unsigned int addr;
10198 	unsigned int flash_cfg_start_sec;
10199 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10200 
10201 	cfg_addr = t4_flash_cfg_addr(adap);
10202 	if (cfg_addr < 0)
10203 		return cfg_addr;
10204 
10205 	addr = cfg_addr;
10206 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10207 
10208 	if (size > FLASH_CFG_MAX_SIZE) {
10209 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10210 			FLASH_CFG_MAX_SIZE);
10211 		return -EFBIG;
10212 	}
10213 
10214 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10215 			 sf_sec_size);
10216 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10217 				     flash_cfg_start_sec + i - 1);
10218 	/* If size == 0 then we're simply erasing the FLASH sectors associated
10219 	 * with the on-adapter Firmware Configuration File.
10220 	 */
10221 	if (ret || size == 0)
10222 		goto out;
10223 
10224 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10225 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10226 		if ((size - i) <  SF_PAGE_SIZE)
10227 			n = size - i;
10228 		else
10229 			n = SF_PAGE_SIZE;
10230 		ret = t4_write_flash(adap, addr, n, cfg_data, true);
10231 		if (ret)
10232 			goto out;
10233 
10234 		addr += SF_PAGE_SIZE;
10235 		cfg_data += SF_PAGE_SIZE;
10236 	}
10237 
10238 out:
10239 	if (ret)
10240 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10241 			(size == 0 ? "clear" : "download"), ret);
10242 	return ret;
10243 }
10244 
10245 /**
10246  *	t4_set_vf_mac - Set MAC address for the specified VF
10247  *	@adapter: The adapter
10248  *	@vf: one of the VFs instantiated by the specified PF
10249  *	@naddr: the number of MAC addresses
10250  *	@addr: the MAC address(es) to be set to the specified VF
10251  */
t4_set_vf_mac_acl(struct adapter * adapter,unsigned int vf,unsigned int naddr,u8 * addr)10252 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10253 		      unsigned int naddr, u8 *addr)
10254 {
10255 	struct fw_acl_mac_cmd cmd;
10256 
10257 	memset(&cmd, 0, sizeof(cmd));
10258 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10259 				    FW_CMD_REQUEST_F |
10260 				    FW_CMD_WRITE_F |
10261 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10262 				    FW_ACL_MAC_CMD_VFN_V(vf));
10263 
10264 	/* Note: Do not enable the ACL */
10265 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10266 	cmd.nmac = naddr;
10267 
10268 	switch (adapter->pf) {
10269 	case 3:
10270 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10271 		break;
10272 	case 2:
10273 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10274 		break;
10275 	case 1:
10276 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10277 		break;
10278 	case 0:
10279 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10280 		break;
10281 	}
10282 
10283 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10284 }
10285 
10286 /**
10287  * t4_read_pace_tbl - read the pace table
10288  * @adap: the adapter
10289  * @pace_vals: holds the returned values
10290  *
10291  * Returns the values of TP's pace table in microseconds.
10292  */
t4_read_pace_tbl(struct adapter * adap,unsigned int pace_vals[NTX_SCHED])10293 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10294 {
10295 	unsigned int i, v;
10296 
10297 	for (i = 0; i < NTX_SCHED; i++) {
10298 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10299 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10300 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10301 	}
10302 }
10303 
10304 /**
10305  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10306  * @adap: the adapter
10307  * @sched: the scheduler index
10308  * @kbps: the byte rate in Kbps
10309  * @ipg: the interpacket delay in tenths of nanoseconds
10310  * @sleep_ok: if true we may sleep while awaiting command completion
10311  *
10312  * Return the current configuration of a HW Tx scheduler.
10313  */
t4_get_tx_sched(struct adapter * adap,unsigned int sched,unsigned int * kbps,unsigned int * ipg,bool sleep_ok)10314 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10315 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10316 {
10317 	unsigned int v, addr, bpt, cpt;
10318 
10319 	if (kbps) {
10320 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10321 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10322 		if (sched & 1)
10323 			v >>= 16;
10324 		bpt = (v >> 8) & 0xff;
10325 		cpt = v & 0xff;
10326 		if (!cpt) {
10327 			*kbps = 0;	/* scheduler disabled */
10328 		} else {
10329 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10330 			*kbps = (v * bpt) / 125;
10331 		}
10332 	}
10333 	if (ipg) {
10334 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10335 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10336 		if (sched & 1)
10337 			v >>= 16;
10338 		v &= 0xffff;
10339 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10340 	}
10341 }
10342 
10343 /* t4_sge_ctxt_rd - read an SGE context through FW
10344  * @adap: the adapter
10345  * @mbox: mailbox to use for the FW command
10346  * @cid: the context id
10347  * @ctype: the context type
10348  * @data: where to store the context data
10349  *
10350  * Issues a FW command through the given mailbox to read an SGE context.
10351  */
t4_sge_ctxt_rd(struct adapter * adap,unsigned int mbox,unsigned int cid,enum ctxt_type ctype,u32 * data)10352 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10353 		   enum ctxt_type ctype, u32 *data)
10354 {
10355 	struct fw_ldst_cmd c;
10356 	int ret;
10357 
10358 	if (ctype == CTXT_FLM)
10359 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10360 	else
10361 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10362 
10363 	memset(&c, 0, sizeof(c));
10364 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10365 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10366 					FW_LDST_CMD_ADDRSPACE_V(ret));
10367 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10368 	c.u.idctxt.physid = cpu_to_be32(cid);
10369 
10370 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10371 	if (ret == 0) {
10372 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10373 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10374 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10375 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10376 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10377 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10378 	}
10379 	return ret;
10380 }
10381 
10382 /**
10383  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10384  * @adap: the adapter
10385  * @cid: the context id
10386  * @ctype: the context type
10387  * @data: where to store the context data
10388  *
10389  * Reads an SGE context directly, bypassing FW.  This is only for
10390  * debugging when FW is unavailable.
10391  */
t4_sge_ctxt_rd_bd(struct adapter * adap,unsigned int cid,enum ctxt_type ctype,u32 * data)10392 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10393 		      enum ctxt_type ctype, u32 *data)
10394 {
10395 	int i, ret;
10396 
10397 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10398 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10399 	if (!ret)
10400 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10401 			*data++ = t4_read_reg(adap, i);
10402 	return ret;
10403 }
10404 
t4_sched_params(struct adapter * adapter,u8 type,u8 level,u8 mode,u8 rateunit,u8 ratemode,u8 channel,u8 class,u32 minrate,u32 maxrate,u16 weight,u16 pktsize,u16 burstsize)10405 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10406 		    u8 rateunit, u8 ratemode, u8 channel, u8 class,
10407 		    u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10408 		    u16 burstsize)
10409 {
10410 	struct fw_sched_cmd cmd;
10411 
10412 	memset(&cmd, 0, sizeof(cmd));
10413 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10414 				      FW_CMD_REQUEST_F |
10415 				      FW_CMD_WRITE_F);
10416 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10417 
10418 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10419 	cmd.u.params.type = type;
10420 	cmd.u.params.level = level;
10421 	cmd.u.params.mode = mode;
10422 	cmd.u.params.ch = channel;
10423 	cmd.u.params.cl = class;
10424 	cmd.u.params.unit = rateunit;
10425 	cmd.u.params.rate = ratemode;
10426 	cmd.u.params.min = cpu_to_be32(minrate);
10427 	cmd.u.params.max = cpu_to_be32(maxrate);
10428 	cmd.u.params.weight = cpu_to_be16(weight);
10429 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10430 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10431 
10432 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10433 			       NULL, 1);
10434 }
10435 
10436 /**
10437  *	t4_i2c_rd - read I2C data from adapter
10438  *	@adap: the adapter
10439  *	@mbox: mailbox to use for the FW command
10440  *	@port: Port number if per-port device; <0 if not
10441  *	@devid: per-port device ID or absolute device ID
10442  *	@offset: byte offset into device I2C space
10443  *	@len: byte length of I2C space data
10444  *	@buf: buffer in which to return I2C data
10445  *
10446  *	Reads the I2C data from the indicated device and location.
10447  */
t4_i2c_rd(struct adapter * adap,unsigned int mbox,int port,unsigned int devid,unsigned int offset,unsigned int len,u8 * buf)10448 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10449 	      unsigned int devid, unsigned int offset,
10450 	      unsigned int len, u8 *buf)
10451 {
10452 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10453 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10454 	int ret = 0;
10455 
10456 	if (len > I2C_PAGE_SIZE)
10457 		return -EINVAL;
10458 
10459 	/* Dont allow reads that spans multiple pages */
10460 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10461 		return -EINVAL;
10462 
10463 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10464 	ldst_cmd.op_to_addrspace =
10465 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10466 			    FW_CMD_REQUEST_F |
10467 			    FW_CMD_READ_F |
10468 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10469 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10470 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10471 	ldst_cmd.u.i2c.did = devid;
10472 
10473 	while (len > 0) {
10474 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10475 
10476 		ldst_cmd.u.i2c.boffset = offset;
10477 		ldst_cmd.u.i2c.blen = i2c_len;
10478 
10479 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10480 				 &ldst_rpl);
10481 		if (ret)
10482 			break;
10483 
10484 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10485 		offset += i2c_len;
10486 		buf += i2c_len;
10487 		len -= i2c_len;
10488 	}
10489 
10490 	return ret;
10491 }
10492 
10493 /**
10494  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10495  *      @adap: the adapter
10496  *      @mbox: mailbox to use for the FW command
10497  *      @vf: one of the VFs instantiated by the specified PF
10498  *      @vlan: The vlanid to be set
10499  */
t4_set_vlan_acl(struct adapter * adap,unsigned int mbox,unsigned int vf,u16 vlan)10500 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10501 		    u16 vlan)
10502 {
10503 	struct fw_acl_vlan_cmd vlan_cmd;
10504 	unsigned int enable;
10505 
10506 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10507 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10508 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10509 					 FW_CMD_REQUEST_F |
10510 					 FW_CMD_WRITE_F |
10511 					 FW_CMD_EXEC_F |
10512 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10513 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10514 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10515 	/* Drop all packets that donot match vlan id */
10516 	vlan_cmd.dropnovlan_fm = (enable
10517 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10518 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10519 	if (enable != 0) {
10520 		vlan_cmd.nvlan = 1;
10521 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10522 	}
10523 
10524 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10525 }
10526 
10527 /**
10528  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10529  *	@device_id: the device ID to write.
10530  *	@boot_data: the boot image to modify.
10531  *
10532  *	Write the supplied device ID to the boot BIOS image.
10533  */
modify_device_id(int device_id,u8 * boot_data)10534 static void modify_device_id(int device_id, u8 *boot_data)
10535 {
10536 	struct cxgb4_pcir_data *pcir_header;
10537 	struct legacy_pci_rom_hdr *header;
10538 	u8 *cur_header = boot_data;
10539 	u16 pcir_offset;
10540 
10541 	 /* Loop through all chained images and change the device ID's */
10542 	do {
10543 		header = (struct legacy_pci_rom_hdr *)cur_header;
10544 		pcir_offset = le16_to_cpu(header->pcir_offset);
10545 		pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10546 			      pcir_offset);
10547 
10548 		/**
10549 		 * Only modify the Device ID if code type is Legacy or HP.
10550 		 * 0x00: Okay to modify
10551 		 * 0x01: FCODE. Do not modify
10552 		 * 0x03: Okay to modify
10553 		 * 0x04-0xFF: Do not modify
10554 		 */
10555 		if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10556 			u8 csum = 0;
10557 			int i;
10558 
10559 			/**
10560 			 * Modify Device ID to match current adatper
10561 			 */
10562 			pcir_header->device_id = cpu_to_le16(device_id);
10563 
10564 			/**
10565 			 * Set checksum temporarily to 0.
10566 			 * We will recalculate it later.
10567 			 */
10568 			header->cksum = 0x0;
10569 
10570 			/**
10571 			 * Calculate and update checksum
10572 			 */
10573 			for (i = 0; i < (header->size512 * 512); i++)
10574 				csum += cur_header[i];
10575 
10576 			/**
10577 			 * Invert summed value to create the checksum
10578 			 * Writing new checksum value directly to the boot data
10579 			 */
10580 			cur_header[7] = -csum;
10581 
10582 		} else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10583 			/**
10584 			 * Modify Device ID to match current adatper
10585 			 */
10586 			pcir_header->device_id = cpu_to_le16(device_id);
10587 		}
10588 
10589 		/**
10590 		 * Move header pointer up to the next image in the ROM.
10591 		 */
10592 		cur_header += header->size512 * 512;
10593 	} while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10594 }
10595 
10596 /**
10597  *	t4_load_boot - download boot flash
10598  *	@adap: the adapter
10599  *	@boot_data: the boot image to write
10600  *	@boot_addr: offset in flash to write boot_data
10601  *	@size: image size
10602  *
10603  *	Write the supplied boot image to the card's serial flash.
10604  *	The boot image has the following sections: a 28-byte header and the
10605  *	boot image.
10606  */
t4_load_boot(struct adapter * adap,u8 * boot_data,unsigned int boot_addr,unsigned int size)10607 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10608 		 unsigned int boot_addr, unsigned int size)
10609 {
10610 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10611 	unsigned int boot_sector = (boot_addr * 1024);
10612 	struct cxgb4_pci_exp_rom_header *header;
10613 	struct cxgb4_pcir_data *pcir_header;
10614 	int pcir_offset;
10615 	unsigned int i;
10616 	u16 device_id;
10617 	int ret, addr;
10618 
10619 	/**
10620 	 * Make sure the boot image does not encroach on the firmware region
10621 	 */
10622 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10623 		dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10624 		return -EFBIG;
10625 	}
10626 
10627 	/* Get boot header */
10628 	header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10629 	pcir_offset = le16_to_cpu(header->pcir_offset);
10630 	/* PCIR Data Structure */
10631 	pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10632 
10633 	/**
10634 	 * Perform some primitive sanity testing to avoid accidentally
10635 	 * writing garbage over the boot sectors.  We ought to check for
10636 	 * more but it's not worth it for now ...
10637 	 */
10638 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10639 		dev_err(adap->pdev_dev, "boot image too small/large\n");
10640 		return -EFBIG;
10641 	}
10642 
10643 	if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10644 		dev_err(adap->pdev_dev, "Boot image missing signature\n");
10645 		return -EINVAL;
10646 	}
10647 
10648 	/* Check PCI header signature */
10649 	if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10650 		dev_err(adap->pdev_dev, "PCI header missing signature\n");
10651 		return -EINVAL;
10652 	}
10653 
10654 	/* Check Vendor ID matches Chelsio ID*/
10655 	if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10656 		dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10657 		return -EINVAL;
10658 	}
10659 
10660 	/**
10661 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10662 	 * and Boot configuration data sections. These 3 boot sections span
10663 	 * sectors 0 to 7 in flash and live right before the FW image location.
10664 	 */
10665 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10666 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10667 				     (boot_sector >> 16) + i - 1);
10668 
10669 	/**
10670 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10671 	 * with the on-adapter option ROM file
10672 	 */
10673 	if (ret || size == 0)
10674 		goto out;
10675 	/* Retrieve adapter's device ID */
10676 	pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10677        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10678 	device_id = device_id & 0xf0ff;
10679 
10680 	 /* Check PCIE Device ID */
10681 	if (le16_to_cpu(pcir_header->device_id) != device_id) {
10682 		/**
10683 		 * Change the device ID in the Boot BIOS image to match
10684 		 * the Device ID of the current adapter.
10685 		 */
10686 		modify_device_id(device_id, boot_data);
10687 	}
10688 
10689 	/**
10690 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10691 	 * we finish copying the rest of the boot image. This will ensure
10692 	 * that the BIOS boot header will only be written if the boot image
10693 	 * was written in full.
10694 	 */
10695 	addr = boot_sector;
10696 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10697 		addr += SF_PAGE_SIZE;
10698 		boot_data += SF_PAGE_SIZE;
10699 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data,
10700 				     false);
10701 		if (ret)
10702 			goto out;
10703 	}
10704 
10705 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10706 			     (const u8 *)header, false);
10707 
10708 out:
10709 	if (ret)
10710 		dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10711 			ret);
10712 	return ret;
10713 }
10714 
10715 /**
10716  *	t4_flash_bootcfg_addr - return the address of the flash
10717  *	optionrom configuration
10718  *	@adapter: the adapter
10719  *
10720  *	Return the address within the flash where the OptionROM Configuration
10721  *	is stored, or an error if the device FLASH is too small to contain
10722  *	a OptionROM Configuration.
10723  */
t4_flash_bootcfg_addr(struct adapter * adapter)10724 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10725 {
10726 	/**
10727 	 * If the device FLASH isn't large enough to hold a Firmware
10728 	 * Configuration File, return an error.
10729 	 */
10730 	if (adapter->params.sf_size <
10731 	    FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10732 		return -ENOSPC;
10733 
10734 	return FLASH_BOOTCFG_START;
10735 }
10736 
t4_load_bootcfg(struct adapter * adap,const u8 * cfg_data,unsigned int size)10737 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10738 {
10739 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10740 	struct cxgb4_bootcfg_data *header;
10741 	unsigned int flash_cfg_start_sec;
10742 	unsigned int addr, npad;
10743 	int ret, i, n, cfg_addr;
10744 
10745 	cfg_addr = t4_flash_bootcfg_addr(adap);
10746 	if (cfg_addr < 0)
10747 		return cfg_addr;
10748 
10749 	addr = cfg_addr;
10750 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10751 
10752 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10753 		dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10754 			FLASH_BOOTCFG_MAX_SIZE);
10755 		return -EFBIG;
10756 	}
10757 
10758 	header = (struct cxgb4_bootcfg_data *)cfg_data;
10759 	if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10760 		dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10761 		ret = -EINVAL;
10762 		goto out;
10763 	}
10764 
10765 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10766 			 sf_sec_size);
10767 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10768 				     flash_cfg_start_sec + i - 1);
10769 
10770 	/**
10771 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10772 	 * with the on-adapter OptionROM Configuration File.
10773 	 */
10774 	if (ret || size == 0)
10775 		goto out;
10776 
10777 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10778 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10779 		n = min_t(u32, size - i, SF_PAGE_SIZE);
10780 
10781 		ret = t4_write_flash(adap, addr, n, cfg_data, false);
10782 		if (ret)
10783 			goto out;
10784 
10785 		addr += SF_PAGE_SIZE;
10786 		cfg_data += SF_PAGE_SIZE;
10787 	}
10788 
10789 	npad = ((size + 4 - 1) & ~3) - size;
10790 	for (i = 0; i < npad; i++) {
10791 		u8 data = 0;
10792 
10793 		ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data,
10794 				     false);
10795 		if (ret)
10796 			goto out;
10797 	}
10798 
10799 out:
10800 	if (ret)
10801 		dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10802 			(size == 0 ? "clear" : "download"), ret);
10803 	return ret;
10804 }
10805