• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
task_vsize(struct mm_struct * mm)82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
hold_task_mempolicy(struct proc_maps_private * priv)104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
release_task_mempolicy(struct proc_maps_private * priv)113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
hold_task_mempolicy(struct proc_maps_private * priv)118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
release_task_mempolicy(struct proc_maps_private * priv)121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
seq_print_vma_name(struct seq_file * m,struct vm_area_struct * vma)126 static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
127 {
128 	const char __user *name = vma_get_anon_name(vma);
129 	struct mm_struct *mm = vma->vm_mm;
130 
131 	unsigned long page_start_vaddr;
132 	unsigned long page_offset;
133 	unsigned long num_pages;
134 	unsigned long max_len = NAME_MAX;
135 	int i;
136 
137 	page_start_vaddr = (unsigned long)name & PAGE_MASK;
138 	page_offset = (unsigned long)name - page_start_vaddr;
139 	num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
140 
141 	seq_puts(m, "[anon:");
142 
143 	for (i = 0; i < num_pages; i++) {
144 		int len;
145 		int write_len;
146 		const char *kaddr;
147 		long pages_pinned;
148 		struct page *page;
149 
150 		pages_pinned = get_user_pages_remote(mm, page_start_vaddr, 1, 0,
151 						     &page, NULL, NULL);
152 		if (pages_pinned < 1) {
153 			seq_puts(m, "<fault>]");
154 			return;
155 		}
156 
157 		kaddr = (const char *)kmap(page);
158 		len = min(max_len, PAGE_SIZE - page_offset);
159 		write_len = strnlen(kaddr + page_offset, len);
160 		seq_write(m, kaddr + page_offset, write_len);
161 		kunmap(page);
162 		put_user_page(page);
163 
164 		/* if strnlen hit a null terminator then we're done */
165 		if (write_len != len)
166 			break;
167 
168 		max_len -= len;
169 		page_offset = 0;
170 		page_start_vaddr += PAGE_SIZE;
171 	}
172 
173 	seq_putc(m, ']');
174 }
175 
m_start(struct seq_file * m,loff_t * ppos)176 static void *m_start(struct seq_file *m, loff_t *ppos)
177 {
178 	struct proc_maps_private *priv = m->private;
179 	unsigned long last_addr = *ppos;
180 	struct mm_struct *mm;
181 	struct vm_area_struct *vma;
182 
183 	/* See m_next(). Zero at the start or after lseek. */
184 	if (last_addr == -1UL)
185 		return NULL;
186 
187 	priv->task = get_proc_task(priv->inode);
188 	if (!priv->task)
189 		return ERR_PTR(-ESRCH);
190 
191 	mm = priv->mm;
192 	if (!mm || !mmget_not_zero(mm)) {
193 		put_task_struct(priv->task);
194 		priv->task = NULL;
195 		return NULL;
196 	}
197 
198 	if (mmap_read_lock_killable(mm)) {
199 		mmput(mm);
200 		put_task_struct(priv->task);
201 		priv->task = NULL;
202 		return ERR_PTR(-EINTR);
203 	}
204 
205 	hold_task_mempolicy(priv);
206 	priv->tail_vma = get_gate_vma(mm);
207 
208 	vma = find_vma(mm, last_addr);
209 	if (vma)
210 		return vma;
211 
212 	return priv->tail_vma;
213 }
214 
m_next(struct seq_file * m,void * v,loff_t * ppos)215 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
216 {
217 	struct proc_maps_private *priv = m->private;
218 	struct vm_area_struct *next, *vma = v;
219 
220 	if (vma == priv->tail_vma)
221 		next = NULL;
222 	else if (vma->vm_next)
223 		next = vma->vm_next;
224 	else
225 		next = priv->tail_vma;
226 
227 	*ppos = next ? next->vm_start : -1UL;
228 
229 	return next;
230 }
231 
m_stop(struct seq_file * m,void * v)232 static void m_stop(struct seq_file *m, void *v)
233 {
234 	struct proc_maps_private *priv = m->private;
235 	struct mm_struct *mm = priv->mm;
236 
237 	if (!priv->task)
238 		return;
239 
240 	release_task_mempolicy(priv);
241 	mmap_read_unlock(mm);
242 	mmput(mm);
243 	put_task_struct(priv->task);
244 	priv->task = NULL;
245 }
246 
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)247 static int proc_maps_open(struct inode *inode, struct file *file,
248 			const struct seq_operations *ops, int psize)
249 {
250 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
251 
252 	if (!priv)
253 		return -ENOMEM;
254 
255 	priv->inode = inode;
256 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
257 	if (IS_ERR(priv->mm)) {
258 		int err = PTR_ERR(priv->mm);
259 
260 		seq_release_private(inode, file);
261 		return err;
262 	}
263 
264 	return 0;
265 }
266 
proc_map_release(struct inode * inode,struct file * file)267 static int proc_map_release(struct inode *inode, struct file *file)
268 {
269 	struct seq_file *seq = file->private_data;
270 	struct proc_maps_private *priv = seq->private;
271 
272 	if (priv->mm)
273 		mmdrop(priv->mm);
274 
275 	return seq_release_private(inode, file);
276 }
277 
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)278 static int do_maps_open(struct inode *inode, struct file *file,
279 			const struct seq_operations *ops)
280 {
281 	return proc_maps_open(inode, file, ops,
282 				sizeof(struct proc_maps_private));
283 }
284 
285 /*
286  * Indicate if the VMA is a stack for the given task; for
287  * /proc/PID/maps that is the stack of the main task.
288  */
is_stack(struct vm_area_struct * vma)289 static int is_stack(struct vm_area_struct *vma)
290 {
291 	/*
292 	 * We make no effort to guess what a given thread considers to be
293 	 * its "stack".  It's not even well-defined for programs written
294 	 * languages like Go.
295 	 */
296 	return vma->vm_start <= vma->vm_mm->start_stack &&
297 		vma->vm_end >= vma->vm_mm->start_stack;
298 }
299 
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)300 static void show_vma_header_prefix(struct seq_file *m,
301 				   unsigned long start, unsigned long end,
302 				   vm_flags_t flags, unsigned long long pgoff,
303 				   dev_t dev, unsigned long ino)
304 {
305 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
306 	seq_put_hex_ll(m, NULL, start, 8);
307 	seq_put_hex_ll(m, "-", end, 8);
308 	seq_putc(m, ' ');
309 	seq_putc(m, flags & VM_READ ? 'r' : '-');
310 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
311 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
312 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
313 	seq_put_hex_ll(m, " ", pgoff, 8);
314 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
315 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
316 	seq_put_decimal_ull(m, " ", ino);
317 	seq_putc(m, ' ');
318 }
319 
320 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)321 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
322 {
323 	struct mm_struct *mm = vma->vm_mm;
324 	struct file *file = vma->vm_file;
325 	vm_flags_t flags = vma->vm_flags;
326 	unsigned long ino = 0;
327 	unsigned long long pgoff = 0;
328 	unsigned long start, end;
329 	dev_t dev = 0;
330 	const char *name = NULL;
331 
332 	if (file) {
333 		struct inode *inode = file_inode(vma->vm_file);
334 		dev = inode->i_sb->s_dev;
335 		ino = inode->i_ino;
336 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
337 	}
338 
339 	start = vma->vm_start;
340 	end = vma->vm_end;
341 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
342 
343 	/*
344 	 * Print the dentry name for named mappings, and a
345 	 * special [heap] marker for the heap:
346 	 */
347 	if (file) {
348 		seq_pad(m, ' ');
349 		seq_file_path(m, file, "\n");
350 		goto done;
351 	}
352 
353 	if (vma->vm_ops && vma->vm_ops->name) {
354 		name = vma->vm_ops->name(vma);
355 		if (name)
356 			goto done;
357 	}
358 
359 	name = arch_vma_name(vma);
360 	if (!name) {
361 		if (!mm) {
362 			name = "[vdso]";
363 			goto done;
364 		}
365 
366 		if (vma->vm_start <= mm->brk &&
367 		    vma->vm_end >= mm->start_brk) {
368 			name = "[heap]";
369 			goto done;
370 		}
371 
372 		if (is_stack(vma)) {
373 			name = "[stack]";
374 			goto done;
375 		}
376 
377 		if (vma_get_anon_name(vma)) {
378 			seq_pad(m, ' ');
379 			seq_print_vma_name(m, vma);
380 		}
381 	}
382 
383 done:
384 	if (name) {
385 		seq_pad(m, ' ');
386 		seq_puts(m, name);
387 	}
388 	seq_putc(m, '\n');
389 }
390 
show_map(struct seq_file * m,void * v)391 static int show_map(struct seq_file *m, void *v)
392 {
393 	show_map_vma(m, v);
394 	return 0;
395 }
396 
397 static const struct seq_operations proc_pid_maps_op = {
398 	.start	= m_start,
399 	.next	= m_next,
400 	.stop	= m_stop,
401 	.show	= show_map
402 };
403 
pid_maps_open(struct inode * inode,struct file * file)404 static int pid_maps_open(struct inode *inode, struct file *file)
405 {
406 	return do_maps_open(inode, file, &proc_pid_maps_op);
407 }
408 
409 const struct file_operations proc_pid_maps_operations = {
410 	.open		= pid_maps_open,
411 	.read		= seq_read,
412 	.llseek		= seq_lseek,
413 	.release	= proc_map_release,
414 };
415 
416 /*
417  * Proportional Set Size(PSS): my share of RSS.
418  *
419  * PSS of a process is the count of pages it has in memory, where each
420  * page is divided by the number of processes sharing it.  So if a
421  * process has 1000 pages all to itself, and 1000 shared with one other
422  * process, its PSS will be 1500.
423  *
424  * To keep (accumulated) division errors low, we adopt a 64bit
425  * fixed-point pss counter to minimize division errors. So (pss >>
426  * PSS_SHIFT) would be the real byte count.
427  *
428  * A shift of 12 before division means (assuming 4K page size):
429  * 	- 1M 3-user-pages add up to 8KB errors;
430  * 	- supports mapcount up to 2^24, or 16M;
431  * 	- supports PSS up to 2^52 bytes, or 4PB.
432  */
433 #define PSS_SHIFT 12
434 
435 #ifdef CONFIG_PROC_PAGE_MONITOR
436 struct mem_size_stats {
437 	unsigned long resident;
438 	unsigned long shared_clean;
439 	unsigned long shared_dirty;
440 	unsigned long private_clean;
441 	unsigned long private_dirty;
442 	unsigned long referenced;
443 	unsigned long anonymous;
444 	unsigned long lazyfree;
445 	unsigned long anonymous_thp;
446 	unsigned long shmem_thp;
447 	unsigned long file_thp;
448 	unsigned long swap;
449 	unsigned long shared_hugetlb;
450 	unsigned long private_hugetlb;
451 	u64 pss;
452 	u64 pss_anon;
453 	u64 pss_file;
454 	u64 pss_shmem;
455 	u64 pss_locked;
456 	u64 swap_pss;
457 	bool check_shmem_swap;
458 };
459 
smaps_page_accumulate(struct mem_size_stats * mss,struct page * page,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)460 static void smaps_page_accumulate(struct mem_size_stats *mss,
461 		struct page *page, unsigned long size, unsigned long pss,
462 		bool dirty, bool locked, bool private)
463 {
464 	mss->pss += pss;
465 
466 	if (PageAnon(page))
467 		mss->pss_anon += pss;
468 	else if (PageSwapBacked(page))
469 		mss->pss_shmem += pss;
470 	else
471 		mss->pss_file += pss;
472 
473 	if (locked)
474 		mss->pss_locked += pss;
475 
476 	if (dirty || PageDirty(page)) {
477 		if (private)
478 			mss->private_dirty += size;
479 		else
480 			mss->shared_dirty += size;
481 	} else {
482 		if (private)
483 			mss->private_clean += size;
484 		else
485 			mss->shared_clean += size;
486 	}
487 }
488 
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool migration)489 static void smaps_account(struct mem_size_stats *mss, struct page *page,
490 		bool compound, bool young, bool dirty, bool locked,
491 		bool migration)
492 {
493 	int i, nr = compound ? compound_nr(page) : 1;
494 	unsigned long size = nr * PAGE_SIZE;
495 
496 	/*
497 	 * First accumulate quantities that depend only on |size| and the type
498 	 * of the compound page.
499 	 */
500 	if (PageAnon(page)) {
501 		mss->anonymous += size;
502 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
503 			mss->lazyfree += size;
504 	}
505 
506 	mss->resident += size;
507 	/* Accumulate the size in pages that have been accessed. */
508 	if (young || page_is_young(page) || PageReferenced(page))
509 		mss->referenced += size;
510 
511 	/*
512 	 * Then accumulate quantities that may depend on sharing, or that may
513 	 * differ page-by-page.
514 	 *
515 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
516 	 * If any subpage of the compound page mapped with PTE it would elevate
517 	 * page_count().
518 	 *
519 	 * The page_mapcount() is called to get a snapshot of the mapcount.
520 	 * Without holding the page lock this snapshot can be slightly wrong as
521 	 * we cannot always read the mapcount atomically.  It is not safe to
522 	 * call page_mapcount() even with PTL held if the page is not mapped,
523 	 * especially for migration entries.  Treat regular migration entries
524 	 * as mapcount == 1.
525 	 */
526 	if ((page_count(page) == 1) || migration) {
527 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
528 			locked, true);
529 		return;
530 	}
531 	for (i = 0; i < nr; i++, page++) {
532 		int mapcount = page_mapcount(page);
533 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
534 		if (mapcount >= 2)
535 			pss /= mapcount;
536 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
537 				      mapcount < 2);
538 	}
539 }
540 
541 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)542 static int smaps_pte_hole(unsigned long addr, unsigned long end,
543 			  __always_unused int depth, struct mm_walk *walk)
544 {
545 	struct mem_size_stats *mss = walk->private;
546 
547 	mss->swap += shmem_partial_swap_usage(
548 			walk->vma->vm_file->f_mapping, addr, end);
549 
550 	return 0;
551 }
552 #else
553 #define smaps_pte_hole		NULL
554 #endif /* CONFIG_SHMEM */
555 
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)556 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
557 		struct mm_walk *walk)
558 {
559 	struct mem_size_stats *mss = walk->private;
560 	struct vm_area_struct *vma = walk->vma;
561 	bool locked = !!(vma->vm_flags & VM_LOCKED);
562 	struct page *page = NULL;
563 	bool migration = false, young = false, dirty = false;
564 
565 	if (pte_present(*pte)) {
566 		page = vm_normal_page(vma, addr, *pte);
567 		young = pte_young(*pte);
568 		dirty = pte_dirty(*pte);
569 	} else if (is_swap_pte(*pte)) {
570 		swp_entry_t swpent = pte_to_swp_entry(*pte);
571 
572 		if (!non_swap_entry(swpent)) {
573 			int mapcount;
574 
575 			mss->swap += PAGE_SIZE;
576 			mapcount = swp_swapcount(swpent);
577 			if (mapcount >= 2) {
578 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
579 
580 				do_div(pss_delta, mapcount);
581 				mss->swap_pss += pss_delta;
582 			} else {
583 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
584 			}
585 		} else if (is_migration_entry(swpent)) {
586 			migration = true;
587 			page = migration_entry_to_page(swpent);
588 		} else if (is_device_private_entry(swpent))
589 			page = device_private_entry_to_page(swpent);
590 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
591 							&& pte_none(*pte))) {
592 		page = xa_load(&vma->vm_file->f_mapping->i_pages,
593 						linear_page_index(vma, addr));
594 		if (xa_is_value(page))
595 			mss->swap += PAGE_SIZE;
596 		return;
597 	}
598 
599 	if (!page)
600 		return;
601 
602 	smaps_account(mss, page, false, young, dirty, locked, migration);
603 }
604 
605 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)606 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
607 		struct mm_walk *walk)
608 {
609 	struct mem_size_stats *mss = walk->private;
610 	struct vm_area_struct *vma = walk->vma;
611 	bool locked = !!(vma->vm_flags & VM_LOCKED);
612 	struct page *page = NULL;
613 	bool migration = false;
614 
615 	if (pmd_present(*pmd)) {
616 		/* FOLL_DUMP will return -EFAULT on huge zero page */
617 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
618 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
619 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
620 
621 		if (is_migration_entry(entry)) {
622 			migration = true;
623 			page = migration_entry_to_page(entry);
624 		}
625 	}
626 	if (IS_ERR_OR_NULL(page))
627 		return;
628 	if (PageAnon(page))
629 		mss->anonymous_thp += HPAGE_PMD_SIZE;
630 	else if (PageSwapBacked(page))
631 		mss->shmem_thp += HPAGE_PMD_SIZE;
632 	else if (is_zone_device_page(page))
633 		/* pass */;
634 	else
635 		mss->file_thp += HPAGE_PMD_SIZE;
636 
637 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
638 		      locked, migration);
639 }
640 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)641 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
642 		struct mm_walk *walk)
643 {
644 }
645 #endif
646 
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)647 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
648 			   struct mm_walk *walk)
649 {
650 	struct vm_area_struct *vma = walk->vma;
651 	pte_t *pte;
652 	spinlock_t *ptl;
653 
654 	ptl = pmd_trans_huge_lock(pmd, vma);
655 	if (ptl) {
656 		smaps_pmd_entry(pmd, addr, walk);
657 		spin_unlock(ptl);
658 		goto out;
659 	}
660 
661 	if (pmd_trans_unstable(pmd))
662 		goto out;
663 	/*
664 	 * The mmap_lock held all the way back in m_start() is what
665 	 * keeps khugepaged out of here and from collapsing things
666 	 * in here.
667 	 */
668 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
669 	for (; addr != end; pte++, addr += PAGE_SIZE)
670 		smaps_pte_entry(pte, addr, walk);
671 	pte_unmap_unlock(pte - 1, ptl);
672 out:
673 	cond_resched();
674 	return 0;
675 }
676 
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)677 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
678 {
679 	/*
680 	 * Don't forget to update Documentation/ on changes.
681 	 */
682 	static const char mnemonics[BITS_PER_LONG][2] = {
683 		/*
684 		 * In case if we meet a flag we don't know about.
685 		 */
686 		[0 ... (BITS_PER_LONG-1)] = "??",
687 
688 		[ilog2(VM_READ)]	= "rd",
689 		[ilog2(VM_WRITE)]	= "wr",
690 		[ilog2(VM_EXEC)]	= "ex",
691 		[ilog2(VM_SHARED)]	= "sh",
692 		[ilog2(VM_MAYREAD)]	= "mr",
693 		[ilog2(VM_MAYWRITE)]	= "mw",
694 		[ilog2(VM_MAYEXEC)]	= "me",
695 		[ilog2(VM_MAYSHARE)]	= "ms",
696 		[ilog2(VM_GROWSDOWN)]	= "gd",
697 		[ilog2(VM_PFNMAP)]	= "pf",
698 		[ilog2(VM_DENYWRITE)]	= "dw",
699 		[ilog2(VM_LOCKED)]	= "lo",
700 		[ilog2(VM_IO)]		= "io",
701 		[ilog2(VM_SEQ_READ)]	= "sr",
702 		[ilog2(VM_RAND_READ)]	= "rr",
703 		[ilog2(VM_DONTCOPY)]	= "dc",
704 		[ilog2(VM_DONTEXPAND)]	= "de",
705 		[ilog2(VM_ACCOUNT)]	= "ac",
706 		[ilog2(VM_NORESERVE)]	= "nr",
707 		[ilog2(VM_HUGETLB)]	= "ht",
708 		[ilog2(VM_SYNC)]	= "sf",
709 		[ilog2(VM_ARCH_1)]	= "ar",
710 		[ilog2(VM_WIPEONFORK)]	= "wf",
711 		[ilog2(VM_DONTDUMP)]	= "dd",
712 #ifdef CONFIG_ARM64_BTI
713 		[ilog2(VM_ARM64_BTI)]	= "bt",
714 #endif
715 #ifdef CONFIG_MEM_SOFT_DIRTY
716 		[ilog2(VM_SOFTDIRTY)]	= "sd",
717 #endif
718 		[ilog2(VM_MIXEDMAP)]	= "mm",
719 		[ilog2(VM_HUGEPAGE)]	= "hg",
720 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
721 		[ilog2(VM_MERGEABLE)]	= "mg",
722 		[ilog2(VM_UFFD_MISSING)]= "um",
723 		[ilog2(VM_UFFD_WP)]	= "uw",
724 #ifdef CONFIG_ARM64_MTE
725 		[ilog2(VM_MTE)]		= "mt",
726 		[ilog2(VM_MTE_ALLOWED)]	= "",
727 #endif
728 #ifdef CONFIG_ARCH_HAS_PKEYS
729 		/* These come out via ProtectionKey: */
730 		[ilog2(VM_PKEY_BIT0)]	= "",
731 		[ilog2(VM_PKEY_BIT1)]	= "",
732 		[ilog2(VM_PKEY_BIT2)]	= "",
733 		[ilog2(VM_PKEY_BIT3)]	= "",
734 #if VM_PKEY_BIT4
735 		[ilog2(VM_PKEY_BIT4)]	= "",
736 #endif
737 #endif /* CONFIG_ARCH_HAS_PKEYS */
738 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
739 		[ilog2(VM_UFFD_MINOR)]	= "ui",
740 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
741 	};
742 	size_t i;
743 
744 	seq_puts(m, "VmFlags: ");
745 	for (i = 0; i < BITS_PER_LONG; i++) {
746 		if (!mnemonics[i][0])
747 			continue;
748 		if (vma->vm_flags & (1UL << i)) {
749 			seq_putc(m, mnemonics[i][0]);
750 			seq_putc(m, mnemonics[i][1]);
751 			seq_putc(m, ' ');
752 		}
753 	}
754 	seq_putc(m, '\n');
755 }
756 
757 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)758 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
759 				 unsigned long addr, unsigned long end,
760 				 struct mm_walk *walk)
761 {
762 	struct mem_size_stats *mss = walk->private;
763 	struct vm_area_struct *vma = walk->vma;
764 	struct page *page = NULL;
765 
766 	if (pte_present(*pte)) {
767 		page = vm_normal_page(vma, addr, *pte);
768 	} else if (is_swap_pte(*pte)) {
769 		swp_entry_t swpent = pte_to_swp_entry(*pte);
770 
771 		if (is_migration_entry(swpent))
772 			page = migration_entry_to_page(swpent);
773 		else if (is_device_private_entry(swpent))
774 			page = device_private_entry_to_page(swpent);
775 	}
776 	if (page) {
777 		if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
778 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
779 		else
780 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
781 	}
782 	return 0;
783 }
784 #else
785 #define smaps_hugetlb_range	NULL
786 #endif /* HUGETLB_PAGE */
787 
788 static const struct mm_walk_ops smaps_walk_ops = {
789 	.pmd_entry		= smaps_pte_range,
790 	.hugetlb_entry		= smaps_hugetlb_range,
791 };
792 
793 static const struct mm_walk_ops smaps_shmem_walk_ops = {
794 	.pmd_entry		= smaps_pte_range,
795 	.hugetlb_entry		= smaps_hugetlb_range,
796 	.pte_hole		= smaps_pte_hole,
797 };
798 
799 /*
800  * Gather mem stats from @vma with the indicated beginning
801  * address @start, and keep them in @mss.
802  *
803  * Use vm_start of @vma as the beginning address if @start is 0.
804  */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)805 static void smap_gather_stats(struct vm_area_struct *vma,
806 		struct mem_size_stats *mss, unsigned long start)
807 {
808 	const struct mm_walk_ops *ops = &smaps_walk_ops;
809 
810 	/* Invalid start */
811 	if (start >= vma->vm_end)
812 		return;
813 
814 #ifdef CONFIG_SHMEM
815 	/* In case of smaps_rollup, reset the value from previous vma */
816 	mss->check_shmem_swap = false;
817 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
818 		/*
819 		 * For shared or readonly shmem mappings we know that all
820 		 * swapped out pages belong to the shmem object, and we can
821 		 * obtain the swap value much more efficiently. For private
822 		 * writable mappings, we might have COW pages that are
823 		 * not affected by the parent swapped out pages of the shmem
824 		 * object, so we have to distinguish them during the page walk.
825 		 * Unless we know that the shmem object (or the part mapped by
826 		 * our VMA) has no swapped out pages at all.
827 		 */
828 		unsigned long shmem_swapped = shmem_swap_usage(vma);
829 
830 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
831 					!(vma->vm_flags & VM_WRITE))) {
832 			mss->swap += shmem_swapped;
833 		} else {
834 			mss->check_shmem_swap = true;
835 			ops = &smaps_shmem_walk_ops;
836 		}
837 	}
838 #endif
839 	/* mmap_lock is held in m_start */
840 	if (!start)
841 		walk_page_vma(vma, ops, mss);
842 	else
843 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
844 }
845 
846 #define SEQ_PUT_DEC(str, val) \
847 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
848 
849 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)850 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
851 	bool rollup_mode)
852 {
853 	SEQ_PUT_DEC("Rss:            ", mss->resident);
854 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
855 	if (rollup_mode) {
856 		/*
857 		 * These are meaningful only for smaps_rollup, otherwise two of
858 		 * them are zero, and the other one is the same as Pss.
859 		 */
860 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
861 			mss->pss_anon >> PSS_SHIFT);
862 		SEQ_PUT_DEC(" kB\nPss_File:       ",
863 			mss->pss_file >> PSS_SHIFT);
864 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
865 			mss->pss_shmem >> PSS_SHIFT);
866 	}
867 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
868 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
869 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
870 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
871 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
872 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
873 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
874 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
875 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
876 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
877 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
878 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
879 				  mss->private_hugetlb >> 10, 7);
880 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
881 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
882 					mss->swap_pss >> PSS_SHIFT);
883 	SEQ_PUT_DEC(" kB\nLocked:         ",
884 					mss->pss_locked >> PSS_SHIFT);
885 	seq_puts(m, " kB\n");
886 }
887 
show_smap(struct seq_file * m,void * v)888 static int show_smap(struct seq_file *m, void *v)
889 {
890 	struct vm_area_struct *vma = v;
891 	struct mem_size_stats mss;
892 
893 	memset(&mss, 0, sizeof(mss));
894 
895 	smap_gather_stats(vma, &mss, 0);
896 
897 	show_map_vma(m, vma);
898 	if (vma_get_anon_name(vma)) {
899 		seq_puts(m, "Name:           ");
900 		seq_print_vma_name(m, vma);
901 		seq_putc(m, '\n');
902 	}
903 
904 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
905 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
906 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
907 	seq_puts(m, " kB\n");
908 
909 	__show_smap(m, &mss, false);
910 
911 	seq_printf(m, "THPeligible:    %d\n",
912 		   transparent_hugepage_active(vma));
913 
914 	if (arch_pkeys_enabled())
915 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
916 	show_smap_vma_flags(m, vma);
917 
918 	return 0;
919 }
920 
show_smaps_rollup(struct seq_file * m,void * v)921 static int show_smaps_rollup(struct seq_file *m, void *v)
922 {
923 	struct proc_maps_private *priv = m->private;
924 	struct mem_size_stats mss;
925 	struct mm_struct *mm;
926 	struct vm_area_struct *vma;
927 	unsigned long last_vma_end = 0;
928 	int ret = 0;
929 
930 	priv->task = get_proc_task(priv->inode);
931 	if (!priv->task)
932 		return -ESRCH;
933 
934 	mm = priv->mm;
935 	if (!mm || !mmget_not_zero(mm)) {
936 		ret = -ESRCH;
937 		goto out_put_task;
938 	}
939 
940 	memset(&mss, 0, sizeof(mss));
941 
942 	ret = mmap_read_lock_killable(mm);
943 	if (ret)
944 		goto out_put_mm;
945 
946 	hold_task_mempolicy(priv);
947 
948 	for (vma = priv->mm->mmap; vma;) {
949 		smap_gather_stats(vma, &mss, 0);
950 		last_vma_end = vma->vm_end;
951 
952 		/*
953 		 * Release mmap_lock temporarily if someone wants to
954 		 * access it for write request.
955 		 */
956 		if (mmap_lock_is_contended(mm)) {
957 			mmap_read_unlock(mm);
958 			ret = mmap_read_lock_killable(mm);
959 			if (ret) {
960 				release_task_mempolicy(priv);
961 				goto out_put_mm;
962 			}
963 
964 			/*
965 			 * After dropping the lock, there are four cases to
966 			 * consider. See the following example for explanation.
967 			 *
968 			 *   +------+------+-----------+
969 			 *   | VMA1 | VMA2 | VMA3      |
970 			 *   +------+------+-----------+
971 			 *   |      |      |           |
972 			 *  4k     8k     16k         400k
973 			 *
974 			 * Suppose we drop the lock after reading VMA2 due to
975 			 * contention, then we get:
976 			 *
977 			 *	last_vma_end = 16k
978 			 *
979 			 * 1) VMA2 is freed, but VMA3 exists:
980 			 *
981 			 *    find_vma(mm, 16k - 1) will return VMA3.
982 			 *    In this case, just continue from VMA3.
983 			 *
984 			 * 2) VMA2 still exists:
985 			 *
986 			 *    find_vma(mm, 16k - 1) will return VMA2.
987 			 *    Iterate the loop like the original one.
988 			 *
989 			 * 3) No more VMAs can be found:
990 			 *
991 			 *    find_vma(mm, 16k - 1) will return NULL.
992 			 *    No more things to do, just break.
993 			 *
994 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
995 			 *
996 			 *    find_vma(mm, 16k - 1) will return VMA' whose range
997 			 *    contains last_vma_end.
998 			 *    Iterate VMA' from last_vma_end.
999 			 */
1000 			vma = find_vma(mm, last_vma_end - 1);
1001 			/* Case 3 above */
1002 			if (!vma)
1003 				break;
1004 
1005 			/* Case 1 above */
1006 			if (vma->vm_start >= last_vma_end)
1007 				continue;
1008 
1009 			/* Case 4 above */
1010 			if (vma->vm_end > last_vma_end)
1011 				smap_gather_stats(vma, &mss, last_vma_end);
1012 		}
1013 		/* Case 2 above */
1014 		vma = vma->vm_next;
1015 	}
1016 
1017 	show_vma_header_prefix(m, priv->mm->mmap ? priv->mm->mmap->vm_start : 0,
1018 			       last_vma_end, 0, 0, 0, 0);
1019 	seq_pad(m, ' ');
1020 	seq_puts(m, "[rollup]\n");
1021 
1022 	__show_smap(m, &mss, true);
1023 
1024 	release_task_mempolicy(priv);
1025 	mmap_read_unlock(mm);
1026 
1027 out_put_mm:
1028 	mmput(mm);
1029 out_put_task:
1030 	put_task_struct(priv->task);
1031 	priv->task = NULL;
1032 
1033 	return ret;
1034 }
1035 #undef SEQ_PUT_DEC
1036 
1037 static const struct seq_operations proc_pid_smaps_op = {
1038 	.start	= m_start,
1039 	.next	= m_next,
1040 	.stop	= m_stop,
1041 	.show	= show_smap
1042 };
1043 
pid_smaps_open(struct inode * inode,struct file * file)1044 static int pid_smaps_open(struct inode *inode, struct file *file)
1045 {
1046 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1047 }
1048 
smaps_rollup_open(struct inode * inode,struct file * file)1049 static int smaps_rollup_open(struct inode *inode, struct file *file)
1050 {
1051 	int ret;
1052 	struct proc_maps_private *priv;
1053 
1054 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1055 	if (!priv)
1056 		return -ENOMEM;
1057 
1058 	ret = single_open(file, show_smaps_rollup, priv);
1059 	if (ret)
1060 		goto out_free;
1061 
1062 	priv->inode = inode;
1063 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1064 	if (IS_ERR(priv->mm)) {
1065 		ret = PTR_ERR(priv->mm);
1066 
1067 		single_release(inode, file);
1068 		goto out_free;
1069 	}
1070 
1071 	return 0;
1072 
1073 out_free:
1074 	kfree(priv);
1075 	return ret;
1076 }
1077 
smaps_rollup_release(struct inode * inode,struct file * file)1078 static int smaps_rollup_release(struct inode *inode, struct file *file)
1079 {
1080 	struct seq_file *seq = file->private_data;
1081 	struct proc_maps_private *priv = seq->private;
1082 
1083 	if (priv->mm)
1084 		mmdrop(priv->mm);
1085 
1086 	kfree(priv);
1087 	return single_release(inode, file);
1088 }
1089 
1090 const struct file_operations proc_pid_smaps_operations = {
1091 	.open		= pid_smaps_open,
1092 	.read		= seq_read,
1093 	.llseek		= seq_lseek,
1094 	.release	= proc_map_release,
1095 };
1096 
1097 const struct file_operations proc_pid_smaps_rollup_operations = {
1098 	.open		= smaps_rollup_open,
1099 	.read		= seq_read,
1100 	.llseek		= seq_lseek,
1101 	.release	= smaps_rollup_release,
1102 };
1103 
1104 enum clear_refs_types {
1105 	CLEAR_REFS_ALL = 1,
1106 	CLEAR_REFS_ANON,
1107 	CLEAR_REFS_MAPPED,
1108 	CLEAR_REFS_SOFT_DIRTY,
1109 	CLEAR_REFS_MM_HIWATER_RSS,
1110 	CLEAR_REFS_LAST,
1111 };
1112 
1113 struct clear_refs_private {
1114 	enum clear_refs_types type;
1115 };
1116 
1117 #ifdef CONFIG_MEM_SOFT_DIRTY
1118 
1119 #define is_cow_mapping(flags) (((flags) & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE)
1120 
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1121 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1122 {
1123 	struct page *page;
1124 
1125 	if (!pte_write(pte))
1126 		return false;
1127 	if (!is_cow_mapping(vma->vm_flags))
1128 		return false;
1129 	if (likely(!atomic_read(&vma->vm_mm->has_pinned)))
1130 		return false;
1131 	page = vm_normal_page(vma, addr, pte);
1132 	if (!page)
1133 		return false;
1134 	return page_maybe_dma_pinned(page);
1135 }
1136 
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1137 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1138 		unsigned long addr, pte_t *pte)
1139 {
1140 	/*
1141 	 * The soft-dirty tracker uses #PF-s to catch writes
1142 	 * to pages, so write-protect the pte as well. See the
1143 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1144 	 * of how soft-dirty works.
1145 	 */
1146 	pte_t ptent = *pte;
1147 
1148 	if (pte_present(ptent)) {
1149 		pte_t old_pte;
1150 
1151 		if (pte_is_pinned(vma, addr, ptent))
1152 			return;
1153 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1154 		ptent = pte_wrprotect(old_pte);
1155 		ptent = pte_clear_soft_dirty(ptent);
1156 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1157 	} else if (is_swap_pte(ptent)) {
1158 		ptent = pte_swp_clear_soft_dirty(ptent);
1159 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1160 	}
1161 }
1162 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1163 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1164 		unsigned long addr, pte_t *pte)
1165 {
1166 }
1167 #endif
1168 
1169 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1170 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1171 		unsigned long addr, pmd_t *pmdp)
1172 {
1173 	pmd_t old, pmd = *pmdp;
1174 
1175 	if (pmd_present(pmd)) {
1176 		/* See comment in change_huge_pmd() */
1177 		old = pmdp_invalidate(vma, addr, pmdp);
1178 		if (pmd_dirty(old))
1179 			pmd = pmd_mkdirty(pmd);
1180 		if (pmd_young(old))
1181 			pmd = pmd_mkyoung(pmd);
1182 
1183 		pmd = pmd_wrprotect(pmd);
1184 		pmd = pmd_clear_soft_dirty(pmd);
1185 
1186 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1187 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1188 		pmd = pmd_swp_clear_soft_dirty(pmd);
1189 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1190 	}
1191 }
1192 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1193 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1194 		unsigned long addr, pmd_t *pmdp)
1195 {
1196 }
1197 #endif
1198 
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1199 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1200 				unsigned long end, struct mm_walk *walk)
1201 {
1202 	struct clear_refs_private *cp = walk->private;
1203 	struct vm_area_struct *vma = walk->vma;
1204 	pte_t *pte, ptent;
1205 	spinlock_t *ptl;
1206 	struct page *page;
1207 
1208 	ptl = pmd_trans_huge_lock(pmd, vma);
1209 	if (ptl) {
1210 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1211 			clear_soft_dirty_pmd(vma, addr, pmd);
1212 			goto out;
1213 		}
1214 
1215 		if (!pmd_present(*pmd))
1216 			goto out;
1217 
1218 		page = pmd_page(*pmd);
1219 
1220 		/* Clear accessed and referenced bits. */
1221 		pmdp_test_and_clear_young(vma, addr, pmd);
1222 		test_and_clear_page_young(page);
1223 		ClearPageReferenced(page);
1224 out:
1225 		spin_unlock(ptl);
1226 		return 0;
1227 	}
1228 
1229 	if (pmd_trans_unstable(pmd))
1230 		return 0;
1231 
1232 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1233 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1234 		ptent = *pte;
1235 
1236 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1237 			clear_soft_dirty(vma, addr, pte);
1238 			continue;
1239 		}
1240 
1241 		if (!pte_present(ptent))
1242 			continue;
1243 
1244 		page = vm_normal_page(vma, addr, ptent);
1245 		if (!page)
1246 			continue;
1247 
1248 		/* Clear accessed and referenced bits. */
1249 		ptep_test_and_clear_young(vma, addr, pte);
1250 		test_and_clear_page_young(page);
1251 		ClearPageReferenced(page);
1252 	}
1253 	pte_unmap_unlock(pte - 1, ptl);
1254 	cond_resched();
1255 	return 0;
1256 }
1257 
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1258 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1259 				struct mm_walk *walk)
1260 {
1261 	struct clear_refs_private *cp = walk->private;
1262 	struct vm_area_struct *vma = walk->vma;
1263 
1264 	if (vma->vm_flags & VM_PFNMAP)
1265 		return 1;
1266 
1267 	/*
1268 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1269 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1270 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1271 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1272 	 */
1273 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1274 		return 1;
1275 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1276 		return 1;
1277 	return 0;
1278 }
1279 
1280 static const struct mm_walk_ops clear_refs_walk_ops = {
1281 	.pmd_entry		= clear_refs_pte_range,
1282 	.test_walk		= clear_refs_test_walk,
1283 };
1284 
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1285 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1286 				size_t count, loff_t *ppos)
1287 {
1288 	struct task_struct *task;
1289 	char buffer[PROC_NUMBUF];
1290 	struct mm_struct *mm;
1291 	struct vm_area_struct *vma;
1292 	enum clear_refs_types type;
1293 	int itype;
1294 	int rv;
1295 
1296 	memset(buffer, 0, sizeof(buffer));
1297 	if (count > sizeof(buffer) - 1)
1298 		count = sizeof(buffer) - 1;
1299 	if (copy_from_user(buffer, buf, count))
1300 		return -EFAULT;
1301 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1302 	if (rv < 0)
1303 		return rv;
1304 	type = (enum clear_refs_types)itype;
1305 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1306 		return -EINVAL;
1307 
1308 	task = get_proc_task(file_inode(file));
1309 	if (!task)
1310 		return -ESRCH;
1311 	mm = get_task_mm(task);
1312 	if (mm) {
1313 		struct mmu_notifier_range range;
1314 		struct clear_refs_private cp = {
1315 			.type = type,
1316 		};
1317 
1318 		if (mmap_write_lock_killable(mm)) {
1319 			count = -EINTR;
1320 			goto out_mm;
1321 		}
1322 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1323 			/*
1324 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1325 			 * resident set size to this mm's current rss value.
1326 			 */
1327 			reset_mm_hiwater_rss(mm);
1328 			goto out_unlock;
1329 		}
1330 
1331 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1332 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1333 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1334 					continue;
1335 				vm_write_begin(vma);
1336 				WRITE_ONCE(vma->vm_flags,
1337 					vma->vm_flags & ~VM_SOFTDIRTY);
1338 				vma_set_page_prot(vma);
1339 				vm_write_end(vma);
1340 			}
1341 
1342 			inc_tlb_flush_pending(mm);
1343 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1344 						0, NULL, mm, 0, -1UL);
1345 			mmu_notifier_invalidate_range_start(&range);
1346 		}
1347 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1348 				&cp);
1349 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1350 			mmu_notifier_invalidate_range_end(&range);
1351 			flush_tlb_mm(mm);
1352 			dec_tlb_flush_pending(mm);
1353 		}
1354 out_unlock:
1355 		mmap_write_unlock(mm);
1356 out_mm:
1357 		mmput(mm);
1358 	}
1359 	put_task_struct(task);
1360 
1361 	return count;
1362 }
1363 
1364 const struct file_operations proc_clear_refs_operations = {
1365 	.write		= clear_refs_write,
1366 	.llseek		= noop_llseek,
1367 };
1368 
1369 typedef struct {
1370 	u64 pme;
1371 } pagemap_entry_t;
1372 
1373 struct pagemapread {
1374 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1375 	pagemap_entry_t *buffer;
1376 	bool show_pfn;
1377 };
1378 
1379 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1380 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1381 
1382 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1383 #define PM_PFRAME_BITS		55
1384 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1385 #define PM_SOFT_DIRTY		BIT_ULL(55)
1386 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1387 #define PM_FILE			BIT_ULL(61)
1388 #define PM_SWAP			BIT_ULL(62)
1389 #define PM_PRESENT		BIT_ULL(63)
1390 
1391 #define PM_END_OF_BUFFER    1
1392 
make_pme(u64 frame,u64 flags)1393 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1394 {
1395 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1396 }
1397 
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1398 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1399 			  struct pagemapread *pm)
1400 {
1401 	pm->buffer[pm->pos++] = *pme;
1402 	if (pm->pos >= pm->len)
1403 		return PM_END_OF_BUFFER;
1404 	return 0;
1405 }
1406 
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1407 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1408 			    __always_unused int depth, struct mm_walk *walk)
1409 {
1410 	struct pagemapread *pm = walk->private;
1411 	unsigned long addr = start;
1412 	int err = 0;
1413 
1414 	while (addr < end) {
1415 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1416 		pagemap_entry_t pme = make_pme(0, 0);
1417 		/* End of address space hole, which we mark as non-present. */
1418 		unsigned long hole_end;
1419 
1420 		if (vma)
1421 			hole_end = min(end, vma->vm_start);
1422 		else
1423 			hole_end = end;
1424 
1425 		for (; addr < hole_end; addr += PAGE_SIZE) {
1426 			err = add_to_pagemap(addr, &pme, pm);
1427 			if (err)
1428 				goto out;
1429 		}
1430 
1431 		if (!vma)
1432 			break;
1433 
1434 		/* Addresses in the VMA. */
1435 		if (vma->vm_flags & VM_SOFTDIRTY)
1436 			pme = make_pme(0, PM_SOFT_DIRTY);
1437 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1438 			err = add_to_pagemap(addr, &pme, pm);
1439 			if (err)
1440 				goto out;
1441 		}
1442 	}
1443 out:
1444 	return err;
1445 }
1446 
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1447 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1448 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1449 {
1450 	u64 frame = 0, flags = 0;
1451 	struct page *page = NULL;
1452 	bool migration = false;
1453 
1454 	if (pte_present(pte)) {
1455 		if (pm->show_pfn)
1456 			frame = pte_pfn(pte);
1457 		flags |= PM_PRESENT;
1458 		page = vm_normal_page(vma, addr, pte);
1459 		if (pte_soft_dirty(pte))
1460 			flags |= PM_SOFT_DIRTY;
1461 	} else if (is_swap_pte(pte)) {
1462 		swp_entry_t entry;
1463 		if (pte_swp_soft_dirty(pte))
1464 			flags |= PM_SOFT_DIRTY;
1465 		entry = pte_to_swp_entry(pte);
1466 		if (pm->show_pfn)
1467 			frame = swp_type(entry) |
1468 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1469 		flags |= PM_SWAP;
1470 		if (is_migration_entry(entry)) {
1471 			migration = true;
1472 			page = migration_entry_to_page(entry);
1473 		}
1474 
1475 		if (is_device_private_entry(entry))
1476 			page = device_private_entry_to_page(entry);
1477 	}
1478 
1479 	if (page && !PageAnon(page))
1480 		flags |= PM_FILE;
1481 	if (page && !migration && page_mapcount(page) == 1)
1482 		flags |= PM_MMAP_EXCLUSIVE;
1483 	if (vma->vm_flags & VM_SOFTDIRTY)
1484 		flags |= PM_SOFT_DIRTY;
1485 
1486 	return make_pme(frame, flags);
1487 }
1488 
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1489 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1490 			     struct mm_walk *walk)
1491 {
1492 	struct vm_area_struct *vma = walk->vma;
1493 	struct pagemapread *pm = walk->private;
1494 	spinlock_t *ptl;
1495 	pte_t *pte, *orig_pte;
1496 	int err = 0;
1497 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1498 	bool migration = false;
1499 
1500 	ptl = pmd_trans_huge_lock(pmdp, vma);
1501 	if (ptl) {
1502 		u64 flags = 0, frame = 0;
1503 		pmd_t pmd = *pmdp;
1504 		struct page *page = NULL;
1505 
1506 		if (vma->vm_flags & VM_SOFTDIRTY)
1507 			flags |= PM_SOFT_DIRTY;
1508 
1509 		if (pmd_present(pmd)) {
1510 			page = pmd_page(pmd);
1511 
1512 			flags |= PM_PRESENT;
1513 			if (pmd_soft_dirty(pmd))
1514 				flags |= PM_SOFT_DIRTY;
1515 			if (pm->show_pfn)
1516 				frame = pmd_pfn(pmd) +
1517 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1518 		}
1519 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1520 		else if (is_swap_pmd(pmd)) {
1521 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1522 			unsigned long offset;
1523 
1524 			if (pm->show_pfn) {
1525 				offset = swp_offset(entry) +
1526 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1527 				frame = swp_type(entry) |
1528 					(offset << MAX_SWAPFILES_SHIFT);
1529 			}
1530 			flags |= PM_SWAP;
1531 			if (pmd_swp_soft_dirty(pmd))
1532 				flags |= PM_SOFT_DIRTY;
1533 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1534 			migration = is_migration_entry(entry);
1535 			page = migration_entry_to_page(entry);
1536 		}
1537 #endif
1538 
1539 		if (page && !migration && page_mapcount(page) == 1)
1540 			flags |= PM_MMAP_EXCLUSIVE;
1541 
1542 		for (; addr != end; addr += PAGE_SIZE) {
1543 			pagemap_entry_t pme = make_pme(frame, flags);
1544 
1545 			err = add_to_pagemap(addr, &pme, pm);
1546 			if (err)
1547 				break;
1548 			if (pm->show_pfn) {
1549 				if (flags & PM_PRESENT)
1550 					frame++;
1551 				else if (flags & PM_SWAP)
1552 					frame += (1 << MAX_SWAPFILES_SHIFT);
1553 			}
1554 		}
1555 		spin_unlock(ptl);
1556 		return err;
1557 	}
1558 
1559 	if (pmd_trans_unstable(pmdp))
1560 		return 0;
1561 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1562 
1563 	/*
1564 	 * We can assume that @vma always points to a valid one and @end never
1565 	 * goes beyond vma->vm_end.
1566 	 */
1567 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1568 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1569 		pagemap_entry_t pme;
1570 
1571 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1572 		err = add_to_pagemap(addr, &pme, pm);
1573 		if (err)
1574 			break;
1575 	}
1576 	pte_unmap_unlock(orig_pte, ptl);
1577 
1578 	cond_resched();
1579 
1580 	return err;
1581 }
1582 
1583 #ifdef CONFIG_HUGETLB_PAGE
1584 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1585 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1586 				 unsigned long addr, unsigned long end,
1587 				 struct mm_walk *walk)
1588 {
1589 	struct pagemapread *pm = walk->private;
1590 	struct vm_area_struct *vma = walk->vma;
1591 	u64 flags = 0, frame = 0;
1592 	int err = 0;
1593 	pte_t pte;
1594 
1595 	if (vma->vm_flags & VM_SOFTDIRTY)
1596 		flags |= PM_SOFT_DIRTY;
1597 
1598 	pte = huge_ptep_get(ptep);
1599 	if (pte_present(pte)) {
1600 		struct page *page = pte_page(pte);
1601 
1602 		if (!PageAnon(page))
1603 			flags |= PM_FILE;
1604 
1605 		if (page_mapcount(page) == 1)
1606 			flags |= PM_MMAP_EXCLUSIVE;
1607 
1608 		flags |= PM_PRESENT;
1609 		if (pm->show_pfn)
1610 			frame = pte_pfn(pte) +
1611 				((addr & ~hmask) >> PAGE_SHIFT);
1612 	}
1613 
1614 	for (; addr != end; addr += PAGE_SIZE) {
1615 		pagemap_entry_t pme = make_pme(frame, flags);
1616 
1617 		err = add_to_pagemap(addr, &pme, pm);
1618 		if (err)
1619 			return err;
1620 		if (pm->show_pfn && (flags & PM_PRESENT))
1621 			frame++;
1622 	}
1623 
1624 	cond_resched();
1625 
1626 	return err;
1627 }
1628 #else
1629 #define pagemap_hugetlb_range	NULL
1630 #endif /* HUGETLB_PAGE */
1631 
1632 static const struct mm_walk_ops pagemap_ops = {
1633 	.pmd_entry	= pagemap_pmd_range,
1634 	.pte_hole	= pagemap_pte_hole,
1635 	.hugetlb_entry	= pagemap_hugetlb_range,
1636 };
1637 
1638 /*
1639  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1640  *
1641  * For each page in the address space, this file contains one 64-bit entry
1642  * consisting of the following:
1643  *
1644  * Bits 0-54  page frame number (PFN) if present
1645  * Bits 0-4   swap type if swapped
1646  * Bits 5-54  swap offset if swapped
1647  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1648  * Bit  56    page exclusively mapped
1649  * Bits 57-60 zero
1650  * Bit  61    page is file-page or shared-anon
1651  * Bit  62    page swapped
1652  * Bit  63    page present
1653  *
1654  * If the page is not present but in swap, then the PFN contains an
1655  * encoding of the swap file number and the page's offset into the
1656  * swap. Unmapped pages return a null PFN. This allows determining
1657  * precisely which pages are mapped (or in swap) and comparing mapped
1658  * pages between processes.
1659  *
1660  * Efficient users of this interface will use /proc/pid/maps to
1661  * determine which areas of memory are actually mapped and llseek to
1662  * skip over unmapped regions.
1663  */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1664 static ssize_t pagemap_read(struct file *file, char __user *buf,
1665 			    size_t count, loff_t *ppos)
1666 {
1667 	struct mm_struct *mm = file->private_data;
1668 	struct pagemapread pm;
1669 	unsigned long src;
1670 	unsigned long svpfn;
1671 	unsigned long start_vaddr;
1672 	unsigned long end_vaddr;
1673 	int ret = 0, copied = 0;
1674 
1675 	if (!mm || !mmget_not_zero(mm))
1676 		goto out;
1677 
1678 	ret = -EINVAL;
1679 	/* file position must be aligned */
1680 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1681 		goto out_mm;
1682 
1683 	ret = 0;
1684 	if (!count)
1685 		goto out_mm;
1686 
1687 	/* do not disclose physical addresses: attack vector */
1688 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1689 
1690 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1691 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1692 	ret = -ENOMEM;
1693 	if (!pm.buffer)
1694 		goto out_mm;
1695 
1696 	src = *ppos;
1697 	svpfn = src / PM_ENTRY_BYTES;
1698 	end_vaddr = mm->task_size;
1699 
1700 	/* watch out for wraparound */
1701 	start_vaddr = end_vaddr;
1702 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1703 		start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1704 
1705 	/* Ensure the address is inside the task */
1706 	if (start_vaddr > mm->task_size)
1707 		start_vaddr = end_vaddr;
1708 
1709 	/*
1710 	 * The odds are that this will stop walking way
1711 	 * before end_vaddr, because the length of the
1712 	 * user buffer is tracked in "pm", and the walk
1713 	 * will stop when we hit the end of the buffer.
1714 	 */
1715 	ret = 0;
1716 	while (count && (start_vaddr < end_vaddr)) {
1717 		int len;
1718 		unsigned long end;
1719 
1720 		pm.pos = 0;
1721 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1722 		/* overflow ? */
1723 		if (end < start_vaddr || end > end_vaddr)
1724 			end = end_vaddr;
1725 		ret = mmap_read_lock_killable(mm);
1726 		if (ret)
1727 			goto out_free;
1728 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1729 		mmap_read_unlock(mm);
1730 		start_vaddr = end;
1731 
1732 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1733 		if (copy_to_user(buf, pm.buffer, len)) {
1734 			ret = -EFAULT;
1735 			goto out_free;
1736 		}
1737 		copied += len;
1738 		buf += len;
1739 		count -= len;
1740 	}
1741 	*ppos += copied;
1742 	if (!ret || ret == PM_END_OF_BUFFER)
1743 		ret = copied;
1744 
1745 out_free:
1746 	kfree(pm.buffer);
1747 out_mm:
1748 	mmput(mm);
1749 out:
1750 	return ret;
1751 }
1752 
pagemap_open(struct inode * inode,struct file * file)1753 static int pagemap_open(struct inode *inode, struct file *file)
1754 {
1755 	struct mm_struct *mm;
1756 
1757 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1758 	if (IS_ERR(mm))
1759 		return PTR_ERR(mm);
1760 	file->private_data = mm;
1761 	return 0;
1762 }
1763 
pagemap_release(struct inode * inode,struct file * file)1764 static int pagemap_release(struct inode *inode, struct file *file)
1765 {
1766 	struct mm_struct *mm = file->private_data;
1767 
1768 	if (mm)
1769 		mmdrop(mm);
1770 	return 0;
1771 }
1772 
1773 const struct file_operations proc_pagemap_operations = {
1774 	.llseek		= mem_lseek, /* borrow this */
1775 	.read		= pagemap_read,
1776 	.open		= pagemap_open,
1777 	.release	= pagemap_release,
1778 };
1779 #endif /* CONFIG_PROC_PAGE_MONITOR */
1780 
1781 #ifdef CONFIG_NUMA
1782 
1783 struct numa_maps {
1784 	unsigned long pages;
1785 	unsigned long anon;
1786 	unsigned long active;
1787 	unsigned long writeback;
1788 	unsigned long mapcount_max;
1789 	unsigned long dirty;
1790 	unsigned long swapcache;
1791 	unsigned long node[MAX_NUMNODES];
1792 };
1793 
1794 struct numa_maps_private {
1795 	struct proc_maps_private proc_maps;
1796 	struct numa_maps md;
1797 };
1798 
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1799 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1800 			unsigned long nr_pages)
1801 {
1802 	int count = page_mapcount(page);
1803 
1804 	md->pages += nr_pages;
1805 	if (pte_dirty || PageDirty(page))
1806 		md->dirty += nr_pages;
1807 
1808 	if (PageSwapCache(page))
1809 		md->swapcache += nr_pages;
1810 
1811 	if (PageActive(page) || PageUnevictable(page))
1812 		md->active += nr_pages;
1813 
1814 	if (PageWriteback(page))
1815 		md->writeback += nr_pages;
1816 
1817 	if (PageAnon(page))
1818 		md->anon += nr_pages;
1819 
1820 	if (count > md->mapcount_max)
1821 		md->mapcount_max = count;
1822 
1823 	md->node[page_to_nid(page)] += nr_pages;
1824 }
1825 
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1826 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1827 		unsigned long addr)
1828 {
1829 	struct page *page;
1830 	int nid;
1831 
1832 	if (!pte_present(pte))
1833 		return NULL;
1834 
1835 	page = vm_normal_page(vma, addr, pte);
1836 	if (!page)
1837 		return NULL;
1838 
1839 	if (PageReserved(page))
1840 		return NULL;
1841 
1842 	nid = page_to_nid(page);
1843 	if (!node_isset(nid, node_states[N_MEMORY]))
1844 		return NULL;
1845 
1846 	return page;
1847 }
1848 
1849 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1850 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1851 					      struct vm_area_struct *vma,
1852 					      unsigned long addr)
1853 {
1854 	struct page *page;
1855 	int nid;
1856 
1857 	if (!pmd_present(pmd))
1858 		return NULL;
1859 
1860 	page = vm_normal_page_pmd(vma, addr, pmd);
1861 	if (!page)
1862 		return NULL;
1863 
1864 	if (PageReserved(page))
1865 		return NULL;
1866 
1867 	nid = page_to_nid(page);
1868 	if (!node_isset(nid, node_states[N_MEMORY]))
1869 		return NULL;
1870 
1871 	return page;
1872 }
1873 #endif
1874 
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1875 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1876 		unsigned long end, struct mm_walk *walk)
1877 {
1878 	struct numa_maps *md = walk->private;
1879 	struct vm_area_struct *vma = walk->vma;
1880 	spinlock_t *ptl;
1881 	pte_t *orig_pte;
1882 	pte_t *pte;
1883 
1884 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1885 	ptl = pmd_trans_huge_lock(pmd, vma);
1886 	if (ptl) {
1887 		struct page *page;
1888 
1889 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1890 		if (page)
1891 			gather_stats(page, md, pmd_dirty(*pmd),
1892 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1893 		spin_unlock(ptl);
1894 		return 0;
1895 	}
1896 
1897 	if (pmd_trans_unstable(pmd))
1898 		return 0;
1899 #endif
1900 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1901 	do {
1902 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1903 		if (!page)
1904 			continue;
1905 		gather_stats(page, md, pte_dirty(*pte), 1);
1906 
1907 	} while (pte++, addr += PAGE_SIZE, addr != end);
1908 	pte_unmap_unlock(orig_pte, ptl);
1909 	cond_resched();
1910 	return 0;
1911 }
1912 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1913 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1914 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1915 {
1916 	pte_t huge_pte = huge_ptep_get(pte);
1917 	struct numa_maps *md;
1918 	struct page *page;
1919 
1920 	if (!pte_present(huge_pte))
1921 		return 0;
1922 
1923 	page = pte_page(huge_pte);
1924 	if (!page)
1925 		return 0;
1926 
1927 	md = walk->private;
1928 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1929 	return 0;
1930 }
1931 
1932 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1933 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1934 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1935 {
1936 	return 0;
1937 }
1938 #endif
1939 
1940 static const struct mm_walk_ops show_numa_ops = {
1941 	.hugetlb_entry = gather_hugetlb_stats,
1942 	.pmd_entry = gather_pte_stats,
1943 };
1944 
1945 /*
1946  * Display pages allocated per node and memory policy via /proc.
1947  */
show_numa_map(struct seq_file * m,void * v)1948 static int show_numa_map(struct seq_file *m, void *v)
1949 {
1950 	struct numa_maps_private *numa_priv = m->private;
1951 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1952 	struct vm_area_struct *vma = v;
1953 	struct numa_maps *md = &numa_priv->md;
1954 	struct file *file = vma->vm_file;
1955 	struct mm_struct *mm = vma->vm_mm;
1956 	struct mempolicy *pol;
1957 	char buffer[64];
1958 	int nid;
1959 
1960 	if (!mm)
1961 		return 0;
1962 
1963 	/* Ensure we start with an empty set of numa_maps statistics. */
1964 	memset(md, 0, sizeof(*md));
1965 
1966 	pol = __get_vma_policy(vma, vma->vm_start);
1967 	if (pol) {
1968 		mpol_to_str(buffer, sizeof(buffer), pol);
1969 		mpol_cond_put(pol);
1970 	} else {
1971 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1972 	}
1973 
1974 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1975 
1976 	if (file) {
1977 		seq_puts(m, " file=");
1978 		seq_file_path(m, file, "\n\t= ");
1979 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1980 		seq_puts(m, " heap");
1981 	} else if (is_stack(vma)) {
1982 		seq_puts(m, " stack");
1983 	}
1984 
1985 	if (is_vm_hugetlb_page(vma))
1986 		seq_puts(m, " huge");
1987 
1988 	/* mmap_lock is held by m_start */
1989 	walk_page_vma(vma, &show_numa_ops, md);
1990 
1991 	if (!md->pages)
1992 		goto out;
1993 
1994 	if (md->anon)
1995 		seq_printf(m, " anon=%lu", md->anon);
1996 
1997 	if (md->dirty)
1998 		seq_printf(m, " dirty=%lu", md->dirty);
1999 
2000 	if (md->pages != md->anon && md->pages != md->dirty)
2001 		seq_printf(m, " mapped=%lu", md->pages);
2002 
2003 	if (md->mapcount_max > 1)
2004 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2005 
2006 	if (md->swapcache)
2007 		seq_printf(m, " swapcache=%lu", md->swapcache);
2008 
2009 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2010 		seq_printf(m, " active=%lu", md->active);
2011 
2012 	if (md->writeback)
2013 		seq_printf(m, " writeback=%lu", md->writeback);
2014 
2015 	for_each_node_state(nid, N_MEMORY)
2016 		if (md->node[nid])
2017 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2018 
2019 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2020 out:
2021 	seq_putc(m, '\n');
2022 	return 0;
2023 }
2024 
2025 static const struct seq_operations proc_pid_numa_maps_op = {
2026 	.start  = m_start,
2027 	.next   = m_next,
2028 	.stop   = m_stop,
2029 	.show   = show_numa_map,
2030 };
2031 
pid_numa_maps_open(struct inode * inode,struct file * file)2032 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2033 {
2034 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2035 				sizeof(struct numa_maps_private));
2036 }
2037 
2038 const struct file_operations proc_pid_numa_maps_operations = {
2039 	.open		= pid_numa_maps_open,
2040 	.read		= seq_read,
2041 	.llseek		= seq_lseek,
2042 	.release	= proc_map_release,
2043 };
2044 
2045 #endif /* CONFIG_NUMA */
2046