1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * PS3 address space management.
4 *
5 * Copyright (C) 2006 Sony Computer Entertainment Inc.
6 * Copyright 2006 Sony Corp.
7 */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/export.h>
12 #include <linux/memblock.h>
13 #include <linux/slab.h>
14
15 #include <asm/cell-regs.h>
16 #include <asm/firmware.h>
17 #include <asm/prom.h>
18 #include <asm/udbg.h>
19 #include <asm/lv1call.h>
20 #include <asm/setup.h>
21
22 #include "platform.h"
23
24 #if defined(DEBUG)
25 #define DBG udbg_printf
26 #else
27 #define DBG pr_devel
28 #endif
29
30 enum {
31 #if defined(CONFIG_PS3_DYNAMIC_DMA)
32 USE_DYNAMIC_DMA = 1,
33 #else
34 USE_DYNAMIC_DMA = 0,
35 #endif
36 };
37
38 enum {
39 PAGE_SHIFT_4K = 12U,
40 PAGE_SHIFT_64K = 16U,
41 PAGE_SHIFT_16M = 24U,
42 };
43
make_page_sizes(unsigned long a,unsigned long b)44 static unsigned long make_page_sizes(unsigned long a, unsigned long b)
45 {
46 return (a << 56) | (b << 48);
47 }
48
49 enum {
50 ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
51 ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
52 };
53
54 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
55
56 enum {
57 HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
58 HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
59 };
60
61 /*============================================================================*/
62 /* virtual address space routines */
63 /*============================================================================*/
64
65 /**
66 * struct mem_region - memory region structure
67 * @base: base address
68 * @size: size in bytes
69 * @offset: difference between base and rm.size
70 * @destroy: flag if region should be destroyed upon shutdown
71 */
72
73 struct mem_region {
74 u64 base;
75 u64 size;
76 unsigned long offset;
77 int destroy;
78 };
79
80 /**
81 * struct map - address space state variables holder
82 * @total: total memory available as reported by HV
83 * @vas_id - HV virtual address space id
84 * @htab_size: htab size in bytes
85 *
86 * The HV virtual address space (vas) allows for hotplug memory regions.
87 * Memory regions can be created and destroyed in the vas at runtime.
88 * @rm: real mode (bootmem) region
89 * @r1: highmem region(s)
90 *
91 * ps3 addresses
92 * virt_addr: a cpu 'translated' effective address
93 * phys_addr: an address in what Linux thinks is the physical address space
94 * lpar_addr: an address in the HV virtual address space
95 * bus_addr: an io controller 'translated' address on a device bus
96 */
97
98 struct map {
99 u64 total;
100 u64 vas_id;
101 u64 htab_size;
102 struct mem_region rm;
103 struct mem_region r1;
104 };
105
106 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
_debug_dump_map(const struct map * m,const char * func,int line)107 static void __maybe_unused _debug_dump_map(const struct map *m,
108 const char *func, int line)
109 {
110 DBG("%s:%d: map.total = %llxh\n", func, line, m->total);
111 DBG("%s:%d: map.rm.size = %llxh\n", func, line, m->rm.size);
112 DBG("%s:%d: map.vas_id = %llu\n", func, line, m->vas_id);
113 DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
114 DBG("%s:%d: map.r1.base = %llxh\n", func, line, m->r1.base);
115 DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
116 DBG("%s:%d: map.r1.size = %llxh\n", func, line, m->r1.size);
117 }
118
119 static struct map map;
120
121 /**
122 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
123 * @phys_addr: linux physical address
124 */
125
ps3_mm_phys_to_lpar(unsigned long phys_addr)126 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
127 {
128 BUG_ON(is_kernel_addr(phys_addr));
129 return (phys_addr < map.rm.size || phys_addr >= map.total)
130 ? phys_addr : phys_addr + map.r1.offset;
131 }
132
133 EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
134
135 /**
136 * ps3_mm_vas_create - create the virtual address space
137 */
138
ps3_mm_vas_create(unsigned long * htab_size)139 void __init ps3_mm_vas_create(unsigned long* htab_size)
140 {
141 int result;
142 u64 start_address;
143 u64 size;
144 u64 access_right;
145 u64 max_page_size;
146 u64 flags;
147
148 result = lv1_query_logical_partition_address_region_info(0,
149 &start_address, &size, &access_right, &max_page_size,
150 &flags);
151
152 if (result) {
153 DBG("%s:%d: lv1_query_logical_partition_address_region_info "
154 "failed: %s\n", __func__, __LINE__,
155 ps3_result(result));
156 goto fail;
157 }
158
159 if (max_page_size < PAGE_SHIFT_16M) {
160 DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
161 max_page_size);
162 goto fail;
163 }
164
165 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
166 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
167
168 result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
169 2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
170 &map.vas_id, &map.htab_size);
171
172 if (result) {
173 DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
174 __func__, __LINE__, ps3_result(result));
175 goto fail;
176 }
177
178 result = lv1_select_virtual_address_space(map.vas_id);
179
180 if (result) {
181 DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
182 __func__, __LINE__, ps3_result(result));
183 goto fail;
184 }
185
186 *htab_size = map.htab_size;
187
188 debug_dump_map(&map);
189
190 return;
191
192 fail:
193 panic("ps3_mm_vas_create failed");
194 }
195
196 /**
197 * ps3_mm_vas_destroy -
198 */
199
ps3_mm_vas_destroy(void)200 void ps3_mm_vas_destroy(void)
201 {
202 int result;
203
204 if (map.vas_id) {
205 result = lv1_select_virtual_address_space(0);
206 result += lv1_destruct_virtual_address_space(map.vas_id);
207
208 if (result) {
209 lv1_panic(0);
210 }
211
212 map.vas_id = 0;
213 }
214 }
215
ps3_mm_get_repository_highmem(struct mem_region * r)216 static int ps3_mm_get_repository_highmem(struct mem_region *r)
217 {
218 int result;
219
220 /* Assume a single highmem region. */
221
222 result = ps3_repository_read_highmem_info(0, &r->base, &r->size);
223
224 if (result)
225 goto zero_region;
226
227 if (!r->base || !r->size) {
228 result = -1;
229 goto zero_region;
230 }
231
232 r->offset = r->base - map.rm.size;
233
234 DBG("%s:%d: Found high region in repository: %llxh %llxh\n",
235 __func__, __LINE__, r->base, r->size);
236
237 return 0;
238
239 zero_region:
240 DBG("%s:%d: No high region in repository.\n", __func__, __LINE__);
241
242 r->size = r->base = r->offset = 0;
243 return result;
244 }
245
ps3_mm_set_repository_highmem(const struct mem_region * r)246 static int ps3_mm_set_repository_highmem(const struct mem_region *r)
247 {
248 /* Assume a single highmem region. */
249
250 return r ? ps3_repository_write_highmem_info(0, r->base, r->size) :
251 ps3_repository_write_highmem_info(0, 0, 0);
252 }
253
254 /**
255 * ps3_mm_region_create - create a memory region in the vas
256 * @r: pointer to a struct mem_region to accept initialized values
257 * @size: requested region size
258 *
259 * This implementation creates the region with the vas large page size.
260 * @size is rounded down to a multiple of the vas large page size.
261 */
262
ps3_mm_region_create(struct mem_region * r,unsigned long size)263 static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
264 {
265 int result;
266 u64 muid;
267
268 r->size = ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
269
270 DBG("%s:%d requested %lxh\n", __func__, __LINE__, size);
271 DBG("%s:%d actual %llxh\n", __func__, __LINE__, r->size);
272 DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
273 size - r->size, (size - r->size) / 1024 / 1024);
274
275 if (r->size == 0) {
276 DBG("%s:%d: size == 0\n", __func__, __LINE__);
277 result = -1;
278 goto zero_region;
279 }
280
281 result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
282 ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
283
284 if (result || r->base < map.rm.size) {
285 DBG("%s:%d: lv1_allocate_memory failed: %s\n",
286 __func__, __LINE__, ps3_result(result));
287 goto zero_region;
288 }
289
290 r->destroy = 1;
291 r->offset = r->base - map.rm.size;
292 return result;
293
294 zero_region:
295 r->size = r->base = r->offset = 0;
296 return result;
297 }
298
299 /**
300 * ps3_mm_region_destroy - destroy a memory region
301 * @r: pointer to struct mem_region
302 */
303
ps3_mm_region_destroy(struct mem_region * r)304 static void ps3_mm_region_destroy(struct mem_region *r)
305 {
306 int result;
307
308 if (!r->destroy) {
309 return;
310 }
311
312 if (r->base) {
313 result = lv1_release_memory(r->base);
314
315 if (result) {
316 lv1_panic(0);
317 }
318
319 r->size = r->base = r->offset = 0;
320 map.total = map.rm.size;
321 }
322
323 ps3_mm_set_repository_highmem(NULL);
324 }
325
326 /*============================================================================*/
327 /* dma routines */
328 /*============================================================================*/
329
330 /**
331 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
332 * @r: pointer to dma region structure
333 * @lpar_addr: HV lpar address
334 */
335
dma_sb_lpar_to_bus(struct ps3_dma_region * r,unsigned long lpar_addr)336 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
337 unsigned long lpar_addr)
338 {
339 if (lpar_addr >= map.rm.size)
340 lpar_addr -= map.r1.offset;
341 BUG_ON(lpar_addr < r->offset);
342 BUG_ON(lpar_addr >= r->offset + r->len);
343 return r->bus_addr + lpar_addr - r->offset;
344 }
345
346 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
_dma_dump_region(const struct ps3_dma_region * r,const char * func,int line)347 static void __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
348 const char *func, int line)
349 {
350 DBG("%s:%d: dev %llu:%llu\n", func, line, r->dev->bus_id,
351 r->dev->dev_id);
352 DBG("%s:%d: page_size %u\n", func, line, r->page_size);
353 DBG("%s:%d: bus_addr %lxh\n", func, line, r->bus_addr);
354 DBG("%s:%d: len %lxh\n", func, line, r->len);
355 DBG("%s:%d: offset %lxh\n", func, line, r->offset);
356 }
357
358 /**
359 * dma_chunk - A chunk of dma pages mapped by the io controller.
360 * @region - The dma region that owns this chunk.
361 * @lpar_addr: Starting lpar address of the area to map.
362 * @bus_addr: Starting ioc bus address of the area to map.
363 * @len: Length in bytes of the area to map.
364 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
365 * list of all chuncks owned by the region.
366 *
367 * This implementation uses a very simple dma page manager
368 * based on the dma_chunk structure. This scheme assumes
369 * that all drivers use very well behaved dma ops.
370 */
371
372 struct dma_chunk {
373 struct ps3_dma_region *region;
374 unsigned long lpar_addr;
375 unsigned long bus_addr;
376 unsigned long len;
377 struct list_head link;
378 unsigned int usage_count;
379 };
380
381 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
_dma_dump_chunk(const struct dma_chunk * c,const char * func,int line)382 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
383 int line)
384 {
385 DBG("%s:%d: r.dev %llu:%llu\n", func, line,
386 c->region->dev->bus_id, c->region->dev->dev_id);
387 DBG("%s:%d: r.bus_addr %lxh\n", func, line, c->region->bus_addr);
388 DBG("%s:%d: r.page_size %u\n", func, line, c->region->page_size);
389 DBG("%s:%d: r.len %lxh\n", func, line, c->region->len);
390 DBG("%s:%d: r.offset %lxh\n", func, line, c->region->offset);
391 DBG("%s:%d: c.lpar_addr %lxh\n", func, line, c->lpar_addr);
392 DBG("%s:%d: c.bus_addr %lxh\n", func, line, c->bus_addr);
393 DBG("%s:%d: c.len %lxh\n", func, line, c->len);
394 }
395
dma_find_chunk(struct ps3_dma_region * r,unsigned long bus_addr,unsigned long len)396 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
397 unsigned long bus_addr, unsigned long len)
398 {
399 struct dma_chunk *c;
400 unsigned long aligned_bus = ALIGN_DOWN(bus_addr, 1 << r->page_size);
401 unsigned long aligned_len = ALIGN(len+bus_addr-aligned_bus,
402 1 << r->page_size);
403
404 list_for_each_entry(c, &r->chunk_list.head, link) {
405 /* intersection */
406 if (aligned_bus >= c->bus_addr &&
407 aligned_bus + aligned_len <= c->bus_addr + c->len)
408 return c;
409
410 /* below */
411 if (aligned_bus + aligned_len <= c->bus_addr)
412 continue;
413
414 /* above */
415 if (aligned_bus >= c->bus_addr + c->len)
416 continue;
417
418 /* we don't handle the multi-chunk case for now */
419 dma_dump_chunk(c);
420 BUG();
421 }
422 return NULL;
423 }
424
dma_find_chunk_lpar(struct ps3_dma_region * r,unsigned long lpar_addr,unsigned long len)425 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
426 unsigned long lpar_addr, unsigned long len)
427 {
428 struct dma_chunk *c;
429 unsigned long aligned_lpar = ALIGN_DOWN(lpar_addr, 1 << r->page_size);
430 unsigned long aligned_len = ALIGN(len + lpar_addr - aligned_lpar,
431 1 << r->page_size);
432
433 list_for_each_entry(c, &r->chunk_list.head, link) {
434 /* intersection */
435 if (c->lpar_addr <= aligned_lpar &&
436 aligned_lpar < c->lpar_addr + c->len) {
437 if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
438 return c;
439 else {
440 dma_dump_chunk(c);
441 BUG();
442 }
443 }
444 /* below */
445 if (aligned_lpar + aligned_len <= c->lpar_addr) {
446 continue;
447 }
448 /* above */
449 if (c->lpar_addr + c->len <= aligned_lpar) {
450 continue;
451 }
452 }
453 return NULL;
454 }
455
dma_sb_free_chunk(struct dma_chunk * c)456 static int dma_sb_free_chunk(struct dma_chunk *c)
457 {
458 int result = 0;
459
460 if (c->bus_addr) {
461 result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
462 c->region->dev->dev_id, c->bus_addr, c->len);
463 BUG_ON(result);
464 }
465
466 kfree(c);
467 return result;
468 }
469
dma_ioc0_free_chunk(struct dma_chunk * c)470 static int dma_ioc0_free_chunk(struct dma_chunk *c)
471 {
472 int result = 0;
473 int iopage;
474 unsigned long offset;
475 struct ps3_dma_region *r = c->region;
476
477 DBG("%s:start\n", __func__);
478 for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
479 offset = (1 << r->page_size) * iopage;
480 /* put INVALID entry */
481 result = lv1_put_iopte(0,
482 c->bus_addr + offset,
483 c->lpar_addr + offset,
484 r->ioid,
485 0);
486 DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
487 c->bus_addr + offset,
488 c->lpar_addr + offset,
489 r->ioid);
490
491 if (result) {
492 DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
493 __LINE__, ps3_result(result));
494 }
495 }
496 kfree(c);
497 DBG("%s:end\n", __func__);
498 return result;
499 }
500
501 /**
502 * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
503 * @r: Pointer to a struct ps3_dma_region.
504 * @phys_addr: Starting physical address of the area to map.
505 * @len: Length in bytes of the area to map.
506 * c_out: A pointer to receive an allocated struct dma_chunk for this area.
507 *
508 * This is the lowest level dma mapping routine, and is the one that will
509 * make the HV call to add the pages into the io controller address space.
510 */
511
dma_sb_map_pages(struct ps3_dma_region * r,unsigned long phys_addr,unsigned long len,struct dma_chunk ** c_out,u64 iopte_flag)512 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
513 unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
514 {
515 int result;
516 struct dma_chunk *c;
517
518 c = kzalloc(sizeof(*c), GFP_ATOMIC);
519 if (!c) {
520 result = -ENOMEM;
521 goto fail_alloc;
522 }
523
524 c->region = r;
525 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
526 c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
527 c->len = len;
528
529 BUG_ON(iopte_flag != 0xf800000000000000UL);
530 result = lv1_map_device_dma_region(c->region->dev->bus_id,
531 c->region->dev->dev_id, c->lpar_addr,
532 c->bus_addr, c->len, iopte_flag);
533 if (result) {
534 DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
535 __func__, __LINE__, ps3_result(result));
536 goto fail_map;
537 }
538
539 list_add(&c->link, &r->chunk_list.head);
540
541 *c_out = c;
542 return 0;
543
544 fail_map:
545 kfree(c);
546 fail_alloc:
547 *c_out = NULL;
548 DBG(" <- %s:%d\n", __func__, __LINE__);
549 return result;
550 }
551
dma_ioc0_map_pages(struct ps3_dma_region * r,unsigned long phys_addr,unsigned long len,struct dma_chunk ** c_out,u64 iopte_flag)552 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
553 unsigned long len, struct dma_chunk **c_out,
554 u64 iopte_flag)
555 {
556 int result;
557 struct dma_chunk *c, *last;
558 int iopage, pages;
559 unsigned long offset;
560
561 DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
562 phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
563 c = kzalloc(sizeof(*c), GFP_ATOMIC);
564 if (!c) {
565 result = -ENOMEM;
566 goto fail_alloc;
567 }
568
569 c->region = r;
570 c->len = len;
571 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
572 /* allocate IO address */
573 if (list_empty(&r->chunk_list.head)) {
574 /* first one */
575 c->bus_addr = r->bus_addr;
576 } else {
577 /* derive from last bus addr*/
578 last = list_entry(r->chunk_list.head.next,
579 struct dma_chunk, link);
580 c->bus_addr = last->bus_addr + last->len;
581 DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
582 last->bus_addr, last->len);
583 }
584
585 /* FIXME: check whether length exceeds region size */
586
587 /* build ioptes for the area */
588 pages = len >> r->page_size;
589 DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
590 r->page_size, r->len, pages, iopte_flag);
591 for (iopage = 0; iopage < pages; iopage++) {
592 offset = (1 << r->page_size) * iopage;
593 result = lv1_put_iopte(0,
594 c->bus_addr + offset,
595 c->lpar_addr + offset,
596 r->ioid,
597 iopte_flag);
598 if (result) {
599 pr_warn("%s:%d: lv1_put_iopte failed: %s\n",
600 __func__, __LINE__, ps3_result(result));
601 goto fail_map;
602 }
603 DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
604 iopage, c->bus_addr + offset, c->lpar_addr + offset,
605 r->ioid);
606 }
607
608 /* be sure that last allocated one is inserted at head */
609 list_add(&c->link, &r->chunk_list.head);
610
611 *c_out = c;
612 DBG("%s: end\n", __func__);
613 return 0;
614
615 fail_map:
616 for (iopage--; 0 <= iopage; iopage--) {
617 lv1_put_iopte(0,
618 c->bus_addr + offset,
619 c->lpar_addr + offset,
620 r->ioid,
621 0);
622 }
623 kfree(c);
624 fail_alloc:
625 *c_out = NULL;
626 return result;
627 }
628
629 /**
630 * dma_sb_region_create - Create a device dma region.
631 * @r: Pointer to a struct ps3_dma_region.
632 *
633 * This is the lowest level dma region create routine, and is the one that
634 * will make the HV call to create the region.
635 */
636
dma_sb_region_create(struct ps3_dma_region * r)637 static int dma_sb_region_create(struct ps3_dma_region *r)
638 {
639 int result;
640 u64 bus_addr;
641
642 DBG(" -> %s:%d:\n", __func__, __LINE__);
643
644 BUG_ON(!r);
645
646 if (!r->dev->bus_id) {
647 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
648 r->dev->bus_id, r->dev->dev_id);
649 return 0;
650 }
651
652 DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
653 __LINE__, r->len, r->page_size, r->offset);
654
655 BUG_ON(!r->len);
656 BUG_ON(!r->page_size);
657 BUG_ON(!r->region_ops);
658
659 INIT_LIST_HEAD(&r->chunk_list.head);
660 spin_lock_init(&r->chunk_list.lock);
661
662 result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
663 roundup_pow_of_two(r->len), r->page_size, r->region_type,
664 &bus_addr);
665 r->bus_addr = bus_addr;
666
667 if (result) {
668 DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
669 __func__, __LINE__, ps3_result(result));
670 r->len = r->bus_addr = 0;
671 }
672
673 return result;
674 }
675
dma_ioc0_region_create(struct ps3_dma_region * r)676 static int dma_ioc0_region_create(struct ps3_dma_region *r)
677 {
678 int result;
679 u64 bus_addr;
680
681 INIT_LIST_HEAD(&r->chunk_list.head);
682 spin_lock_init(&r->chunk_list.lock);
683
684 result = lv1_allocate_io_segment(0,
685 r->len,
686 r->page_size,
687 &bus_addr);
688 r->bus_addr = bus_addr;
689 if (result) {
690 DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
691 __func__, __LINE__, ps3_result(result));
692 r->len = r->bus_addr = 0;
693 }
694 DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
695 r->len, r->page_size, r->bus_addr);
696 return result;
697 }
698
699 /**
700 * dma_region_free - Free a device dma region.
701 * @r: Pointer to a struct ps3_dma_region.
702 *
703 * This is the lowest level dma region free routine, and is the one that
704 * will make the HV call to free the region.
705 */
706
dma_sb_region_free(struct ps3_dma_region * r)707 static int dma_sb_region_free(struct ps3_dma_region *r)
708 {
709 int result;
710 struct dma_chunk *c;
711 struct dma_chunk *tmp;
712
713 BUG_ON(!r);
714
715 if (!r->dev->bus_id) {
716 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
717 r->dev->bus_id, r->dev->dev_id);
718 return 0;
719 }
720
721 list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
722 list_del(&c->link);
723 dma_sb_free_chunk(c);
724 }
725
726 result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
727 r->bus_addr);
728
729 if (result)
730 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
731 __func__, __LINE__, ps3_result(result));
732
733 r->bus_addr = 0;
734
735 return result;
736 }
737
dma_ioc0_region_free(struct ps3_dma_region * r)738 static int dma_ioc0_region_free(struct ps3_dma_region *r)
739 {
740 int result;
741 struct dma_chunk *c, *n;
742
743 DBG("%s: start\n", __func__);
744 list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
745 list_del(&c->link);
746 dma_ioc0_free_chunk(c);
747 }
748
749 result = lv1_release_io_segment(0, r->bus_addr);
750
751 if (result)
752 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
753 __func__, __LINE__, ps3_result(result));
754
755 r->bus_addr = 0;
756 DBG("%s: end\n", __func__);
757
758 return result;
759 }
760
761 /**
762 * dma_sb_map_area - Map an area of memory into a device dma region.
763 * @r: Pointer to a struct ps3_dma_region.
764 * @virt_addr: Starting virtual address of the area to map.
765 * @len: Length in bytes of the area to map.
766 * @bus_addr: A pointer to return the starting ioc bus address of the area to
767 * map.
768 *
769 * This is the common dma mapping routine.
770 */
771
dma_sb_map_area(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)772 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
773 unsigned long len, dma_addr_t *bus_addr,
774 u64 iopte_flag)
775 {
776 int result;
777 unsigned long flags;
778 struct dma_chunk *c;
779 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
780 : virt_addr;
781 unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
782 unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
783 1 << r->page_size);
784 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
785
786 if (!USE_DYNAMIC_DMA) {
787 unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
788 DBG(" -> %s:%d\n", __func__, __LINE__);
789 DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
790 virt_addr);
791 DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
792 phys_addr);
793 DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
794 lpar_addr);
795 DBG("%s:%d len %lxh\n", __func__, __LINE__, len);
796 DBG("%s:%d bus_addr %llxh (%lxh)\n", __func__, __LINE__,
797 *bus_addr, len);
798 }
799
800 spin_lock_irqsave(&r->chunk_list.lock, flags);
801 c = dma_find_chunk(r, *bus_addr, len);
802
803 if (c) {
804 DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
805 dma_dump_chunk(c);
806 c->usage_count++;
807 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
808 return 0;
809 }
810
811 result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
812
813 if (result) {
814 *bus_addr = 0;
815 DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
816 __func__, __LINE__, result);
817 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
818 return result;
819 }
820
821 c->usage_count = 1;
822
823 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
824 return result;
825 }
826
dma_ioc0_map_area(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)827 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
828 unsigned long len, dma_addr_t *bus_addr,
829 u64 iopte_flag)
830 {
831 int result;
832 unsigned long flags;
833 struct dma_chunk *c;
834 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
835 : virt_addr;
836 unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
837 unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
838 1 << r->page_size);
839
840 DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
841 virt_addr, len);
842 DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
843 phys_addr, aligned_phys, aligned_len);
844
845 spin_lock_irqsave(&r->chunk_list.lock, flags);
846 c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
847
848 if (c) {
849 /* FIXME */
850 BUG();
851 *bus_addr = c->bus_addr + phys_addr - aligned_phys;
852 c->usage_count++;
853 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
854 return 0;
855 }
856
857 result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
858 iopte_flag);
859
860 if (result) {
861 *bus_addr = 0;
862 DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
863 __func__, __LINE__, result);
864 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
865 return result;
866 }
867 *bus_addr = c->bus_addr + phys_addr - aligned_phys;
868 DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
869 virt_addr, phys_addr, aligned_phys, *bus_addr);
870 c->usage_count = 1;
871
872 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
873 return result;
874 }
875
876 /**
877 * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
878 * @r: Pointer to a struct ps3_dma_region.
879 * @bus_addr: The starting ioc bus address of the area to unmap.
880 * @len: Length in bytes of the area to unmap.
881 *
882 * This is the common dma unmap routine.
883 */
884
dma_sb_unmap_area(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)885 static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
886 unsigned long len)
887 {
888 unsigned long flags;
889 struct dma_chunk *c;
890
891 spin_lock_irqsave(&r->chunk_list.lock, flags);
892 c = dma_find_chunk(r, bus_addr, len);
893
894 if (!c) {
895 unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
896 1 << r->page_size);
897 unsigned long aligned_len = ALIGN(len + bus_addr
898 - aligned_bus, 1 << r->page_size);
899 DBG("%s:%d: not found: bus_addr %llxh\n",
900 __func__, __LINE__, bus_addr);
901 DBG("%s:%d: not found: len %lxh\n",
902 __func__, __LINE__, len);
903 DBG("%s:%d: not found: aligned_bus %lxh\n",
904 __func__, __LINE__, aligned_bus);
905 DBG("%s:%d: not found: aligned_len %lxh\n",
906 __func__, __LINE__, aligned_len);
907 BUG();
908 }
909
910 c->usage_count--;
911
912 if (!c->usage_count) {
913 list_del(&c->link);
914 dma_sb_free_chunk(c);
915 }
916
917 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
918 return 0;
919 }
920
dma_ioc0_unmap_area(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)921 static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
922 dma_addr_t bus_addr, unsigned long len)
923 {
924 unsigned long flags;
925 struct dma_chunk *c;
926
927 DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
928 spin_lock_irqsave(&r->chunk_list.lock, flags);
929 c = dma_find_chunk(r, bus_addr, len);
930
931 if (!c) {
932 unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
933 1 << r->page_size);
934 unsigned long aligned_len = ALIGN(len + bus_addr
935 - aligned_bus,
936 1 << r->page_size);
937 DBG("%s:%d: not found: bus_addr %llxh\n",
938 __func__, __LINE__, bus_addr);
939 DBG("%s:%d: not found: len %lxh\n",
940 __func__, __LINE__, len);
941 DBG("%s:%d: not found: aligned_bus %lxh\n",
942 __func__, __LINE__, aligned_bus);
943 DBG("%s:%d: not found: aligned_len %lxh\n",
944 __func__, __LINE__, aligned_len);
945 BUG();
946 }
947
948 c->usage_count--;
949
950 if (!c->usage_count) {
951 list_del(&c->link);
952 dma_ioc0_free_chunk(c);
953 }
954
955 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
956 DBG("%s: end\n", __func__);
957 return 0;
958 }
959
960 /**
961 * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
962 * @r: Pointer to a struct ps3_dma_region.
963 *
964 * This routine creates an HV dma region for the device and maps all available
965 * ram into the io controller bus address space.
966 */
967
dma_sb_region_create_linear(struct ps3_dma_region * r)968 static int dma_sb_region_create_linear(struct ps3_dma_region *r)
969 {
970 int result;
971 unsigned long virt_addr, len;
972 dma_addr_t tmp;
973
974 if (r->len > 16*1024*1024) { /* FIXME: need proper fix */
975 /* force 16M dma pages for linear mapping */
976 if (r->page_size != PS3_DMA_16M) {
977 pr_info("%s:%d: forcing 16M pages for linear map\n",
978 __func__, __LINE__);
979 r->page_size = PS3_DMA_16M;
980 r->len = ALIGN(r->len, 1 << r->page_size);
981 }
982 }
983
984 result = dma_sb_region_create(r);
985 BUG_ON(result);
986
987 if (r->offset < map.rm.size) {
988 /* Map (part of) 1st RAM chunk */
989 virt_addr = map.rm.base + r->offset;
990 len = map.rm.size - r->offset;
991 if (len > r->len)
992 len = r->len;
993 result = dma_sb_map_area(r, virt_addr, len, &tmp,
994 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
995 CBE_IOPTE_M);
996 BUG_ON(result);
997 }
998
999 if (r->offset + r->len > map.rm.size) {
1000 /* Map (part of) 2nd RAM chunk */
1001 virt_addr = map.rm.size;
1002 len = r->len;
1003 if (r->offset >= map.rm.size)
1004 virt_addr += r->offset - map.rm.size;
1005 else
1006 len -= map.rm.size - r->offset;
1007 result = dma_sb_map_area(r, virt_addr, len, &tmp,
1008 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1009 CBE_IOPTE_M);
1010 BUG_ON(result);
1011 }
1012
1013 return result;
1014 }
1015
1016 /**
1017 * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1018 * @r: Pointer to a struct ps3_dma_region.
1019 *
1020 * This routine will unmap all mapped areas and free the HV dma region.
1021 */
1022
dma_sb_region_free_linear(struct ps3_dma_region * r)1023 static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1024 {
1025 int result;
1026 dma_addr_t bus_addr;
1027 unsigned long len, lpar_addr;
1028
1029 if (r->offset < map.rm.size) {
1030 /* Unmap (part of) 1st RAM chunk */
1031 lpar_addr = map.rm.base + r->offset;
1032 len = map.rm.size - r->offset;
1033 if (len > r->len)
1034 len = r->len;
1035 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1036 result = dma_sb_unmap_area(r, bus_addr, len);
1037 BUG_ON(result);
1038 }
1039
1040 if (r->offset + r->len > map.rm.size) {
1041 /* Unmap (part of) 2nd RAM chunk */
1042 lpar_addr = map.r1.base;
1043 len = r->len;
1044 if (r->offset >= map.rm.size)
1045 lpar_addr += r->offset - map.rm.size;
1046 else
1047 len -= map.rm.size - r->offset;
1048 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1049 result = dma_sb_unmap_area(r, bus_addr, len);
1050 BUG_ON(result);
1051 }
1052
1053 result = dma_sb_region_free(r);
1054 BUG_ON(result);
1055
1056 return result;
1057 }
1058
1059 /**
1060 * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1061 * @r: Pointer to a struct ps3_dma_region.
1062 * @virt_addr: Starting virtual address of the area to map.
1063 * @len: Length in bytes of the area to map.
1064 * @bus_addr: A pointer to return the starting ioc bus address of the area to
1065 * map.
1066 *
1067 * This routine just returns the corresponding bus address. Actual mapping
1068 * occurs in dma_region_create_linear().
1069 */
1070
dma_sb_map_area_linear(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)1071 static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1072 unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1073 u64 iopte_flag)
1074 {
1075 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1076 : virt_addr;
1077 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1078 return 0;
1079 }
1080
1081 /**
1082 * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1083 * @r: Pointer to a struct ps3_dma_region.
1084 * @bus_addr: The starting ioc bus address of the area to unmap.
1085 * @len: Length in bytes of the area to unmap.
1086 *
1087 * This routine does nothing. Unmapping occurs in dma_sb_region_free_linear().
1088 */
1089
dma_sb_unmap_area_linear(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)1090 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1091 dma_addr_t bus_addr, unsigned long len)
1092 {
1093 return 0;
1094 };
1095
1096 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops = {
1097 .create = dma_sb_region_create,
1098 .free = dma_sb_region_free,
1099 .map = dma_sb_map_area,
1100 .unmap = dma_sb_unmap_area
1101 };
1102
1103 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1104 .create = dma_sb_region_create_linear,
1105 .free = dma_sb_region_free_linear,
1106 .map = dma_sb_map_area_linear,
1107 .unmap = dma_sb_unmap_area_linear
1108 };
1109
1110 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1111 .create = dma_ioc0_region_create,
1112 .free = dma_ioc0_region_free,
1113 .map = dma_ioc0_map_area,
1114 .unmap = dma_ioc0_unmap_area
1115 };
1116
ps3_dma_region_init(struct ps3_system_bus_device * dev,struct ps3_dma_region * r,enum ps3_dma_page_size page_size,enum ps3_dma_region_type region_type,void * addr,unsigned long len)1117 int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1118 struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1119 enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1120 {
1121 unsigned long lpar_addr;
1122 int result;
1123
1124 lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1125
1126 r->dev = dev;
1127 r->page_size = page_size;
1128 r->region_type = region_type;
1129 r->offset = lpar_addr;
1130 if (r->offset >= map.rm.size)
1131 r->offset -= map.r1.offset;
1132 r->len = len ? len : ALIGN(map.total, 1 << r->page_size);
1133
1134 dev->core.dma_mask = &r->dma_mask;
1135
1136 result = dma_set_mask_and_coherent(&dev->core, DMA_BIT_MASK(32));
1137
1138 if (result < 0) {
1139 dev_err(&dev->core, "%s:%d: dma_set_mask_and_coherent failed: %d\n",
1140 __func__, __LINE__, result);
1141 return result;
1142 }
1143
1144 switch (dev->dev_type) {
1145 case PS3_DEVICE_TYPE_SB:
1146 r->region_ops = (USE_DYNAMIC_DMA)
1147 ? &ps3_dma_sb_region_ops
1148 : &ps3_dma_sb_region_linear_ops;
1149 break;
1150 case PS3_DEVICE_TYPE_IOC0:
1151 r->region_ops = &ps3_dma_ioc0_region_ops;
1152 break;
1153 default:
1154 BUG();
1155 return -EINVAL;
1156 }
1157 return 0;
1158 }
1159 EXPORT_SYMBOL(ps3_dma_region_init);
1160
ps3_dma_region_create(struct ps3_dma_region * r)1161 int ps3_dma_region_create(struct ps3_dma_region *r)
1162 {
1163 BUG_ON(!r);
1164 BUG_ON(!r->region_ops);
1165 BUG_ON(!r->region_ops->create);
1166 return r->region_ops->create(r);
1167 }
1168 EXPORT_SYMBOL(ps3_dma_region_create);
1169
ps3_dma_region_free(struct ps3_dma_region * r)1170 int ps3_dma_region_free(struct ps3_dma_region *r)
1171 {
1172 BUG_ON(!r);
1173 BUG_ON(!r->region_ops);
1174 BUG_ON(!r->region_ops->free);
1175 return r->region_ops->free(r);
1176 }
1177 EXPORT_SYMBOL(ps3_dma_region_free);
1178
ps3_dma_map(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)1179 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1180 unsigned long len, dma_addr_t *bus_addr,
1181 u64 iopte_flag)
1182 {
1183 return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1184 }
1185
ps3_dma_unmap(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)1186 int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1187 unsigned long len)
1188 {
1189 return r->region_ops->unmap(r, bus_addr, len);
1190 }
1191
1192 /*============================================================================*/
1193 /* system startup routines */
1194 /*============================================================================*/
1195
1196 /**
1197 * ps3_mm_init - initialize the address space state variables
1198 */
1199
ps3_mm_init(void)1200 void __init ps3_mm_init(void)
1201 {
1202 int result;
1203
1204 DBG(" -> %s:%d\n", __func__, __LINE__);
1205
1206 result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1207 &map.total);
1208
1209 if (result)
1210 panic("ps3_repository_read_mm_info() failed");
1211
1212 map.rm.offset = map.rm.base;
1213 map.vas_id = map.htab_size = 0;
1214
1215 /* this implementation assumes map.rm.base is zero */
1216
1217 BUG_ON(map.rm.base);
1218 BUG_ON(!map.rm.size);
1219
1220 /* Check if we got the highmem region from an earlier boot step */
1221
1222 if (ps3_mm_get_repository_highmem(&map.r1)) {
1223 result = ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1224
1225 if (!result)
1226 ps3_mm_set_repository_highmem(&map.r1);
1227 }
1228
1229 /* correct map.total for the real total amount of memory we use */
1230 map.total = map.rm.size + map.r1.size;
1231
1232 if (!map.r1.size) {
1233 DBG("%s:%d: No highmem region found\n", __func__, __LINE__);
1234 } else {
1235 DBG("%s:%d: Adding highmem region: %llxh %llxh\n",
1236 __func__, __LINE__, map.rm.size,
1237 map.total - map.rm.size);
1238 memblock_add(map.rm.size, map.total - map.rm.size);
1239 }
1240
1241 DBG(" <- %s:%d\n", __func__, __LINE__);
1242 }
1243
1244 /**
1245 * ps3_mm_shutdown - final cleanup of address space
1246 */
1247
ps3_mm_shutdown(void)1248 void ps3_mm_shutdown(void)
1249 {
1250 ps3_mm_region_destroy(&map.r1);
1251 }
1252